
Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

INTEGRATING KERNEL METHODS AND DEEP NEURAL
NETWORKS FOR SOLVING PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed machine learning (PIML) has emerged as a promising alterna-
tive to conventional numerical methods for solving partial differential equations
(PDEs). PIML models are increasingly built via deep neural networks (NNs)
whose performance is very sensitive to the NN’s architecture, training settings,
and loss function. Motivated by this limitation, we introduce kernel-weighted Cor-
rective Residuals (CoRes) to integrate the strengths of kernel methods and deep
NNs for solving nonlinear PDE systems. To achieve this integration, we design a
modular and robust framework which consistently outperforms competing meth-
ods in a broad range of benchmark problems. This performance improvement
has a theoretical justification and is particularly attractive since we simplify the
training process while negligibly increasing the inference costs. Our studies also
indicate that the proposed approach considerably decreases the sensitivity of NNs
to factors such as random initialization, architecture type, and choice of optimizer.

1 INTRODUCTION

Partial differential equations (PDEs) elegantly explain the behavior of many engineered and natural
systems such as power grids (Brunton et al., 2016), advanced materials (Mozaffar et al., 2019), and
biological agents (Brunton et al., 2016). Since most PDEs cannot be analytically solved, numerical
approaches such as the finite element method are frequently used to solve them. Recently, a new
class of methods known as physics-informed machine learning (PIML) has been developed and
successfully used in many applications.While PIML models have fueled a renaissance in modeling
complex systems, their performance heavily depends on optimizing the model’s training mechanism,
loss function, and architecture (Pestourie et al., 2023). To reduce the time and energy footprint of
developing PIML models while improving their accuracy, we re-envision solving PDEs via machine
learning (ML) and introduce Corrective Residuals (CoRes) that integrate the strengths of kernel
methods and deep neural networks (NNs).

2 RELATED WORKS

We can broadly classify PIML models into two categories. The first group of methods relies on
variants of neural networks (NNs) and can be traced back to Lagaris et al. (1998). Physics-informed
neural networks (PINNs) (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018) and their extensions
are the most widely adopted member of these methods and their basic idea is to parameterize the
PDE solution via a deep NN. The parameters of this NN are optimized by minimizing a multi-
component loss function which encourages the NN to satisfy the PDE as well as the initial and/or
boundary conditions (IC and BCs), see Figure A2. This minimization is known to be very sensitive
to the optimizer, loss function formulation, and NN’s architecture. To decrease this sensitivity,
recent works have developed adaptive loss functions (Chen et al., 2018) and tailored architectures
that improve gradient flows or automatically satisfy BCs (Wang et al., 2021a; Lagaris et al., 1998).
These advancements, however, fail to generalize to a diverse set of PDEs and substantially increase
the cost and complexity of training.

The second group of PIML models leverage kernel methods which have long been used in ML but
their application in solving PDEs is largely unexplored. The few existing works (see Zhang et al.
(2022); Iwata & Ghahramani (2017); Meng & Yang (2023)) exclusively employ zero-mean Gaussian

1

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

processes (GPs). With this choice, solving the PDE amounts to designing the GP’s kernel whose
parameters are obtained via either maximum likelihood estimation (MLE) or a regularized MLE
where the penalty term quantifies the GP’s error in satisfying the PDE system. In a recent work by
Chen et al. (2021), solving PDEs via a zero-mean GP is cast as an optimal recovery problem that
aims to estimate the solution at a finite number of interior nodes in the domain. Once these values
are estimated, the PDE solution is approximated anywhere in the domain via kernel regression.

3 NEURAL NETWORKS WITH CORRECTIVE RESIDUALS

Kernel methods such as GPs have less extrapolation and scalability powers compared to deep NNs.
They also struggle to approximate PDE solutions that have large gradients or involve coupled de-
pendent variables. However, GPs locally generalize better than NNs and are interpretable and easy
to train. Grounded on these properties, we introduce deep architectures with kernel-weighted CoRes
that integrate the attractive features of NNs and GPs for solving PDEs.

3.1 THEORETICAL RATIONALE OF THE PROPOSED APPROACH

We argue that the sole reliance on the kernel serves as a double-edged sword when solving PDEs.
To demonstrate, we consider the task of emulating the function u(x) given the n samples X =
{x1, · · · ,xn} with corresponding outputs u = {u1, · · · , un} where ui = u(xi). If we endow u(x)
with a GP prior with the mean function m(x;θ) and kernel c(x,x′;ϕ), the conditional process is
also a GP whose expected value at x∗ is:

η(x∗;θ,ϕ) := E[u∗|u,X] = m(x∗;θ) +wTr, (1a)

w := w(x∗,X;ϕ) = c−1(X,X;ϕ)c(X,x∗;ϕ) (1b)
r := r(X,u;θ) = u−m(X;θ). (1c)

Here, θ and ϕ are the model parameters (typically estimated via MLE), c(X,x∗;ϕ) =
[c(x1,x

∗;ϕ), · · · , c(xn,x
∗;ϕ)]T , r denotes the residuals on the training data, w are the kernel-

induced weights, and C = c(X,X;ϕ) is the covariance matrix with ijth entry c(xi,xj ;ϕ). The
covariance function can be a deep NN as in Wilson et al. (2016) or the simple Gaussian kernel:

c(x,x′;ϕ) = exp
{
−(x− x′)T diag(ϕ)(x− x′)

}
. (2)

Since many kernels can approximate an arbitrary continuous function (Rasmussen, 2006), zero-
mean GPs are used in many regression problems as eliminating m(x;θ) reduces the number of
trainable parameters while increasing numerical stability (see Appendix A 1 for more detailed dis-
cussions). Unlike regression, PDE systems cannot be accurately solved via zero-mean GPs without
any in-domain samples since the posterior process in Equation (1) predicts zero for any point that is
sufficiently far from the boundaries. This reversion to the mean behavior is due to the exponential
decay of the correlations as the distance between two points increases, see Equation (2).

Following the above discussions, we make two important observations on Equation (1): it heavily
relies onm(x;θ) in data scarce regions and it regresses u regardless of the values ofm(X;θ). These
observations suggest that a GP with an NN mean function provides an attractive prior for solving
PDEs since functions formulated as in Equation (1a) satisfy the BCs/IC and their smoothness can be
controlled through the mean and covariance functions. This approach, however, presents two major
challenges. First, the posterior distribution in this case will not be Gaussian in general since most
practical PDEs are nonlinear. Second, jointly optimizing ϕ and θ is a computationally expensive
and unstable process due to the repeated need for constructing and inverting C.

3.2 PROPOSED FRAMEWORK

We address the above challenges via modularization and formulating the training process based on
maximum a posteriori (MAP) instead of MLE. Our framework consists of two sequential modules
that aim to solve PDE systems with deep NNs that substantially benefit from kernel-weighted CoRes.
These modules seamlessly integrate the best of two worlds: (1) the local generalization power of
kernels close to the domain boundaries, and (2) the substantial capacity of deep NNs in learning
multiple levels of distributed representations in the interior regions where there are no labeled data.

2

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

In the first module, we endow the PDE solution with a GP prior whose mean and covariance func-
tions are a deep NN and the Gaussian kernel in Equation (2), respectively. Conditioned on the data,
u, the posterior distribution of the solution is again a GP and follows Equation (1a) where r and w
denote the residuals and kernel-induced weights, respectively. Importantly, in this module we fix θ

to some random values and choose ϕ̂ such that the GP can faithfully reproduce u.

In the second module, we obtain the final model by conditioning the GP on the (nonlinear) con-
straints that require the in-domain predictions to satisfy the PDE system. We achieve this condition-
ing by fixing ϕ̂ from module 1 and optimizing θ to ensure that the model in Equation (1a) satisfies
the PDE at nPDE randomly selected collocation points (CPs) in the domain, see Figure 1.

Model Characteristics: As extensively studied in Appendix A, our approach provides four unique
features. First, the training cost in our approach mainly depends on the second module since select-
ing ϕ̂ does not rely on MLE and is an inexpensive process. Additionally, our experiments consis-
tently indicate that the performance of the final model is quite robust to ϕ̂ as long as the BCs/IC are
sufficiently sampled. This robustness is independent of the random values assigned to θ in module
1. Based on these two observations, in all of our experiments we simply assign 102 to all the kernel
parameters and sample 40 points at each boundary.

Second, the computational cost of coupling GPs and deep NNs in our framework is negligible during
both training and testing since C does not change in the second module and its size only depends on
u. When solving PDEs such as the Navier-Stokes equations that have multiple dependent variables,
the size of u can grow rapidly since it will store boundary and initial data on multiple outputs.
Hence, for such PDEs we decouple the kernel-weighted CoRes of the outputs to keep C and u
small. As shown in Figure A5, we formulate this decoupling by endowing the dependent variables
with a collection of GP priors which share the same mean function but have independent kernels.

The third feature of our model is its ability to exactly satisfy the BCs/IC as the number of sampled
boundary points increases. This behavior is independent of the domain geometry and the potential
noise corrupting the data; see Appendix A for the proof and examples. Due to this feature, the loss
function in Figure 1 only minimizes the error in satisfying the PDE and excludes data loss terms.

The above three features imply that training a PINN or its extensions costs similarly to the case
where the same network is used as m(x;θ) in our framework. This behavior is very attractive
since our approach consistently and substantially improves the performance of existing NN-based
methods while also simplifying the training process.

Lastly, our framework allows to perform data fusion and system identification with fast convergence
rates by incorporating the additional measurements in the kernel structure in exactly the same way
that BC/IC data are handled, see Appendix A 5.5 for details and results.

4 RESULTS

We compare the performance of our approach against four methods on the PDE systems given by
Equations (11) to (14) in Appendix A 3. We study each problem under two settings to understand

ℒ𝑃𝐷𝐸 𝜽 =
1

𝑛𝑃𝐷𝐸
σ𝑖=1

𝑛𝑃𝐷𝐸 𝜂𝑡 + 𝜂𝜂𝑥 − 𝜈𝜂𝑥𝑥
2

𝑚(𝐱; 𝜽)

𝒓 = 𝐮 − 𝑚 𝐗; 𝜽 ∙

ℒ𝑃𝐷𝐸 𝜽 < 𝜖?

+ 𝜂(𝐱; 𝜽, ෡𝝓)

𝒘𝑻 = 𝑐−1 𝐗, 𝐗; ෡𝝓 𝑐 𝐗, 𝐱; ෡𝝓
𝑇

𝑚

𝒩𝒩(𝐱; 𝜽)
Kernel-induced weights

BC, IC:
𝑢 −1, 𝑡 = 𝑢 1, 𝑡 = 0
𝑢 𝑥, 0 = − sin 𝜋𝑥

𝑡

𝑥

𝐱𝒊, u𝑖 𝑖=1
𝑛 Module 1

෡𝝓

Residuals

Mean

PDE: 𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥

PDE Loss

No
Yes

Update 𝜽

End

𝜕

𝜕𝑡

𝜕

𝜕𝑥

𝜕2

𝜕𝑥2

1

Figure 1: Flowchart of module two: We estimate θ for the 1D Burgers’ equation. The loss function
only depends on the PDE since BC/IC are automatically satisfied.

3

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

the effect of PDE complexity on the results. We obtain the reference solution u(x) for each PDE
system as detailed in Appendix A 4.5 and use it to quantify the accuracy of the PIML models based
on the Euclidean error norm, L2

e, at nt = 104 randomly chosen points. Throughout, [x, y], t, and u
denote the spatial coordinates, time, and the PDE solution, respectively. In the case of Navier-Stokes
equation, u(x) = [u(x), v(x), p(x)]T denotes the solution.

As detailed in Appendix A 4, we use a simple feed-forward NN in our framework and design its
input and output dimensionality based on the PDE system. We denote our model via NN-CoRes and
compare it against (1) GPOR of Chen et al. (2021), (2) PINNs whose architectures are exactly the
same as the mean function of NN-CoRes, (3) PINNDW which leverages dynamic weights for loss
terms, and (4) PINNHC which is a PINN whose output is designed to strictly satisfy the BCs/IC.

The results of our studies are summarized in Table 1 and indicate that our approach consistently
outperforms other methods by relatively large margins. Interestingly, in most cases even the small
NN-CoRes achieve lower errors than the high capacity version of the competing methods; indicating
NN-CoRes more effectively use their networks’ capacity to learn the PDE solution. To visually
compare the capacity utilization across different NN-based models, in Figure A12 we provide the
histogram of the PDE loss gradients with respect to θ at the end of training. We observe that NN-
CoRes achieve the most near-zero gradients while satisfying the BCs/IC. In contrast, PINNHC, which
is also designed to automatically satisfy the BCs/IC, struggles to minimize the PDE loss.

We observe in Table 1 that the performance of all the methods drops as either the problem complexity
increases (e.g., Burger’s vs. LDC) or PDE parameters are changed to introduce nonlinearity (e.g.,
A = 3 vs A = 5 in LDC). This trend is expected as the architecture and training settings across our
experiments are fixed. That is, we can increase the accuracy of all methods, especially NN-CoRes,
by increasing their capacity or improving the training, see Appendix A 5.3 for multiple experiments.

5 CONCLUSIONS AND FUTURE WORKS

We introduce kernel-weighted CoRes that integrate the strengths of kernel methods and deep NNs
for solving nonlinear PDEs. We design a modular framework to achieve this integration and show
that it improves the accuracy without complicating the training process. As extensively studied in
Appendix A, our findings not only are very robust to the choice of optimizer and initial parameter
values, but also applicable to various neural architectures.

The current major limitation of our approach is that the contributions of the kernel-weighted CoRes
decrease in the absence of boundary data. We believe devising periodic kernels is a promising
direction for addressing this limitation which will be particularly useful in multiscale simulations
where PDEs with periodic BCs frequently arise in the fine-scale analyses.

ACKNOWLEDGMENTS

We appreciate the support from the Office of the Naval Research, NASA’s Space Technology Re-
search Grants Program, and National Science Foundation.

Table 1: Summary of comparative studies: We report L2
e × 103 of different methods as a function of

model capacity and PDE parameter. The symbol ⊗ indicates the network architecture (e.g., 4 ⊗ 10
is an NN which has four 10− neuron hidden layers). Unlike NN-based methods, GPOR’s accuracy
relies on the number of interior nodes which we set to 1, 000 or 2, 000.

NN-CoRes GPOR PINN PINNDW PINNHC

Problem
Capacity

4 ⊗ 10 4 ⊗ 20 1,000 2,000 4 ⊗ 10 4 ⊗ 20 4 ⊗ 10 4 ⊗ 20 4 ⊗ 10 4 ⊗ 20

Burger’s
ν = 0.01/π
ν = 0.02/π

1.91
0.80

1.29
0.89

169
224

208
169

4.26
2.42

4.38
1.50

19.3
2.86

5.79
3.18

365
341

352
336

Elliptic
α = 30
α = 20

4.38
4.50

1.24
2.04

7.08
2.44

6.55
4.06

845
655

555
468

169
297

119
126

289
635

653
595

Eikonal
ϵ = 0.01
ϵ = 0.05

4.60
0.52

4.99
0.37

218
176

206
125

6.41
2.76

6.38
2.19

5.03
2.01

4.97
1.54

291
289

342
288

LDC
A = 5
A = 3

311
186

279
86.7

−
−

−
−

717
272

677
128

716
301

623
125

1028
432

911
529

4

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

REFERENCES

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,
18:1–43, 2018.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28–41, 2018.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc Natl Acad Sci U S A, 113(15):3932–7,
2016. ISSN 1091-6490 (Electronic) 0027-8424 (Linking). doi: 10.1073/pnas.1517384113. URL
https://www.ncbi.nlm.nih.gov/pubmed/27035946.

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning
nonlinear pdes with gaussian processes. Journal of Computational Physics, 447:110668, 2021.
ISSN 0021-9991.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Tomoharu Iwata and Zoubin Ghahramani. Improving output uncertainty estimation and generaliza-
tion in deep learning via neural network gaussian processes. arXiv preprint arXiv:1707.05922,
2017.

George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions. Journal of
mathematical analysis and applications, 33(1):82–95, 1971.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Rui Meng and Xianjin Yang. Sparse gaussian processes for solving nonlinear pdes. Journal of
Computational Physics, 490:112340, 2023. ISSN 0021-9991.

M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, and M. A. Bessa. Deep learning predicts
path-dependent plasticity. Proc Natl Acad Sci U S A, 116(52):26414–26420, 2019. ISSN 1091-
6490 (Electronic) 0027-8424 (Linking). doi: 10.1073/pnas.1911815116. URL https://www.
ncbi.nlm.nih.gov/pubmed/31843918.

COMSOL Multiphysics. Introduction to comsol multiphysics®. COMSOL Multiphysics, Burling-
ton, MA, accessed Feb, 9(2018):32, 1998.

Taku Ohwada. Cole-hopf transformation as numerical tool for the burgers equation. Appl. Comput.
Math, 8(1):107–113, 2009.

Finbarr O’sullivan, Brian S Yandell, and William J Raynor Jr. Automatic smoothing of regression
functions in generalized linear models. Journal of the American Statistical Association, 81(393):
96–103, 1986.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G. Johnson. Physics-
enhanced deep surrogates for partial differential equations. Nature Machine Intelligence, 5(12):
1458–1465, 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00761-y. URL https://doi.
org/10.1038/s42256-023-00761-y.

5

https://www.ncbi.nlm.nih.gov/pubmed/27035946
https://www.ncbi.nlm.nih.gov/pubmed/31843918
https://www.ncbi.nlm.nih.gov/pubmed/31843918
https://doi.org/10.1038/s42256-023-00761-y
https://doi.org/10.1038/s42256-023-00761-y

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018. ISSN 0021-9991.

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics, 50(8):3668–3681, 2019.

Richard Szeliski. Regularization uses fractal priors. In Proceedings of the sixth National conference
on Artificial intelligence-Volume 2, pp. 749–754, 1987.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021a. ISSN 1064-8275.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021b.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Jiahao Zhang, Shiqi Zhang, and Guang Lin. Pagp: A physics-assisted gaussian process framework
with active learning for forward and inverse problems of partial differential equations. arXiv
preprint arXiv:2204.02583, 2022.

A APPENDIX

A 1 PROPERTIES OF A GAUSSIAN PROCESS SURROGATE

We use an analytic one-dimensional (1D) function to demonstrate some of the most important char-
acteristics of Gaussian process (GP) surrogates. Specifically, we leverage a set of examples to argue
that GPs: (1) have interpretable parameters, (2) can regress or interpolate highly nonlinear functions,
(3) suffer from reversion to the mean phenomena in data scarce regions, (4) can have ill-conditioned
covariance matrices if their mean function interpolates the data, and (5) with manually chosen hy-
perparameters can faithfully surrogate a function if sufficient training samples are available. These
properties underpin our decision for manually selecting the kernel parameters in module one of our
framework. They also demonstrate the effects of a GP’s mean function on its prediction power and
numerical stability.

As demonstrated in Figure A1 our experiments involve sampling from a sinusoidal function where
we study the effects of frequency, noise, data distribution, function differentiability, adopted prior
mean function, and hyperparameter optimization on the behavior of GPs. For all of these studies we
endow the GP with the following parametric kernel:

c
(
x, x′;ϕ, δ, σ2

)
= σ2 exp

{
−ϕ(x− x′)2

}
+ 1{x == x′}δ, (3)

where λ = [σ, ϕ, δ]T are the kernel parameters. In this equation, σ2 is the process variance which,
looking at Equation 1 in the main text, does not affect the posterior mean and hence we simply set
it to 1 in our framework (this feature of our framework is in sharp contrast to other methods such
as Chen et al. (2021) whose performance is quite sensitive to the selected kernel parameters). The

6

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

rest of the parameters in Equation (3) are defined as follows. ϕ = 10ω where ω is the length-scale
or roughness parameter that controls the correlation strength along the x−axis, 1{·} returns 1/0 if
the enclosed statement is true/false, and δ is the so-called nugget or jitter parameter that is added to
the kernel for modeling noise and/or improving the numerical stability of the covariance matrix. We
quantify the numerical stability of the covariance matrix via its condition number or κ.

Given some training data, λ can be quickly estimated via maximum likelihood estimation (MLE).
We denote parameter estimates obtained via this process by appending the subscript MLE to them,
i.e., λ̂MLE . Alternatively, we can manually assign specific values to λ.

We first study the effect noise by training two GPs where both GPs aim to emulate the same under-
lying function but one has access to noise-free responses while the other is trained on noisy data,
see Figure A1 (a) and Figure A1 (b), respectively. We observe in Figure A1 (a) that the estimated
value for δ̂MLE is very small since the data is noise-free (the small value is added to reduce κ)
while in Figure A1 (b) the estimated nugget parameter is much larger and close to the noise variance
(2.48e − 3 vs. 2.50e − 3). Additionally, comparing Figure A1 (a) and Figure A1 (c) we observe a
direct relation between the frequency of the underlying function and the estimated kernel parame-
ters. In particular, the magnitude of ω̂MLE increases as u(x) becomes rougher since the correlation
between two points on it quickly dies out as the distance between those points increases (for this
reason, ω is also sometimes called the roughness parameter). Further increasing the frequency of
u(x) to the extend that it resembles a noise signal directly increases ω̂MLE . These points indicate
that the kernel parameters of a GP are interpretable.

We next study the reversion to the mean behavior and numerical instabilities of GPs in Figure A1
(d) and Figure A1 (e). In both of these scenarios the training data is only available close to the
boundaries. However, we set the prior mean of the GP in Figure A1 (d) and Figure A1 (e) to zero
andm(x; θ) = θ×sin(2πx), respectively. The reversion to the mean behavior is clearly observed in
Figure A1 (d) where the expected value of the posterior distribution is almost zero in the (−0.5, 0.5)
range where the correlations with the training data die out. The reversion to the mean behavior is
also seen in Figure A1 (e) but this time it is not undesirable since the functional form of the chosen
parametric mean function is similar to u(x) (note that a large neural network can also reproduce the
training data but such a network cannot match u(x) in interior regions where there are no labeled
data). This similarity forces the kernel to regress residuals that are mostly zero (i.e., the kernel
must regress a constant value in the entire domain). Since any two points on a constant function
have maximum correlation, regressing such residuals requires ϕ → 0 which, in turn, renders the
covariance matrix ill-conditioned to the extend that κ → +∞. Based on these observations, in our
framework we do not estimate the kernel parameters jointly with the weights and biases of the deep
neural network (NN).

Lastly, in Figure A1 (e) we demonstrate that GPs can interpolate non-differentiable functions as long
as they are provided with sufficient training data. The power and efficiency of GPs in learning from
data is quite robust to the hyperparameters. As shown in Figure A1 (g) through Figure A1 (i) GPs
with manually selected ω can accurately surrogate u(x) regardless of its frequency (the nugget value
in these three cases is chosen such that κ does not exceed a pre-determined value). This attractive
behavior forms the basis of our choice to manually fix ϕ in the first module of our framework. It is
highlighted that the manual parameter selection results in sub-optimal prediction intervals but this
issue does not affect our framework since we do not leverage these intervals.

A 2 NEURAL NETWORKS WITH KERNEL-WEIGHTED CORRECTIVE RESIDUALS REPRODUCE
THE DATA

We prove that the error of our model in reproducing the boundary data converges to zero as we in-
crease the number of sampled boundary data. For the sake of completeness, we begin by a definition
and invoking two theorems and then proceed with our proof.

Reproducing kernel Hilbert space (RKHS): Let H be a Hilbert space of real functions u defined
on an index set X . Then, H is called an RKHS with the inner product ⟨·, ·⟩H if the function c :
X × X → R with the following properties exists:

• For any x, c(x,x′) as a function of x′ is in H,
• c has the reproducing property, that is ⟨u(x′), c(x′,x)⟩H = u(x).

7

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (a)

u(x) = sin (2πx)
m(x) = 0

ω̂MLE = 0.551, δ̂MLE = 4.182e-07, κ = 2.505e+07

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0
(b)

u(x) = sin (2πx), ε ∼ N (0, 0.052)
m(x) = 0

ω̂MLE = 0.703, δ̂MLE = 2.482e-03, κ = 1.946e+07

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (c)

u(x) = sin (4πx)
m(x) = 0

ω̂MLE = 1.207, δ̂MLE = 1.622e-07, κ = 1.176e+07

−1.0 −0.5 0.0 0.5 1.0

x

−2

−1

0

1

2
(d)

u(x) = sin (2πx)
m(x) = 0

ω̂MLE = 1.182, δ̂MLE = 5.244e-04, κ = 1.282e+04

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (e)

u(x) = sin (2πx)

m(x; θ) = θ sin (2πx), θ̂MLE = 1.000

ω̂MLE = -7.829, δ̂MLE = 5.197e-08, κ =∞

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0 (f)

u(x) = | sin (2πx)|
m(x) = 0

ω̂MLE = 1.330, δ̂MLE = 1.567e-06, κ = 1.030e+07

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (g)

u(x) = sin (πx)
m(x) = 0

ω̂ = 2.000, δ̂MLE = 1.517e-05, κ = 3.323e+05

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (h)

u(x) = sin (2πx)
m(x) = 0

ω̂ = 2.000, δ̂MLE = 1.546e-05, κ = 3.323e+05

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0 (i)

u(x) = sin (4πx)
m(x) = 0

ω̂ = 2.000, δ̂MLE = 1.516e-05, κ = 3.323e+05

u(x) η(x) 95% Prediction Interval Training data

Figure A1: Properties of Gaussian processes: We demonstrate that GPs have interpretable hyperpa-
rameters and can regress a wide range of functions. The dependency of regression quality on the
hyperparameters rapidly decreases as the size of the training data increases.

Note that the norm of u is ∥ u ∥H=
√

⟨u, u⟩H and that ⟨c(x, ·), c(x′, ·)⟩H = c(x,x′) since both
c(x′, ·) and c(x, ·) are in H.

Mercer’s Theorem: The eigenfunctions of the real positive semidefinite kernel c(x,x′) whose
eignenfunction expansion with respect to measure π is c(x,x′) =

∑N
i=1 αiψi(x)ψi(x

′), are or-
thonormal. That is: ∫

ψi(x)ψj(x)dπ = δij (4)

where δij denotes the Kronecker delta function. Following this theorem, we note that for a Hilbert
space defined by the linear combinations of the eigenfunctions, that is u(x) =

∑N
i=1 uiψi(x) with∑N

i=1 ui/αi <∞, we have ∥ u ∥2H= ⟨u, u⟩H =
∑N

i=1 ui/αi.

Representer Theorem: Each minimizer u(x) ∈ H of the following functional can be represented
as u(x) =

∑n
i=1 αic(x,xi):

F [u(x)] =
β

2
∥ u(x) ∥2H +P (h,u). (5)

8

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

where h = [h1, · · · , hn]T is the observation vector, u(x) denotes the function that we aim to fit to h,
u = [u(x1), · · · , u(xn)]

T = [u1, · · · , un]T are the evaluations of u(x) at configurations where h are
observed, β is a scaling constant that balances the contributions of the two terms on the right hand
side (RHS) to F [u(x)], and P (·, ·) is a function that evaluates the quality of u(x) in reproducing
h. For proof of this theorem, see Schölkopf & Smola (2002); O’sullivan et al. (1986); Kimeldorf &
Wahba (1971).

In our case, to prove that our model can reproduce the boundary data we first assume that the initial
and boundary conditions are sufficiently smooth functions and that the neural network (i.e., the mean
function of the GP) produces finite values on the boundaries. These assumptions simplify the proof
by allowing us to work with the difference of these two terms.

We now consider a specific form of Equation (5):

F [u(x)] =
1

2
∥ u(x) ∥2H +

λ2

2

n∑
i=1

(hi − u(xi))
2, (6)

where u(x) is the zero-mean GP predictor and ∥ u(x) ∥H is the RKHS norm with kernel c(·, ·). The
second term on the right hand side corresponds to the negative log-likelihood of a Gaussian noise
model with precision λ2 and hence the minimizer of Equation (6) is the posterior mean of the GP
Szeliski (1987). Hence, we now need to show that as n→ ∞ the minimizer of Equation (6), which
is our GP, can reproduce the data h. We denote the ground truth function that we aim to discover
and the variance around it by, respectively, h(x) and τ2(x) =

∫
(h− h(x))2dπ(h|x) where π(x, h)

is the probability measure that generates the data (xi, hi).

We rewrite the second term on the right hand side of Equation (6) as:

E

[
n∑

i=1

(hi − u(xi))
2

]
= n

∫
(h− u(x))2dπ(x, h) =

n

∫
(h− h(x) + h(x)− u(x))2dπ(x, h) =

n

∫
τ2(x)dπ(x) + 0 + n

∫
(h(x)− u(x))2dπ(x).

(7)

where the zero on the last line is due to the definition of h(x), i.e., h(x) = E[h|x]. Since τ2(x) is
independent of u(x), we can use Equation (7) to rewrite Equation (6) as:

Fπ[u(x)] =
1

2
∥ u(x) ∥2H +

nλ2

2

∫
(h(x)− u(x))2dπ(x). (8)

We now invoke Mercer’s theorem to write u(x) =
∑∞

i=1 uiψi(x) and h(x) =
∑∞

i=1 hiψi(x) where
ψi are the eigenfunctions of the nondegenerage kernel of the GP. Since {ψi} form an orthonormal
basis, we can write:

Fπ[u(x)] =
1

2

∞∑
i=1

u2i
αi

+
nλ2

2

∞∑
i=1

(hi − ui)2. (9)

We take the derivative of Equation (9) with respect to ui and set it to zero to obtain:

ui =
αihi

αi + 1/nλ2
. (10)

Since 1/nλ2 → 0 as n→ ∞, in the limit ui → hi, i.e., our zero-mean GP predictor corrects for the
error thatm(x,θ) has on reproducing the initial and boundary conditions. Note that the convergence
in Equation (10) does not depend on τ2(x) and hence holds for the case where the observation vector
h is noisy.

A 3 DETAILS ON THE BENCHMARK PROBLEMS

Below, we provide the governing equations as well as the initial and boundary conditions for the
four PDE systems studied in this paper.

9

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Burgers’ Equation We consider a viscous system subject to IC and Dirichlet BC in one space
dimension:

ut + uux − νuxx = 0, ∀x ∈ (−1, 1), t ∈ (0, 1]

u(−1, t) = u(1, t) = 0, ∀t ∈ [0, 1]

u(x, 0) = − sin (πx), ∀x ∈ [−1, 1]

(11)

where x = [x, t] and ν is the kinematic viscosity. Equation (11) frequently arises in fluid mechanics
and nonlinear acoustics. In our studies, we investigate the performance of different PIML models in
solving Equation (11) for ν =

{
0.01
π , 0.02π

}
which controls the solution smoothness at x = 0 where

a shock wave forms as ν approches zero.

Nonlinear Elliptic PDE To assess the ability of our approach in learning high-frequency solu-
tions, we study the boundary value problem developed in Chen et al. (2021):

uxx + uyy − αu3 = f(x, y), ∀x, y ∈ (0, 1)2

u(x, 0) = u(x, 1) = 0, ∀x ∈ [0, 1]

u(0, y) = u(1, y) = 0, ∀y ∈ [0, 1]

(12)

where x = [x, y] and α = {20, 30} is a constant that controls the nonlinearity degree. f(x, y) is
designed such that the solution is u(x, y) = sin (πx) sin (πy) + 2 sin (4πx) sin (4πy).

Eikonal Equation We consider the two-dimensional regularized Eikonal equation Chen et al.
(2021) which is typically encountered in the context of wave propagation:

u2x + u2y − ϵ(uxx + uyy) = 1, ∀x, y ∈ (0, 1)2

u(x, 0) = u(x, 1) = 0, ∀x ∈ [0, 1]

u(0, y) = u(1, y) = 0, ∀y ∈ [0, 1]

(13)

where x = [x, y] and ϵ = {0.01, 0.05} is a constant that controls the smoothing effect of the
regularization term.

Lid-Driven Cavity (LDC) The two-dimensional steady state LDC problem has become a gold
standard for evaluating the ability of PIML models in solving coupled PDEs. This problem is gov-
erned by the incompressible Navier-Stokes equations:

ux + vy = 0, ∀x ∈ (0, 1)2

uux + vuy = −1

ρ
px + ν(uxx + uyy), ∀x ∈ (0, 1)2

uvx + vvy = −1

ρ
py + ν(vxx + vyy), ∀x ∈ (0, 1)2

v(x, 0) = v(x, 1) = v(0, y) = v(1, y) = 0, ∀x, y ∈ [0, 1]

u(x, 0) = u(0, y) = u(1, y) = 0, ∀x, y ∈ [0, 1]

u(x, 1) = A sin (πx), ∀x ∈ [0, 1]

p(0, 0) = 0

(14)

where x = [x, y], ν = 0.01 is the kinematic viscosity, ρ = 1.0 denotes the density, and A = {3, 5}
is a scaling constant. The Reynolds number for this LDC problem can be computed via Re = ρūL

ν

where ū =
∫ 1

0
A sin (πx)dx is the characteristic speed of the flow and L = 1 is the characteristic

length. For the two cases A = {3, 5}, we obtain Re = {191, 318}.

A 4 METHODS AND IMPLEMENTATION DETAILS

We first briefly introduce the four PIML models that we have used in our comparative studies and
then provide some details on how the reference solution for each PDE system is obtained. These
solutions are used to quantify the accuracy of the PIML models.

10

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

To be able to directly compare the implementation of the four PIML models, we use Burgers’ equa-
tion in the following descriptions. The PDE system is:

ut + uux − νuxx = 0, ∀x ∈ [−1, 1], t ∈ (0, 1] (15a)
u(−1, t) = u(1, t) = 0, ∀t ∈ [0, 1] (15b)
u(x, 0) = − sin (πx), ∀x ∈ [−1, 1] (15c)

where x = [x, t] are the independent variables, u is the PDE solution, and ν is a constant that
denotes the kinematic viscosity. Also, we denote the output of the NN models via m(x;θ) through-
out this section. Note that we also employ m(x;θ) for denoting the NN in the mean function of
NN-CoRes.

A 4.1 PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

As schematically shown in Figure A2, the essential idea of PINNs is to parameterize the relation be-
tween u and x with a deep NN Raissi et al. (2019), i.e., u(x) = m(x;θ) where θ are the network’s
weights and biases. The parameters ofm are optimized by iteratively minimizing a loss function, de-
noted by L(θ), that encourages the network to satisfy the PDE system in Equation (15). To calculate
L(θ), we first obtain the network’s output at nBC points on the x = −1 and x = 1 boundaries, nIC
points on the t = 0 boundary which marks the initial condition, and nPDE collocation points (CPs)
inside the domain, see Figure A2b. For the nBC + nIC points on the boundaries, we can directly
compare the network’s outputs to the specified boundary and initial conditions in Equations (15b)
and (15c). For each of the nPDE CPs, we evaluate the partial derivatives of the output and calculate
the residual in Equation (15a). Once these three terms are calculated, we obtain L(θ) by summing
them up as follows:

L(θ) = LPDE(θ) + LBC(θ) + LIC(θ)

=
1

nPDE

nPDE∑
i=1

(mt(xi;θ) +m(xi;θ)mx(xi;θ)− νmxx(xi;θ))
2+

1

nBC

nBC∑
i=1

(m(xi;θ)− 0)2 +
1

nIC

nIC∑
i=1

(m(xi;θ) + sin (πxi))
2

(16)

The loss function in Equation (16) is typically minimized via either the Adam Kingma & Ba (2014)
or L-BFGS Liu & Nocedal (1989) methods which are both gradient-based optimization algorithms.
With either Adam or L-BFGS, the parameters of the network are first initialized and then iteratively
updated to minimize L(θ). These updates rely on partial derivaties of L(θ) with respect to θ which
can be efficiently obtained via automatic differentiation Baydin et al. (2018).

While Adam and L-BFGS are both gradient-based optimization techniques, they have some major
differences Sun et al. (2019). Adam is a first-order method while L-BFGS is not since it is a quasi-
Newton optimization algorithm. Compared to Adam, L-BFGS is more memory-intensive and has a
higher per-epoch computational cost since it uses an approximation of the Hessian matrix during the
optimization. Moreover, Adam scales to large datasets better than L-BFGS which does not accom-
modate mini-batch training. However, L-BFGS typically provides lower loss values and requires
fewer number of epochs for convergence compared to Adam.

A 4.2 PHYSICS-INFORMED NEURAL NETWORKS WITH DYNAMIC LOSS WEIGHTS

One of the challenges associated with minimizing the loss function in Equation (16) is that the three
terms on the right-hand side disproportionately contribute to L(θ). To mitigate this issue, a popular
approach is to scale each loss component independently before summing them up, that is:

L(θ) = LPDE(θ) + wBCLBC(θ) + wICLIC(θ). (17)

Since the scale of the three loss terms can change dramatically during the optimization process,
these weights must be dynamic, i.e., their magnitude must be adjusted during the training. In our
experiments, we follow the process described in Wang et al. (2021b) for dynamic loss balancing and
highlight that this approach is only applicable to cases where Adam is used.

11

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

A 4.3 PHYSICS-INFORMED NEURAL NETWORKS WITH HARD CONSTRAINTS

An alternative approach to dynamic weight balancing is to eliminate LBC(θ) and LIC(θ) from
Equation (16) by requiring the model’s output to satisfy the boundary and initial conditions by
construction Berg & Nyström (2018). To this end, we now denote the output of the network by
m̃(x;θ) and then formulate the final output of the model as:

m(x;θ) = a(x)m̃(x;θ) + b(x), (18)

where a(x) and b(x) are analytic functions that ensure m(x;θ) satisfies Equations (15b) and (15c)
regardless of what m̃(x;θ) produces at x. A common strategy is to choose a(x) to be the signed
distance function that vanishes on the boundaries and produces finite values inside the domain. The
construction of b(x) is application-specific since one has to formulate a function that satisfies the
applied boundary and initial conditions while generating finite values inside the domain. For the
PDE system in Equation (15), one option is b(x) = −2 sinπx

1+e−t .

A 4.4 OPTIMAL RECOVERY

This recent approach leverages zero-mean GPs for solving nonlinear PDEs Chen et al. (2021).
Specifically, let us denote the kernel of a zero-mean GP via c(·, ·). We associate c(·, ·) with the
reproducing kernel Hilbert space (RKHS) U where the RKHS norm is defined as ∥u∥. Follow-
ing these definitions, we can approximate u(x) by finding the minimizer of the following optimal
recovery problem:

minimize
u∈U

∥u∥

subject to
ut(xi) + u(xi)ux(xi)− νuxx(xi) = 0, ∀i = 1, . . . , nPDE

u(xi) = 0, ∀i = 1, . . . , nBC ,

u(xi) = − sin (πxi), ∀i = 1, . . . , nIC ,

(19)

where nPDE , nBC , nIC are the number of nodes inside the domain, on the x = −1 and x = 1
lines where the boundary conditions are specified, and on the t = 0 line where the initial condition
is specified, respectively. We denote the collection of these nPDE + nBC + nIC points via X.

The optimization problem in Equation (19) is infinite-dimensional and hence Chen et al. (2021)
leverage the representer theorem to convert it into a finite-dimensional one by defining the slack

ℒ 𝜽 = ℒ𝑃𝐷𝐸 𝜽 + ℒ𝐵𝐶 𝜽 + ℒ𝐼𝐶 𝜽

𝑚

𝒩𝒩(𝐱; 𝜽)

𝑡

𝑥
𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 0

PDE

𝜕

𝜕𝑡

𝜕

𝜕𝑥

𝜕2

𝜕𝑥2

1 𝑢 −1, 𝑡 = 𝑢 1, 𝑡 = 0

BC

ℒ𝑃𝐷𝐸 𝜽

Loss PDE

Loss BC

Loss

ℒ 𝜽 < 𝜖?
No

Yes

Update 𝜽

End 𝑢 𝑥, 0 = − sin 𝜋𝑥

IC

ℒ𝐵𝐶 𝜽

ℒ𝐼𝐶 𝜽

Loss IC

(a) Architecture and loss function for solving the Burgers’ equation.

ℒ𝑃𝐷𝐸 𝜽 =
1

𝑛𝑃𝐷𝐸
෍

𝑖=1

𝑛𝑃𝐷𝐸

𝑚𝑡 +𝑚𝑚𝑥 − 𝜈𝑚𝑥𝑥
2

ℒ𝐵𝐶 𝜽 =
1

𝑛𝐵𝐶
෍

𝑖=1

𝑛𝐵𝐶

𝑚− 0 2

ℒ𝐼𝐶 𝜽 =
1

𝑛𝐼𝐶
෍

𝑖=1

𝑛𝐼𝐶

𝑚 + sin(𝜋𝑥𝑖)
2

𝑥

𝑡

1

−1

0

(b) Test points in the domain and
on the boundaries.

Figure A2: Physics-informed neural network (PINN): The model parameters, θ, are optimized by
minimizing the three-component loss function that encourages the network to satisfy the PDE in-
side the domain while reproducing the initial and boundary conditions. These loss components are
obtained by querying the network on a set of test points that are distributed inside the domain or on
its boundaries.

12

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

variable z =
[
z(1), z(2), z(3), z(4)

]
:

minimize
z∈RN

zTΘ−1z

subject to

z
(2)
i + z

(1)
i z

(3)
i − νz

(4)
i = 0, ∀i = 1, . . . , nPDE

z
(1)
i = 0, ∀i = 1, . . . , nBC ,

z
(1)
i = − sin (πxi), ∀i = 1, . . . , nIC ,

(20)

where N = 4(nPDE +nBC +nIC)+ 3nPDE and Θ is the covariance matrix (see Section 3.4.1 of
Chen et al. (2021) for details on Θ). Equation (20) can be reduced to an unconstrained optimization
problem by eliminating the equality constraints following the process described in Subsection 3.3.1
of of Chen et al. (2021). Once z is estimated, the PDE solution can be estimated at the arbitrary
point x in the domain via GP regression.

We note that the process of defining the slack variables and obtaining the equivalent finite-
dimensional optimization problem needs to be repeated for different PDE systems (e.g., in a PDE
system one may have to define some of the slack variables as the Laplacian of the solution rather
than the solution itself). Also, per the recommendations in Chen et al. (2021), c(·, ·) is set to an
anisotropic kernel and its parameters are chosen manually (i.e., they do not need to be jointly es-
timated with z) but, unlike our approach, this choice must be done carefully since it affects the
results. In our comparative studies, we use the values reported in Chen et al. (2021) for the kernel
parameters.

A 4.5 IMPLEMENTATION DETAILS IN OUR COMPARATIVE STUDIES

Below, we describe the training procedure of the PIML models used throughout out paper and also
comment on how the reference solutions are obtained for each PDE system. All of our codes, data,
and models will be made publicly available upon publication.

Training The NN-based approaches (i.e., NN-CoRes, PINN, PINNDW, and PINNHC) are all im-
plemented in PyTorch Paszke et al. (2019) and use hyperbolic tangent activation functions in all
their layers except the output one where a linear activation function is used. The number and size of
the hidden layers (see Table 1 in the main text) are exactly the same across these methods to enable
a fair and straightforward comparison.

To optimize NN-CoRes, PINNs, and PINNHC we leverage L-BFGS with a learning rate of 10−2

while PINNDW is optimized using Adam with a learning rate of 10−3 (note that the performance of
L-BFGS deteriorates if dynamic weights are used in the loss function). To ensure these NN-based
methods produce optimum models, we use a very large number of epochs during training. Specifi-
cally, we employ 1, 000 and 2, 000 epochs for single- and multi-output problems, respectively. Since
Adam typically requires more epochs for convergence, we train PINNDW for 40, 000 epochs across
all problems. To evaluate the loss function, we use 10, 000 collocation points within the domain in
all cases. For PINN and PINNDW we uniformly sample boundary and/or initial conditions at 1, 000
locations while we only sample 40 points for NN-CoRes. This significant difference is due to the
fact that we observed that NN-CoRes with just 40 boundary points can outperform other methods.
Leveraging more boundary data improves the performance of NN-CoRes in solving PDE systems
especially in satisfying the boundary and initial conditions.

We fit GPOR based on the code and specifications provided by Chen et al. (2021) which leverages
a variant of the Gauss–Newton algorithm for optimization. The performance of GPOR depends on
the kernel parameters and the number of interior nodes nPDE where z needs to be estimated. For
the former, we use the recommended values in Chen et al. (2021) and for the latter we choose two
values (1, 000 and 2, 000) in our experiments.

NN-CoRes, PINN, PINNDW, and PINNHC are trained on an NVIDIA GeForce RTX 3060 with 64
GB of RAM whereas GPOR is trained on a CPU equipped with a 11th Gen Intel-Core i7-11700K
running at a base clock speed of 3.6 GHz.

Reference Solutions We obtain the reference solutions for the PDE systems as follows:

13

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Table A1: Summary of comparative studies for the LDC problem: We report L2
e × 103 of different

methods as a function of model capacity and A. The symbol ⊗ indicates the network architecture
(e.g., 4⊗10 is an NN which has four 10− neuron hidden layers). Unlike NN-based methods, GPOR’s
accuracy relies on the number of interior nodes which we set to 1, 000 or 2, 000. GPOR is not applied
to LDC as it relies on manual derivation of the equivalent variational problem which, unlike the first
three PDEs, is not done by the developers Chen et al. (2021).

NN-CoRes GPOR PINN PINNDL PINNHC

Problem
Capacity

4 ⊗ 10 4 ⊗ 20 1,000 2,000 4 ⊗ 10 4 ⊗ 20 4 ⊗ 10 4 ⊗ 20 4 ⊗ 10 4 ⊗ 20

LDC (A = 3)
p
v
u

191
174
192

91.9
82.5
85.6

−
−
−

−
−
−

272
278
266

133
128
123

298
307
299

125
123
126

592
306
399

696
395
497

LDC (A = 5)
p
v
u

433
251
249

394
220
222

−
−
−

−
−
−

917
632
601

872
592
567

923
629
597

809
543
518

1362
704
1019

1411
564
757

• Burgers’ Equation: The reference solution is obtained from the code provided in Chen
et al. (2021) which employs the Cole-Hopf transformation Ohwada (2009) together with
the numerical quadrature.

• Elliptic PDE: The analytical solution for this problem is u(x, y) = sin (πx) sin (πy) +
2 sin (4πx) sin (πy).

• Eikonal Equation: We leverage the solution method provided by Chen et al. (2021) which
applies the transformation u(x, y) = −ϵ log g(x, y) leading to the linear PDE g−ϵ2∆g = 0
that can be solved via the finite difference method.

• Lid-Driven Cavity: we use the finite element method implemented in the commercial soft-
ware package COMSOL Multiphysics (1998).

A 5 ADDITIONAL EXPERIMENTS

In the following subsections, we summarize the findings of some additional experiments that em-
phasize the attractive properties of NN-CoRes. We first provide some details on prediction errors
that complement the results reported in the main text. Afterwards, we elaborate on the extended
version of our framework that accommodates PDE systems such as the Navier-Stokes equations that
have multi-variate solutions. Then, we conduct rigorous sensitivity analyses to characterize the ef-
fect of factors such as random initialization, noise (on data obtained from the initial and/or boundary
conditions), optimization settings, and architecture on our results. These analyses demonstrate that
our framework is substantially less sensitive to such factors compared to competing methods. We
conclude this section by investigating the behavior of NN-CoRes’ loss function during training and
extending our approach for solving inverse problems.

A 5.1 DETAILED ERROR ANALYSIS

The solution of the LDC problem consists of three dependent variables which are the pressure p(x)
and the two velocity components in the x and y directions, u(x) and v(x), respectively. In Table 1 we
report the mean of the Euclidean norm of the error on the three outputs. In Table A1 we provide the
errors for the individual outputs of this benchmark problem and observe the same trend where NN-
CoRes consistently outperforms other methods. We also notice that all the models predict pressure
with less accuracy compared to the velocity components. This trend is due to the facts that not only
the scale of p(x, y) is smaller than the velocity components, but also p(x, y) is known at a single
point on the boundaries whereas u(x, y) and v(x, y) are known everywhere on the boundaries.

To gain more insight into the performance of each method, we visualize the error maps in Figure A3.
We observe that GPOR is least accurate either in regions with sharp solution gradients or inside
the domain where boundary information is not effectively propagated inward by the zero-mean
GP. For PINNDW, the errors are predominantly close to either the boundaries or where solution
discontinuities are expected to appear. PINNs’ errors in reproducing the BCs/IC is eliminated in
PINNHC but at the expense of significant loss of accuracy elsewhere in the domain. These issues are

14

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

largely addressed by NN-CoRes which reproduce BCs/IC and approximate high gradient solutions
quite well.

Figure A3: Reference solutions and absolute error maps: Error maps of NN-CoRes are consistently
smaller than the other three methods.

Similar to Figure A3, we provide the reference solution and error maps of different approaches for
the Eikonal problem in Figure A4a where we observe similar patterns. Specifically, GPOR fails to
properly propagate the boundary information inwards as it relies on a zero-mean GP. PINN is quite
accurate inside the domain but cannot faithfully satisfy the boundary conditions. PINNDW addresses
the inaccuracy of PINN close to the boundaries but incurs significant errors inside the domain as
the reformulation in Equation (18) complicates the training dynamics. These issues are effectively
addressed by NN-CoRes which achieve small errors inside the domain and on the boundaries.

In Figure A4b we solve a canonical PDE system known as Helmholtz Wang et al. (2021b) which is
defined as:

uxx(x, y) + uyy(x, y) + u(x, y) = q(x, y), ∀x, y ∈ (−1, 1)2

u(x,−1) = u(x, 1) = 0, ∀x ∈ [−1, 1]

u(−1, y) = u(1, y) = 0, ∀y ∈ [−1, 1]

(21)

In Equation (21), q(x, y) is constructed such that the analytic solution is u(x, y) =
sin(a1πx) sin(a2πy) where a1 and a2 are two constants that control the frequency along the x
and y directions, respectively. The Helmholtz equation is a well-studied benchmark problem since
PINNs fail to accurately solve it. To address this shortcoming, recent works have introduced quite
complex architectures which typically leverage adaptive loss functions. We test our framework on
this benchmark problem by setting a1 = 1 and a2 = 4 while using the same architecture and training
procedure that are used in our comparative studies. As shown in Figure A4b our predictions accu-
rately capture both the high- and low-frequency features of the solution. We note that the solution
in Figure A4b is 5 times more accurate than the one reported in Wang et al. (2021b) which employs
a considerably larger architecture (4 ⊗ 50) and leverages the adaptive loss function described in
Equation (17).

A 5.2 EXTENSION TO COUPLED SYSTEMS

As schematically illustrated in Figure A5 we slightly modify our framework to solve coupled PDE
systems such as the Navier-Stokes equations which have multiple dependent variables that interact
with one another. The essential idea behind this modification is to endow each dependent variable
with a GP prior. These GPs have independent kernels but a shared mean function that is param-
eterized via a deep neural network. While a single kernel can help in learning the inter-variable
relations, we avoid this formulation for two main reasons. Firstly, it increases the size and condition
number of the covariance matrix especially if the boundary conditions on these variables are signif-
icantly different. For instance, on the top edge (y = 1) in the LDC benchmark problem, pressure
is unknown while the vertical and horizontal velocity components are equal to, respectively, zero

15

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

(a) Reference solution and error maps of different approaches for the Eikonal equation with ϵ = 0.05 with a
4⊗ 20 architecture.

(b) Solving the high-frequency Helmholtz equation via NN-CoReswith a 4⊗ 20 architecture.

Figure A4: Reference solutions and error maps: Our approach provides much lower errors compared
to other methods and automatically adapts to high- and low-frequency solutions.

ℒ𝑃𝐷𝐸 𝜽 < 𝜖?

𝜂𝑢(𝐱)
𝜂𝑣(𝐱)
𝜂𝑝(𝐱)

+

𝜕

𝜕𝑦

𝜕2

𝜕𝑥2

𝜕

𝜕𝑥

𝜕2

𝜕𝑦2

1+

+

𝑚𝑝(𝐱; 𝜽)

𝑚𝑢(𝐱; 𝜽)

𝑚𝑣(𝐱; 𝜽)

𝒓𝒑 = 𝒑 − 𝑚𝑝 𝐗; 𝜽

·

·

𝒘𝒑
𝑻

𝒘𝒗
𝑻

𝒘𝒖
𝑻

𝑚𝑢

𝑚𝑝

𝑚𝑣

𝒓𝑢 = 𝒖 − 𝑚𝑢 𝐗; 𝜽
𝒩𝒩(𝐱; 𝜽)

PDE system

BCs

𝑢 𝑥, 0 = 𝑢 0, 𝑦 = 𝑢 1, 𝑦 = 0
𝑢 𝑥, 1 = 𝐴𝑠𝑖𝑛(𝜋𝑥)
𝑣 𝑥, 0 = 𝑣 0, 𝑦 = 𝑣 0, 𝑦 = 𝑣 1, 𝑦 = 0
𝑝 0,0 = 0

𝑦

𝑥

𝐱𝒊, 𝐮𝒊 𝑖=1
𝑛

𝒓𝒗 = 𝒗 − 𝑚𝑣 𝐗; 𝜽

Module 1
෡𝝓

·

ℒ𝑃𝐷𝐸 𝜽

Physics-Informed Loss
No

Yes

Update 𝜽

End

𝑢𝑥 + 𝑣𝑦 = 0

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌
𝑝𝑥 + 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦)

𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌
𝑝𝑦 + 𝜈(𝑣𝑥𝑥 + 𝑣𝑦𝑦)

Figure A5: Solving the 2D incompressible Navier-Stokes equations for the lid-driven cavity prob-
lem: With minor architectural changes, our framework can also solve coupled PDE systems. Specif-
ically, we endow each dependent variable with a GP prior. These GPs have independent kernels but
a shared mean function that is parameterized via a deep neural network.

and A sin (πx). Secondly, our empirical findings indicate that the shared mean function is able to
adequately learn the hidden interactions between these dependent variables.

A 5.3 SENSITIVITY ANALYSES

In this section, we conduct a wide range of sensitivity studies to assess the impact of factors such as
random initialization, noise, network architecture, and optimization settings on the summary results
reported in the main text.

We first analyze the effect of the roughness parameter, ω, on the results. We use the simple Gaussian
kernel in Equation (3) with σ2 = 1 and ω = 2 in all of our studies. The nugget or jitter parameter of
the kernel is chosen such that the covariance matrix is numerically stable. We ensure this stability by

16

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

imposing an upper bound of approximately κmax ≈ 106 on the condition number of the covariance
matrix, i.e., κ < κmax. This constraints typically results in a nugget value of around 10−5 or 10−4.
We have not optimized the performance of NN-CoRes with respect to κmax as we have found our
current results to be sufficiently accurate.

As stated in the main text, the performance of NN-CoRes is quite robust to the values chosen for
ϕ = 10ω as long as they lie within a certain range. To obtain this range, we conduct the following
inexpensive experiment using the Burgers’ equation and the extension of the kernel in Equation (3) to
two-dimensional inputs, i.e., c

(
x,x′;ϕ, δ, σ2 = 1

)
= exp

{
−ϕ(x− x′)2 − ϕ(t− t′)2

}
+ 1{x ==

x′}δ. We first sample ntrain equally spaced boundary samples using the provided analytic initial
and boundary conditions. To quantify the effect of data size on the results, we consider 5 scenarios
where ntrain ∈ {10, 20, 40, 80, 160}. For each of these five cases, we build 200 independent GPs
whose only difference is the value that we assign to ω. Specifically, we consider 200 equally spaced
values in the [−2, 6] range for ω and use each of these values in one of the GPs which all have a
non-zero mean function (we use a deep NN whose parameters are randomly initialized and frozen
as the mean function). Once these GPs are built, we use them to predict on ntest = 104 boundary
points (see Equation 1 in the main text for the prediction formula). The results of this study are
shown in the left and middle plots in Figure A6a and indicate that as more training data are sampled
on the boundaries a wider range of values for ω result in small test errors. We highlight that this
study is computationally very fast since none of the GPs are optimized; rather their parameters are
either chosen by us (i.e., ω), or fixed (i.e., δ, σ2, and parameters of the NN mean).

Following the above study, we have decided to use 40 boundary points in NN-CoRes. Based on the
left and middle plots in Figure A6a, ω = 2 seems to be a good choice (but not the optimum one)
for minimizing the error in reproducing the initial and boundary conditions. To see the effect of this
choice on the performance of a trained NN-CoRes, we again vary ω (50 equally spaced values in
the [−2, 6] range) but this time we train an NN-CoRes model for each value of ω. We evaluate the
performance of these models in solving the Burgers’ equation by reporting the Euclidean norm of
the error Le

2 at ntest = 104 points randomly located in the domain. The results are shown in the
right plot in Figure A6a and indicate that although ω = 2 is not the optimum choice, it yields a
model whose performance is close to optimal (the optimum model is achieved via an ω close to 3).

We now conduct a few extensive experiments to study the effect of network size and optimization
settings on the performance of various NN-based models. First, we fix everything and increase the
number of neurons in each hidden layer from 10 to 50 (at increments of 10) and solve the Burgers’
and Elliptic PDEs via both NN-CoRes and PINNs. We then repeat this experiment but this time we
fix the architecture to 4⊗20 and incrementally increase nPDE from 103 to 104. The results of these
two experiments are summarized in Figure A6b and indicate that NN-CoRes is much less sensitive
to the problem than PINNs which perform quite well on Burgers’ but fail at accurately solving the
Elliptic PDE that has direction-dependent frequency. We also observe that NN-CoRes provide lower
errors than PINNs in most simulations.

In our next experiment, we study the effects of optimizer (L-BFGS vs Adam), random initializa-
tion, and architecture type on the performance of various models. To this end, we again consider
the Burgers’ and Elliptic PDE systems and solve them with six NN-based methods and GPOR. For
each case we repeat the training process of each model 10 times to quantify the effect of random
initialization on the models’ solution accuracy. For these experiments, we also consider a new net-
work architecture that we denote by M3 which is introduced in Wang et al. (2021b) and aims to
improve gradient flows by designing feed-forward networks with connections that resemble trans-
formers Vaswani et al. (2017). In our framework, we replace the architecture that is used in all
of our studies (which is a feed-forward neural network or an FFNN) with M3 and train the model
with Adam (the resulting model is denoted by M3-CoRes). We also train another NN-based model
denoted by M4 Wang et al. (2021b) whose architecture is the same as M3 but leverages dynamic
weights in its loss function. We highlight that the simulations that leverage M3 as their architecture
have more parameters (and hence learning capacity) than cases where FFNNs are used so we expect
M3-based simulations to provide lower errors.

The results of these simulations are summarized in Figure A6c and indicate that (1) NN-CoRes and
GPOR are less sensitive to random initializations compared to PINNs and their variations, (2) unlike
other models, NN-CoRes performs well in both PDE systems, i.e., our framework provides a more

17

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

−2 0 2 4 6

ω

10−4

10−2

100

L
2 e

-
IC

−2 0 2 4 6

ω

10−5

10−4

10−3

10−2

10−1

L
2 e

-
B

C

−2 0 2 4 6

ω

10−3

10−2

10−1

100

101

L
2 e

10 points 20 points 40 points 80 points 160 points

(a) Effect of ω on GP’s interpolation power (left and middle plots) and NN-CoRes (right plot). Burgers’
equation is used in this study.

10 20 30 40 50

Neurons per layer

10−3

10−2

10−1

L
2 e

1 2 5 10 20

nPDE × 103

10−3

10−2

10−1

100

L
2 e

NN-CoRes (Burgers, ν = 0.01
π)

PINN (Burgers, ν = 0.01
π)

NN-CoRes (Elliptic, α = 30)

PINN (Elliptic, α = 30)

(b) Effect of network size (left, nPDE = 104) and nPDE (right, 4⊗ 20 architecture) on the accuracy of
PINNs and NN-CoRes.

Burgers (ν = 0.01
π

) Elliptic (α = 30)

10−3

10−2

10−1

100

L
2 e

NN-CoRes (L-BFGS)

NN-CoRes (Adam)

M3-CoRes (Adam)

PINN (L-BFGS)

PINNDW (Adam)

M4 (Adam)

GPOR

(c) Effect of optimizer, random initialization, and architecture type on errors for the Burgers’ and Elliptic
problems.

2× 10−1

3× 10−1

4× 10−1

6× 10−1

L2
e - u(x)

2× 10−1

3× 10−1

4× 10−1

6× 10−1

L2
e - v(x)

100

3× 10−1

4× 10−1

6× 10−1

L2
e - p(x)

NN-CoRes (L-BFGS) PINN (L-BFGS) PINNDL (Adam) PINNHC (L-BFGS)

(d) Effect of random initialization and optimizer on errors for the LDC problem (A = 5). All models have
4⊗ 20 architecture and use nPDE = 104.

Figure A6: Sensitivity studies: We analyze the sensitivity of our results to factors such as the rough-
ness parameters in the kernel, optimization settings, network architecture, and initialization. Based
on these experiments, NN-CoRes provide a more robust machine learning-based approach for solv-
ing different nonlinear PDEs.

transferable method for solving PDEs via machine learning, and (3) architectures besides simple
FFNNs (such as M3) can also be used in our framework to achieve higher accuracy.

The above experiments are based on the Burgers’ and Elliptic PDE problems but our studies indicate
that similar trends appear in other problems. To demonstrate this, we solve the LDC problem via
four NN-based models that either use L-BFGS or Adam as their optimizer. We repeat the training

18

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Reference
Velocity Magnitude

0.00

1.50

3.00

4.50

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

L2
e = 0.295

NN-CoRes Prediction
4⊗ 20

0.00

1.50

3.00

4.50

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

L2
e = 0.643

PINNDW Prediction
4⊗ 20

0.00

1.50

3.00

4.50

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

L2
e = 0.124

NN-CoRes Prediction
6⊗ 50

0.00

1.50

3.00

4.50

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

L2
e = 0.542

PINNDW Prediction
6⊗ 50

0.00

1.50

3.00

4.50

Figure A7: Reference vs predictions (LDC with A = 5): Performance improves as the network
sizes increase. The small NN-CoRes is more accurate than the large PINNDW.

process of each model 10 times to assess the effect of random parameter initialization on each
model’s performance. The results are summarized with the boxplots in Figure A6d and agree with
our previous findings that indicate NN-CoRes consistently outperform other methods.

Comparing Figure A6c and Figure A6d we observe that the errors reported for the LDC problem are
consistently larger than those reported for the Burgers’ and Elliptic problems. The reason behind
this trend is that not only LDC is a more complex problem where the PDE solution consists of
three inter-dependent variables (compared to only one variable in the case of Burgers’ or Elliptic
PDEs), but also pressure is only known at a single point on the boundary (rather than everywhere
on the boundary). To test the first assertion, we increase the networks sizes for both NN-CoRes
and PINNDW and observe in Figure A7 that both models provide higher accuracy compared to the
reported numbers in Table 1. We highlight that the percentage of improvement is noticeably higher in
the case of NN-CoRes and these errors keep reducing as the network size increases, as demonstrated
in Figure A8.

Finally, we investigate the effect of noisy boundary data on our results. Specifically, we corrupt the
solution values that we sample from the initial and/or boundary conditions before using them in our
approach. We use a zero-mean normal distribution to model the noise and set the standard deviation
to either 0.5% or 1% of the solution range. As shown in Figure A9, the solution accuracy decreases
as the noise variance increases (this trend is expected) but in all cases NN-CoRes are able to quite
effectively eliminate the noise and solve the Burgers’ and Elliptic PDE systems.

A 5.4 LOSS AND ERROR BEHAVIOR

To gain more insights into the training dynamics of our approach, we visualize the loss and accuracy
during the training process in Figure A10 and Figure A11 where in the latter figure we track the
errors individually for each output. We provide these plots for both PINNs and NN-CoRes where
the loss function of the former is based on Equation (16) while NN-CoRes only use LPDE(θ) in
their loss function. The solution accuracy is measured based on L2

e and
(
L2
e

)
2 for points inside the

domain and on its boundaries. Note that we square L2
e on the boundaries to be able to directly see

its contribution to PINNs’ loss, see LBC(θ) in Equation (16). In the case of NN-CoRes, we also
report the accuracy of its NN part on predicting the PDE solution to quantify the contributions of
kernel-weighted CoRes towards the model’s predictions.

As it can be observed in Figures A10 and A11, NN-CoRes typically converge faster than PINNs,
see the plots whose y−axis title is L2

e - Domain. We attribute this trend to the fact that, unlike in
PINNs, the initial and boundary conditions are automatically satisfied in our models thanks to the
kernel-weighted CoRes which are smooth functions. This features enables NN-CoRes to focus on
satisfying the PDE system in module two of our framework while PINNs have to struggle with both
the differential equations as well as the initial and boundary conditions.

An interesting trend in Figures A10 and A11 is that the errors of NN-CoRes are consistently lower
than their NN components both in the domain and on the boundaries. That is, the kernel-weighted
CoRes positively contribute to the model’s predictions both on the boundaries and inside the domain.
This behavior is in sharp contrast to most approaches such as PINNHC that satisfy the boundary
conditions at the expense of complicating the training process.

Another interesting trend that we observe in Figures A10 and A11 is that PINNs achieve lower loss
values than NN-CoRes in the case of Eikonal and LDC problems. While lower loss values are de-
sirable, in these cases the observed trends are misleading. To explain this behavior, we note that the

19

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Figure A8: Effect of network size on the accuracy in the LDC problem: The accuracy of NN-CoRes
consistently increases in predicting u, v, and p as the network size (either the number of hidden
layers or their size) increases.

20

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

Figure A9: Reference and predicted solutions with noisy boundary data: We corrupt the samples
obtained from boundary and initial conditions by either 0.5% or 1% of the solution range. In all
cases, the performance of NN-CoRes is insignificantly affected by the noise.

.

21

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

loss function of NN-CoRes is simply LPDE(θ) as the boundary and initial conditions are automat-
ically satisfied. However, the loss function of PINNs minimizes both LPDE(θ) and LBC(θ). That
is, since PINNs do not strictly satisfy the boundary conditions, they are less regularized and hence
can minimize LPDE(θ) (which dominates the overall loss) in a more flexible manner. However,
this behavior provides less accuracy since the boundary conditions are not learnt sufficiently well.

Finally, to visually compare the capacity utilization across different NN-based models, in Figure A12
we provide the histogram of the PDE loss gradients with respect to θ at the end of training. We ob-
serve that NN-CoRes achieve the most near-zero gradients while satisfying the BCs/IC. In contrast,
PINNHC, which is also designed to automatically satisfy the BCs/IC, struggles to minimize the PDE
loss.

0 500 1000

Epochs

10−4

10−3

10−2

10−1

100

L
os

s

0 500 1000

Epochs

10−3

10−2

10−1

100

L
2 e

-
D

om
ai

n

0 500 1000

Epochs

10−8

10−6

10−4

10−2

100

(L
2 e
)2

-
B

C

0 500 1000

Epochs

10−7

10−5

10−3

10−1

(L
2 e
)2

-
IC

NN-CoRes (η) NN part of NN-CoRes (m) PINN

(a) Loss and accuracy history for Burgers’ (ν = 0.01
π

).

0 200 400 600 800 1000

Epochs

102

104

106

L
os

s

0 200 400 600 800 1000

Epochs

10−2

10−1

100

L
2 e

-
D

om
ai

n

0 200 400 600 800 1000

Epochs

10−8

10−6

10−4

10−2

100

(L
2 e
)2

-
B

C

NN-CoRes (η) NN part of NN-CoRes (m) PINN

(b) Loss and accuracy history for Elliptic (α = 30).

0 200 400 600 800 1000

Epochs

10−4

10−3

10−2

10−1

100

L
os

s

0 200 400 600 800 1000

Epochs

10−2

10−1

L
2 e

-
D

om
ai

n

0 200 400 600 800 1000

Epochs

10−9

10−7

10−5

10−3

10−1

(L
2 e
)2

-
B

C

NN-CoRes (η) NN part of NN-CoRes (m) PINN

(c) Loss and accuracy history for Eikonal (ϵ = 0.01).

Figure A10: Loss convergence and error decomposition: NN-CoRes typically converge faster than
PINNs and consistently provide more accurate solutions. The NN part of NN-CoRes benefits from
the kernel-weighed CoRes not only on the boundaries, but also inside the domain.

A 5.5 INVERSE PROBLEMS

So far we have only used the differential equations along with the initial and boundary conditions in
building NN-CoRes. In this section, we introduce an extension of our framework for solving inverse
problems where (1) there are some (possibly noisy) labeled data available inside the domain (we
refer to these samples as observations to distinguish them from data obtained from the initial and/or
boundary conditions), and (2) one or more parameters in the differential equations are unknown.
Our goal in such applications is to solve the PDE system while estimating the unknown parameters.

22

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

0 500 1000 1500 2000

Epochs

100

102

L
os

s

0 500 1000 1500 2000

Epochs

100

L
2 e

-
D

om
ai

n

u(x)

0 500 1000 1500 2000

Epochs

10−5

10−2

101

(L
2 e
)2

-
B

C

u(x)

0 500 1000 1500 2000

Epochs

100

3× 10−1

4× 10−1

6× 10−1

L
2 e

-
D

om
ai

n

v(x)

0 500 1000 1500 2000

Epochs

10−7

10−3

101

(L
2 e
)2

-
B

C

v(x)

0 500 1000 1500 2000

Epochs

100

6× 10−1L
2 e

-
D

om
ai

n

p(x)

0 500 1000 1500 2000

Epochs

10−17

10−11

10−5

(L
2 e
)2

-
B

C

p(x)

NN-CoRes (η) NN part of NN-CoRes (m) PINN

Figure A11: Loss convergence and error decomposition for LDC: The NN part of NN-CoRes ben-
efits from the kernel-weighed CoRes not only on the boundaries, but also inside the domain. In the
case of pressure, kernel-weighed CoRes do not contribute to the model’s predictions as p(x) is only
known at a single point on the boundary.

As shown in Figure A13a, we modify our framework in two ways to solve the PDE system in
Equation (15) assuming ν is unknown but u(x) is known at nobs random points in the domain.
Specifically, we (1) use the nobs observations in the kernel of NN-CoRes in exactly the same way
that the nBC + nIC boundary data are handled by the kernel, and (2) treat ν as one additional
parameter that must be optimized along with the weights and biases of the NN.

To evaluate the performance of our approach in solving inverse problems, we consider the Burgers’,
Elliptic, and Eikonal PDE systems. We solve each problem in two scenarios where there are either
nobs = 100 or nobs = 200 observations available in the domain. As shown in Figure A13b, in all
cases NN-CoRes can estimate the unknown PDE parameter quite accurately. The convergence rate
in all cases is quite fast and insignificantly reduces as nobs is halved from 200 to 100.

−0.001 0.000 0.001
102

103

104

105
Burgers (ν = 0.01

π)

−1000 0 1000
10−4

10−3

10−2

10−1

Elliptic (α = 30)

−0.1 0.0 0.1
100

102

104

Eikonal (ε = 0.01)

−1 0 1
10−1

100

101

102
LDC (A = 5)

∇θLPDE (NN-CoRes) ∇θLPDE (PINN) ∇θLPDE (PINNDW) ∇θLPDE (PINNHC)

Figure A12: Histograms of PDE loss gradients: NN-CoRes is more effective in satisfying the PDE
system. While PINNDW has more near-zero gradients in the Eikonal problem, it does so at the
expense of violating the BC loss term, which leads to a more inaccurate solution as it is reflected in
Figure A10. All models in this figure have a 4⊗ 20 architecture.

23

Submitted to the ICLR 2024 Workshop on AI4DifferentialEquations In Science

ℒ𝑃𝐷𝐸 𝜽, 𝜈 < 𝜖? ℒ𝑃𝐷𝐸 𝜽, 𝜈 =
1

𝑛𝑃𝐷𝐸
෍

𝑖=1

𝑛𝑃𝐷𝐸

𝜂𝑡 + 𝜂𝜂𝑥 − 𝜈𝜂𝑥𝑥
2

·

𝑚(𝐱; 𝜽)

𝒓 = 𝐮 − 𝑚 𝐗; 𝜽

𝜂(𝐱; 𝜽, ෡𝝓)

𝒘𝑻 = 𝑐−1 𝐗, 𝐗; ෡𝝓 𝑐 𝐗, 𝐱; ෡𝝓
𝑇

𝑢 −1, 𝑡 = 𝑢 1, 𝑡 = 0
𝑢 𝑥, 0 = − sin 𝜋𝑥

𝐱𝒊, u𝑖 𝑖=1
𝑛𝑜𝑏𝑠

𝑚

𝒩𝒩(𝐱; 𝜽)

Kernel-induced weights
BC, IC, Observations

𝑡

𝑥

𝐱𝒊, u𝑖 𝑖=1
𝑛

Module 1
෡𝝓

Residuals

Mean

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 0

PDE

+

𝜕

𝜕𝑡

𝜕

𝜕𝑥

𝜕2

𝜕𝑥2

1

Update 𝜈

Physics-Informed Loss

No
Yes

Update 𝜽

End

(a) Flowchart of module two of our framework for solving inverse problems. The flowchart is tailored to the
PDE system in Equation (15).

0 100 200 300 400 500

Epochs

10−3

10−2

ν ν̂ = 0.006807

ν̂ = 0.006349

Burgers (ν = 0.02
π ≈ 0.006366)

0 100 200 300 400 500

Epochs

101

6× 100

2× 101

3× 101

4× 101

α

α̂ = 30.06

α̂ = 30.03

Elliptical (α = 30)

0 100 200 300 400 500

Epochs

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

ε ε̂ = 0.0499

ε̂ = 0.0500

Eikonal (ε = 0.05)

Exact Predicted (100 points) Predicted (200 points)

(b) Convergence rates are fast and improve as more data are infused into our model.

Figure A13: Inverse problems via NN-CoRes: We modify the flowchart in Figure 1 in two ways to
solve a PDE system whose one or more parameters may be unknown. NN-CoRes treat observations
(i.e., labeled solution data inside the domain) identically to boundary data and are very effective in
using them in estimating the unknown PDE parameters.

24

	Introduction
	Related Works
	Neural Networks with Corrective Residuals
	Theoretical Rationale of the Proposed Approach
	Proposed Framework

	Results
	Conclusions and Future Works
	Appendix
	Properties of a Gaussian Process Surrogate
	Neural Networks with Kernel-weighted Corrective Residuals Reproduce the Data
	Details on the Benchmark Problems
	Methods and Implementation Details
	Physics-informed Neural Networks (PINNs)
	Physics-informed Neural Networks With Dynamic Loss Weights
	Physics-informed Neural Networks with Hard Constraints
	Optimal Recovery
	Implementation Details in Our Comparative Studies

	Additional Experiments
	Detailed Error Analysis
	Extension to Coupled Systems
	Sensitivity Analyses
	Loss and Error Behavior
	Inverse Problems

