
Adaptive Sparse Federated Learning in Large Output
Spaces via Hashing

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper focuses on the on-device training efficiency of federated learning (FL),1

and demonstrates it is feasible to exploit sparsity in the client to save both compu-2

tation and memory for deep neural networks with large output space. To this end,3

we propose a sparse FL scheme using hash-based adaptive sampling algorithm. In4

this scheme, the server maintains neurons in hash tables. Each client looks up a5

subset of neurons from the hash table in the server and performs training. With the6

locality-sensitive hash functions, this scheme could provide valuable negative class7

neurons with respect to the client data. Moreover, the cheap operations in hashing8

incur low computation overhead in the sampling. In our empirical evaluation, we9

show that our approach can save up to 70% on-device computation and memory10

during FL while maintaining the same accuracy. Moreover, we demonstrate that11

we could use the savings in the output layer to increase the model capacity and12

obtain better accuracy with a fixed hardware budget.13

1 Introduction14

Recently, federated learning (FL) [18] and its applications [36, 14, 17, 23] receive attentions from15

both research community and industry. FL defines a practical yet challenging task: given a set of16

devices where each device maintains its private data locally, we would like to collaboratively train17

a model on these devices without data exchange. Significant effort has been made in improving18

optimization strategy [15, 31], privacy protection [8] and fairness [16] of FL.19

A Challenge in On-device Training: FL introduces a device shift in the distributed training of20

machine learning models. In the cloud center, we were able to train large-scale foundation models on21

massive graphic processing units (GPUs) in a centralized way. In FL setting, our training hardware is22

limited to system-on-chip (SoC) on mobile devices. This shift leads to significant efficiency issues23

in FL: (1) The models we trained on GPU clusters are giant in terms of parameters. It is standard24

to have billion-scale parameters for language [2] and recommendation [19] models. However, the25

memory constraint for FL devices forces us to limit the model parameter size to make on-device26

training feasible, which causes a model size mismatch between FL and centralized models. This27

mismatch would degrade the FL model performance and prevent us from the benefits of large deep28

models. (2) In the centralized training, the advantages of specialized hardware such as TPU provide29

efficient matrix multiplication for training deep neural networks. However, the on-device tensor chips30

like TPUs in Pixel phones [24] are not as powerful as their serverside counterpart, which would31

significantly improve the training efficiency in FL. (3) The training of deep models through forward32

and backward propagation requires memory to store the intermediate results. Same the previous two33

issues, the hardware constraint of mobile devices would affect the efficiency of memory read and34

write during training, which exaggerates the computation overhead in FL.35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



An Opportunity of Sparsity: There is an emerging trend on exploring sparsity in neural network36

training [27, 7, 6, 10]. An interesting direction is to switch the matrix multiplication from dense37

to sparse mode. For instance, given an input matrix X ∈ Rn×d and the linear layer weight matrix38

W ∈ Rd×m, we view each row ofX as an embedding and each column ofW as a neuron. In this way,39

for each embedding in X , we could only select a subset of neurons in W for computation. As a result,40

we perform a sparse version of operation XW . Well-known research literature in this area includes41

the lottery ticket hypothesis [12, 37], sub-linear deep learning engine (SLIDE) [7, 6] and independent42

subnet training [38]. In this paper, we argue that there is an opportunity to improve the on-device43

training efficiency of FL with sparsity. Firstly, although the sparse training strategy does not change44

the model architecture, it only activates a subset of model parameters in each iteration. This feature45

could help us in FL so that each client only selects a subset of trainable parameters from the model46

for iterative optimization. As a result, the on-device parameter size would be reduced. Moreover, the47

sparse alternative to the matrix multiplication could significantly reduce the computation overhead,48

making FL easy on CPU only devices. Furthermore, the sparse training generates sparse intermediate49

results, which also reduces the memory access on the device.50

Exploiting Adaptive Sparsity in Large Output Spaces: In this paper, we focus on the sparse FL51

for deep neural networks in large output spaces (LOS). LOS is common in deployed deep models. For52

instance, in language processing tasks such as next word prediction [20] and question answering [21],53

the output space would be the vocabulary size. In recommendation systems [19], the output space54

would be the number of products in the database. In both cases, the number of classes in the55

output space could be enormous. As a result, the output linear layer would contain the most model56

parameters if we would like to train them on-device using FL. On the other hand, since we would57

perform Softmax function on the output logits, we could approximate the output layer by focusing on58

the logits with high values. In fact, the LOS would be a perfect scenario for sparse training. If we59

could adaptively pre-select the neurons in the output linear layer that may incur a large inner product60

with the hidden input vector, we could only do forward and backward computation on the selected61

neurons [1, 7, 10, 6, 30]. Therefore, we could perform efficient on-device FL by saving both the62

computation and memory.63

However, the combination of sparse training with FL could still be challenging: (1) An efficient64

design is required for sparse training in FL so that we can maintain the full model on the server and65

a sparse model on the client device. (2) It remains unknown whether the adaptive sparsity would66

be effective in the federated optimization with non-i.i.d data distribution. (3) How to use the saved67

computation and memory by sparsity for further improvements in the model accuracy. In other words,68

how to improve the model performance with a fixed hardware budget using sparsity?69

1.1 Our Contributions70

In this paper, we introduce an empirical study on the sparse FL in LOS. We propose to use hashing71

algorithms that adaptively select neurons in the output layer for forward and backward computation.72

Specifically, our contributions could be summarized as:73

1. We introduce an adaptive hash-based sparse FL scheme for training in LOS. In this scheme,74

the server hashes the output layer’s neurons in hash table. Next, the server sends the hash75

function to each client. Each client uses the hash function to generate hash codes of their76

own data. Next, each client uses the hash codes to look up the near neighbor neurons of its77

data from the server. Finally, each client only performs forward and backward propagation78

on the selected neurons.79

2. We empirically show that the hash-based sparse training in the output layer is effective in the80

federated optimization. We could maintain the same model accuracy with 30% parameters81

in the output layer. As a result, the on-device training efficiency would be improved.82

3. We demonstrate that in the proposed hash-based sparse FL scheme, the saved on-device83

model parameters in the output layer would be used to improve the model capacity. We84

show that on a fixed on-device parameter budget, if we perform sparse training on the output85

layer and use the saved parameters to increase the embedding and hidden dimension of the86

model, we could have better accuracy with on-device FL.87

2



2 Related Work88

Hashing Algorithms for Sparse Machine Learning: The hashing algorithms have demonstrated89

empirical effectiveness in the sparse training of machine learning models [7, 10, 6, 34, 32]. [7]90

proposes SLIDE algorithm that uses locality-sensitive hashing (LSH) [11] to preprocess the neurons91

of a wide output layer in hash tables. Next, given a batch of embeddings, SLIDE use them as a query92

and lookup the neurons that are close in cosine similarity from hash tables. Finally, SLIDE only93

performs forward and backward computation in the selected neurons. [10] shows that SLIDE can be94

further accelerated with the advance in hardware. [6] demonstrates that SLIDE could be improved by95

learnable hash functions. [34] focuses on the Frank-Wolfe optimization algorithm. In particular, [34]96

preprocess the vertices of the weight space in hash tables. Next, given the current weight, instead of97

computing it with all vertices, we only need to compute with near neighbor vertices and choose one98

as the next direction. [32] proposes parallel memory writing algorithms for the sparsified gradients in99

the data-parallel distributed training and provide up to 3.52× speedups.100

Efficient On-device Training in FL: There are two major techniques for improving the on-device101

efficiency of FL. The first technique is named partial variable training (PVT) [35, 26]. PVT aims at102

freezing a fraction of trainable parameters when we train models on the client devices. For instance,103

we could freeze some of the fully-connected layers and only perform federated optimization on104

the other parts of the model. [26] focuses on saving the communication cost of transferring model105

gradients. [35] is also trying to save the on-device model size and memory for intermediate results.106

Meanwhile, we observe some computation saving in the backpropagation. Another technique is called107

federated dropout (FedDrop) [3, 9]. The FedDrop randomly selects a subset of neurons from the108

model and sends it to the client for training. Although FedDrop saves the on-device computation and109

memory, the nature of randomness would cause an accuracy gap between the FedDrop and original110

training when we increase the sparsity. The major reason behind this phenomenon is that FedDrop’s111

random sampling is not adaptive to the status of input embeddings. For instance, it is shown that the112

neurons with large inner products to input embedding should be a more important example in the113

output layer. As a result, the missing of these neurons would lead to slower convergence.114

3 Method115

In this section, we introduce our hashing algorithms for sparse federated learning in wide output layer.116

We start with a formal introduction of hash-based sampling. Next, we propose a sparse FL scheme117

using hashing.118

3.1 Hash-based Sampling in Neural Network119

In this section, we present how to use hash-based Sampling [27, 33, 7] in the training of neural120

network. We start with introducing a simple yet effective LSH function, namely SimHash [4].121

Definition 1 (SimHash). Let K denote the number of hash bits. Let A ∈ RK×d denote a random122

matrix where each entry is drawn i.i.d from normal distribution N (0, 1). Given an input vector123

x ∈ Rd, we define the SimHash function h : Rd → Rk as124

h(x) = sign(Ax),
where sign is an element-wise sign function that set nonzero values to 1 and other values to 0.125

Moreover, we show that for any two vectors x, y ∈ Rd,126

Pr[h(x) = h(y)] = (1− θxy
π

)K ,

where θxy is the angle between x and y.127

The SimHash’s definition (see Definition 1) suggests that if two vectors are close in angle, with128

high probability they would have the same hash code. Moreover, previous work suggests that with129

a pair of asymmetric transforms applied on x and y [25], respectively, the collision probability130

Pr[h(x) = h(y)] would be monotonic to the inner product x>y. Taking advantages of this property,131

the hash-based sampling algorithm for a linear layer can be summarized as below:132

1. Given a weight matrix W ∈ Rd×m, extract each column Wi from w and compute h(Wi).133

Build a hash table that allocates Wis with the same hash code in a bucket.134

3



2. Given a batch of embedding X ∈ Rn×d, for each row xj in X , compute h(xj) and lookup135

the Wis that has the same hash code with h(xj). Next, we take the union of the retrieved136

Wis and write it as matrix Wselect. Finally, we subsample on Wselect with fix sparsity ratio137

and compute XWselect for forward/backward propagation.138

In practice, we use L hash tables and take the union of weight columns retrieved by each hash table.139

Noted that both K and L are tuning parameters. For an input batch of embedding X , hash-based140

sampling could return a sub-matrix Wselect that the inner product between each row in X and each141

column in Wselect may incur large inner product. In LOS, Wselect represents the neurons that may142

have larger logits with X . In the practical setting, we may sub-sample on the columns of Wselect or143

randomly add more columns to Wselect so that we can fix the sparsity budget.144

3.2 A Scheme of Sparse FL145

In this section, we design a server-client scheme for sparse FL in LOS. As introduced in Section 3.1,146

hash-based sampling could select the neurons that may have large logits in the LOS. However,147

the maintenance of hash tables and the preprocessing of neurons may generate extra computation148

overhead. In fact, the computation in hashing the neurons should be carefully handled by smart149

scheduler in centralized training [6]. In our work, we take a FL view of this procedure and argue150

that the computation overhead can be reduced by the powerful computation resources in the server.151

Specifically, we introduce our scheme as below:152

1. Hash table maintenance: The server uses SimHash (see Definition 1) and preprocesses153

the columns of the weight W in the output layer in hash table. The server refreshes the hash154

table after each round.155

2. Client initialization: When a new client comes, the server sends the hash function and the156

weights of layers before the output layer to the client. The client performs forward pass and157

generate embedding vectors of its own data.158

3. Client hashing: The client hashes the input embedding using of data samples the received159

hash function and generates a set of bucket locations in the hash table.160

4. Neuron retrieval: The client transfers the bucket locations to the server and looks up the161

neurons of output layer in the corresponding buckets.162

5. On-deivce training: The client receives the lookup-ed neurons and performs forward and163

backward computation.164

6. Aggregation: The client passes the model updates such as gradients back to the server for165

aggregation.166

The advantages of the proposed scheme can be summarized as: (1) the client device does not have to167

maintain the hash tables, which reduces the computation overhead in preprocessing neurons during168

the centralized training, (2) the client only lookups a subset of parameters in the output layer, which169

reduces the communication cost and on-device model memory, (3) the client trains on neurons that170

may have higher logits in the output layer, which served as an effective negative sampling for faster171

convergence. It is normal that the number of neurons retrieved from hash tables is larger than the172

client budget. We can compute the activations of these neurons with the client data and only keep the173

large activation neurons on-device for backpropagation. Note that our approach may involve more174

communication between servers and clients. We could use the FedSelect [5] to look up neurons with175

privacy protection.176

3.3 Improving Model Capacity in Fixed Budget177

As shown in the previous sections, our sparse FL scheme with hashing reduces the on-device178

parameter size for the last output layer. For a SoC with fixed hardware memory budget, we could179

use the saved space to increase the trainable parameters in other parts of the model to have better180

performance. We suggest two major directions: (1) increase the hidden dimension in both embedding181

and linear layer for better feature representation, (2) add more attention blocks [29] or linaer layers182

for better feature mixing. In the experiment section, we will discuss how these two directions would183

help us improve the empirical performance of on-device FL.184

4



Table 1: Parameter Size of Transformer Model for Stackoverflow Dataset. We also include the
percentage of token embedding (ouput layer) in the model.

Emb. Dim FFN. Dim Attn. Size Emb. Size (10K) Emb. Size (80K)
96 1536 330K 960K (49.2%) 7.68M (88.5%)

4 Experiment185

In this section, we introduce an empirical evaluation of the proposed sparse FL training scheme in186

LOS with hashing. We start with introducing the next word prediction task we focus on. Next, we187

introduce the models we evaluate. Finally, we present the experimental results with an abalation188

study. We also provide a visualization of hash tables in Appendix A.189

4.1 Settings190

Dataset. We evaluate the proposed sparse FL scheme on the next word prediction task using Stack191

Overflow (SO) dataset. The SO dataset contains 342477 training clients. The total training example192

size is 135M. The SO dataset has 38758 clients for validation with dataset size 16M In the next word193

prediction setting, we take the first 256 sentences and truncate each sentence to a sequence length 20.194

We aim to predict the next word given the previous context words. It is standard to set the vocabulary195

size to 10K by taking the most frequent words from the training data. In our paper, we also extend196

the vocabulary size to 80K since larger vocabulary has larger word coverage.197

The Transformer Model. In this paper, we study the performance of Transformer model. We profile198

the parameter size of transformer models in Table 1. In the model, we set the token embedding size as199

96. We also set the hidden dimension of the Q, K, V layer in attention as 96. For the FFN dimension200

in attention block, we set it to 1536. There would be 330K parameters for each attention block. But201

the embedding table size would be 960K for 10K vocabulary and 7.68M for 80K vocabulary. In this202

paper, we shared the weights between the embedding and the last output layer so that the largest203

parameter tensor in the model is the embedding table. In this case, if we train the full model on each204

client, we have to send all the embedding tables to the client so that they can use them for output205

layer. On the contrary, if we could perform sparse training on the output layer by selecting a subset206

of neurons, we only need to send a subset of embeddings from the embedding table to the client. It is207

obvious that this scheme would save the transmission of the largest weight tensor.208

Parameters. In the federated optimization, we use SGD as the client optimizer and Adam as the209

server optimizer following FedAdam approach introduced in [22]. For the Adam optimizer in the210

server, we vary the epsilon between 10−3 and 10−4. We also perform a grid search on server learning211

rate set {10−1, 10−1.5, 10−2} and client learning rate set {10−1, 10−1.5, 10−2}. The training steps212

and rounds follow the same setting as [31]. We chose the K and L shown in Section 3.1 from213

{2, 4, 6, 8}. We vary random seeds in both model initialization and data loader for a fair comparison.214

For the evaluation metrics, we use the accuracy with the out-of-vocabulary, padding, EOS and BOS215

tokens masked.216

4.2 Results in Sparse FL217

To start with, we would like to evaluate the performance of our hash-based sampling in the output218

layer. Specifically, we would like to answer the following question: does hash-based sampling219

achieves better accuracy than random sampling in the training in LOS with different sparsity? Here220

we conduct an experiment on the Stack Overflow dataset, we vary the sparsity level and compare221

the hash-based sampling with random sampling. In Figure 1, we present the evaluation accuracy222

versus the actual computed parameters. For each parameter, we repeat the experiment for 3 times223

and plot the average accuracy. As shown in the figure, if we fix the computed parameter, hash-based224

sampling is able to outperform random sampling with better final accuracy. Moreover, we show that,225

with above 30% of the parameters, the hash-based sampling is able to be less than 0.05% full training226

accuracy. Noted that the model large vocabulary size can predict more out-of-vocabulary words. In227

Figure 1 we do not use a unified evaluation accuracy across different vocabulary. But we do observe228

5



Figure 1: Evaluation accuracy versus the computed parameters in the output layer. Here the percentage
of the computed parameter represents the sparsity level in the training. Left: vocabulary 10K, Right:
vocabulary 80K. Note that the red line indicates the training accuracy if we compute on all the
parameters in the output layer.

Table 2: Model accuracy in fix parameter budget. Here Params. represent the total number of
parameters for the model. Vocab. represents the vocabulary size.

Emb. Dim FFN. Dim LOS Parameters Sparse Approach Vocab. Params.(M) Eval. Acc.
96 1536 100% Full 10K 1.92 24.54±0.16
96 2560 30% Hashing 10K 1.71 24.72±0.16
96 1536 100% Full 80K 8.65 24.41±0.10
96 8192 30% Hashing 80K 6.34 25.20±0.09

that transformer with 80K vocabulary has better accuracy in the unified evaluation accuracy. In the229

next section, we would like to show how to use this observation for better on-device training accuracy.230

4.3 Model Improvement in Fixed Budget231

In this section, we study how to improve the model accuracy with a fix parameter. Specifically, we232

would like to answer the following question: does the on-device parameters saving in the output layer233

help us improve the model by adding parameters in other parts? Here we use the parameter size of the234

full transformer model described in Section 4.1 as our budget. We would like to apply sparse training235

in the output layer while increasing the embedding dimension so that we could get closer but not236

exceed the parameter size budget. Moreover, with the knowledge from Section 4.2, we only keep 30%237

of the parameters in the output layer. In Table 2, we present the results. For vocabulary size 10K, if238

we use hash-based sampling with 30% compute parameters in the output layer and increase the FFN239

dimension to 2560, we can outperform the original full model training accuracy in evaluation dataset.240

Moreover, if we increase the vocabulary size to 80K, the improvement of hash-based sampling would241

be enlarged. If we only select 30% parameters in the output layer using hash-based sampling and242

increase the FFN dimension of Transformer to 8192, we could maintain a lower parameter size on243

device. Moreover, we could significantly improve the evaluation accuracy to 25.2%. increase the244

FFN dimension of Transformer to 8192, These experiments validate that our hash-based sparse FL245

scheme is able to improve the model performance without increasing the on-device parameter size.246

5 Discussion247

In this section, we would like to discuss our observations and the potential future directions of this248

work. Firstly, we observe that for smaller vocabulary sizes, LSH performs marginally better than249

random sampling. With our analysis, we observe that LSH does not retrieve large inner product250

neurons with high recall. Meanwhile, the exact maximum inner product search (MIPS) on neurons251

gives us better accuracy. In this case, a promising future direction would be the introduction of more252

MIPS data structures such as quantization [13] and proximity graphs [39, 28] . Secondly, we would253

like to explore the opportunity of further increasing the vocabulary size for the on-device language254

modeling. Our experimental results have suggested that LSH approach performs better as we increase255

the vocabulary. We would like to investigate how our approach overcomes the on-device hardware256

6



limit. Thirdly, our approach requires communications of hash codes and neurons. We would like to257

combine this approach with more secure and efficient communication schemes [5] for aggregation.258

6 Conclusion259

In this paper, we propose a sparse federated learning (FL) scheme using a hash-based adaptive260

sampling algorithm. We argue that during the FL training of deep neural networks in large output261

space, we can sample a subset of neurons in the output layer and perform forward and backward262

propagation on these neurons only. Moreover, we introduce a hash-based adaptive sampling approach263

in the neuron sampling for FL. We pre-index the neurons of the output layer in hash tables. Next,264

given the input embedding to the output layer, we could look up its near neighbor neurons from hash265

tables for the sparse training. Furthermore, we introduce a sparse FL scheme based on this hash-based266

sampling approach. In our scheme, the server takes over the neuron indexing and maintains the267

hash tables, while the client only maintains a subset of neurons in the last layer through hash table268

lookups. In this way, we show via extensive experiments that we could use around 30% parameters269

in the last layer and obtain the same final accuracy as full parameter training. We also show that with270

our approach, we could perform sparse training in the output layer and use the saved parameters to271

improve the model capacity in embedding and fully-connected layers. This design leads us to better272

on-device FL accuracy with the same parameter budget.273

References274

[1] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate275

training of a neural probabilistic language model. IEEE Transactions on Neural Networks,276

19(4):713–722, 2008.277

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,278

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are279

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.280

[3] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding281

the reach of federated learning by reducing client resource requirements. arXiv preprint282

arXiv:1812.07210, 2018.283

[4] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings284

of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.285

[5] Zachary Charles, Kallista Bonawitz, Stanislav Chiknavaryan, Brendan McMahan, et al. Fed-286

erated select: A primitive for communication-and memory-efficient federated learning. arXiv287

preprint arXiv:2208.09432, 2022.288

[6] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao289

Song, Anshumali Shrivastava, and Christopher Re. MONGOOSE: A learnable LSH framework290

for efficient neural network training. In International Conference on Learning Representations291

(ICLR), 2021.292

[7] Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In293

defense of smart algorithms over hardware acceleration for large-scale deep learning systems.294

Proceedings of Machine Learning and Systems, 2:291–306, 2020.295

[8] Wei-Ning Chen, Ayfer Özgür, and Peter Kairouz. The poisson binomial mechanism for secure296

and private federated learning. arXiv preprint arXiv:2207.09916, 2022.297

[9] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith Rush. Does federated dropout298

actually work? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern299

Recognition, pages 3387–3395, 2022.300

[10] Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao, and Anshumali Shrivastava. Acceler-301

ating slide deep learning on modern cpus: Vectorization, quantizations, memory optimizations,302

and more. Proceedings of Machine Learning and Systems, 3:156–166, 2021.303

7



[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing304

scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on305

Computational geometry, pages 253–262, 2004.306

[12] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable307

neural networks. In International Conference on Learning Representations, 2018.308

[13] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv309

Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International310

Conference on Machine Learning, pages 3887–3896. PMLR, 2020.311

[14] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang,312

Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and313

benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.314

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-315

jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,316

et al. Advances and open problems in federated learning. Foundations and Trends R© in Machine317

Learning, 14(1–2):1–210, 2021.318

[16] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in319

federated learning. In International Conference on Learning Representations, 2019.320

[17] Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi Soltanolkotabi,321

Xiang Ren, and Salman Avestimehr. Fednlp: A research platform for federated learning in322

natural language processing. arXiv preprint arXiv:2104.08815, 2021.323

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.324

Communication-efficient learning of deep networks from decentralized data. In Artificial325

intelligence and statistics, pages 1273–1282. PMLR, 2017.326

[19] Tharun Kumar Reddy Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, and Anshumali327

Shrivastava. Extreme classification in log memory using count-min sketch: A case study of328

amazon search with 50m products. Advances in Neural Information Processing Systems, 32,329

2019.330

[20] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm331

language models. arXiv preprint arXiv:1708.02182, 2017.332

[21] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions333

for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.334

[22] Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,335

Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International336

Conference on Learning Representations, 2020.337

[23] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni,338

Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future339

of digital health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.340

[24] Tara N Sainath, Yanzhang He, Arun Narayanan, Rami Botros, Weiran Wang, David Qiu, Chung-341

Cheng Chiu, Rohit Prabhavalkar, Alexander Gruenstein, Anmol Gulati, et al. Improving the342

latency and quality of cascaded encoders. In ICASSP 2022-2022 IEEE International Conference343

on Acoustics, Speech and Signal Processing (ICASSP), pages 8112–8116. IEEE, 2022.344

[25] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing (alsh) for345

maximum inner product search (mips). arXiv preprint arXiv:1410.5410, 2014.346

[26] Hakim Sidahmed, Zheng Xu, Ankush Garg, Yuan Cao, and Mingqing Chen. Efficient and347

private federated learning with partially trainable networks. arXiv preprint arXiv:2110.03450,348

2021.349

[27] Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based350

samplers and estimators for partition function computation in log-linear models. arXiv preprint351

arXiv:1703.05160, 2017.352

8



[28] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. On efficient retrieval of top similar-353

ity vectors. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-354

guage Processing and the 9th International Joint Conference on Natural Language Processing355

(EMNLP-IJCNLP), pages 5236–5246, 2019.356

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,357

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information358

processing systems, 30, 2017.359

[30] Sagar M Waghmare, Hang Qi, Huizhong Chen, Mikhail Sirotenko, and Tomer Meron.360

Efficient image representation learning with federated sampled softmax. arXiv preprint361

arXiv:2203.04888, 2022.362

[31] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-363

Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field364

guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.365

[32] Zhuang Wang, Zhaozhuo Xu, Xinyu Wu, Anshumali Shrivastava, and TS Eugene Ng. Dragonn:366

Distributed randomized approximate gradients of neural networks. In International Conference367

on Machine Learning, pages 23274–23291. PMLR, 2022.368

[33] Zhaozhuo Xu, Beidi Chen, Chaojian Li, Weiyang Liu, Le Song, Yingyan Lin, and Anshumali369

Shrivastava. Locality sensitive teaching. Advances in Neural Information Processing Systems,370

34:18049–18062, 2021.371

[34] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier372

for some well-known conditional gradient methods using maxip data-structures. Advances in373

Neural Information Processing Systems, 34:5576–5589, 2021.374

[35] Tien-Ju Yang, Dhruv Guliani, Françoise Beaufays, and Giovanni Motta. Partial variable training375

for efficient on-device federated learning. In ICASSP 2022-2022 IEEE International Conference376

on Acoustics, Speech and Signal Processing (ICASSP), pages 4348–4352. IEEE, 2022.377

[36] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel378

Ramage, and Françoise Beaufays. Applied federated learning: Improving google keyboard379

query suggestions. arXiv preprint arXiv:1812.02903, 2018.380

[37] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G381

Baraniuk, Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more382

efficient training of deep networks. In International Conference on Learning Representations,383

2019, 2020.384

[38] Binhang Yuan, Cameron R Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris385

Jermaine. Distributed learning of fully connected neural networks using independent subnet386

training. Proceedings of the VLDB Endowment, 15(8):1581–1590, 2022.387

[39] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. Möbius transformation for fast inner388

product search on graph. Advances in Neural Information Processing Systems, 32, 2019.389

Appendix390

A Visualization of the Hash Table391

In this section, we visualize the bucket in the hash table we built for Stack Overflow dataset. We392

showcase the tokens of three buckets from a hash table as below. Here we set the K = 4 (see393

Section 3.1).394

1. java, python, ruby, spring, tomcat, gcc, swift, println, opencv, openssl, activerecord, gdb,395

clang, webforms, rpc, i18n, nunit, llvm, msvc, apt, filenotfoundexception, openjdk, teardown,396

rejection397

9



2. problems, ways, issues, questions, great, solutions, tutorials, major, bugs, conventions,398

viable, disadvantages, strategies, interactions, measures, useful, considerable, findings,399

documentations, sensors, reaction, brilliant, orthogonal400

3. change, go, define, modify, ask, perform, manage, determine, accept, reset, combine, main-401

tain, bring, evaluate, optimize, customize, jump, automate, preserve, terminate, associate,402

buy, pip, synchronize, eat, mutate, assemble, recalculate, optimise, dotnet, check-in403

We observe that the first bucket is a programming language bucket. It contains "java", "python" and404

related platforms such as "opencv". In the second bucket, we observe that there are similar tokens405

such as "great", "brilliant" and "useful". Also the "issue" means similar to "questions" and "bugs". In406

the third bucket, there is a set of synonyms, such as "change", "modify" and "reset." To sum up, the407

hash table is able to group the relative tokens in the same bucket and we can look them up with a408

query.409

10


	Introduction
	Our Contributions

	Related Work
	Method
	Hash-based Sampling in Neural Network
	A Scheme of Sparse FL
	Improving Model Capacity in Fixed Budget

	Experiment
	Settings
	Results in Sparse FL
	Model Improvement in Fixed Budget

	Discussion
	Conclusion
	Visualization of the Hash Table

