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Abstract

Despite widespread use of LLMs as conversational agents, evaluations of perfor-
mance fail to capture a crucial aspect of communication: interpreting language in
context—incorporating its pragmatics. Humans interpret language using beliefs
and prior knowledge about the world. For example, we intuitively understand
the response “I wore gloves” to the question “Did you leave fingerprints?” as
meaning “No”. To investigate whether LLMs have the ability to make this type
of inference, known as an implicature, we design a simple task and evaluate four
categories of widely used state-of-the-art models. We find that, despite only evalu-
ating on utterances that require a binary inference (yes or no), models in three of
these categories perform close to random. However, LLMs instruction-tuned at
the example-level perform significantly better. These results suggest that certain
fine-tuning strategies are far better at inducing pragmatic understanding in models.
We present our findings as the starting point for further research into evaluating
how LLMs interpret language in context and to drive the development of more
pragmatic and useful models of human discourse.

1 Introduction

User: “Have you seen my phone?”
GPT-3: “Yes, I have seen your phone.”

GPT-3’s response2 is a perfectly fine answer to the question, but a human might answer differently.
They might respond “it’s in your bag," bypassing the obvious follow-up question (“where is it?”).
Giving such a helpful and efficient answer is an example of pragmatic language use that goes
beyond the mere production of semantically plausible and consistent utterances. Meaning is not only
determined by a combination of words, but also context, beliefs, and social institutions (Wittgenstein,
1953; Grice, 1975; Huang, 2017). Consider another exchange where Esther asks her friend Juan “Can
you come to my party on Friday?” and Juan responds “I have to work”. We resolve Juan’s response
as him declining the invitation by using the contextual commonsense knowledge that having to work
on a Friday night precludes attendance. Both these exchanges contain an implicature—utterances that
convey something other than their literal meaning.3 Implicatures illustrate how context contributes to
meaning; distinguishing writing and speaking from communicating (Green, 1996). We cannot fully

∗Correspondence to laura.ruis.21@ucl.ac.uk
2Appendix D contains details on how this completion was obtained from text-davinci-002
3In Appendix E we present an introduction to implicature.
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Figure 1: A schematic depiction of the protocol we propose to evaluate whether language models can
resolve implicatures. Each example in the test set gets wrapped in templates and transformed into an
incoherent example by swapping “yes” and “no”. The model is said to resolve the implicature if it
assigns a higher likelihood to the coherent text than the incoherent text.

understand utterances without understanding their implications. Indeed, the term “communication”
presupposes the speaker’s implications are understood by the addressee. Being able to resolve
completely novel implicatures and, more broadly, engage in pragmatic understanding constitutes an
essential and ubiquitous aspect of our every day use of language.

Large language models (LLMs) have demonstrated remarkable ability on a variety of downstream
tasks such as planning (Huang et al., 2022), commonsense reasoning (Kojima et al., 2022), information
retrieval (Lewis et al., 2020; Kim et al., 2022) and code completion (Austin et al., 2021; Biderman and
Raff, 2022), to name a few. When fine-tuned with human feedback, LLMs obtain higher ratings on
desiderata like helpfulness (Ouyang et al., 2022; Bai et al., 2022), and are proposed as conversational
agents (Thoppilan et al., 2022). Despite the widespread use of LLMs as conversational agents, there
has been limited evaluation of their ability to navigate contextual commonsense knowledge.

This raises an important question: to what extent can large language models resolve conversational
implicature? To answer this question we use a public dataset of conversational implicatures and
propose an evaluation protocol on top of it (Figure 1). We evaluate a range of state-of-the-art models
that can be categorised into four groups; large-scale pre-trained models, like OPT (Zhang et al.,
2022), LLMs fine-tuned on conversational data, like BlenderBot (Ng et al., 2019), LLMs fine-tuned
on common NLP benchmarks with natural instructions for each benchmark, like Flan-T5 (Chung
et al., 2022), and LLMs fine-tuned on tasks with natural instructions for each example, e.g. versions
of OpenAI’s InstructGPT-3 series4. Our results show that implicature resolution is a challenging task
for LLMs. All pre-trained models obtain close to random zero-shot accuracy (around 60%), whereas
humans obtain 86%. However, our results suggest that instruction-tuning at the example level is
important for pragmatic understanding. Models fine-tuned with this method perform much better
than others, and analysis of different model sizes shows that they have the best scaling properties. We
further push performance for these models with chain-of-thought prompting, and find that one model
in the group (GPT-4) reaches human-level performance. In summary, we conclude that pragmatic
understanding has not yet arisen from large-scale pre-training on its own, but scaling analysis shows
that it might for much larger scale. Fine-tuning on conversational data or benchmark-level instructions
does not produce models with pragmatic understanding. However, fine-tuning on instructions at the
example-level is a fruitful path towards more useful models of human discourse.

The main contributions of this work are: i) we motivate implicature understanding as a crucial
aspect of communication that is currently mostly missing from evaluations of LLMs, ii) we design an
implicature resolution task and propose a comprehensive evaluation protocol on which we evaluate
both humans and LLMs to find that it poses a significant challenge for SotA LLMs, and iii) we
provide a thorough analysis of the results and identify one fine-tuning strategy (instruction-tuning at
the example-level) as a promising method that produces models with more pragmatic understanding.

4The precise method is unpublished and differs from the original instructGPT (Ouyang et al., 2022).
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2 Related Work

LLMs have demonstrated remarkable performance on tasks for which they were not explicitly trained
(Brown et al., 2020). Building on the hypothesis that these abilities arise due to implicit multitask
learning (Radford et al., 2019), the recent works of Sanh et al. (2022) and Wei et al. (2022) explicitly
train LLMs in a supervised multitask fashion, leading to models that are better zero-shot learners with
fewer parameters. Besides rapidly saturating language understanding benchmarks (Kiela et al., 2021),
these advancements make LLMs beneficial foundations for agents performing a plethora of tasks
(Adolphs et al., 2022; Reed et al., 2022). The trend towards using these models as agents brings along
with it increased urgency for alignment with human values (Kenton et al., 2021). However, larger
models trained with next-word prediction are generally more toxic and unhelpful (Gehman et al.,
2020; Bender et al., 2021; Lin et al., 2022). Recent work mitigates this with methods like prompting
and finetuning on human-annotated outputs (Askell et al., 2021; Ouyang et al., 2022; Thoppilan et al.,
2022). The produced models are more aligned on desiderata such as informativeness when evaluated
by dedicated benchmarks and humans. We argue, however, that there is still something missing in
these benchmarks. What is helpful and informative, as Kasirzadeh and Gabriel (2022) also point out,
depends on the context in which a conversation is held. Consequently, any application that requires
communicating with humans will rely on pragmatic communication skills—something that is not
explicitly captured by the benchmarks used to evaluate the alignment of LLMs.

There is a large body of work that investigates the interplay between pragmatics and computational
modeling (Cianflone et al., 2018; Schuster et al., 2020; Louis et al., 2020; Kim et al., 2021; Li et al.,
2021; Jeretic et al., 2020; Parrish et al., 2021; Hosseini et al., 2023). Cianflone et al. (2018) introduce
the task of predicting adverbial presupposition triggers, which are words like ‘again’ that trigger
the unspoken presupposition that an event has happened before. Schuster et al. (2020) study the
ability of computational models to do scalar inferences, finding that models use linguistic features
to make pragmatic inferences. Kim et al. (2021) find that a substantial part of question-answering
datasets contain questions that are unanswerable due to false presuppositions (i.e. “which linguist
invented the lightbulb”). Hosseini et al. (2023) present a dataset for selecting entities with indirect
answers, and find that language models adapted for this task get reasonable accuracy, but that there
is room for improvement. The difference with this body of work and ours is that we look at the
emergence of pragmatic understanding from large-scale language modeling. Jeretic et al. (2020);
Parrish et al. (2021) are early works investigating the emergence of pragmatic understanding in
pretrained language models, but they only look at scalar implicatures and presuppositions. Zheng
et al. (2021) are the first to evaluate pretrained language models on conversational implicatures. This
is important pioneering work highlighting the difficulty of implicature for language models, but their
evaluations require task-specific training and the models they evaluate are relatively small. In contrast,
our evaluation protocol is applicable out-of-the-box and is much more comprehensive, evaluating
models up to 176 billion parameters and using in-context prompting. Additionally, Zheng et al.
(2021) benchmark synthetic data whereas this work evaluates performance on naturally occurring
implicatures (George and Mamidi, 2020). We believe this to be a better representation of the true
distribution of implicatures in natural dialogue.

The standard set of benchmarks LLMs are evaluated on covers many tasks, but even though im-
plicature is one of the most important aspects of language pragmatics (Levinson, 1983), it is only
evaluated as part of BIG-bench (Srivastava et al., 2022). Unfortunately, the methodology used by the
BIG-bench implicature task contributors has limitations, which call into question the validity of their
claims. Firstly, the task contributors discard a subset of the data that is ambiguous according to them.
In our view this defeats the point of the benchmark. Implicatures are a type of non-literal, ambiguous
language the intended meaning of which humans often easily interpret; comparing the way humans
and models do this is precisely what we are interested in. In turn, we expect performance on the
BIG-bench task to overestimate the ability of LLMs to resolve naturally occurring implicatures. We
keep this challenging subset of the data and instead use human evaluation to deal with examples that
are too ambiguous to understand. Secondly, the difference in performance between their average
and best rater is 18%, whereas for our evaluations this difference is 6%. This indicates their human
evaluation is of low quality, but it is impossible to verify because there are no details available on how
the annotation is done. Finally, BIG-bench uses only base LLMs and no SotA fine-tuning methods.
In summary, we use a more challenging dataset, and in turn at least six times more evaluations per
model, we provide higher-quality human annotations, and evaluate four different categories of LLMs
to investigate which aspects of LLMs contribute to their performance on implicature understanding.
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3 Evaluation Protocol

Here we outline the evaluation protocol we use to answer the research question “To what extent can
LLMs resolve conversational implicature?”. We focus on binary implicatures that imply “yes” or “no”
(see Figure 1). We say a model resolves an implicature correctly if it assigns higher likelihood to a
coherent utterance than a similar but incoherent one, detailed below.

Zero-shot evaluation. Consider the example from the introduction packed into a single utterance:

Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means no.

We can transform this example to be pragmatically incoherent (in the sense that it will become
pragmatically inconsistent with expected use) by replacing the word “no” with “yes”:

Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means yes.

To resolve the implicature, the model should assign higher likelihood to the first of the two sentences
above, namely the most coherent one. Importantly, both sentences have exactly the same words
except for the binary implicature “yes” or “no”, making the assigned likelihood scores directly
comparable. Formally, let the coherent prompt be x and the augmented, incoherent prompt be x̂.
A model outputs a likelihood p parameterized by weights θ. We say a model correctly resolves an
example x when it assigns pθ (x) > pθ (x̂). This is equivalent to evaluating whether the model
assigns a higher likelihood to the correct continuation of the two options. Note that this is a more
lenient evaluation protocol than sometimes used for language models, where models are evaluated on
on their ability to generate the correct continuation, in this case “no”. The greedy decoding approach
(evaluating whether “yes” or “no” is generated) is also captured by our approach, but we additionally
label an example correct if “no” is not the highest assigned likelihood, but still higher than “yes”.
We did not opt for greedy decoding because “no” is not the only coherent continuation here, and
marginalising over all possible correct continuations is intractable. The more lenient evaluation does
capture implicature resolution, because the choice of “no” versus “yes” is only determined by the
resolution of the implicature. We guide the models to output “yes” or “no” explicitly in three of
the six prompt templates with instructions, such that we can estimate the effect of this guidance
on performance. For two model classes (i.e. GPT-3.5-turbo and GPT-4) we do not have access to
likelihoods, and for these models we take the greedy decoding approach, guiding the model to output
“yes” or “no” explicitly in all prompts (see Table 6 in Appendix F).

We use a dataset of conversational implicatures curated by George and Mamidi (2020)5. It contains
implicatures that, like in Figure 1, are presented in utterance-response-implicature tuples. Of these,
718 are binary implicatures that we can convert into an incoherent sentence. We randomly sample
600 examples for the test set and keep the remaining 118 as a development set to improve implicature
resolution after pre-training through in-context prompting or fine-tuning.

Few-shot in-context evaluation. We add k examples of the task to the prompt, e.g. with k = 2:

Esther asked “Have you found him yet?” and Juan responded “They’re still
looking”, which means no.
Esther asked “Are you having fun?” and Juan responded “Is the pope Catholic?”,
which means yes.
Finish the following sentence:
Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means no.

We evaluate the models’ k-shot capabilities for k ∈ {1, 5, 10, 15, 30} by randomly sampling k
examples from the development set for each test example. We opt for a random sampling approach to
control for two sources of randomness. Firstly, examples have different levels of informativeness.
Secondly, recent work found that the order in which examples are presented matters (Lu et al., 2022).
Ideally, to marginalise over these random factors, we would evaluate each test example with all

5Published under a CC BY 4.0 license.
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permutations of k examples from the development set. This requires 118!
(118−k)! evaluations for each

test example, which is intractable. Instead, we estimate performance per test example by randomly
sampling from the development set. In this way we control for some of the variance in performance,
but avoid extra evaluations. We ensure each model sees the same few-shot examples per test example.

Controlling for prompt sensitivity. It has been shown language models are sensitive to prompt
wording (Efrat and Levy, 2020; Tan et al., 2021; Reynolds and McDonell, 2021a; Webson and Pavlick,
2021). To control for this factor of randomness we manually curate six different template prompts and
measure performance across these. One of the templates has been presented above, namely “Esther
asked <utterance> and Juan responded <response>, which means <implicature>”. Another template
is: “Question: <utterance>, response: <response>, meaning: <implicature>”. The former we call
natural prompts and the latter structured prompts. Each group has three templates that only differ
slightly in wording. This grouping allows us to look at the variance due to slight changes in wording
as well as performance difference due to a completely different way of presenting the example. The
full list of prompts can be found in Appendix F.

4 Experiments

The set of large language model classes we evaluate can be grouped into four distinct categories:

1. Base models: large-scale pre-trained models; RoBERTa (Liu et al., 2019), BERT (Devlin
et al., 2018), GPT-2 (Radford et al., 2019), EleutherAI (Wang and Komatsuzaki, 2021; Black
et al., 2022), BLOOM (BigScience, 2022), OPT (Zhang et al., 2022), Cohere’s base models,
and GPT-3 (Brown et al., 2020)

2. Dialogue FT: LLMs fine-tuned on dialogue, BlenderBot (Ng et al., 2019).

3. Benchmark IT: LLMs fine-tuned on tasks with natural instructions for each benchmark or
“benchmark-level instruction-tuned models”; T0 (Sanh et al., 2022) and Flan-T5 (Chung
et al., 2022).

4. Example IT: LLMs fine-tuned on tasks with natural instructions for each example or
“example-level instruction-tuned models”; a subset of OpenAI’s API models and Cohere’s
API models).

For Benchmark IT models, annotators write a single instruction for an entire dataset. The models
are then fine-tuned on each example from the dataset with the same instruction. We distinguish this
from example-level IT; for that type of fine-tuning each example in a dataset gets a new instruction,
resulting in a more diverse dataset. Each group contains model classes for which we evaluate a range
of sizes. A detailed categorization of the models and their attributes can be found in appendix G.6 We
make use of the OpenAI and Cohere APIs as well as the pretrained models in the transformers library
(Wolf et al., 2020) and EleutherAI’s framework to evaluate them (Gao et al., 2021). All code used
for this paper can be found on GitHub7 and the dataset is made publicly available on HuggingFace8.
Below, we present zero-shot and few-shot results, discussing patterns of performance of the models
in the four different groups. We further look at the results for different model sizes of each model
class and the variance over the prompt templates. We contrast the models’ performance with human
performance. To this end, each test example gets annotated by five humans. We split the test set
in four and assign each annotator a subset, leaving us with twenty annotators in total. The average
human performance is 86.2%, and the best performance is 92%. Some of the errors humans make
uncover examples that have multiple interpretations, and others uncover annotation errors. The nature
of the task of implicature resolution means we do not expect models to perform better than human
best performance. Details on the human experiment can be found in the Appendix H (also containing
an analysis of human errors), and detailed results per model and prompt template in Appendix K.10.
We also test for spurious correlations present in the benchmark (like lexical cues the model can rely
on), and find no indication (Appendix K.8).

Insight 1: Models instruction-tuned at the example level outperform all others. Table 1 shows the
best 0-, 1-, and 5-shot accuracy each model class achieved on the implicature task. The best overall

6Note that there are several important aspects unknown for models behind APIs, like OpenAI’s model sizes.
7https://github.com/LauraRuis/do-pigs-fly
8https://huggingface.co/datasets/UCL-DARK/ludwig
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Table 1: The k-shot accuracy (k ∈ {0, 1, 5}) for the best performing model of each class. For
each model, we select the model size to show by choosing the one that achieves the best 5-shot
performance. The std is over prompt templates for the models and over annotators for humans. FT
stands for fine-tuning and IT for instruction-tuning. We find that the models in the Example IT class
obtain significantly higher performance than all others. ⋆ means size unknown.

Model 0-shot 1-shot 5-shot

Baselines and Toplines Random 50%
Human avg. 86.2% ± 2.3

Base models

BERT-110M 54.8% ± 1.6 51.7% ± 1.7 53.3% ± 2.2
RoBERTa-355M 55.6% ± 2.0 54.1% ± 0.9 57.1% ± 1.5
GPT-2-xl 51.3% ± 2.9 57.4% ± 3.3 57.7% ± 1.1
EleutherAI-20B 57.5% ± 3.3 55.9% ± 2.3 61.1% ± 4.9
BLOOM-176B 54.2% ± 1.2 61.1% ± 2.7 65.4% ± 3.4
OPT-13B 61.0% ± 5.5 60.6% ± 2.7 67.4% ± 2.1
Cohere-52B 58.5% ± 4.0 63.0% ± 3.8 65.1% ± 2.9
GPT-3-175B 57.7% ± 4.4 65.7% ± 1.4 68.7% ± 1.5

Dialogue FT BlenderBot-2.7B 53.4% ± 0.3 53.3% ± 0.1 53.3% ± 0.1

Benchmark IT T0-11B 55.6% ± 7.0 47.8% ± 0.5 47.0% ± 0.2
Flan-T5-11B 60.8% ± 2.4 57.4% ± 5.0 61.7% ± 4.8

Example IT text-davinci-001-⋆ 72.3% ± 2.8 72.7% ± 1.3 74.5% ± 1.0
text-davinci-002-⋆ 70.6% ± 2.3 75.6% ± 2.8 79.6% ± 2.0
text-davinci-003-⋆ 71.2% ± 2.8 74.3% ± 1.4 79.7% ± 0.6
ChatGPT-⋆ 72.1% ± 5.9 75.1% ± 1.5 73.9% ± 6.3
GPT-4-⋆ 81.8% ± 1.8 82.3% ± 1.4 82.0% ± 1.7
Cohere-command-52B 60.2% ± 5.2 72.8% ± 1.3 75.4% ± 1.8

accuracy is achieved by GPT-4 (the size of this model is unknown) at 82.3%± 1.4. This leaves a gap
of 3.9% with human average performance. All models in the class Example IT perform significantly
better than any of the other models for all k, except Cohere-command-52b at 0-shot. This result is
more clearly seen in Figure 2, where we present the average accuracy for each model group. The
performance for the other model classes across k ranges from 47.0% by BlenderBot-2.7b at k = 5
and 68.7% by GPT-3-175b at k = 5. Even though base models benefit from few-shot examples,
their performance remains mostly closer to random than to humans for all k, showing a gap of at
least 17.5% with the average human. We observe a decrease in performance for k > 0 for the group
Benchmark IT. This is not surprising, as these kind of models are specifically fine-tuned to be better
at zero-shot generalisation (Sanh et al., 2022; Chung et al., 2022). BlenderBot, in the group Dialogue
FT, performs barely better than random for all k. We hypothesise that the lower performance which
Cohere-command-52b achieves 0-shot is not due to a lack of implicature understanding, but due to a
failure to calibrate the yes/no likelihoods without examples. For this model, we observe a sharp rise
in performance from k = 0 to k = 1 (see Table 1 or Figure 2). Since it is unlikely that one example
of an implicature induces pragmatic understanding, we hypothesise that few-shot prompting mostly
serves to clarify the task format. We test this hypothesis in Appendix K.6 by repeating the 1- and
5-shot experiment with random labels for Cohere-command-52B and text-davinci-001. We find that
the performance does not degrade, which confirms that the few-shot examples mainly serve to prime
the model towards producing outputs following the yes/no structure.

Insight 2: The results are robust to different prompt templates. As detailed in Section 3, each
example in the test set is wrapped in six different prompt templates. The standard deviation in Table
1 and in Figure 2 shows the sensitivity to different prompt wording. The standard deviation ranges
from 0.3 for BlenderBot to 7.0 for T0-11B. All in all, the sensitivity to prompt wording does not seem
to be a problem for this task; when taking into account the confidence intervals the result remains that
models in the group Example IT perform significantly better than all other models, but worse than
humans. In Appendix K.4 another analysis is presented that shows how different prompt templates
benefit from in-context examples. The takeaway from the analysis is that in-context prompting can
mitigate the fact that some models are better at natural prompts and others better at structured prompts
by improving performance on the type of prompt the model struggles with zero-shot. Again, when
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Figure 2: The few-shot accuracy for the best model of each class (e.g. the best performing model
in the class Cohere-command is the 52b model, whereas the best model in the class OPT is the 13b
model). The bars show the group means. Models fine-tuned on example-level instructions perform
better than most other models, especially for k > 0. For all models there is a significant gap between
best accuracy and human accuracy (which is 86.2%). * means size unknown.

Table 2: Scaling results for OpenAI’s text-<engine>-001-series, for which we do not know the number
of non-embedding parameters but do know the ordering in terms of size. The colors indicate whether
going up in size (from left-to-right) increases performance significantly or not.

Engine Ada Babbage Curie Davinci

0-shot 56.5% ± 5.8 64.5% ± 1.8 (+8.0%) 69.0% ± 2.9 (+4.5%) 72.3% ± 2.8 (+3.3%)
5-shot 57.6% ± 2.8 66.1% ± 0.3 (+8.5%) 71.3% ± 1.3 (+5.2%) 74.5% ± 1.0 (+4.0%)

only looking at the best prompt type for each model class (i.e. structured or natural), the results
remain that models in the group Example IT perform best.

Insight 3: Models instruction-tuned at the example-level have the most favourable scaling proper-
ties, but some base models also show positive correlation with scale. Figure 3 shows the scaling
behaviour of the model classes for which we know the number of non-embedding parameters. We
highlight 0- and 5-shot results, because for k > 5 the accuracy of most models plateaus (see Figure
2). However, detailed results for other k can be found in Appendix K.10. Note that we do not
know the number of parameters for OpenAI’s ‘text-<engine>-001’-series, but we do know the order
of the engines in size, and we separately present its scaling results in Table 2. Except OpenAI’s
‘text-<engine>-001’-series, none of the models show significant performance increase with model
size for the 0-shot evaluations. However, for k-shot evaluations with k ≥ 1 we observe significant
positive correlation with size for the models in the Example IT class for which we have multiple
sizes (Cohere-command and ‘text-<engine>-001’) as well as some models in the base model class.
Not only do the models in the Example IT class exhibit higher performance for the same model size,
these models also have a steeper performance increase with size than the base models. Comparing
the scaling properties of the best base model (GPT-3) with Cohere-command, we see that the in-
crease in performance from the second-largest to the largest model is 0.04% per billion parameters
from GPT-3-6.7B to GPT-3-175B and 0.15% per billion parameters for Cohere-command-6B to
Cohere-command-52b (exact numbers used to calculate the slope can be found in Appendix K.10).
If performance is linearly extrapolated from this curve GPT-3 reaches human-level performance at
642b parameters where Cohere-command would need 125b parameters.

Insight 4: GPT-4 reaches average human-level performance with chain-of-thought prompting.
For the model groups that benefit from in-context examples, we attempt to push performance further
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Figure 3: Scaling results for the model classes of which we know the number of non-embedding
parameters. The error bars show standard deviation over prompt templates. Cohere’s command
models instruction-tuned at the example-level perform better than all other models. For all models
there is still a significant gap between best accuracy and human accuracy.

Table 3: Results of the chain-of-thought (CoT) experiment for models in the group Example IT. The
numbers between brackets show the difference in performance with the number on the same row
one column to the left. Most models benefit from CoT-prompting, but not all. Additionally, GPT-4
reaches average human-level performance with CoT prompting. ⋆ means size unknown.

Model 0-shot 5-shot 5-shot CoT

text-davinci-001-⋆ 72.3% ± 2.8 74.5% ± 1.0 (+2.2%) 67.3% ± 2.6 (-7.2%)
text-davinci-002-⋆ 70.6% ± 2.3 79.6% ± 2.0 (+9.0%) 80.1% ± 0.8 (+0.5%)
text-davinci-003-⋆ 71.2% ± 2.8 79.7% ± 0.6 (+8.5%) 83.6% ± 0.6 (+4.0%)
ChatGPT-⋆ 72.1% ± 6.0 73.9% ± 6.3 (+1.8%) 77.2% ± 1.0 (+3.3%)
GPT-4-⋆ 81.8% ± 1.8 82.0% ± 1.7 (+0.2%) 86.5% ± 1.0 (+4.5%)
Cohere-command-52b 60.2% ± 5.2 75.4% ± 1.8 (+15.2%) 75.3% ± 0.5 (-0.1%)

with chain-of-thought prompting. We manually write a five-shot chain-of-thought prompt for all six
prompt templates, and evaluate model performance using this prompt. One of the six chain-of-thought
prompts can be found in Table 4 in Appendix F, and the other five are provided in the supplementary
material. We only present the results for the group Example IT here, since CoT prompting did not
improve performance for two of the base model classes we tried (see Appendix K.7). Consequently,
we decided not to apply this experiment to the other models in the base group to save compute costs.
The results of are shown in Table 3. We find that chain-of-thought prompting does not help for all
models, but is nonetheless able to boost performance of GPT-4 to 86.5% ± 1.0. This is on-par with
average human-level performance, and slightly below human best performance at 89.8%. To illustrate
how explicit reasoning helps implicature understanding, we highlight a CoT generated by GPT-4 for
an example from the dataset that models persistently get wrong. “A: Is there a bus I can get to the
station? B: You can’t rely on it”. The implicature is yes, there is a bus, you just cannot rely on it.
GPT-4 five-shot gets this wrong for all six templates. With CoT it gets it right for five of six templates.
The generated CoT for one template is the following:

Alice says ‘You can’t rely on it.’ Alice must be implying that there is a bus, but it
may not be dependable or timely. This means the response to Bob’s question is
yes, but with a caution about reliability. Answer: yes

More completions can be found in Appendix J.
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Figure 4: The accuracy v. k for the generalised and particularised examples obtained by the
Example IT models Cohere-command and GPT-4. Particularised (context-heavy) examples are often
significantly more difficult than generalised (context-free) examples for both models and humans.
For most models, in-context prompting can mitigate this, but for others (like GPT-4), a significant
gap remains. We see that Cohere-command-52b achieves similar performance as GPT-4 on the
particularised examples, but significantly lower on the generalised examples.

Table 4: An example from the dataset for two types of implicature found in the test set. The rightmost
column shows the amount of that type we manually found in the test set.

Type Example Utterance Example Response Impl. #

Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’ve gotta get up early. No. 94

Insight 5: Models often struggle with the same type of examples humans struggle with. We
manually labeled 217 examples of the 600 examples in the test set according to a taxonomy. The
remaining 383 examples do not fall as clearly within a category and are grouped together as type
other. In Table 4 the two types of examples that occur frequently in the dataset are exemplified.
Generalised implicatures require little or no context to be understood. They are the simplest type of
example in the test set, and generally imply the same thing (“some” almost always implies “not all”).
Particularised implicatures, by contrast, do require context to be resolved. For example, from Table
4, we need the context that it is undesirable to stay up late drinking when one has to get up early (see
in Appendix E for more on generalised vs. particularised). In these type of examples, the context
needed to resolve it is different every time. We label three other types of implicatures in the dataset,
but since the analysis of these examples does not show significant patterns, we present it in Appendix
K.9. We show the accuracy broken down per example type for two models from the Example IT
group, as these patterns hold more broadly for almost all models evaluated (see the detailed results
broken down per example type in Appendix K.9). Figure 4 shows that for lower k, the models often
have a significantly worse performance for particularised examples than for generalised examples,
just like humans do. For some, like Cohere-command-52b, this is mitigated by few-shot prompting,
which brings particularised and generalised performance closer together (sometimes at the cost of
generalised performance). For others, like GPT-4, the gap between particularised and generalised
performance remains large for all k. From the bottom row in Figure 4 we observe that the edge GPT-4
has over Cohere-command-52b seems mostly driven by a higher accuracy on generalised examples.
The accuracy on the particularised examples is comparable between those two models.

5 Discussion

In this study we use prompting to evaluate whether different groups of LLMs can resolve implicatures.
In designing our experimental protocol, we carefully considered various alternatives, and here we
discuss limitations of the chosen approach. Firstly, evaluating LLM competencies is inherently uncer-
tain and sensitive to prompt choice. Nonetheless, we are confident our evaluation is comprehensive
enough to assess implicature understanding: we apply six different prompt templates per test example,
each used in three different prompting techniques (zero-shot, few-shot, chain-of-thought). Addition-
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ally, in the appendix we present alternative zero-shot prompts and task specifications (Appendix K.3
and K.1 respectively), but since these did not improve performance they were not further considered.
Another limitation is the fact that a subset of the models we evaluate are behind APIs. This means
models are subject to change (affecting reproducibility) and certain details about these models are
unknown. This affects the group instruction-tuned at the example-level, which is the group we find
outperforms all others and has the most favourable scaling properties. How do we know instruction-
tuning at the example-level is the main driver behind these findings without controlled A/B testing?
Unfortunately, due to the secrecy surrounding the exact implementation of these models we cannot
be certain, but we can be relatively confident. We evaluated ten models across six model classes and
two APIs in the group example-level instruction tuned. Within this group, models probably vary
significantly in other training and architecture details (especially Cohere-command models versus
OpenAI models). The most salient commonality they share with each other and none of the other
models is multi-task instruction-tuning at the example level, making it likely that this is the driving
factor of their performance. A further datapoint in favour of this conclusion can be seen in Figure
3 (right); base models at similar scales as Example IT models perform significantly worse. We
see that Cohere-command 52B significantly outperforms Cohere-base 52B, and the only difference
between those models is instruction-tuning at the example level (Cohere-command is fine-tuned from
Cohere-base). In fact, Cohere-command 52B outperforms other base models more than 3 times the
size by a large margin (e.g. GPT-3 175B, BLOOM-176B, OPT-175B). We are therefore confident that
instruction-tuning at the example-level is important for pragmatic understanding, an insight which
can guide the development of open-source models capable of pragmatic understanding. Investigating
the exact effect of this type of instruction-tuning on pragmatic understanding in a controlled setting is
an interesting future work direction (e.g. by isolating the effect of data diversity from instructions).
Another limitation is that some evaluations are subject to API stochasticity, which we address in
Appendix K.5. After running the zero-shot experiment ten times through each API we conclude there
is some stochasticity, but it is too small to impact our conclusions. We publish exact timestamps
at which we queried APIs in Appendix L. Further, a downside of doing a comprehensive analysis
on many models is compute costs. In Appendix M we publish a list of exact compute used (time
and hardware), as well as estimated carbon emissions for each of the models that are not behind an
API. Finally, the likelihood ranking approach we take limits our study to implicatures with clear
alternative. However, implicatures in natural language can entail more complex propositions. For
example, imagine Esther now asking “Can I use your stapler?” and Juan responding “Here’s the key
to my office.”. Juan is implicating that (1) Esther can use the stapler, (2) the stapler is located in the
office, and (3) the office is currently locked. This leaves ample room for the design of benchmarks
with implicatures entailing multiple non-binary propositions.

6 Conclusion
LLMs have made remarkable progress on fluency and coherence in recent years. We argue how-
ever that a central aspect of language understanding is missing from evaluations. To understand
language means to understand its pragmatics: its usage in a context that incorporates commonsense
understanding, goals, objectives, and so on. We design a protocol that evaluates LLMs on binary
implicature resolution and establish a significant gap with human understanding for SotA LLMs
in three categories; large-scale pre-trained models, models fine-tuned on conversations, and mod-
els fine-tuned with benchmark-level instructions. By contrast, we find that models fine-tuned on
example-level instructions perform significantly better. This group also exhibits the best correlation
between accuracy and model size. Scaling analysis shows that for some large-scale pre-trained models
accuracy also positively correlates with model size, but the best model in this group would need at
least five times more parameters to reach similar performance. From these results, we conclude that
instruction-tuning at the example level is important for pragmatic understanding. We hypothesise that
there is something about the multi-task data diversity obtained from example-level instructions (i.e.
each example a new task) that makes pragmatic understanding appear at smaller scale.
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Radom, J., Sohl-Dickstein, J., Phang, J., Wei, J., Yosinski, J., Novikova, J., Bosscher, J., Marsh,
J., Kim, J., Taal, J., Engel, J., Alabi, J., Xu, J., Song, J., Tang, J., Waweru, J., Burden, J., Miller,
J., Balis, J. U., Berant, J., Frohberg, J., Rozen, J., Hernandez-Orallo, J., Boudeman, J., Jones, J.,
Tenenbaum, J. B., Rule, J. S., Chua, J., Kanclerz, K., Livescu, K., Krauth, K., Gopalakrishnan,
K., Ignatyeva, K., Markert, K., Dhole, K. D., Gimpel, K., Omondi, K., Mathewson, K., Chiafullo,
K., Shkaruta, K., Shridhar, K., McDonell, K., Richardson, K., Reynolds, L., Gao, L., Zhang, L.,
Dugan, L., Qin, L., Contreras-Ochando, L., Morency, L.-P., Moschella, L., Lam, L., Noble, L.,
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B Reproducibility Statement

We share all the data, human annotations, code used for the evaluations, and the raw results in the
supplementary material. Additionally, in Appendix K.5 we estimate the variance due to stochasticity
in the API’s of OpenAI and Cohere. Of course, if either OpenAI or Cohere decides to change the
models behind the API, the results might look different. We publish the exact date and time each API
was queried for the results in Appendix L. Finally, in Appendix K.2 we estimate the variance over
the prompt order of the in-context examples. The compute used for the experiments is detailed in
Appendix M. The remaining experiments were done with API credits received as a research grant
from OpenAI and Cohere.

C Ethics Statement

In this work, we conduct a study with human subjects (see Appendix H for details). To get matched
with participants, we used the platform Prolific. Prolific complies with ethical standards according to
UK law (e.g. complying with the GDPR). We compensated participants with a UK living wage at 15
GBP an hour, which is 6 GBP an hour more than Prolific recommends at 9 GBP per hour.
Implicature is an aspect of pragmatics, and pragmatic language impairments are universal in Autism
Spectrum Disorder (ASD) (American Psychiatric Association, 2013). Difficulties in understanding
scalar implicatures are claimed to be present in people with ASD (Volden, 2017), although the
nature of the relation has proven hard to establish and has recently been debated (Katsos et al., 2011;
Schaeken et al., 2018). For the purposes of this work, whether or not implicature understanding
relates to ASD is not important. We took the following steps to make sure no sensitive data is
collected or published. The human annotations we obtain are anonymous, related to a participant only
by their Prolific ID for the purposes of compensation. In publishing the human annotations, we will
not publish the Prolific ID of participants or anything else related to the participants. Additionally,
we did not collect or request any personal or demographic characteristics of the participants apart
from that they are all native English speakers.
Additionally, in this work we run a lot of compute-intensive experiments. We publish the estimated
emissions per experiment in Appendix M. The total amount of GPU hours is estimated at maximally
966. How this is broken down per experiment can be seen in Appendix M.
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D Opener example with InstructGPT

This quote was obtained through the OpenAI playground for text-davinci-002 on May 15th 2023. The
model text-davinci-001 consistently generates better responses for the same prompt. GPT-3 itself (i.e.
davinci) mainly gives nonsensical answers. In the following, the prompt is italic and the completion
bold. The completion was generated with a maximum of 10 tokens and a temperature of 0:

User: “Have you seen my phone?”
GPT-3: “Yes, I have seen your phone.”

The opener example is used to introduce the problem we are looking at, and not to judge the model
used to generate it. In fact, although text-davinci-002 sometimes completes conversations in a
way that is unexpected according to pragmatic language usage, it is one of the better models when
evaluated few-shot.
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E Background on implicature

The first influential consideration of implicature is Grice (1975). In his work, Grice continues the
trend of moving away from purely logical accounts of language started by Wittgenstein (1921) by
hypothesising implicatures arise in conversation when some mutually agreed upon maxims seem
to be violated. For example, if we agree on only making relevant contributions to conversation,
Juan’s response in the introduction seemingly violates this maxim—after all, he starts talking about
work when Esther asks him about a party. However, because Juan agreed to be relevant he must be
implying that having to work means he cannot come to the party. Grice contrasts conversational
implicatures that arise through context with conventional implicatures. These are implicatures where
the conventional meaning of the word determines what is implicated. An example given by Grice is
the following sentence: “he is an Englishman; he is therefore brave.”. Grice notes that this sentence
does not literally state that an Englishman being brave is a direct consequence of him being English,
but it’s implied by the conventional meaning of the word ‘therefore’.

Since then, issues with the Gricean cooperative principle have been pointed out by many (Levinson,
1983; Sperber and Wilson, 1986; Davis, 1998; Lepore and Stone, 2014). The most influential
alternative theory is relevancy theory by Sperber and Wilson (1986). They do away with the
cooperative principle and instead theorise implicatures arise because speakers try to produce utterances
that are both as relevant as possible and require the least effort to process. Another point of contention
is the incorporation of conventional implicatures on the pragmatics side. Bach (1999) argues that there
is no such thing as conventional implicatures, and they are simply instances of something else. Based
on a thorough treatment of what Grice calls conventional implicatures, Bach argues all examples
of it can be filed under other concepts within semantics, like utterance modifiers (called “utterance
modifiers” instead of “sentence modifiers” because they go against the semantic content of the rest
of the sentence). Potts (2005) also argues that to explain conventional implicatures we can stay on
semantic turf. Indeed, even Grice himself says conventional implicatures derive from the meaning of
the words, not from conversational context. However, Potts does not claim conventional implicatures
do not exist, but instead argues they arise by a combination of lexical meaning and novel ways
of combining words—the latter being the well-known principle of compositionality, an important
part of semantics, not of pragmatics. Potts provides us with an illuminating demarcation between
conventional and conversational implicatures. Conventional implicatures are never negotiable by
context, whereas conversational implicatures are context-dependent and can always be cancelled
without causing incoherent discourse. Consider again the sentence “he is an Englishman; he is
therefore brave.” and the sentence “Eddie has three bicycles” (implicating that Eddie has exactly
three bicycles and not more). The former sentence can not be cancelled by new context without
contradiction, whereas for the latter, if we continue saying “In fact, Eddie has 10 bicycles, he is
a bicycle junkie”, we have cancelled the implicature. This demarcation clearly puts conventional
implicatures on the semantic side, and conversational implicatures on the pragmatic side. Potts goes
on by providing a formal theory for conventional implicatures.

In later work, Potts (2006) describes how pragmatic pressures interacting with context cause conver-
sational implicature to arise. He shows how sensitive conversational implicatures are to small changes
in the context. Novel information about a speaker’s belief state might completely change what is
implied. There are many more models of implicature that aim to explain how humans understand
language in context. Most notably, Frank and Goodman (2012) formalise the view that speakers
produce utterances that are helpful and not longer than necessary with a Bayesian model called the
rational speech act (RSA). Many variants on the RSA framework have since been proposed. For
example, Goodman and Frank (2016) extend it to handle nonliteral uses of language, like irony, and
metaphor. In the context of computational models, prior work uses insights from pragmatics to show
that the use of certain words can make a language model produce biased completions (Patel and
Pavlick (2021), e.g. saying someone “claimed” something rather than “said” something), and inform
bias and sentiment classifiers (Greene and Resnik, 2009; Recasens et al., 2013).

In this work, we focus on conversational implicatures and not on conventional implicatures. All
conversational implicatures are negotiable by context, but the way they depend on context can
be different. Grice (1975) identifies generalised conversational implicatures and particularised
conversational implicatures. The former require little or no context to be resolved. For example,
“some athletes smoke” can imply “not all athletes smoke”, but might also imply “I do not know
whether all athletes smoke” when it is a response to the question “do you know whether all athletes
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smoke?” (Davis, 2019). The latter only arise in certain contexts. For example, the response “I have
an early morning” to the question “do you want to stay for a drink?”.
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F Detailed prompt templates

Table 5 contains the full prompt templates we used for the main evaluation and Table 7 contains the
extra prompt templates.

Table 5: Ranking prompt templates. The six templates we wrap the test examples in to present to the
models. Template 1, 3, and 4 are of the type structured, and 2, 5, and 6 of the type natural. Within
the type of prompt template they only differ slightly in wording.

# Prompt template

1

Does the following response to the question imply yes or no?

question: <utterance>
response: <response>
implicature: <implicature>

2
Finish the following text:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

3

Is the implied meaning of the following response yes or no:

question: <utterance>
response: <response>
meaning: <implicature>

4

What is the intent of the following response, yes or no?

question: <utterance>
response: <response>
intent: <implicature>

5
Finish the following text:

Karen asked "<utterance>" and William responded "<response>", which means <implicature>

6
Finish the following text:

Bob asked "<utterance>" and Alice responded "<response>", which means <implicature>
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Table 6: Completion prompt templates. The six adjusted templates we wrap the test examples in to
present to the models when we use completion instead of likelihood ranking. Template 1, 3, and 4
are of the type structured, and 2, 5, and 6 of the type natural. Within the type of prompt template
they only differ slightly in wording.

# Prompt template

1

Does the following response to the question imply yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
implicature: <implicature>

2
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

3

Is the implied meaning of the following response yes or no. Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
meaning: <implicature>

4

What is the intent of the following response, yes or no? Only output ‘yes’ or ‘no’.
Even if you’re uncertain, choose either ‘yes’ or ‘no’.

question: <utterance>
response: <response>
intent: <implicature>

5
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Karen asked "<utterance>" and William responded "<response>", which means <implicature>

6
Finish the following text. Only output ‘yes’ or ‘no’. Even if you’re uncertain, choose either ‘yes’ or ‘no’.

Bob asked "<utterance>" and Alice responded "<response>", which means <implicature>
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Table 7: The three additional templates we wrap the test examples in to present to the models, adapted
from Glaese et al. (2022).

# Prompt template

7

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that contains
an implicature.
An implicature is an utterance that means something other than the literal meaning of the words.
The implicature of Juan’s response is yes or no.
You, the AI assistant, are asked to finish the text with yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

8

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, the AI assistant, are asked to finish the text with the correct meaning, either yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

9

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, a highly intelligent and knowledgeable AI assistant, are asked to finish the text with the
correct meaning, either yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>
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Table 8: Chain-of-thought (CoT) prompt templates. One of the six chain-of-thought prompt templates
we use for the CoT experiment. Note that this is a 5-shot prompt. Each prompt variation contains five
CoT examples. The other five variations are separately added to the supplementary materials

# Prompt template

1

Bob asks Alice a question, and Alice responds with an implicature. This means that Alice’s response
does not literally contain the answer to Bob’s question, but implies an answer. Assuming that Alice is a
cooperative conversational partner, what is the implicated answer to the question? For example:

Bob: You invented fire?
Alice: I told you that.
Implicature: Alice says ‘I told you that’. Alice’s response must be relevant to Bob’s question because
Alice is a cooperative conversational partner. Alice must mean that she told Bob that she invented fire.
Alice’s response to Bob’s question ’You invented fire?’ is yes.
Answer: yes

Bob: That cake looks delicious. Aren’t you going to have some with me?
Alice: But that was a huge meal we just had.
Implicature: Alice’s response must be relevant to Bob’s question because Alice is a cooperative
conversational partner. Alice must mean that the meal they just had was so huge she is not hungry
anymore, and this must be relevant to Bob’s question: ‘Aren’t you going to have some with me?’
Alice’s response to the question must therefore be no.
Answer: no

Bob: Could you perform well?
Alice: Being bilingual would help put me ahead of the pack.
Implicature: Alice says being bilingual would help put her ahead of the pack. Alice’s response must
be relevant to Bob’s question because Alice is a cooperative conversational partner. Alice must be
implying that she could perform well because she is bilingual. This means the response to Bob’s
question is yes.
Answer: yes

Bob: Have you any news for me?
Alice: I’ve made progress
Implicature: Alice says she has made progress. Alice’s response must be relevant to Bob’s
question because Alice is a cooperative conversational partner. If Alice would not have any
news for Bob, Alice would not have said she would have made progress because that would
be misleading. The answer to Bob’s question ‘Have you any news for me?’ must therefore be yes.
Answer: yes

Bob: You looked out for him?
Alice: He looked out for me. He taught me.
Implicature: Bob asks Alice ‘You looked out for him?’ and Alice’s response says that the person
that is being referred to by ‘him’ here looked out for Alice. If Alice meant yes to Bob’s
question, Alice would have said something like ‘he also looked out for me’. Stating the
response like this implies that the answer to Bob’s question is no.
Answer: no

Only output a ‘yes’ or ‘no’ as a final answer. Write your reasoning after ‘Implicature:’
and then output either ‘Answer: yes’ or ‘Answer: no’.

Bob: <utterance>
Alice: <response>
Implicature:
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G Model categorization

Table 9 contains details on the model classes that are a part of each group of models we evaluate,
along with their model sizes.

Table 9: Model categorization for each of the models. DL stands for dialogue, FT for fine-tuning, BL
for benchmark-level, EL for example-level, and IT for instruction-tuning.

Group Model class Model IDs Model size Instruct

Base

BERT base uncased 110M No
RoBERTa base, large 125M, 355M No
GPT-2 GPT-2 medium, large, xl 354M, 774M, 1.6B No
EleutherAI GPT-J, GPT-NeoX 125M, 1.3B, 2.7B, 6B, 20B No
BLOOM - 560M, 1B1, 3B, 7B1, 176B No
OPT - 125M, 350M, 1.3B, 13B, 30B, 66B, 175B No
Cohere small, medium, large, XL 409.3M, 6.067B, 13.12B, 52.4B No
GPT-3 ada, babbage, curie, davinci Est. 350M, 1.3B, 6.7B, 175B No

DL FT BlenderBot - 90M, 2.7B, 9.4B No

BL IT T0 - 3B, 11B Yes
Flan-T5 - 780M, 3B, 11B Yes

EL IT Cohere-command medium, xlarge 6.067B, 52.4B Yes
text-davinci-001 ada, babbage, curie, davinci-1 Unknown, left-to-right increasing in size Yes
text-davinci-002 - Unknown Yes
text-davinci-003 - Unknown Yes
ChatGPT gpt-3.5.turbo Unknown Yes
GPT-4 gpt-4 Unknown Yes
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H Human evaluation

The participants for the human evaluation in this paper were recruited using Prolific (www.prolific.
co). The setup of the experiment is as follows. We divide the test set of 600 examples into four non-
overlapping subsets of 150 examples. Each set of 150 examples was given to five unique annotators.
This means each example in the test set is labeled five times by different people, and we have in total
twenty annotators for the whole test set (five different ones for each of the four subsets). The only
constraint for the annotators is that they are native English speakers. In Figure 5 the screen shown to
potential participants on Prolific is shown. Participants are paid 15 pounds an hour, which was the
living wage at the time of the experiment and more than the 12 dollars an hour Prolific recommends.
The total amount spent on the human evaluation is 236 pounds. This amount came to be from four
subsets, each costing about 30 minutes to label per annotators, and having 5 annotators per subset:
15 * 4 * 0.5 * 5 = 150. The extra costs were for the annotator that didn’t pass the attention check
which we paid nonetheless, and for prolific as a platform.

Figure 5: A screenshot of how the experiment is presented to potential annotators on Prolific
(www.prolific.co).

The 150 test examples are wrapped in prompt template 2 (see Table 5) and presented in a Google
form. We opted to wrap all examples in prompt template 2 to make the full human study directly
comparable to the model’s results on template 2. If we had done a mix of all templates we either had
to spent six times as much on the human evalyations (which was not within our budget) or subsample
evaluations, making it less comparable to part of the model study. Although models have been shown
to be very sensitive to prompt wording, humans are less likely to perform differently for different
prompt templates. All templates are coherent natural language that any native English speaker
will understand. That said, this is speculative, and to confirm this hypothesis future work should
investigate the effect of different wordings on implicature resolution by humans. The participants are
asked to choose the correct continuation, yes or no (see Figure 6a). As recommended by Prolific,
we subject the participants to an attention test (see Figure 6b). At three random places in the form,
we add a question that does not contain an implicature and obviously maps to “yes”. In this way, if
the participants fails at least two of these questions, we can conclude they were not paying attention
and remove their answers from the result. In practice, this happened once and we decided to pay the
participant regardless, but discard their results, which were close to random.

Table 10 shows the performance of each annotator on the subset they annotated. The average
human performance across subsets and annotators is 86.2% ± 2.3, the best performance is 89.8%
± 2.2, and the worst performance is 83.5% ± 1.5. The column “IAA” shows the average Cohen’s
Kappa coefficient which is the pairwise inter-annotator agreement for each annotator per subset. All
agreements are substantial according to the interpretation guidelines for Cohen’s Kappa (between
0.61–0.80).
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(a) The start of the Google form participants are
asked to fill out for the human study.

(b) Part of the Google form the participants are
asked to fill out. The second question in this image
is part of the attention test. Juan’s response does
not contain an implicature but simply gives away
the correct answer.

Figure 6: Screenshots of the Google form participants fill out as part of the implicature study.

Table 10: The performance of the human annotators on the subsets of the test set. Subset 1 through
4 are non-overlapping and cover the whole test set. Annotator X for subset Y might be a different
human than annotator X for subset Z. IAA is the average pairwise inter-annotator agreement (Cohen’s
kappa coefficient) between annotators per subset.

Annotator 1 2 3 4 5 Mean Best Worst IAA
Subset 1 86.0% 92.0% 90.7% 90.6% 86.0% 89.1% 92.0% 86.0% 0.73
Subset 2 84.7% 83.3% 87.3% 86.0% 86.0% 85.5% 87.3% 83.3% 0.64
Subset 3 84.0% 85.3% 88.0% 86.0% 82.7% 85.2% 88.0% 82.7% 0.78
Subset 4 85.3% 82.7% 84.0% 82.0% 92.0% 85.2% 92.0% 82.0% 0.71
Total - - - - - 86.2% 89.8% 83.5% 0.72
Std - - - - - 2.3 2.2 1.5 0.1

Human source of disagreement with ground-truth. We do an analysis of the source of disagreement
with the ground-truth. We explicitly do not call this error, as in some cases examples might allow
multiple interpretations, and both could be right. In other cases, the ground-truth might be wrong.

Annotation errors and multiple interpretations: We analyse the examples for which most humans
choose a different answer than the ground-truth. For 30 out of 600 examples in the test set, only one
or zero people choose the same answer as the ground-truth. Of these examples, most are annotated
wrongly (18 of 30). For example: ‘Are you busy?’, ‘I’m drowning in work.’, implicature: ‘no’. Some
are examples that can have multiple different interpretations (12 of 18), and the ground-truth answer
likely just chooses one that is unnatural to humans. For example: ‘You don’t remember them?’,
‘Leave me alone!’, implicature: ‘yes’. 6 of the 30 examples are particularised, and 1 is generalised.

Examples for which all humans agree with the ground-truth: There are 409 out of 600 examples that
all humans get correct. This set of examples contains most of the generalised implicatures (39 out of
47). These contain 58 out of 94 particularised examples.

Examples most humans agree with the ground-truth: When we look at examples that 3 or more
humans got correct, that comprises most of the test set (530 of 600), and all of the generalised
examples (47 of 47). This subset has 78 of 94 particularised examples, so for 16 particularised
examples 3 or more humans disagree with the ground-truth.
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I Comparison with BIG-bench implicatures task

One of the BIG-bench tasks is related to the task in this work9. It uses the same underlying dataset
we use (George and Mamidi, 2020). With the below we aim to discuss our contribution in light of
the BIG-bench result. To summarise; the methodology used by the BIG-bench task contributors
has limitations, which call into question the validity of their claims. Further, some of the BIG-
bench results are irreproducible due to missing details in the tech report and the use of proprietary
models. Considering this, our work is an important contribution validating the BIG-bench results in a
reproducible and methodologically sound way, and above that providing insight into what aspects of
LLM training are crucial for the ability to do pragmatic inferences.

Limitations of the methodological approach of the task contributors in BIG-bench implicatures.
Our benchmark has 30% more data, which the BIG-bench task contributors discard. In this section
we motivate the crucial importance of that data for evaluating implicature understanding (Section
I.1), and why BIG-bench in turn might be overestimating the performance of LLMs on implicature
resolution (Section I.2). Moreover, the human performance on the BIG-bench task indicates low
quality human annotation, which we will also elaborate upon below, noting that this is impossible
to verify because the BIG-bench report does not detail how the evaluation was done for this task
(Section I.3).

I.1 Discarding ambiguous examples

The BIG-bench task preprocesses the 1001 examples that George and Mamidi (2020) curate by
keeping only yes/no questions, discarding any examples that are ambiguous according to the task
contributors, and discarding remaining examples to create a 50/50 distribution of yes/no answers.
This leaves them with 492 examples. Of these examples, 81 appear in our development set and
the remaining 411 appear in our test set. Our test set has 600 examples, so BIG-bench effectively
discarded 189 ambiguous examples compared to our test set; a bit more than 30% of the benchmark.
To illustrate the importance of not discarding this data, we cherry picked a few examples that the
BIG-bench authors discarded from the data.

• Utterance: "Can you lend me hundred dollars?", Response: "Is this supposed to be some
kind of a joke?", Implicature: "No"

• Utterance: "Do you know, how long is Uncle Arthur staying with us?", Response: "Ask
your father.", Implicature: "No"

Indeed, these examples are ambiguous. Asking whether the request for a hundred dollars is a joke
does not literally mean you’re saying no to the request. The response “ask your father” does not mean
the speaker does not actually know, maybe they just do not want to respond. The humans in our study
all infer the intended ground truth implicature. This shows a general property of implicatures; they
are ambiguous, but often humans do infer the intended meaning. Ambiguity is not a discrete property.
Some examples may be so vague that no one gets it. The following are examples the BIG-bench task
discards that the humans in our study did struggle with:

• Utterance: "Got any more of those?", Response: "Nothing I’m at liberty to reveal here.",
Implicature: "Yes"

• Utterance: "Have you finished sight-seeing?", Response: "Sorry. I should’ve come to see
you first.", Implicature: "Yes"

In the first of these the implicature is “yes” because the person responding is implying that they do
have more, they just cannot reveal them. Otherwise they would most likely simply say no. In the
second example it feels more natural that someone says this when they are finished sight-seeing,
otherwise they would’ve probably said something to the effect of “I’m still out, but I’m sorry..”. In
any case, humans in our study did not understand these responses like that. This illustrates another
aspect of implicature; sometimes communication will go wrong over it. Removing implicatures
that are ambiguous though, defeats the purpose of the task, as they are all ambiguous to a certain
degree. The purpose of this study is to compare how humans resolve this type of non-literal language

9https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/
implicatures
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compared to how models do it. The human baseline of 86% accuracy that humans achieve on our
test set deals more naturally with examples that are too ambiguous for models to understand than
discarding examples based on the subjective opinion of a few people.

I.2 Overestimation of performance on implicature understanding

On the overlapping part of our test set and theirs the humans in our study achieve 92.8% accuracy. The
best model on the BIG-bench task is PaLM, achieving a zero-shot performance of 64.4%. Note that
this performance is on their full test set (not the overlapping part) and hence not directly comparable.
Nonetheless, the missing examples are randomly sampled for our development set, and we can
be pretty confident this number indicates a large gap with human performance. Two-shot PaLM
comes very close to human performance with 91.7% accuracy, but of course this does not take into
account the 189 more challenging examples that are part of our benchmark. Humans achieve 71.9%
performance on this subset of ambiguous data, indicating that these data are more difficult than
average, but nonetheless performance is higher than random. Without access to the models used to
evaluate the BIG-bench task we cannot say anything for certain, but we expect the performance of
PaLM to be overestimated as it does not account for a large part of the type of implicatures found in
natural discourse; ambiguous ones.

I.3 Other limitations

Poor quality human evaluation. The average human evaluator on BIG-bench implicatures achieves
around 82% performance (where ours achieves on average 86% on a more challenging dataset), and
their human best rater achieves 100% (where our human best is 92%). This difference between
human average and best hints at poor quality average rating. This is impossible to verify because
there is no information in the BIG-bench tech report on how the human evaluation was done exactly,
or even which examples where evaluated.

No fine-tuned models. BIG-bench uses only base LLMs and no SotA fine-tuning methods. A question
that remains is therefore, what aspects of LLMs contribute to their performance on implicatures? In
our work we find that implicature performance emerges at a much smaller scale in models instruction
fine-tuned at the example level, and that scale and prompting techniques are important.
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J Chain-of-thought completions by GPT-4

GPT-4 reaches human-level performance with CoT prompting. In this section we look at a few
completions to help illuminate how CoT-prompting improves implicature resolution.

Specifically, we look at some of the examples for which GPT-4 5-shot gets 0% accuracy (i.e. wrong
for all templates), and GPT-4 5-shot CoT gets 100% accuracy (i.e. right for all templates). This is a
set of 10 examples. We only look at the first template, but all templates get a similar performance
with CoT.

Utterance: ‘Do you sell calculators?’
Response: ‘We are all sold out. We wont probably have any more in for a few weeks.’
Implicature: Yes. But we dont have any calculators to sell now.

This is an example that GPT-4 gets wrong for all templates 5-shot, probably because the response
has a negative sentiment, and also it means they do not sell calculators right now. However, the
implicature is yes, because they do sell them normally. The CoT completion is:

CoT completion: ‘Alice says they are all sold out and won’t have any more in for a few weeks. Alice’s
response must be relevant to Bob’s question because Alice is a cooperative conversational partner.
Alice must be implying that they do sell calculators, but they currently don’t have any in stock. The
answer to Bob’s question is yes. Answer: yes’

This example is similar to the one given in the main text in Section 4, and there are more like these in
the dataset: the sentiment is negative, and an interpretation can be negative, but strictly the implicature
is positive (yes).

Utterance: ‘Do you know where he is?’
Response: ‘I’ll find him.’
Implicature: No.

GPT-4 gets this wrong for all templates 5-shot, and right for all of them with CoT:

CoT completion: ‘Alice says she will find him. Alice’s response must be relevant to Bob’s question
because Alice is a cooperative conversational partner. If Alice knew where he is, she would have
provided that information directly. Instead, she says she will find him, implying that she does not
currently know his location. The answer to Bob’s question ’Do you know where he is?’ must
therefore be no. Answer: no’

It’s unclear why GPT-4 gets this one wrong 5-shot (all humans get this one right), but the CoT is very
relevant and helpful.

Utterance: ‘It seems Cathy is not happy at all with her new room mate. Did you ask her why?’
Response: ‘Believe me. I tried to find out. But I simply could not pin it down.’
Implicature: Yes. But Cathy did not give specific reasons for her feelings.

Again an example where the sentiment of the response seems to hint at no. Of 5 human annotators,
also only 2 interpret this response as “yes”. With a CoT, GPT-4 gets it right six times:

CoT completion: ‘Alice says she tried to find out but couldn’t pin it down. Alice’s response must be
relevant to Bob’s question because Alice is a cooperative conversational partner. Alice must mean
that she attempted to ask Cathy why she is unhappy with her new roommate, but was unable to get a
clear answer. The answer to Bob’s question ’Did you ask her why?’ must therefore be yes. Answer:
yes’

A helpful reasoning trace. All CoT completions by the models we have run CoT on are available in
the GitHub: https://github.com/LauraRuis/do-pigs-fly.
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K Additional results

K.1 Contrastive experiment

In this section we reframe the implicature resolution task to a contrastive one, allowing the model to
contrast the coherent to the incoherent sentence in a single prompt.

Contrastive task. In the ranking task the model is required to assign higher likelihood to the coherent
utterance than the incoherent one (pθ (x) > pθ (x̂)). In assigning a likelihood to x, the model has no
knowledge of x̂, and vice-versa. We hypothesize that the task might become easier if we reformulate
it as a contrastive task. Consider the following prompt p.

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means yes.

Answer:

We can now evaluate the models’ ability to understand which is the coherent sentence by evaluating
whether it assigns pθ (A | p) > pθ (B | p). Note that this can again be framed in a ranking task of
assigning a higher likelihood to the coherent prompt. If we finish the above prompt p by adding
“A” to make a coherent prompt x and “B” to make an incoherent prompt x̂ we can again formulate
the task by pθ (x) > pθ (x̂). The difference is that within both the coherent and the incoherent
prompt, the model can contrast the coherent and incoherent utterance to each other. We randomise
the assignment of A and B to the utterances.

We do a small experiment with the contrastive task with one of the best performing models overall,
OpenAI’s text-davinci-002, for k = {0, 1, 5}. We use two prompt templates and for each template
try three different multiple choice answers: A and B like above, one and two, or the full text of the
answer. For the last option the coherent prompt x would look as follows:

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means yes.

Answer: Esther asked “Can you come to my party on Friday?” and Juan responded
“I have to work”, which means no.

Table 11: Performance on the implicature task framed contrastively by OpenAI’s text-davinci-002.
The mean and standard deviation are reported over two different prompt templates (template 1 and 2).

k Non-contrastive Rank one, two Rank A, B Rank full text
0 71.3% ± 1.75 53.9% ± 0.9 59.3% ± 1.3 48.9% ± 0.6
1 76.1% ± 2.6 59.4% ± 1.6 63.2% ± 2.0 66.9% ± 0.9
5 80.5% ± 2.3 61.4% ± 1.3 64.0% ± 1.3 67.9% ± 2.1

In Table 11, perhaps surprisingly, we can see that the contrastive task is much more difficult than
the original ranking task. For k = 0, the result is random except for the prompt where the multiple
choice options are A and B. For k = {1, 5} the full text ranking does best, but is still significantly
worse than the original ranking setup. Because of these disappointing results, we did not evaluate the
other models contrastively. Future work must establish whether the contrastive setup is worse across
all model classes and sizes.
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K.2 Variance over prompt ordering

As mentioned in Section 3 in the main text, models are sensitive to the ordering of the k examples
in the prompt. Instead of marginalising over this random factor by evaluating all possible prompt
orderings, we randomly sampled an ordered set of examples from the development set for each
test example. Throughout experiments, we kept this randomly sampled order the same, meaning if
you re-run the 5-shot evaluation you get exactly the same orderings. The reason for this is that we
want evaluate each model equally. In this section we ask how the performance chances for the best
performing model if we select another random order. We do this for the 5-shot evaluation, because
the results show that adding more in-context examples barely helps performance.

Table 12: Variance over prompt ordering for 5-shot evaluation per prompt template (P.T.) for text-
davinci-002

Seed P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 80.17 78.17 82.83 80.50 79.17 76.50 79.56
1 80.17 76.17 81.33 81.83 76.00 76.33 78.64
2 79.50 78.17 81.17 80.17 78.17 76.50 78.94
mean 79.94 77.50 81.78 80.83 77.78 76.44 -
std 0.31 0.94 0.75 0.72 1.32 0.08 -

Table 12 shows the results of this experiment. Some prompt templates seem to be more sensitive to
prompt example ordering than others, but for none of them the variance is high enough to change any
conclusions.

K.3 Different zero-shot instruction prompts

There is a narrative around large language models that if they fail a task, it might be that the
prompt was not the right one (through works like Reynolds and McDonell (2021b); Kojima
et al. (2022)). The idea is that they can be prompted to simulate almost anything, if you set
them up correctly. Because implicature resolution is a ubiquitous result of learning language,
we hold the view that a model should be able to do this task if a prompt is given in coher-
ent natural language. Nonetheless, in an additional effort to find the “let’s think step-by-step”
(Kojima et al., 2022) of zero-shot implicature resolution we try three more prompt templates.

Table 13: Zero-shot accuracy over three
additional prompt templates for a base
LLM and two instructable models.

Model Templates

GPT-3-175b 59.2% ± 4.5
text-davinci-001-? 66.1% ± 3.2
text-davinci-002-? 67.7% ± 9.6

We evaluate a base large language model and two in-
structable models: GPT-3-175B, text-davinci-001, and text-
davinci-002. The prompts we use are taken from recent
work that proposes a dialogue agent trained with human
feedback (Glaese et al., 2022), but adapted to the task of
implicature resolution. The full prompts are presented in
Table 7 and Table 13 shows the results. The new templates
do not improve performance for any of these models. The
variance over the prompt templates for text-davinci-002 is
high, and the best prompt template of these three does achieve a slightly higher accuracy than the
others: 74.5%. These results do not change the picture sketched so far.

K.4 The effect of in-context examples on sensitivity to prompt wording

Figure 7 shows the relative performance increase due to in-context prompting broken down per prompt
template. For text-davinci-001, most templates benefit similarly from more in-context examples,
except for template 1. Perhaps surprisingly, we see that this template already achieves a performance
of 76.5% at the zero-shot evaluation and does not improve much with few-shot prompting. For
Cohere-52B and OPT-175B we see a clear grouping between the structured prompts (dashed lines)
and natural prompts (dotted lines). Cohere struggles significantly more with the structured prompts
than with the natural prompts in the zero-shot evaluation, and few-shot prompting can mitigate that,
lowering the standard deviation over prompt templates to 1.89 at k = 30 from 4 at k = 0. OPT
benefits from prompting for the natural prompts, but not for the structured prompts.
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Figure 7: Relative performance increase over 0-shot due to in-context prompting. Structured prompt
templates are dashed lines (1, 3, 4) and natural prompt templates dotted lines (2, 5, 6).

K.5 Variance over API runs

In this section we comment on the reproducibility of research done using APIs. OpenAI and Cohere
have their models behind an API, meaning we do not have control over what happens to the prompt
before the model processes it. We run the zero-shot evaluation ten more times for two models of
OpenAI and Cohere, text-davinci-002 and Cohere-52B. The results from this experiment are shown
in Table 14 and 15. From this we can conclude that there is some stochasticity in the API that we
have no control over, a bit more for OpenAI than for Cohere, but again we can be relatively confident
that the conclusion will not be different because of it. The results from this work are therefore
reproducible with access to the same models behind the API now. Unfortunately, when OpenAI or
Cohere changes the models behind the API, these results are not exactly reproducible anymore.

For completeness, we add the timestamp that each result was obtained below (Appendix L).

Table 14: Results per prompt template (P.T.) for 10 different runs from text-davinci-002 for 0-shot
evaluation.
Each evaluation has exactly the same text, so the variance in performance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 73.50 68.83 73.00 71.17 67.17 68.83 70.42
1 73.83 69.00 72.83 71.50 67.67 68.33 70.53
2 73.67 68.67 73.17 71.33 67.50 68.50 70.47
3 73.83 68.17 73.17 71.00 67.67 68.17 70.33
4 73.67 68.83 73.33 71.17 67.00 68.33 70.39
5 73.83 68.50 73.00 71.00 67.00 68.17 70.25
6 73.67 69.00 73.00 71.17 67.33 68.50 70.44
7 73.67 68.67 72.83 71.33 67.50 68.67 70.44
8 73.83 69.17 72.83 71.17 67.33 68.00 70.39
9 73.50 68.50 72.83 71.00 67.50 68.67 70.33
10 73.67 69.50 73.00 71.33 67.50 68.50 70.58
mean 73.70 68.80 73.00 71.20 67.38 68.42 -
std 0.12 0.35 0.16 0.16 0.23 0.24 -

K.6 Experiment with random in-context labels

This paper presents the thesis that instruction-tuning at the example level (“Example IT”) is important
for pragmatic understanding in LLMs. However, the 0-shot result that one of the models in the
Example IT group achieves is similar to that of base models; Cohere-command-52b obtains a zero-
shot performance of 60.2%. From the sharp rise in performance observed for the k = 0 to k = 1
result (from 60.2% to 72.8%) we hypothesise that the k-shot in-context examples in this task do not
necessarily teach the model pragmatics in-context, but prime the model for the task format (namely,
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Table 15: Results per prompt template (P.T.) for 10 different runs from Cohere-52B for 0-shot
evaluation.
Each evaluation has exactly the same text, so the variance in performance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 56.00 62.67 54.33 54.00 62.17 62.17 58.56
1 56.00 62.83 54.33 54.00 62.33 62.33 58.64
2 56.00 62.83 54.33 54.00 62.17 62.33 58.61
3 56.00 62.83 54.33 54.00 62.17 62.33 58.61
4 55.83 62.67 54.33 54.00 62.17 62.33 58.56
5 56.00 62.83 54.33 54.00 62.17 62.17 58.58
6 56.00 62.83 54.33 54.00 62.17 62.17 58.58
7 56.00 62.67 54.33 54.00 62.33 62.17 58.58
8 56.00 62.83 54.33 54.00 62.00 62.33 58.58
9 56.00 62.83 54.00 53.83 62.17 62.17 58.50
mean 55.98 62.78 54.30 53.98 62.18 62.25 -
std 0.05 0.08 0.10 0.05 0.09 0.08 -

outputting either “yes” or “no” as detailed in Section 3 in the main text). If this hypothesis is true,
we would observe similar performance regardless of whether the labels given in the prompt for the
few-shot examples are true. We test this empirically for two base models (GPT-3, Cohere-52b) and
two Example IT models (text-davinci-001, Cohere-command-52b) for 1-shot and 5-shot evaluation.
The results can be found in Table 16. We find that for the Example IT models in-context prompts
with random labels obtain the same results (i.e. within confidence intervals) as the experiments with
ground-truth labels in the in-context examples. For base models however we do observe a drop in
performance; for GPT-3-175b at 5-shot, and Cohere-52b both at 1- and 5-shot. Taken together, we
can conclude that for base models the content of the in-context prompt seems important, whereas
for models in the example IT group the in-context examples mainly serve as a primer for the task
structure.

Table 16: The results of the 1- and 5-shot experiment with random labels for the few-shot examples
as opposed to the the true labels. We find that performance does not degrade for the models in the
Example IT group, which implies that for these models not the content of the examples is important
for performance, but the structure.

Model 1-shot 1-shot rand labels 5-shot 5-shot rand labels

GPT-3-175b 65.7% ± 1.4 65.4% ± 1.2 68.7% ± 1.5 64.7% ± 1.9
Cohere-52b 63.0% ± 3.8 58.3% ± 3.3 65.1% ± 2.9 60.5% ± 1.9
text-davinci-001 72.7% ± 1.3 73.9% ± 1.7 74.5% ± 1.0 73.4% ± 1.2
Cohere-command-52b 72.8% ± 1.3 72.0% ± 1.6 75.4% ± 1.8 73.5% ± 2.7
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Table 17: Results of the chain-of-thought (CoT) experiment for models in the base group. The
numbers between brackets show the difference in performance with the number on the same row one
column to the left. These models do not benefit from CoT-prompting. The reason Cohere-6b achieves
such a low score for CoT-prompting is because it is not able to adhere to the correct output format
(yes/no).

Model 0-shot 5-shot 5-shot CoT

GPT-3-350m 51.5% ± 3.0 55.7% ± 1.6 (+4.2%) 55.0% ± 3.5 (-0.7%)
GPT-3-1.3b 57.7% ± 3.1 62.6% ± 2.0 (+4.9%) 54.4% ± 5.8 (-8.2%)
GPT-3-6.7b 54.8% ± 1.9 62.4% ± 1.5 (+7.6%) 61.0% ± 2.3 (+4.0%)
GPT-3-175b 57.2% ± 4.4 68.7% ± 1.5 (+11.5%) 60.3% ± 4.2 (-8.4%)
Cohere-6b 57.3% ± 2.2 60.9% ± 4.1 (+3.6%) 29.2% ± 14.7 (-31.7%)
Cohere-52b 58.5% ± 4.0 65.1% ± 2.9 (+6.6%) 64.7% ± 3.2 (-0.4%)

K.7 Chain-of-thought on base models

In the main paper we do a CoT experiment on the models in the Example IT group. Base models also
benefit from in-context examples, so it makes sense to also try CoT prompting on these models. After
attempting this for two of the model classes in the group, we decided not to apply this prompting
technique to the other models, because it decreases performance, sometimes significantly. See the
results of the CoT experiment on the two base model classes in Table 17

K.8 Testing for spurious correlations

In this section, we do a small scale experiment to test whether the benchmark has spurious correlations.
Specifically, we run the benchmark with only the utterance or only the response as input. Strictly,
getting the implicature right from the response only does not always indicate spurious correlations, as
some examples only need the response (e.g. rhetorical questions like ‘do pigs fly?’). Utterance-only
results do always indicate spurious correlations. We run this experiment for GPT-3.5-turbo and GPT-4
0-shot and 5-shot (see Table 18 and Table 19).

Table 18: Results of running the benchmark with only the utterance as input, to test for spurious
correlations with the label.

Utterance-only 0-shot 5-shot

GPT-3.5-Turbo 54.3% ± 3.3 41.7% ± 12.4
GPT-4 48.9% ± 10.5 53.7% ± 0.5

Table 19: Results of running the benchmark with only the response as input, to test what part of the
examples can be resolved without the utterance.

Response-only 0-shot 5-shot

GPT-3.5-Turbo 59.2% ± 4.7 58.3% ± 6.6
GPT-4 62.6% ± 1.7 65.5% ± 1.1

We find that models mostly perform random for utterance-only, so spurious correlations do not seem
to be an issue. For response-only, GPT-4 5-shot gets 65% accuracy. Some examples it gets right are:
“do fish swim?” and “let’s hope so”.
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Table 20: An example from the dataset for each type of implicature found in the test set. The
rightmost column shows the amount of that type we manually found in the test set.

Type Example Utterance Example Response Impl. #

Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’ve gotta get up early. No. 94
World knowledge Did you leave fingerprints? I wore gloves. No. 23
Idiom Would he fire me? He’s all bark and no bite. No. 42
Rhetorical question Can you drive that far? Can fish swim? Yes. 11
Other - - - 383

K.9 Detailed results type label analysis

In the main paper we do an analysis of two types of examples that occur frequently in the dataset,
namely generalised and particularised implicatures. Here, we detail the full taxonomy of types of
examples occurring in the dataset and report detailed results for each type per model (see 21 until
Table 34 below). In Table 20 the full taxonomy of the examples is shown, representing types of
examples that occur frequently in the dataset. We manually labeled 217 examples of the 600 examples
in the test set according to this taxonomy. The remaining 383 examples do not fall as clearly within a
category and are grouped together as type other. Generalised implicatures require little or no context
to be understood. They are the simplest type of example in the test set, and generally imply the
same thing (“some” almost always implies “not all”). Particularised implicatures, by contrast, do
require context to be resolved. For example, from Table 20, we need the context that it is undesirable
to stay up late drinking when one has to get up early (see in Appendix D more on generalised vs.
particularised). The type world knowledge requires knowledge of the physical world to be resolved.
From the example in Table 20; we need to know that you cannot leave fingerprints when wearing
gloves to resolve this implicature. Idiom types contain an idiom or a metaphor that one needs to know
or understand to resolve the implicature, and finally Rhetorical question types contain a question like
“Is the Pope Catholic?”, often requiring factual knowledge to be resolved.

The following tables contain the detailed results broken down per example type: Table 21 - Table 34.
The most interesting pattern in this data is that for almost all models, even the best model (GPT-4
30-shot in Table 32), there is a significant gap between human-level performance on the particularised
examples. This gap is larger than the gap for the other labels usually. Few-shot prompting can often
mitigate this (e.g. for GPT-3-175b, Cohere-52b, and text-davinci-002), but not always (e.g. for GPT-4
the gap remains large for k = 30). However, for GPT-4, chain-of-thought can mitigate the gap as
seen in Table 34. Where GPT-4 30-shot obtains 71.97% accuracy on the particularised examples (and
humans 83.18%), GPT-4 with 5-shot CoT achieves 81.63%, which is close to human-level. We find
that the particularised examples mostly benefit from CoT prompting. Namely, for the generalised type
of examples, GPT-4 30-shot already achieves 86.23% accuracy and CoT improves this to 88.66%,
which is a much smaller improvement than for the particularised examples.

K.10 Detailed results per model

This section contains the results used for the zero-shot and few-shot evaluation in the main text in
Section 4, broken down per prompt template. See Table 35 until Table 84.
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Table 21: Accuracy per label for 0-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 50.92 50.00 +/- 2.17 51.52 +/- 9.96 57.58 +/- 10.05
OPT-350m 57.14 57.97 +/- 10.25 64.77 +/- 3.65 65.15 +/- 3.39
OPT-1.3b 60.36 60.14 +/- 5.84 68.94 +/- 5.52 59.09 +/- 4.55
OPT-2.7b 59.56 60.87 +/- 6.15 67.05 +/- 2.18 69.70 +/- 6.78
OPT-6.7b 60.33 59.42 +/- 6.95 59.47 +/- 2.04 53.03 +/- 19.93
OPT-13b 61.03 63.77 +/- 14.78 73.86 +/- 7.51 66.67 +/- 16.32
OPT-30b 61.47 65.94 +/- 10.48 62.88 +/- 8.05 74.24 +/- 6.25
OPT-66b 61.33 69.57 +/- 13.75 60.23 +/- 4.30 59.09 +/- 18.74
OPT-175b 55.33 55.07 +/- 5.42 54.55 +/- 9.19 63.64 +/- 21.64
BLOOM-560m 51.58 54.35 +/- 5.47 54.92 +/- 16.72 50.00 +/- 13.64
BLOOM-1b1 51.17 50.00 +/- 2.17 50.38 +/- 11.77 53.03 +/- 12.22
BLOOM-1b7 53.61 52.17 +/- 6.15 53.79 +/- 8.77 68.18 +/- 6.94
BLOOM-3b 56.89 54.35 +/- 6.02 59.85 +/- 4.48 63.64 +/- 5.25
BLOOM-7b1 58.67 63.77 +/- 14.57 68.94 +/- 5.82 68.18 +/- 4.55
BLOOM-176b 54.22 55.07 +/- 7.39 50.38 +/- 11.01 62.12 +/- 9.70
EleutherAI-125m 51.89 56.52 +/- 9.72 52.65 +/- 8.84 63.64 +/- 5.25
EleutherAI-1.3b 53.14 51.45 +/- 3.90 53.03 +/- 11.19 62.12 +/- 3.39
EleutherAI-2.7b 59.17 60.14 +/- 13.38 65.91 +/- 3.94 68.18 +/- 4.55
EleutherAI-6b 56.36 57.25 +/- 7.28 56.06 +/- 8.87 50.00 +/- 17.99
EleutherAI-20b 57.53 51.45 +/- 3.90 67.80 +/- 5.93 72.73 +/- 5.25
Cohere-409m 51.61 52.17 +/- 4.35 53.41 +/- 11.94 54.55 +/- 12.86
Cohere-6b 57.28 55.80 +/- 5.28 60.23 +/- 5.98 72.73 +/- 9.09
Cohere-13b 57.19 59.42 +/- 4.81 54.55 +/- 10.82 48.48 +/- 10.05
Cohere-52b 58.50 60.14 +/- 13.61 65.15 +/- 3.86 74.24 +/- 11.03
GPT-3-350m 51.47 51.45 +/- 3.90 53.41 +/- 13.56 50.00 +/- 13.64
GPT-3-1.3b 57.72 61.59 +/- 11.06 64.39 +/- 4.08 65.15 +/- 3.39
GPT-3-6.7b 54.83 54.35 +/- 6.99 53.79 +/- 7.61 62.12 +/- 3.39
GPT-3-175b 57.22 55.80 +/- 7.28 68.94 +/- 5.19 77.27 +/- 8.70
T0-3b 48.25 54.35 +/- 4.86 42.42 +/- 4.29 36.36 +/- 0.00
T0-11b 55.61 60.14 +/- 6.84 54.92 +/- 14.93 36.36 +/- 0.00
BlenderBot-90m 46.64 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.44 47.83 +/- 0.00 61.36 +/- 1.31 63.64 +/- 0.00
BlenderBot-9b 53.36 52.17 +/- 6.64 60.98 +/- 4.81 63.64 +/- 0.00
Flan-T5-780m 63.31 72.46 +/- 4.10 71.97 +/- 5.82 54.55 +/- 13.89
Flan-T5-3b 52.50 50.72 +/- 6.95 51.89 +/- 4.23 42.42 +/- 8.57
Flan-T5-11b 60.78 65.94 +/- 5.84 72.35 +/- 7.59 65.15 +/- 6.25
Cohere-command-6b 66.31 72.46 +/- 7.80 78.41 +/- 4.30 37.88 +/- 3.39
Cohere-command-52b 60.22 66.67 +/- 10.85 63.64 +/- 10.33 77.27 +/- 6.94
text-ada-001-unknown 56.50 63.77 +/- 4.10 58.71 +/- 16.04 51.52 +/- 10.05
text-babbage-001-unknown 64.47 67.39 +/- 6.02 76.52 +/- 1.69 60.61 +/- 10.05
text-curie-001-unknown 68.94 76.81 +/- 3.24 76.89 +/- 2.76 54.55 +/- 12.86
text-davinci-001-unknown 72.31 84.78 +/- 7.43 78.79 +/- 4.08 59.09 +/- 13.64
text-davinci-002-unknown 70.58 82.61 +/- 9.05 75.38 +/- 3.05 57.58 +/- 16.32
text-davinci-003-unknown 71.25 86.96 +/- 13.28 72.35 +/- 7.35 48.48 +/- 8.57
ChatGPT-unknown 72.08 82.61 +/- 12.04 83.33 +/- 5.97 56.06 +/- 16.11
GPT-4-unknown 81.78 92.03 +/- 2.99 90.91 +/- 3.21 84.85 +/- 8.57
Humans 86.23 93.04 92.73 92.73
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Table 22: Accuracy per label for 0-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 50.92 49.43 +/- 5.52 55.07 +/- 21.10 50.56 +/- 1.33
OPT-350m 57.14 47.92 +/- 4.37 69.20 +/- 8.36 56.68 +/- 4.99
OPT-1.3b 60.36 51.52 +/- 6.81 74.64 +/- 2.05 59.65 +/- 3.51
OPT-2.7b 59.56 50.19 +/- 5.06 69.93 +/- 5.53 59.22 +/- 6.14
OPT-6.7b 60.33 52.27 +/- 5.90 75.36 +/- 2.71 60.77 +/- 6.13
OPT-13b 61.03 55.49 +/- 8.79 75.00 +/- 5.72 58.79 +/- 5.51
OPT-30b 61.47 54.55 +/- 4.15 71.38 +/- 5.94 61.11 +/- 2.12
OPT-66b 61.33 55.11 +/- 7.33 69.93 +/- 12.26 61.46 +/- 3.68
OPT-175b 55.33 54.17 +/- 7.70 58.33 +/- 18.51 55.12 +/- 4.21
BLOOM-560m 51.58 50.76 +/- 5.59 48.91 +/- 25.22 51.59 +/- 3.50
BLOOM-1b1 51.17 50.57 +/- 6.32 53.26 +/- 27.40 51.16 +/- 2.41
BLOOM-1b7 53.61 50.38 +/- 7.95 59.78 +/- 18.82 53.23 +/- 1.62
BLOOM-3b 56.89 51.70 +/- 8.27 67.39 +/- 10.35 56.46 +/- 4.39
BLOOM-7b1 58.67 46.59 +/- 2.86 79.35 +/- 2.74 57.11 +/- 4.03
BLOOM-176b 54.22 54.73 +/- 10.61 60.14 +/- 16.73 53.57 +/- 1.65
EleutherAI-125m 51.89 50.38 +/- 5.71 57.25 +/- 20.15 50.90 +/- 0.99
EleutherAI-1.3b 53.14 50.57 +/- 7.03 55.43 +/- 23.20 53.32 +/- 2.05
EleutherAI-2.7b 59.17 50.95 +/- 7.43 74.64 +/- 4.97 58.10 +/- 2.92
EleutherAI-6b 56.36 53.22 +/- 6.86 69.20 +/- 7.36 55.73 +/- 2.43
EleutherAI-20b 57.53 49.43 +/- 6.68 72.83 +/- 5.99 56.20 +/- 3.01
Cohere-409m 51.61 51.33 +/- 4.84 52.54 +/- 22.71 51.25 +/- 2.93
Cohere-6b 57.28 51.52 +/- 6.68 64.49 +/- 16.06 57.06 +/- 3.13
Cohere-13b 57.19 52.27 +/- 5.83 68.12 +/- 10.99 57.45 +/- 3.35
Cohere-52b 58.50 51.52 +/- 7.21 73.91 +/- 5.75 56.85 +/- 3.81
GPT-3-350m 51.47 50.76 +/- 6.96 52.90 +/- 24.07 51.29 +/- 1.63
GPT-3-1.3b 57.72 50.00 +/- 6.29 67.75 +/- 9.84 57.06 +/- 3.78
GPT-3-6.7b 54.83 52.65 +/- 8.16 63.41 +/- 15.14 54.26 +/- 2.12
GPT-3-175b 57.22 53.03 +/- 1.93 71.01 +/- 4.81 54.61 +/- 5.58
T0-3b 48.25 55.68 +/- 0.66 27.17 +/- 2.74 49.83 +/- 1.90
T0-11b 55.61 57.95 +/- 2.18 47.10 +/- 17.15 56.33 +/- 6.49
BlenderBot-90m 46.64 55.49 +/- 0.42 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.44 44.51 +/- 0.42 76.09 +/- 0.00 51.81 +/- 0.20
BlenderBot-9b 53.36 49.24 +/- 4.81 71.01 +/- 5.71 51.03 +/- 1.63
Flan-T5-780m 63.31 59.28 +/- 3.90 68.84 +/- 7.60 62.23 +/- 3.13
Flan-T5-3b 52.50 54.55 +/- 1.61 48.19 +/- 11.73 53.14 +/- 3.15
Flan-T5-11b 60.78 51.52 +/- 3.39 73.19 +/- 7.28 59.60 +/- 2.18
Cohere-command-6b 66.31 58.90 +/- 3.62 73.19 +/- 2.71 66.15 +/- 2.41
Cohere-command-52b 60.22 55.49 +/- 4.66 60.51 +/- 16.67 59.99 +/- 5.09
text-ada-001-unknown 56.50 52.65 +/- 3.86 61.59 +/- 15.96 56.24 +/- 5.74
text-babbage-001-unknown 64.47 56.25 +/- 2.52 72.46 +/- 9.86 63.87 +/- 1.55
text-curie-001-unknown 68.94 66.48 +/- 2.34 68.84 +/- 5.98 68.48 +/- 3.63
text-davinci-001-unknown 72.31 59.66 +/- 5.07 79.35 +/- 9.78 73.17 +/- 2.54
text-davinci-002-unknown 70.58 64.20 +/- 3.75 80.07 +/- 5.67 69.94 +/- 3.69
text-davinci-003-unknown 71.25 63.64 +/- 1.86 82.25 +/- 4.77 71.23 +/- 2.74
ChatGPT-unknown 72.08 68.75 +/- 2.99 69.57 +/- 11.16 71.66 +/- 5.79
GPT-4-unknown 81.78 71.59 +/- 3.47 89.86 +/- 2.05 81.35 +/- 1.66
Humans 86.23 83.18 92.17 84.86
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Table 23: Accuracy per label for 1-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 52.72 43.48 +/- 5.02 54.92 +/- 7.24 59.09 +/- 4.55
OPT-350m 52.92 39.86 +/- 1.62 48.11 +/- 2.76 59.09 +/- 6.94
OPT-1.3b 56.31 54.35 +/- 4.16 58.33 +/- 4.48 53.03 +/- 12.22
OPT-2.7b 56.83 64.49 +/- 15.35 64.39 +/- 2.51 66.67 +/- 4.29
OPT-6.7b 60.08 61.59 +/- 13.84 68.94 +/- 6.90 56.06 +/- 6.25
OPT-13b 60.56 68.84 +/- 7.70 69.70 +/- 6.11 54.55 +/- 15.75
OPT-30b 60.33 71.74 +/- 5.47 63.26 +/- 4.81 51.52 +/- 10.05
OPT-66b 63.19 70.29 +/- 11.06 62.50 +/- 2.86 48.48 +/- 13.55
OPT-175b 58.36 63.77 +/- 4.81 66.67 +/- 8.77 57.58 +/- 17.14
BLOOM-560m 54.83 50.00 +/- 5.47 64.02 +/- 4.62 63.64 +/- 0.00
BLOOM-1b1 52.56 56.52 +/- 9.05 59.47 +/- 2.04 59.09 +/- 4.55
BLOOM-1b7 52.81 54.35 +/- 6.52 60.98 +/- 3.57 63.64 +/- 5.25
BLOOM-3b 55.94 50.72 +/- 4.10 64.39 +/- 4.08 59.09 +/- 4.55
BLOOM-7b1 57.00 50.00 +/- 3.32 64.77 +/- 2.86 62.12 +/- 6.25
BLOOM-176b 61.11 77.54 +/- 3.90 66.67 +/- 6.11 50.00 +/- 6.94
EleutherAI-125m 51.67 44.93 +/- 6.95 50.76 +/- 4.29 57.58 +/- 4.29
EleutherAI-1.3b 55.72 47.10 +/- 4.64 55.68 +/- 4.50 50.00 +/- 11.44
EleutherAI-2.7b 55.50 54.35 +/- 5.47 67.42 +/- 4.67 65.15 +/- 9.70
EleutherAI-6b 54.97 57.25 +/- 5.84 60.23 +/- 4.30 53.03 +/- 8.16
EleutherAI-20b 55.86 69.57 +/- 4.35 62.88 +/- 4.85 53.03 +/- 6.25
Cohere-409m 51.89 42.75 +/- 6.84 51.89 +/- 4.62 54.55 +/- 5.25
Cohere-6b 57.86 58.70 +/- 12.74 67.05 +/- 5.83 68.18 +/- 11.44
Cohere-13b 61.78 71.74 +/- 11.43 67.42 +/- 8.47 37.88 +/- 9.70
Cohere-52b 62.97 66.67 +/- 6.48 70.08 +/- 4.43 62.12 +/- 14.29
GPT-3-350m 55.97 50.72 +/- 4.10 61.74 +/- 5.15 69.70 +/- 12.49
GPT-3-1.3b 60.75 58.70 +/- 4.16 65.53 +/- 4.23 54.55 +/- 5.25
GPT-3-6.7b 61.17 60.87 +/- 11.77 69.32 +/- 3.65 56.06 +/- 8.16
GPT-3-175b 65.72 76.81 +/- 3.24 73.48 +/- 2.51 57.58 +/- 16.32
T0-3b 48.89 54.35 +/- 2.17 42.80 +/- 2.04 36.36 +/- 0.00
T0-11b 47.78 52.17 +/- 0.00 40.53 +/- 2.43 36.36 +/- 0.00
BlenderBot-90m 49.94 55.07 +/- 6.48 47.73 +/- 9.99 51.52 +/- 13.55
BlenderBot-3b 53.31 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.53 50.72 +/- 9.61 57.20 +/- 12.95 66.67 +/- 6.78
Flan-T5-780m 62.89 64.49 +/- 7.70 67.42 +/- 13.03 46.97 +/- 8.16
Flan-T5-3b 52.75 65.22 +/- 15.47 55.30 +/- 9.34 45.45 +/- 12.86
Flan-T5-11b 57.44 59.42 +/- 3.24 61.36 +/- 12.17 48.48 +/- 12.49
Cohere-command-6b 65.00 71.74 +/- 6.99 71.59 +/- 3.15 36.36 +/- 0.00
Cohere-command-52b 72.83 83.33 +/- 3.90 83.33 +/- 2.51 71.21 +/- 6.25
text-ada-001-unknown 57.36 60.87 +/- 7.10 67.80 +/- 3.81 66.67 +/- 6.78
text-babbage-001-unknown 63.89 68.84 +/- 3.90 76.89 +/- 2.43 50.00 +/- 11.44
text-curie-001-unknown 64.39 66.67 +/- 5.98 68.56 +/- 9.94 56.06 +/- 6.25
text-davinci-001-unknown 72.72 93.48 +/- 4.16 80.68 +/- 2.18 57.58 +/- 12.49
text-davinci-002-unknown 75.61 91.30 +/- 2.51 87.12 +/- 2.51 56.06 +/- 8.16
text-davinci-003-unknown 74.31 90.58 +/- 5.28 82.20 +/- 1.56 54.55 +/- 7.42
ChatGPT-unknown 75.11 86.23 +/- 2.99 85.61 +/- 3.12 56.06 +/- 14.29
GPT-4-unknown 82.31 97.10 +/- 3.24 88.64 +/- 3.94 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73
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Table 24: Accuracy per label for 1-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 52.72 48.30 +/- 1.83 60.87 +/- 13.04 52.89 +/- 1.04
OPT-350m 52.92 47.73 +/- 2.37 60.87 +/- 11.71 54.35 +/- 3.10
OPT-1.3b 56.31 53.41 +/- 2.71 52.17 +/- 9.88 57.41 +/- 1.38
OPT-2.7b 56.83 49.81 +/- 5.31 69.93 +/- 6.33 55.17 +/- 3.94
OPT-6.7b 60.08 52.65 +/- 7.44 73.55 +/- 3.18 59.09 +/- 5.85
OPT-13b 60.56 53.03 +/- 1.82 71.01 +/- 7.60 59.56 +/- 2.75
OPT-30b 60.33 55.87 +/- 3.31 70.65 +/- 8.01 59.26 +/- 4.61
OPT-66b 63.19 60.04 +/- 4.12 67.39 +/- 8.70 63.39 +/- 4.28
OPT-175b 58.36 56.63 +/- 3.96 59.42 +/- 7.06 57.28 +/- 7.30
BLOOM-560m 54.83 43.94 +/- 3.12 66.30 +/- 8.21 54.82 +/- 1.85
BLOOM-1b1 52.56 47.35 +/- 3.12 63.04 +/- 12.36 51.16 +/- 1.54
BLOOM-1b7 52.81 45.64 +/- 3.50 67.03 +/- 9.92 51.29 +/- 1.44
BLOOM-3b 55.94 45.27 +/- 1.21 76.09 +/- 1.26 55.12 +/- 1.93
BLOOM-7b1 57.00 49.62 +/- 4.08 77.17 +/- 1.66 55.56 +/- 3.57
BLOOM-176b 61.11 58.14 +/- 3.31 66.67 +/- 5.98 59.73 +/- 3.66
EleutherAI-125m 51.67 50.19 +/- 2.49 53.99 +/- 8.82 52.11 +/- 0.89
EleutherAI-1.3b 55.72 50.57 +/- 4.67 57.97 +/- 13.44 57.36 +/- 2.66
EleutherAI-2.7b 55.50 48.67 +/- 4.84 65.22 +/- 4.86 54.22 +/- 2.79
EleutherAI-6b 54.97 49.81 +/- 1.21 66.30 +/- 4.82 54.01 +/- 3.36
EleutherAI-20b 55.86 53.03 +/- 3.57 64.49 +/- 6.36 53.83 +/- 2.41
Cohere-409m 51.89 52.84 +/- 3.98 48.55 +/- 3.69 52.54 +/- 1.96
Cohere-6b 57.86 44.13 +/- 1.66 77.54 +/- 2.05 57.15 +/- 5.08
Cohere-13b 61.78 53.98 +/- 2.05 74.28 +/- 3.64 61.41 +/- 1.84
Cohere-52b 62.97 60.42 +/- 8.18 69.20 +/- 5.24 61.76 +/- 4.21
GPT-3-350m 55.97 50.76 +/- 1.82 73.91 +/- 7.94 54.31 +/- 1.92
GPT-3-1.3b 60.75 53.79 +/- 2.98 68.48 +/- 3.26 61.07 +/- 1.82
GPT-3-6.7b 61.17 55.49 +/- 6.83 72.10 +/- 2.64 60.29 +/- 4.09
GPT-3-175b 65.72 62.31 +/- 4.17 64.86 +/- 7.26 65.33 +/- 2.00
T0-3b 48.89 56.25 +/- 1.57 34.06 +/- 4.29 49.83 +/- 0.55
T0-11b 47.78 56.44 +/- 0.54 27.54 +/- 1.02 49.22 +/- 0.53
BlenderBot-90m 49.94 52.46 +/- 4.27 44.57 +/- 15.66 50.00 +/- 1.65
BlenderBot-3b 53.31 44.51 +/- 0.42 76.09 +/- 0.00 51.59 +/- 0.24
BlenderBot-9b 52.53 54.92 +/- 3.45 55.80 +/- 12.90 50.90 +/- 2.60
Flan-T5-780m 62.89 56.44 +/- 3.32 68.84 +/- 12.90 63.44 +/- 6.28
Flan-T5-3b 52.75 55.11 +/- 1.57 44.20 +/- 5.98 52.41 +/- 3.23
Flan-T5-11b 57.44 53.98 +/- 1.94 62.68 +/- 15.85 57.28 +/- 4.79
Cohere-command-6b 65.00 60.61 +/- 3.69 68.12 +/- 9.53 65.25 +/- 1.37
Cohere-command-52b 72.83 67.42 +/- 2.83 80.07 +/- 2.92 71.36 +/- 1.70
text-ada-001-unknown 57.36 46.97 +/- 2.76 74.64 +/- 2.99 55.90 +/- 3.11
text-babbage-001-unknown 63.89 58.52 +/- 1.43 63.41 +/- 7.26 63.70 +/- 1.10
text-curie-001-unknown 64.39 60.98 +/- 2.14 69.93 +/- 3.42 64.04 +/- 5.79
text-davinci-001-unknown 72.72 62.31 +/- 1.66 76.81 +/- 2.71 72.83 +/- 1.70
text-davinci-002-unknown 75.61 68.18 +/- 2.86 77.54 +/- 2.05 75.32 +/- 3.14
text-davinci-003-unknown 74.31 64.20 +/- 1.43 80.43 +/- 5.02 74.50 +/- 1.29
ChatGPT-unknown 75.11 70.08 +/- 4.38 78.99 +/- 7.50 74.46 +/- 1.19
GPT-4-unknown 82.31 74.43 +/- 2.60 86.96 +/- 3.32 81.70 +/- 1.94
Humans 86.23 83.18 92.17 84.86
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Table 25: Accuracy per label for 5-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 50.22 44.93 +/- 3.24 57.58 +/- 7.73 57.58 +/- 4.29
OPT-350m 51.47 53.62 +/- 4.81 58.71 +/- 1.56 45.45 +/- 0.00
OPT-1.3b 58.03 68.84 +/- 8.48 63.26 +/- 6.21 30.30 +/- 8.57
OPT-2.7b 57.33 57.97 +/- 4.81 66.67 +/- 4.67 71.21 +/- 3.39
OPT-6.7b 63.31 66.67 +/- 16.20 67.42 +/- 4.08 42.42 +/- 16.32
OPT-13b 67.39 80.43 +/- 4.86 68.94 +/- 4.29 39.39 +/- 6.78
OPT-30b 65.64 84.78 +/- 8.60 66.29 +/- 8.13 37.88 +/- 6.25
OPT-66b 61.50 75.36 +/- 8.20 55.30 +/- 6.90 36.36 +/- 7.42
OPT-175b 63.89 78.26 +/- 7.10 65.15 +/- 2.83 43.94 +/- 3.39
BLOOM-560m 53.75 44.20 +/- 2.99 65.91 +/- 3.94 54.55 +/- 5.25
BLOOM-1b1 57.39 49.28 +/- 6.95 65.15 +/- 4.85 66.67 +/- 6.78
BLOOM-1b7 54.44 61.59 +/- 5.84 56.06 +/- 1.69 43.94 +/- 6.25
BLOOM-3b 57.19 50.72 +/- 3.24 64.77 +/- 4.87 63.64 +/- 12.86
BLOOM-7b1 54.50 50.00 +/- 2.17 62.88 +/- 1.69 69.70 +/- 4.29
BLOOM-176b 65.42 76.09 +/- 6.02 69.32 +/- 4.87 43.94 +/- 3.39
EleutherAI-125m 49.56 50.00 +/- 3.32 50.38 +/- 4.43 34.85 +/- 3.39
EleutherAI-1.3b 57.11 55.07 +/- 5.98 63.64 +/- 4.15 37.88 +/- 11.03
EleutherAI-2.7b 58.03 71.74 +/- 4.16 59.85 +/- 3.12 43.94 +/- 14.29
EleutherAI-6b 58.39 67.39 +/- 6.99 56.82 +/- 6.01 42.42 +/- 18.68
EleutherAI-20b 61.14 65.22 +/- 8.70 64.77 +/- 11.11 30.30 +/- 8.57
Cohere-409m 53.39 47.83 +/- 5.61 59.47 +/- 5.32 31.82 +/- 6.94
Cohere-6b 60.89 65.94 +/- 8.48 66.67 +/- 10.05 45.45 +/- 9.09
Cohere-13b 62.47 81.88 +/- 8.10 62.88 +/- 10.71 34.85 +/- 11.03
Cohere-52b 65.14 73.91 +/- 5.61 67.80 +/- 3.05 51.52 +/- 6.78
GPT-3-350m 55.72 46.38 +/- 3.24 65.53 +/- 1.56 51.52 +/- 4.29
GPT-3-1.3b 62.64 72.46 +/- 10.55 69.70 +/- 4.48 37.88 +/- 12.22
GPT-3-6.7b 62.39 76.81 +/- 14.57 62.50 +/- 5.53 36.36 +/- 7.42
GPT-3-175b 68.72 82.61 +/- 4.35 71.59 +/- 2.54 60.61 +/- 13.55
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 47.00 52.17 +/- 0.00 39.02 +/- 0.85 36.36 +/- 0.00
BlenderBot-90m 46.58 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.36 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 52.81 47.83 +/- 4.35 60.98 +/- 0.85 63.64 +/- 0.00
Flan-T5-780m 61.03 61.59 +/- 4.64 70.08 +/- 9.59 42.42 +/- 4.29
Flan-T5-3b 54.89 62.32 +/- 7.39 60.61 +/- 8.26 34.85 +/- 3.39
Flan-T5-11b 61.64 68.84 +/- 6.84 67.80 +/- 8.03 43.94 +/- 8.16
Cohere-command-6b 68.56 77.54 +/- 9.86 78.79 +/- 5.36 39.39 +/- 4.29
Cohere-command-52b 75.42 87.68 +/- 3.90 84.09 +/- 1.31 74.24 +/- 9.70
text-ada-001-unknown 57.61 52.17 +/- 3.55 64.39 +/- 2.83 62.12 +/- 8.16
text-babbage-001-unknown 66.14 71.74 +/- 2.17 77.65 +/- 5.15 57.58 +/- 12.49
text-curie-001-unknown 71.33 76.09 +/- 2.17 70.08 +/- 6.07 43.94 +/- 3.39
text-davinci-001-unknown 74.53 88.41 +/- 3.24 78.03 +/- 5.97 66.67 +/- 12.49
text-davinci-002-unknown 79.56 90.58 +/- 1.62 89.02 +/- 2.04 69.70 +/- 6.78
text-davinci-003-unknown 79.67 89.13 +/- 2.17 86.36 +/- 2.27 74.24 +/- 11.03
ChatGPT-unknown 73.89 86.96 +/- 6.15 87.88 +/- 4.85 75.76 +/- 12.49
GPT-4-unknown 82.03 95.65 +/- 2.51 86.74 +/- 2.04 87.88 +/- 6.78
Humans 86.23 93.04 92.73 92.73
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Table 26: Accuracy per label for 5-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 50.22 47.35 +/- 3.12 60.87 +/- 13.28 48.84 +/- 3.71
OPT-350m 51.47 39.58 +/- 1.79 67.39 +/- 3.07 51.38 +/- 0.95
OPT-1.3b 58.03 56.06 +/- 3.63 57.61 +/- 4.12 58.01 +/- 2.84
OPT-2.7b 57.33 47.35 +/- 3.05 72.46 +/- 2.40 56.20 +/- 3.60
OPT-6.7b 63.31 56.63 +/- 6.93 71.01 +/- 6.48 63.74 +/- 3.18
OPT-13b 67.39 60.23 +/- 2.93 64.86 +/- 2.92 69.12 +/- 2.83
OPT-30b 65.64 59.85 +/- 1.42 59.42 +/- 7.70 67.27 +/- 4.36
OPT-66b 61.50 56.44 +/- 3.51 58.70 +/- 9.64 63.65 +/- 3.93
OPT-175b 63.89 61.55 +/- 2.22 52.54 +/- 5.53 65.33 +/- 2.44
BLOOM-560m 53.75 44.89 +/- 2.05 73.19 +/- 6.11 52.50 +/- 0.78
BLOOM-1b1 57.39 48.67 +/- 3.44 70.65 +/- 4.12 57.02 +/- 1.86
BLOOM-1b7 54.44 48.86 +/- 4.91 60.14 +/- 3.24 54.74 +/- 0.96
BLOOM-3b 57.19 50.00 +/- 3.35 72.46 +/- 2.40 56.24 +/- 0.89
BLOOM-7b1 54.50 46.02 +/- 2.25 72.10 +/- 4.24 53.10 +/- 1.04
BLOOM-176b 65.42 65.53 +/- 4.38 49.28 +/- 9.69 66.88 +/- 3.42
EleutherAI-125m 49.56 44.32 +/- 5.76 56.88 +/- 4.05 50.04 +/- 2.49
EleutherAI-1.3b 57.11 50.76 +/- 3.26 69.93 +/- 4.77 56.89 +/- 1.57
EleutherAI-2.7b 58.03 51.52 +/- 2.43 61.59 +/- 4.10 58.61 +/- 1.39
EleutherAI-6b 58.39 49.62 +/- 1.69 63.04 +/- 5.02 59.91 +/- 5.04
EleutherAI-20b 61.14 51.52 +/- 2.43 61.59 +/- 12.78 63.48 +/- 5.29
Cohere-409m 53.39 50.38 +/- 1.69 68.48 +/- 4.82 52.45 +/- 0.99
Cohere-6b 60.89 52.65 +/- 2.14 64.49 +/- 5.98 61.80 +/- 4.77
Cohere-13b 62.47 59.66 +/- 6.11 68.84 +/- 7.28 62.02 +/- 3.56
Cohere-52b 65.14 60.04 +/- 4.07 68.12 +/- 7.39 65.46 +/- 3.30
GPT-3-350m 55.72 44.70 +/- 1.26 74.28 +/- 6.07 55.47 +/- 1.59
GPT-3-1.3b 62.64 49.24 +/- 2.51 67.39 +/- 4.35 64.38 +/- 2.51
GPT-3-6.7b 62.39 51.70 +/- 2.25 64.86 +/- 7.68 64.38 +/- 2.30
GPT-3-175b 68.72 60.98 +/- 5.74 66.67 +/- 8.76 69.90 +/- 0.68
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.15
T0-11b 47.00 55.87 +/- 0.42 25.00 +/- 1.66 48.62 +/- 0.23
BlenderBot-90m 46.58 55.11 +/- 1.27 24.28 +/- 0.81 48.28 +/- 0.31
BlenderBot-3b 53.36 44.32 +/- 0.00 76.09 +/- 0.00 51.72 +/- 0.10
BlenderBot-9b 52.81 44.32 +/- 0.93 75.72 +/- 0.81 50.95 +/- 1.02
Flan-T5-780m 61.03 54.36 +/- 3.50 71.01 +/- 12.96 60.77 +/- 6.09
Flan-T5-3b 54.89 57.01 +/- 1.79 41.30 +/- 9.64 55.47 +/- 4.00
Flan-T5-11b 61.64 56.25 +/- 3.20 64.86 +/- 17.04 61.76 +/- 5.21
Cohere-command-6b 68.56 60.23 +/- 5.00 74.28 +/- 6.57 68.91 +/- 1.47
Cohere-command-52b 75.42 70.08 +/- 3.39 77.17 +/- 3.26 74.68 +/- 2.80
text-ada-001-unknown 57.61 48.86 +/- 2.18 72.83 +/- 1.66 57.11 +/- 3.74
text-babbage-001-unknown 66.14 57.01 +/- 2.82 71.74 +/- 2.81 66.06 +/- 0.85
text-curie-001-unknown 71.33 60.04 +/- 0.78 69.93 +/- 5.67 74.63 +/- 0.98
text-davinci-001-unknown 74.53 60.80 +/- 3.75 81.16 +/- 3.69 75.80 +/- 1.32
text-davinci-002-unknown 79.56 71.02 +/- 2.76 87.68 +/- 1.62 79.03 +/- 2.26
text-davinci-003-unknown 79.67 71.59 +/- 1.86 87.68 +/- 1.02 79.33 +/- 1.12
ChatGPT-unknown 73.89 69.51 +/- 4.80 73.91 +/- 11.64 72.44 +/- 6.16
GPT-4-unknown 82.03 71.21 +/- 2.91 87.32 +/- 3.64 82.30 +/- 2.31
Humans 86.23 83.18 92.17 84.86
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Table 27: Accuracy per label for 10-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 52.89 55.80 +/- 8.48 55.68 +/- 8.78 66.67 +/- 6.78
OPT-350m 56.72 57.97 +/- 4.10 60.61 +/- 3.86 65.15 +/- 16.11
OPT-1.3b 59.92 70.29 +/- 4.64 54.17 +/- 3.57 34.85 +/- 3.39
OPT-2.7b 58.03 52.17 +/- 2.51 65.53 +/- 2.76 63.64 +/- 5.25
OPT-6.7b 63.28 71.01 +/- 5.42 65.53 +/- 6.07 53.03 +/- 17.73
OPT-13b 65.75 77.54 +/- 6.84 63.26 +/- 4.23 50.00 +/- 10.16
OPT-30b 63.36 78.99 +/- 4.64 56.06 +/- 8.57 33.33 +/- 4.29
OPT-66b 60.81 71.01 +/- 7.80 54.55 +/- 9.46 36.36 +/- 0.00
OPT-175b 60.75 76.81 +/- 4.10 58.33 +/- 6.52 43.94 +/- 11.03
BLOOM-560m 54.56 49.28 +/- 3.24 64.39 +/- 3.12 63.64 +/- 0.00
BLOOM-1b1 57.31 55.07 +/- 5.42 60.61 +/- 5.36 59.09 +/- 8.70
BLOOM-1b7 53.14 68.12 +/- 6.48 45.45 +/- 2.62 59.09 +/- 11.44
BLOOM-3b 59.39 54.35 +/- 4.86 65.53 +/- 5.32 66.67 +/- 4.29
BLOOM-7b1 56.11 53.62 +/- 7.39 65.53 +/- 3.81 69.70 +/- 6.78
BLOOM-176b 63.47 75.36 +/- 5.98 68.18 +/- 9.00 42.42 +/- 4.29
EleutherAI-125m 54.39 58.70 +/- 6.02 52.27 +/- 5.41 83.33 +/- 19.93
EleutherAI-1.3b 57.83 67.39 +/- 5.47 60.61 +/- 5.19 62.12 +/- 11.03
EleutherAI-2.7b 57.03 73.19 +/- 2.99 55.68 +/- 5.37 66.67 +/- 13.55
EleutherAI-6b 57.64 64.49 +/- 3.90 51.14 +/- 11.04 56.06 +/- 16.94
EleutherAI-20b 59.33 67.39 +/- 5.47 62.12 +/- 10.47 37.88 +/- 6.25
Cohere-409m 53.92 63.04 +/- 5.47 46.21 +/- 6.90 51.52 +/- 11.34
Cohere-6b 58.72 66.67 +/- 9.61 63.26 +/- 14.46 50.00 +/- 12.59
Cohere-13b 60.36 76.81 +/- 6.48 56.06 +/- 9.52 34.85 +/- 3.39
Cohere-52b 63.31 72.46 +/- 5.98 68.18 +/- 4.55 51.52 +/- 10.05
GPT-3-350m 57.72 53.62 +/- 3.24 63.64 +/- 6.01 65.15 +/- 8.16
GPT-3-1.3b 60.92 73.19 +/- 7.28 59.47 +/- 5.78 48.48 +/- 8.57
GPT-3-6.7b 63.94 71.01 +/- 7.80 67.80 +/- 1.56 40.91 +/- 8.70
GPT-3-175b 67.28 76.81 +/- 9.61 68.56 +/- 5.32 81.82 +/- 10.50
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.72 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.36 42.03 +/- 4.10 62.12 +/- 3.12 63.64 +/- 0.00
Flan-T5-780m 60.19 63.04 +/- 2.17 68.56 +/- 10.77 40.91 +/- 4.55
Flan-T5-3b 55.14 61.59 +/- 6.84 58.71 +/- 10.37 36.36 +/- 0.00
Flan-T5-11b 60.56 67.39 +/- 7.43 70.83 +/- 10.45 40.91 +/- 4.55
Cohere-command-6b 68.22 78.99 +/- 5.28 74.62 +/- 5.32 36.36 +/- 0.00
Cohere-command-52b 75.64 88.41 +/- 3.24 84.85 +/- 2.51 66.67 +/- 8.57
text-ada-001-unknown 57.36 64.49 +/- 7.28 56.44 +/- 5.78 57.58 +/- 6.78
text-babbage-001-unknown 63.53 67.39 +/- 2.17 73.11 +/- 4.62 68.18 +/- 4.55
text-curie-001-unknown 70.17 83.33 +/- 1.62 76.14 +/- 2.86 45.45 +/- 5.25
text-davinci-001-unknown 74.97 89.13 +/- 2.17 83.33 +/- 2.83 59.09 +/- 6.94
text-davinci-002-unknown 79.56 93.48 +/- 2.17 88.26 +/- 0.85 66.67 +/- 8.57
text-davinci-003-unknown 79.00 94.93 +/- 3.90 85.61 +/- 3.39 66.67 +/- 4.29
ChatGPT-unknown 74.28 84.06 +/- 6.48 86.36 +/- 4.35 62.12 +/- 11.03
GPT-4-unknown 81.31 94.93 +/- 2.99 86.74 +/- 4.03 89.39 +/- 3.39
Humans 86.23 93.04 92.73 92.73
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Table 28: Accuracy per label for 10-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 52.89 51.33 +/- 4.52 57.97 +/- 15.30 51.68 +/- 1.58
OPT-350m 56.72 55.11 +/- 1.57 72.10 +/- 2.32 54.39 +/- 1.50
OPT-1.3b 59.92 60.23 +/- 0.93 61.23 +/- 2.32 60.34 +/- 2.77
OPT-2.7b 58.03 49.62 +/- 3.32 74.64 +/- 2.05 57.19 +/- 3.77
OPT-6.7b 63.28 58.33 +/- 3.97 73.19 +/- 3.48 62.70 +/- 3.22
OPT-13b 65.75 60.23 +/- 2.45 72.10 +/- 3.18 66.37 +/- 2.84
OPT-30b 63.36 62.31 +/- 2.40 65.22 +/- 6.28 64.17 +/- 3.73
OPT-66b 60.81 57.58 +/- 1.26 60.51 +/- 7.98 62.36 +/- 3.33
OPT-175b 60.75 60.98 +/- 2.24 56.16 +/- 2.92 60.94 +/- 3.42
BLOOM-560m 54.56 46.21 +/- 1.26 73.19 +/- 2.99 53.06 +/- 0.77
BLOOM-1b1 57.31 47.54 +/- 4.97 64.13 +/- 7.40 58.31 +/- 3.30
BLOOM-1b7 53.14 53.03 +/- 3.45 53.62 +/- 4.64 52.80 +/- 1.74
BLOOM-3b 59.39 55.49 +/- 2.22 69.57 +/- 5.89 58.35 +/- 0.41
BLOOM-7b1 56.11 49.62 +/- 5.07 71.38 +/- 2.92 54.35 +/- 3.34
BLOOM-176b 63.47 68.18 +/- 3.47 50.36 +/- 9.00 63.35 +/- 4.15
EleutherAI-125m 54.39 55.11 +/- 3.13 63.41 +/- 6.20 52.20 +/- 2.23
EleutherAI-1.3b 57.83 50.00 +/- 2.78 69.20 +/- 2.32 57.15 +/- 1.52
EleutherAI-2.7b 57.03 57.20 +/- 2.76 57.25 +/- 6.23 55.77 +/- 0.96
EleutherAI-6b 57.64 56.25 +/- 2.76 59.42 +/- 10.25 58.05 +/- 4.71
EleutherAI-20b 59.33 57.39 +/- 1.83 63.04 +/- 13.63 59.04 +/- 3.30
Cohere-409m 53.92 57.39 +/- 2.60 66.30 +/- 4.98 51.94 +/- 1.99
Cohere-6b 58.72 51.70 +/- 2.34 64.86 +/- 6.33 58.74 +/- 5.75
Cohere-13b 60.36 58.52 +/- 1.27 70.29 +/- 5.98 59.73 +/- 5.24
Cohere-52b 63.31 53.41 +/- 2.93 67.75 +/- 7.88 64.17 +/- 2.12
GPT-3-350m 57.72 50.95 +/- 2.89 73.91 +/- 1.26 56.59 +/- 1.79
GPT-3-1.3b 60.92 57.01 +/- 5.01 63.77 +/- 2.71 61.15 +/- 1.10
GPT-3-6.7b 63.94 58.52 +/- 4.19 66.67 +/- 5.28 64.56 +/- 1.31
GPT-3-175b 67.28 63.45 +/- 2.66 68.84 +/- 4.64 66.75 +/- 2.65
T0-3b 46.67 55.68 +/- 0.00 24.28 +/- 0.81 48.28 +/- 0.10
T0-11b 46.72 55.68 +/- 0.00 24.28 +/- 0.81 48.36 +/- 0.10
BlenderBot-90m 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
BlenderBot-3b 53.25 44.70 +/- 0.54 76.09 +/- 0.00 51.46 +/- 0.23
BlenderBot-9b 53.36 45.27 +/- 1.21 76.09 +/- 1.77 51.77 +/- 0.69
Flan-T5-780m 60.19 54.17 +/- 2.51 71.38 +/- 10.75 59.60 +/- 4.49
Flan-T5-3b 55.14 54.92 +/- 1.42 43.48 +/- 12.10 56.29 +/- 3.84
Flan-T5-11b 60.56 59.66 +/- 3.33 57.61 +/- 13.09 60.03 +/- 5.13
Cohere-command-6b 68.22 63.07 +/- 4.44 77.17 +/- 6.73 67.79 +/- 2.45
Cohere-command-52b 75.64 70.27 +/- 1.53 76.45 +/- 4.24 75.15 +/- 1.17
text-ada-001-unknown 57.36 49.24 +/- 3.32 61.96 +/- 5.14 58.23 +/- 1.53
text-babbage-001-unknown 63.53 56.63 +/- 2.22 65.22 +/- 5.47 63.35 +/- 1.49
text-curie-001-unknown 70.17 62.69 +/- 2.12 67.75 +/- 7.36 71.32 +/- 1.01
text-davinci-001-unknown 74.97 63.83 +/- 1.21 80.80 +/- 1.95 75.41 +/- 1.79
text-davinci-002-unknown 79.56 70.08 +/- 1.56 84.78 +/- 2.51 79.59 +/- 2.79
text-davinci-003-unknown 79.00 68.18 +/- 1.31 87.32 +/- 1.49 79.07 +/- 1.38
ChatGPT-unknown 74.28 68.37 +/- 4.37 75.36 +/- 11.06 73.90 +/- 4.82
GPT-4-unknown 81.31 70.83 +/- 4.29 86.96 +/- 2.81 81.31 +/- 3.82
Humans 86.23 83.18 92.17 84.86
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Table 29: Accuracy per label for 15-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 51.86 44.93 +/- 4.10 53.41 +/- 8.48 43.94 +/- 19.93
OPT-350m 55.42 48.55 +/- 2.99 48.48 +/- 2.51 42.42 +/- 6.78
OPT-1.3b 61.61 64.49 +/- 5.28 68.94 +/- 4.67 42.42 +/- 6.78
OPT-2.7b 59.53 55.80 +/- 5.84 62.50 +/- 2.18 60.61 +/- 4.29
OPT-6.7b 64.72 55.80 +/- 7.28 68.18 +/- 3.47 60.61 +/- 16.32
OPT-13b 65.17 64.49 +/- 6.36 66.67 +/- 6.11 54.55 +/- 5.25
OPT-30b 64.06 68.84 +/- 4.64 60.23 +/- 5.98 43.94 +/- 8.16
OPT-66b 61.83 65.94 +/- 11.34 55.30 +/- 8.26 39.39 +/- 4.29
OPT-175b 64.78 76.09 +/- 11.16 67.05 +/- 9.44 50.00 +/- 6.94
BLOOM-560m 55.00 47.83 +/- 2.51 59.09 +/- 2.27 62.12 +/- 3.39
BLOOM-1b1 57.58 50.00 +/- 4.86 53.03 +/- 2.51 57.58 +/- 4.29
BLOOM-1b7 55.14 60.14 +/- 12.40 50.38 +/- 4.98 53.03 +/- 16.94
BLOOM-3b 58.69 44.93 +/- 3.24 61.36 +/- 6.94 57.58 +/- 6.78
BLOOM-7b1 55.67 55.07 +/- 7.80 61.36 +/- 2.93 56.06 +/- 8.16
BLOOM-176b 61.89 77.54 +/- 9.86 70.08 +/- 7.59 37.88 +/- 3.39
EleutherAI-125m 56.03 60.14 +/- 7.70 42.80 +/- 4.62 59.09 +/- 13.64
EleutherAI-1.3b 57.44 49.28 +/- 2.05 51.52 +/- 6.11 39.39 +/- 15.45
EleutherAI-2.7b 58.08 53.62 +/- 4.81 57.20 +/- 4.81 56.06 +/- 11.03
EleutherAI-6b 58.81 58.70 +/- 10.87 56.06 +/- 10.47 56.06 +/- 6.25
EleutherAI-20b 59.86 55.80 +/- 2.99 63.64 +/- 9.19 42.42 +/- 4.29
Cohere-409m 55.19 50.00 +/- 4.16 50.76 +/- 4.85 42.42 +/- 6.78
Cohere-6b 60.44 65.94 +/- 9.19 67.05 +/- 9.88 50.00 +/- 17.99
Cohere-13b 62.83 67.39 +/- 13.92 64.77 +/- 5.53 43.94 +/- 9.70
Cohere-52b 64.72 63.04 +/- 6.52 69.32 +/- 7.28 63.64 +/- 13.89
GPT-3-350m 58.83 50.00 +/- 7.43 53.41 +/- 1.74 42.42 +/- 13.55
GPT-3-1.3b 62.86 53.62 +/- 7.39 65.91 +/- 3.71 50.00 +/- 14.61
GPT-3-6.7b 65.17 62.32 +/- 6.95 63.64 +/- 2.27 51.52 +/- 10.05
GPT-3-175b 68.31 78.26 +/- 5.02 66.67 +/- 4.48 56.06 +/- 11.03
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.81 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.56 52.17 +/- 0.00 38.64 +/- 0.00 34.85 +/- 3.39
BlenderBot-3b 53.14 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.19 45.65 +/- 3.32 60.61 +/- 5.03 65.15 +/- 3.39
Flan-T5-780m 61.50 65.94 +/- 5.84 67.42 +/- 10.71 42.42 +/- 4.29
Flan-T5-3b 55.08 66.67 +/- 10.55 60.23 +/- 11.64 36.36 +/- 0.00
Flan-T5-11b 60.83 65.94 +/- 7.28 68.56 +/- 8.65 45.45 +/- 7.42
Cohere-command-6b 70.03 80.43 +/- 3.32 78.41 +/- 2.18 45.45 +/- 10.50
Cohere-command-52b 75.39 89.13 +/- 2.17 83.33 +/- 1.69 72.73 +/- 5.25
text-ada-001-unknown 58.28 55.07 +/- 5.98 56.06 +/- 5.67 63.64 +/- 13.89
text-babbage-001-unknown 65.19 63.04 +/- 4.86 77.27 +/- 3.71 68.18 +/- 6.94
text-curie-001-unknown 69.92 79.71 +/- 2.05 73.11 +/- 1.56 45.45 +/- 10.50
text-davinci-001-unknown 75.31 88.41 +/- 2.05 82.95 +/- 2.86 57.58 +/- 8.57
text-davinci-002-unknown 79.06 94.93 +/- 1.62 85.23 +/- 2.86 72.73 +/- 15.75
text-davinci-003-unknown 79.03 91.30 +/- 0.00 85.61 +/- 1.69 69.70 +/- 15.45
ChatGPT-unknown 75.56 86.23 +/- 4.64 86.74 +/- 4.03 60.61 +/- 10.05
GPT-4-unknown 82.08 95.65 +/- 2.51 81.44 +/- 2.43 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73
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Table 30: Accuracy per label for 15-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 51.86 50.95 +/- 4.32 55.80 +/- 20.34 51.94 +/- 0.84
OPT-350m 55.42 55.30 +/- 3.39 60.51 +/- 4.24 56.29 +/- 0.75
OPT-1.3b 61.61 57.39 +/- 5.90 63.77 +/- 6.60 61.76 +/- 3.50
OPT-2.7b 59.53 49.24 +/- 2.98 75.00 +/- 1.66 59.78 +/- 5.03
OPT-6.7b 64.72 58.71 +/- 7.78 74.28 +/- 5.24 65.12 +/- 2.69
OPT-13b 65.17 64.02 +/- 2.34 65.22 +/- 7.32 65.50 +/- 1.25
OPT-30b 64.06 62.50 +/- 3.99 61.59 +/- 6.84 65.42 +/- 3.99
OPT-66b 61.83 58.71 +/- 7.21 57.61 +/- 5.14 64.25 +/- 3.20
OPT-175b 64.78 64.20 +/- 4.03 59.78 +/- 3.92 64.90 +/- 3.66
BLOOM-560m 55.00 44.13 +/- 2.58 74.64 +/- 4.64 54.78 +/- 1.75
BLOOM-1b1 57.58 45.45 +/- 1.74 64.13 +/- 5.58 60.42 +/- 2.34
BLOOM-1b7 55.14 52.27 +/- 5.21 57.61 +/- 8.40 55.73 +/- 0.84
BLOOM-3b 58.69 49.81 +/- 1.21 74.28 +/- 2.92 59.30 +/- 0.95
BLOOM-7b1 55.67 48.67 +/- 3.74 70.29 +/- 3.90 54.78 +/- 3.23
BLOOM-176b 61.89 64.02 +/- 4.43 46.38 +/- 11.20 62.02 +/- 4.53
EleutherAI-125m 56.03 56.82 +/- 3.47 54.35 +/- 5.89 57.11 +/- 0.65
EleutherAI-1.3b 57.44 51.14 +/- 3.21 61.59 +/- 9.11 59.95 +/- 2.44
EleutherAI-2.7b 58.08 57.58 +/- 2.24 61.96 +/- 6.49 58.27 +/- 1.50
EleutherAI-6b 58.81 54.17 +/- 6.07 66.67 +/- 8.48 59.35 +/- 4.11
EleutherAI-20b 59.86 55.11 +/- 3.98 62.68 +/- 11.87 60.85 +/- 4.53
Cohere-409m 55.19 52.65 +/- 1.69 61.23 +/- 8.08 56.12 +/- 2.19
Cohere-6b 60.44 49.62 +/- 2.60 71.01 +/- 6.48 60.85 +/- 4.38
Cohere-13b 62.83 57.77 +/- 3.17 71.01 +/- 5.98 63.09 +/- 2.62
Cohere-52b 64.72 57.39 +/- 2.69 71.01 +/- 4.81 65.16 +/- 1.07
GPT-3-350m 58.83 55.68 +/- 2.54 65.22 +/- 8.96 60.29 +/- 1.99
GPT-3-1.3b 62.86 56.06 +/- 5.67 63.04 +/- 7.63 64.86 +/- 1.78
GPT-3-6.7b 65.17 58.33 +/- 4.62 73.55 +/- 7.88 66.37 +/- 2.47
GPT-3-175b 68.31 64.77 +/- 4.10 71.38 +/- 6.33 68.60 +/- 3.97
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
T0-11b 46.81 55.68 +/- 0.00 25.00 +/- 1.09 48.41 +/- 0.12
BlenderBot-90m 46.56 55.68 +/- 0.00 23.91 +/- 0.00 48.19 +/- 0.13
BlenderBot-3b 53.14 44.32 +/- 0.00 75.36 +/- 1.02 51.46 +/- 0.23
BlenderBot-9b 53.19 44.13 +/- 1.79 75.72 +/- 1.49 51.72 +/- 0.74
Flan-T5-780m 61.50 56.63 +/- 2.22 71.74 +/- 11.30 60.90 +/- 4.55
Flan-T5-3b 55.08 56.82 +/- 1.31 45.65 +/- 12.92 55.04 +/- 3.39
Flan-T5-11b 60.83 57.01 +/- 3.37 60.14 +/- 15.81 61.02 +/- 5.34
Cohere-command-6b 70.03 60.80 +/- 4.72 72.83 +/- 8.30 70.84 +/- 1.68
Cohere-command-52b 75.39 69.89 +/- 2.43 76.81 +/- 3.90 74.76 +/- 1.01
text-ada-001-unknown 58.28 52.08 +/- 3.74 69.20 +/- 3.42 58.57 +/- 2.04
text-babbage-001-unknown 65.19 58.33 +/- 2.43 67.03 +/- 3.42 65.12 +/- 2.40
text-curie-001-unknown 69.92 62.50 +/- 1.47 68.84 +/- 6.72 71.40 +/- 0.93
text-davinci-001-unknown 75.31 64.58 +/- 2.12 83.70 +/- 1.66 75.54 +/- 0.95
text-davinci-002-unknown 79.06 72.92 +/- 1.02 86.96 +/- 3.97 77.99 +/- 2.77
text-davinci-003-unknown 79.03 69.32 +/- 2.37 87.68 +/- 1.62 78.94 +/- 1.12
ChatGPT-unknown 75.56 72.16 +/- 4.81 77.54 +/- 7.90 74.63 +/- 4.41
GPT-4-unknown 82.08 72.92 +/- 1.02 86.23 +/- 2.99 82.69 +/- 3.87
Humans 86.23 83.18 92.17 84.86
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Table 31: Accuracy per label for 30-shot evaluation.
Model Mean World knowledge Idiom Rhetorical question

OPT-125m 51.50 55.80 +/- 5.28 54.55 +/- 9.28 54.55 +/- 9.09
OPT-350m 54.61 49.28 +/- 7.39 56.82 +/- 1.86 37.88 +/- 9.70
OPT-1.3b 61.67 71.01 +/- 3.24 67.80 +/- 5.48 28.79 +/- 11.03
OPT-2.7b 59.86 58.70 +/- 10.87 71.21 +/- 8.37 46.97 +/- 11.03
OPT-6.7b 63.61 62.32 +/- 11.13 67.05 +/- 2.86 46.97 +/- 19.93
OPT-13b 63.39 60.14 +/- 5.28 60.98 +/- 5.93 46.97 +/- 6.25
OPT-30b 65.47 71.74 +/- 8.23 62.88 +/- 7.38 37.88 +/- 3.39
OPT-66b 60.83 60.14 +/- 3.90 51.52 +/- 11.79 43.94 +/- 6.25
OPT-175b 62.44 65.94 +/- 10.77 62.50 +/- 13.43 60.61 +/- 4.29
BLOOM-560m 55.00 47.10 +/- 1.62 60.98 +/- 2.43 62.12 +/- 3.39
BLOOM-1b1 56.89 49.28 +/- 3.24 54.92 +/- 8.65 46.97 +/- 8.16
BLOOM-1b7 52.28 52.90 +/- 7.28 47.35 +/- 9.32 36.36 +/- 16.60
BLOOM-3b 58.64 50.72 +/- 2.05 62.50 +/- 5.68 59.09 +/- 6.94
BLOOM-7b1 57.61 50.72 +/- 5.98 61.74 +/- 3.81 54.55 +/- 9.09
BLOOM-176b 61.06 73.19 +/- 8.85 66.29 +/- 9.41 48.48 +/- 4.29
EleutherAI-125m 53.44 47.10 +/- 4.64 47.73 +/- 6.43 39.39 +/- 15.45
EleutherAI-1.3b 55.97 44.93 +/- 4.81 51.89 +/- 6.74 37.88 +/- 6.25
EleutherAI-2.7b 57.36 62.32 +/- 5.98 53.41 +/- 2.86 37.88 +/- 11.03
EleutherAI-6b 58.75 59.42 +/- 12.21 52.27 +/- 14.43 36.36 +/- 5.25
EleutherAI-20b 57.36 57.97 +/- 5.42 60.61 +/- 10.30 31.82 +/- 8.70
Cohere-409m 57.17 47.83 +/- 3.55 53.41 +/- 3.15 53.03 +/- 3.39
Cohere-6b 60.36 58.70 +/- 13.92 62.50 +/- 10.23 54.55 +/- 10.50
Cohere-13b 64.81 70.29 +/- 21.65 65.91 +/- 7.07 45.45 +/- 5.25
Cohere-52b 65.72 67.39 +/- 8.60 66.29 +/- 1.56 53.03 +/- 11.03
GPT-3-350m 60.25 55.07 +/- 2.05 57.95 +/- 5.83 51.52 +/- 10.05
GPT-3-1.3b 60.19 61.59 +/- 3.90 54.92 +/- 6.99 43.94 +/- 9.70
GPT-3-6.7b 62.86 56.52 +/- 4.35 65.53 +/- 3.32 50.00 +/- 6.94
GPT-3-175b 68.31 67.39 +/- 5.47 72.73 +/- 2.62 75.76 +/- 4.29
T0-3b 46.67 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
T0-11b 46.75 52.17 +/- 0.00 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-90m 46.67 51.45 +/- 1.62 38.64 +/- 0.00 36.36 +/- 0.00
BlenderBot-3b 53.25 47.83 +/- 0.00 61.36 +/- 0.00 63.64 +/- 0.00
BlenderBot-9b 53.72 46.38 +/- 4.10 63.26 +/- 3.32 63.64 +/- 0.00
Flan-T5-780m 61.50 67.39 +/- 8.60 70.83 +/- 6.35 42.42 +/- 4.29
Flan-T5-3b 56.11 65.22 +/- 7.10 62.50 +/- 13.04 36.36 +/- 0.00
Flan-T5-11b 62.11 67.39 +/- 10.27 72.73 +/- 10.66 51.52 +/- 15.45
Cohere-command-6b 70.44 81.16 +/- 3.24 78.03 +/- 2.83 46.97 +/- 8.16
Cohere-command-52b 75.00 85.51 +/- 2.05 78.41 +/- 1.14 78.79 +/- 6.78
text-ada-001-unknown 55.58 50.72 +/- 7.39 57.58 +/- 4.29 57.58 +/- 8.57
text-babbage-001-unknown 66.00 67.39 +/- 5.47 71.59 +/- 3.15 63.64 +/- 5.25
text-curie-001-unknown 70.33 75.36 +/- 3.24 76.52 +/- 5.03 60.61 +/- 8.57
text-davinci-001-unknown 75.83 85.51 +/- 2.05 84.09 +/- 1.86 65.15 +/- 8.16
text-davinci-002-unknown 80.64 97.83 +/- 2.17 87.50 +/- 2.18 83.33 +/- 3.39
text-davinci-003-unknown 79.53 94.93 +/- 1.62 84.85 +/- 3.39 81.82 +/- 9.09
ChatGPT-unknown 75.64 87.68 +/- 4.64 89.02 +/- 4.43 83.33 +/- 9.70
GPT-4-unknown 82.17 95.65 +/- 3.55 87.12 +/- 3.12 90.91 +/- 0.00
Humans 86.23 93.04 92.73 92.73
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Table 32: Accuracy per label for 30-shot evaluation.
Model Mean Particularised Generalised Other

OPT-125m 51.50 50.38 +/- 4.29 52.17 +/- 23.95 50.99 +/- 2.42
OPT-350m 54.61 55.30 +/- 1.26 49.28 +/- 3.48 55.51 +/- 1.92
OPT-1.3b 61.67 56.25 +/- 2.76 56.16 +/- 4.05 63.14 +/- 5.41
OPT-2.7b 59.86 50.19 +/- 2.89 69.57 +/- 4.16 59.95 +/- 5.23
OPT-6.7b 63.61 58.90 +/- 6.48 72.10 +/- 8.08 63.74 +/- 4.30
OPT-13b 63.39 59.47 +/- 2.14 64.86 +/- 6.07 65.07 +/- 2.24
OPT-30b 65.47 63.64 +/- 3.01 63.04 +/- 7.94 66.93 +/- 5.52
OPT-66b 60.83 63.07 +/- 3.64 55.43 +/- 9.29 62.62 +/- 4.98
OPT-175b 62.44 64.39 +/- 2.34 51.09 +/- 5.72 63.18 +/- 2.85
BLOOM-560m 55.00 47.92 +/- 2.31 71.01 +/- 6.23 54.18 +/- 1.82
BLOOM-1b1 56.89 49.81 +/- 4.93 56.88 +/- 8.46 59.35 +/- 3.16
BLOOM-1b7 52.28 55.49 +/- 1.79 40.94 +/- 8.82 53.83 +/- 1.25
BLOOM-3b 58.64 52.46 +/- 1.53 68.84 +/- 3.69 58.74 +/- 1.44
BLOOM-7b1 57.61 54.36 +/- 8.98 70.29 +/- 2.05 56.76 +/- 4.88
BLOOM-176b 61.06 67.42 +/- 1.93 50.00 +/- 9.05 60.08 +/- 4.01
EleutherAI-125m 53.44 59.47 +/- 2.43 46.74 +/- 4.65 54.18 +/- 1.21
EleutherAI-1.3b 55.97 51.70 +/- 5.20 56.52 +/- 10.80 58.40 +/- 1.35
EleutherAI-2.7b 57.36 57.39 +/- 2.25 51.81 +/- 3.18 58.79 +/- 0.89
EleutherAI-6b 58.75 57.77 +/- 4.22 58.33 +/- 9.92 60.38 +/- 4.52
EleutherAI-20b 57.36 51.52 +/- 4.08 59.42 +/- 14.51 58.79 +/- 2.39
Cohere-409m 57.17 51.14 +/- 3.99 64.49 +/- 8.57 58.66 +/- 2.15
Cohere-6b 60.36 51.52 +/- 2.51 70.29 +/- 6.11 61.20 +/- 5.15
Cohere-13b 64.81 58.14 +/- 2.96 68.12 +/- 8.20 65.98 +/- 3.57
Cohere-52b 65.72 64.96 +/- 4.17 69.93 +/- 2.32 65.50 +/- 2.01
GPT-3-350m 60.25 57.58 +/- 2.51 65.22 +/- 6.28 60.98 +/- 1.63
GPT-3-1.3b 60.19 57.77 +/- 5.66 57.61 +/- 9.12 62.06 +/- 4.02
GPT-3-6.7b 62.86 61.17 +/- 6.41 63.41 +/- 7.98 63.65 +/- 2.52
GPT-3-175b 68.31 64.58 +/- 5.06 70.29 +/- 6.23 68.17 +/- 2.01
T0-3b 46.67 55.68 +/- 0.00 23.91 +/- 0.00 48.32 +/- 0.00
T0-11b 46.75 55.87 +/- 0.42 23.91 +/- 0.00 48.41 +/- 0.12
BlenderBot-90m 46.67 55.68 +/- 0.00 23.55 +/- 0.81 48.41 +/- 0.24
BlenderBot-3b 53.25 44.32 +/- 0.00 76.09 +/- 0.00 51.55 +/- 0.20
BlenderBot-9b 53.72 45.08 +/- 1.82 75.36 +/- 1.02 52.11 +/- 0.93
Flan-T5-780m 61.50 57.01 +/- 3.85 73.19 +/- 8.67 60.16 +/- 3.75
Flan-T5-3b 56.11 56.44 +/- 1.56 47.83 +/- 11.71 56.29 +/- 4.18
Flan-T5-11b 62.11 61.36 +/- 4.50 57.25 +/- 16.68 61.58 +/- 6.25
Cohere-command-6b 70.44 64.96 +/- 1.21 78.62 +/- 5.53 69.81 +/- 1.60
Cohere-command-52b 75.00 71.78 +/- 1.66 75.00 +/- 3.49 74.55 +/- 0.49
text-ada-001-unknown 55.58 53.41 +/- 1.97 56.52 +/- 4.35 55.86 +/- 3.03
text-babbage-001-unknown 66.00 60.80 +/- 2.69 62.32 +/- 6.11 66.88 +/- 2.36
text-curie-001-unknown 70.33 60.42 +/- 5.01 74.28 +/- 6.20 71.32 +/- 1.42
text-davinci-001-unknown 75.83 67.05 +/- 1.97 83.33 +/- 3.48 75.67 +/- 1.02
text-davinci-002-unknown 80.64 74.43 +/- 1.83 83.70 +/- 2.74 79.76 +/- 1.44
text-davinci-003-unknown 79.53 72.92 +/- 2.49 86.59 +/- 1.95 78.55 +/- 1.20
ChatGPT-unknown 75.64 67.99 +/- 2.74 78.26 +/- 6.15 74.55 +/- 3.90
GPT-4-unknown 82.17 71.97 +/- 2.83 86.23 +/- 3.48 82.34 +/- 2.67
Humans 86.23 83.18 92.17 84.86
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Table 33: Accuracy per label for model group Example IT for 5-shot chain-of-thought evaluation.
Model Mean World knowledge Idiom Rhetorical question

Cohere-command-6b 69.14 72.46 +/- 5.98 78.03 +/- 3.12 62.12 +/- 8.16
Cohere-command-52b 75.28 78.99 +/- 1.62 84.47 +/- 3.57 51.52 +/- 8.57
text-ada-001-unknown 15.33 11.59 +/- 8.20 17.42 +/- 9.43 10.61 +/- 9.70
text-babbage-001-unknown 47.67 47.83 +/- 11.50 55.30 +/- 16.21 42.42 +/- 8.57
text-curie-001-unknown 68.22 69.57 +/- 6.64 79.17 +/- 0.85 69.70 +/- 10.05
text-davinci-001-unknown 67.25 69.57 +/- 7.10 71.59 +/- 3.65 60.61 +/- 11.34
text-davinci-002-unknown 80.06 92.03 +/- 1.62 88.26 +/- 3.57 46.97 +/- 24.29
text-davinci-003-unknown 83.61 93.48 +/- 2.17 93.18 +/- 0.00 69.70 +/- 10.05
ChatGPT-unknown 77.19 89.86 +/- 4.10 87.88 +/- 3.63 65.15 +/- 9.70
GPT-4-unknown 86.47 93.48 +/- 3.32 93.18 +/- 2.93 87.88 +/- 4.29
Humans 86.23 93.04 92.73 92.73

Table 34: Accuracy per label for model group Example IT for 5-shot chain-of-thought evaluation.
Model Mean Particularised Generalised Other

Cohere-command-6b 69.14 58.33 +/- 1.93 81.52 +/- 2.08 69.04 +/- 2.04
Cohere-command-52b 75.28 68.94 +/- 3.19 77.17 +/- 2.08 75.88 +/- 0.53
text-ada-001-unknown 15.33 15.53 +/- 7.73 14.86 +/- 9.26 15.50 +/- 8.33
text-babbage-001-unknown 47.67 45.27 +/- 11.94 40.94 +/- 19.34 48.19 +/- 14.11
text-curie-001-unknown 68.22 59.47 +/- 5.15 74.28 +/- 7.88 68.04 +/- 1.75
text-davinci-001-unknown 67.25 64.58 +/- 3.85 64.13 +/- 5.14 67.92 +/- 3.30
text-davinci-002-unknown 80.06 75.95 +/- 3.68 80.07 +/- 6.69 80.23 +/- 1.07
text-davinci-003-unknown 83.61 77.46 +/- 1.02 87.32 +/- 3.18 83.25 +/- 0.96
ChatGPT-unknown 77.19 72.35 +/- 1.56 80.43 +/- 5.47 76.23 +/- 1.11
GPT-4-unknown 86.47 81.63 +/- 2.58 88.77 +/- 4.05 86.05 +/- 1.17
Humans 86.23 83.18 92.17 84.86

Table 35: Accuracy per prompt template for BERT-cased.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 47.3 48.8 50.5 49.8 46.7 46.7
2 46.8 50.3 45.5 50.2 46.7 46.5
3 57.3 51.5 50.0 50.0 47.0 46.7
4 48.8 51.0 49.5 48.5 46.8 46.7
5 46.7 50.3 44.5 47.7 46.7 46.7
6 46.7 50.3 45.8 47.8 46.8 46.7

Mean 48.9 50.4 47.6 49.0 46.8 46.7
– std 3.81 0.832 2.42 1.04 0.107 0.0745

Structured 51.1 50.4 50.0 49.4 46.8 46.7
– std 4.4 1.17 0.408 0.665 0.125 7.11e-15

Natural 46.7 50.3 45.3 48.6 46.7 46.6
– std 0.0471 7.11e-15 0.556 1.16 0.0471 0.0943
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Table 36: Accuracy per prompt template for BERT-uncased.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.0 53.2 51.8 55.2 51.7 49.3
2 53.7 50.3 54.0 48.7 49.0 49.3
3 54.7 54.7 57.3 55.5 53.3 52.8
4 56.7 51.5 52.3 54.0 50.3 49.5
5 53.2 50.2 50.2 48.3 48.2 47.2
6 53.3 50.3 54.2 49.2 53.0 53.5

Mean 54.8 51.7 53.3 51.8 50.9 50.3
– std 1.55 1.71 2.24 3.13 1.92 2.19

Structured 56.1 53.1 53.8 54.9 51.8 50.5
– std 1.02 1.31 2.48 0.648 1.23 1.6

Natural 53.4 50.3 52.8 48.7 50.1 50.0
– std 0.216 0.0471 1.84 0.368 2.1 2.62

Table 37: Accuracy per prompt template for RoBERTa-base.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.0 55.8 58.0 58.7 58.3 57.8
2 56.5 50.5 52.0 55.8 56.0 54.2
3 53.0 56.8 56.8 61.3 59.5 58.8
4 55.2 56.0 58.7 59.8 56.8 57.2
5 55.7 50.3 52.3 54.8 55.5 53.0
6 59.2 50.3 54.2 55.8 55.7 55.3

Mean 55.6 53.3 55.3 57.7 57.0 56.1
– std 1.97 2.93 2.65 2.38 1.47 2.05

Structured 54.1 56.2 57.8 59.9 58.2 57.9
– std 0.899 0.432 0.785 1.07 1.1 0.66

Natural 57.1 50.4 52.8 55.5 55.7 54.2
– std 1.5 0.0943 0.974 0.471 0.205 0.939

Table 38: Accuracy per prompt template for RoBERTa-large.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.7 50.2 62.0 64.7 64.7 60.5
2 46.7 53.3 58.5 64.2 61.2 55.7
3 60.8 54.8 64.5 62.8 61.8 59.5
4 66.2 50.3 64.0 59.0 57.0 58.2
5 46.7 53.3 58.8 63.5 60.5 56.5
6 46.7 55.5 59.3 60.0 60.8 52.3

Mean 54.1 52.9 61.2 62.4 61.0 57.1
– std 7.84 2.03 2.45 2.13 2.26 2.7

Structured 61.6 51.8 63.5 62.2 61.2 59.4
– std 3.51 2.15 1.08 2.37 3.18 0.942

Natural 46.7 54.0 58.9 62.6 60.8 54.8
– std 7.11e-15 1.04 0.33 1.84 0.287 1.82
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Table 39: Accuracy per prompt template for GPT-2-medium.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.7 54.0 53.8 53.8 55.0
2 52.8 53.7 55.8 57.2 60.3 57.2
3 53.7 54.0 52.5 56.5 55.8 55.3
4 53.5 55.7 53.3 55.8 55.5 54.3
5 59.2 54.3 56.7 57.7 60.7 58.8
6 58.3 54.8 55.7 57.7 61.7 57.8

Mean 55.1 54.4 54.7 56.4 58.0 56.4
– std 2.6 0.706 1.5 1.36 3.03 1.63

Structured 53.5 54.5 53.3 55.4 55.0 54.9
– std 0.205 0.881 0.613 1.14 0.881 0.419

Natural 56.8 54.3 56.1 57.5 60.9 57.9
– std 2.83 0.45 0.45 0.236 0.589 0.66

Table 40: Accuracy per prompt template for GPT-2-large.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.3 54.5 53.5 55.3 56.2
2 47.5 56.7 57.5 57.8 60.8 61.0
3 55.0 53.8 55.7 54.0 54.8 56.0
4 54.0 53.7 56.2 53.5 54.8 56.7
5 47.2 54.5 56.7 58.8 61.2 60.8
6 47.0 53.3 57.2 59.5 60.3 60.8

Mean 50.7 54.2 56.3 56.2 57.9 58.6
– std 3.47 1.18 1.0 2.57 2.92 2.29

Structured 54.1 53.6 55.5 53.7 55.0 56.3
– std 0.698 0.216 0.713 0.236 0.236 0.294

Natural 47.2 54.8 57.1 58.7 60.8 60.9
– std 0.205 1.41 0.33 0.698 0.368 0.0943

Table 41: Accuracy per prompt template for GPT-2-xl.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.3 57.0 54.5 54.7 56.2
2 48.7 61.3 57.3 63.7 62.0 60.5
3 55.0 55.2 59.5 59.0 58.0 60.7
4 54.2 54.3 56.0 54.5 54.3 56.3
5 48.0 59.7 58.3 60.8 62.7 61.7
6 48.5 60.8 58.0 61.8 61.5 61.5

Mean 51.3 57.4 57.7 59.1 58.9 59.5
– std 2.92 3.25 1.1 3.5 3.43 2.32

Structured 54.1 54.3 57.5 56.0 55.7 57.7
– std 0.736 0.776 1.47 2.12 1.66 2.1

Natural 48.4 60.6 57.9 62.1 62.1 61.2
– std 0.294 0.668 0.419 1.2 0.492 0.525
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Table 42: Accuracy per prompt template for EleutherAI-125M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.7 52.7 56.2 56.2 54.0
2 52.2 50.0 47.5 53.5 55.7 53.3
3 53.3 53.8 51.2 55.8 54.8 52.8
4 53.7 52.5 51.2 53.8 55.8 53.2
5 50.7 50.2 47.3 53.8 56.2 53.8
6 48.2 49.8 47.5 53.2 57.5 53.5

Mean 51.9 51.7 49.6 54.4 56.0 53.4
– std 1.93 1.72 2.19 1.17 0.806 0.394

Structured 53.4 53.3 51.7 55.3 55.6 53.3
– std 0.189 0.591 0.707 1.05 0.589 0.499

Natural 50.4 50.0 47.4 53.5 56.5 53.5
– std 1.65 0.163 0.0943 0.245 0.759 0.205

Table 43: Accuracy per prompt template for EleutherAI-1.3B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.3 53.7 54.8 57.5 57.2 56.2
2 51.8 56.8 57.5 59.0 55.8 54.7
3 58.0 55.5 59.5 58.0 61.5 57.5
4 53.2 57.5 56.8 55.2 56.5 54.7
5 49.7 55.2 57.5 58.7 57.2 56.7
6 51.8 55.7 56.5 58.7 56.5 56.2

Mean 53.1 55.7 57.1 57.8 57.4 56.0
– std 2.59 1.21 1.4 1.29 1.87 1.02

Structured 55.2 55.6 57.0 56.9 58.4 56.1
– std 2.05 1.55 1.93 1.22 2.21 1.14

Natural 51.1 55.9 57.2 58.8 56.5 55.9
– std 0.99 0.668 0.471 0.141 0.572 0.85

Table 44: Accuracy per prompt template for EleutherAI-2.7B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.0 52.8 58.2 57.8 59.5 56.7
2 62.0 56.2 57.7 55.8 57.8 57.7
3 58.7 60.0 58.8 59.2 57.8 57.8
4 56.5 54.2 57.5 56.2 57.5 55.5
5 62.7 54.7 58.7 55.7 57.3 57.8
6 61.2 55.2 57.3 57.5 58.5 58.7

Mean 59.2 55.5 58.0 57.0 58.1 57.4
– std 3.13 2.25 0.576 1.26 0.741 1.02

Structured 56.4 55.7 58.2 57.7 58.3 56.7
– std 1.92 3.12 0.531 1.23 0.881 0.939

Natural 62.0 55.4 57.9 56.3 57.9 58.1
– std 0.613 0.624 0.589 0.826 0.492 0.45
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Table 45: Accuracy per prompt template for EleutherAI-6B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.5 58.8 52.7 53.0 52.5 51.3
2 57.7 51.8 63.2 62.7 64.3 65.3
3 56.2 58.2 57.2 53.0 54.7 54.5
4 52.8 55.5 53.3 52.2 54.0 53.8
5 56.8 52.7 62.7 63.2 65.2 64.2
6 57.2 52.8 61.3 61.8 62.2 63.3

Mean 56.4 55.0 58.4 57.6 58.8 58.7
– std 1.67 2.75 4.28 4.94 5.2 5.65

Structured 55.5 57.5 54.4 52.7 53.7 53.2
– std 1.98 1.44 1.99 0.377 0.918 1.37

Natural 57.2 52.4 62.4 62.6 63.9 64.3
– std 0.368 0.45 0.804 0.579 1.26 0.818

Table 46: Accuracy per prompt template for EleutherAI-20B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.0 58.0 55.3 54.3 52.8 54.3
2 61.3 54.2 65.8 63.3 65.0 60.3
3 54.3 58.3 58.5 56.7 55.3 52.0
4 56.2 58.2 55.3 57.2 57.0 58.7
5 59.0 53.0 66.7 62.8 65.0 59.2
6 61.3 53.5 65.2 61.7 64.0 59.7

Mean 57.5 55.9 61.1 59.3 59.9 57.4
– std 3.25 2.33 4.9 3.42 4.98 3.09

Structured 54.5 58.2 56.4 56.1 55.0 55.0
– std 1.31 0.125 1.51 1.27 1.72 2.78

Natural 60.5 53.6 65.9 62.6 64.7 59.7
– std 1.08 0.492 0.616 0.668 0.471 0.45

Table 47: Accuracy per prompt template for BLOOM-560M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.3 54.2 53.5 53.8 53.8 53.5
2 46.7 56.3 54.0 54.8 56.0 55.3
3 58.8 53.3 53.8 53.3 54.5 54.0
4 56.3 54.8 53.5 54.8 52.7 56.7
5 46.7 54.3 53.7 55.3 56.3 55.5
6 46.7 56.0 54.0 55.2 56.7 55.0

Mean 51.6 54.8 53.8 54.5 55.0 55.0
– std 5.05 1.04 0.206 0.734 1.45 1.04

Structured 56.5 54.1 53.6 54.0 53.7 54.7
– std 1.84 0.616 0.141 0.624 0.741 1.41

Natural 46.7 55.5 53.9 55.1 56.3 55.3
– std 7.11e-15 0.881 0.141 0.216 0.287 0.205
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Table 48: Accuracy per prompt template for BLOOM-1B1.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.5 56.2 54.2 55.2 54.5
2 49.0 51.5 58.2 59.8 58.8 60.8
3 57.2 54.2 55.8 54.0 55.5 50.8
4 53.3 54.0 54.2 53.3 55.7 55.8
5 47.3 51.2 59.8 61.3 60.2 60.0
6 46.8 51.0 60.2 61.2 60.2 59.3

Mean 51.2 52.6 57.4 57.3 57.6 56.9
– std 3.75 1.36 2.18 3.51 2.19 3.53

Structured 54.6 53.9 55.4 53.8 55.5 53.7
– std 1.84 0.294 0.864 0.386 0.205 2.12

Natural 47.7 51.2 59.4 60.8 59.7 60.0
– std 0.942 0.205 0.864 0.685 0.66 0.613

Table 49: Accuracy per prompt template for BLOOM-1B7.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.5 54.7 53.8 54.0 55.7 56.5
2 57.7 52.2 56.3 55.5 55.8 52.0
3 54.7 53.2 53.8 51.0 54.5 54.0
4 54.5 53.8 54.5 51.2 55.5 50.3
5 50.0 51.2 54.3 53.2 54.7 50.0
6 51.3 51.8 53.8 54.0 54.7 50.8

Mean 53.6 52.8 54.4 53.1 55.1 52.3
– std 2.49 1.2 0.886 1.6 0.528 2.31

Structured 54.2 53.9 54.0 52.1 55.2 53.6
– std 0.525 0.616 0.33 1.37 0.525 2.55

Natural 53.0 51.7 54.8 54.2 55.1 50.9
– std 3.37 0.411 1.08 0.953 0.519 0.822

Table 50: Accuracy per prompt template for BLOOM-3B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.0 54.0 56.8 59.5 60.0 58.2
2 62.5 58.0 58.2 59.7 57.5 60.0
3 53.5 54.0 57.2 58.7 59.2 58.2
4 54.8 55.3 55.7 59.0 58.2 55.8
5 58.5 57.5 58.0 59.7 58.8 60.2
6 59.0 56.8 57.3 59.8 58.5 59.5

Mean 56.9 55.9 57.2 59.4 58.7 58.6
– std 3.4 1.6 0.823 0.408 0.783 1.5

Structured 53.8 54.4 56.6 59.1 59.1 57.4
– std 0.759 0.613 0.634 0.33 0.736 1.13

Natural 60.0 57.4 57.8 59.7 58.3 59.9
– std 1.78 0.492 0.386 0.0471 0.556 0.294
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Table 51: Accuracy per prompt template for BLOOM-7B1.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 55.2 55.2 52.0 53.0 52.7
2 61.2 59.0 53.7 58.3 58.8 61.7
3 58.7 53.3 53.0 53.3 53.0 52.8
4 53.5 53.5 55.2 52.8 54.3 53.5
5 62.0 61.0 55.3 60.3 58.5 62.5
6 63.5 60.0 54.7 59.8 56.3 62.5

Mean 58.7 57.0 54.5 56.1 55.7 57.6
– std 4.03 3.11 0.871 3.46 2.39 4.63

Structured 55.1 54.0 54.5 52.7 53.4 53.0
– std 2.52 0.852 1.04 0.535 0.613 0.356

Natural 62.2 60.0 54.6 59.5 57.9 62.2
– std 0.953 0.816 0.66 0.85 1.11 0.377

Table 52: Accuracy per prompt template for BLOOM-176B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.8 58.8 58.5 57.7 55.7 56.7
2 55.8 60.8 68.0 65.7 64.2 62.7
3 53.5 66.7 69.3 71.8 71.7 69.8
4 54.3 59.8 64.8 62.2 60.7 61.3
5 52.3 61.3 66.2 61.8 58.8 57.5
6 55.5 59.2 65.7 61.7 60.3 58.3

Mean 54.2 61.1 65.4 63.5 61.9 61.1
– std 1.19 2.65 3.43 4.38 5.06 4.44

Structured 53.9 61.8 64.2 63.9 62.7 62.6
– std 0.33 3.51 4.43 5.88 6.68 5.43

Natural 54.5 60.4 66.6 63.1 61.1 59.5
– std 1.58 0.896 0.988 1.86 2.28 2.29

Table 53: Accuracy per prompt template for OPT-125M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 55.2 54.0 55.2 54.2 55.0
2 49.5 50.5 47.5 52.7 50.5 48.2
3 53.5 55.5 53.0 55.0 53.7 56.0
4 53.3 54.5 54.2 53.8 54.3 53.8
5 48.5 50.5 46.3 50.7 49.5 48.0
6 47.3 50.2 46.3 50.0 49.0 48.0

Mean 50.9 52.7 50.2 52.9 51.9 51.5
– std 2.55 2.35 3.56 1.99 2.25 3.49

Structured 53.4 55.1 53.7 54.7 54.1 54.9
– std 0.0943 0.419 0.525 0.618 0.262 0.899

Natural 48.4 50.4 46.7 51.1 49.7 48.1
– std 0.899 0.141 0.566 1.14 0.624 0.0943

56



Table 54: Accuracy per prompt template for OPT-350M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.8 51.5 56.5 54.2 54.7
2 60.5 50.3 50.8 56.5 55.2 54.0
3 53.3 56.3 52.8 58.7 55.0 56.2
4 53.7 56.3 52.0 55.2 55.2 56.3
5 62.3 50.3 50.8 57.0 56.5 53.5
6 59.7 50.3 50.8 56.5 56.5 53.0

Mean 57.1 52.9 51.4 56.7 55.4 54.6
– std 3.78 2.71 0.752 1.04 0.826 1.26

Structured 53.4 55.5 52.1 56.8 54.8 55.7
– std 0.189 1.18 0.535 1.44 0.432 0.732

Natural 60.8 50.3 50.8 56.7 56.1 53.5
– std 1.09 7.11e-15 7.11e-15 0.236 0.613 0.408

Table 55: Accuracy per prompt template for OPT-1.3B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.8 56.2 55.5 60.2 59.8 62.7
2 62.2 57.0 61.2 61.8 64.8 67.2
3 60.8 59.5 57.2 59.7 60.3 58.2
4 54.8 55.8 59.2 56.5 57.0 54.7
5 62.5 56.2 59.3 61.7 65.0 64.5
6 64.0 53.2 55.8 59.7 62.7 62.8

Mean 60.4 56.3 58.0 59.9 61.6 61.7
– std 3.13 1.85 2.05 1.76 2.86 4.11

Structured 57.8 57.2 57.3 58.8 59.0 58.5
– std 2.45 1.66 1.51 1.64 1.45 3.27

Natural 62.9 55.5 58.8 61.1 64.2 64.8
– std 0.787 1.64 2.24 0.967 1.04 1.81

Table 56: Accuracy per prompt template for OPT-2.7B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 53.0 53.2 53.8 54.3 53.7
2 64.0 60.3 60.2 60.3 61.3 64.5
3 55.8 53.3 55.2 55.8 57.0 56.5
4 54.5 53.3 54.8 55.5 56.8 57.0
5 64.8 60.7 60.7 62.2 64.3 64.3
6 63.5 60.3 60.0 60.5 63.3 63.2

Mean 59.6 56.8 57.4 58.0 59.5 59.9
– std 4.58 3.62 3.02 3.11 3.68 4.28

Structured 55.0 53.2 54.4 55.0 56.0 55.7
– std 0.572 0.141 0.864 0.881 1.23 1.45

Natural 64.1 60.4 60.3 61.0 63.0 64.0
– std 0.535 0.189 0.294 0.852 1.25 0.572
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Table 57: Accuracy per prompt template for OPT-6.7B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 55.7 54.3 60.8 61.2 61.2 58.5
2 64.2 68.0 66.8 65.7 66.3 66.3
3 54.2 53.5 59.5 61.2 63.3 60.5
4 58.8 56.3 61.8 62.2 63.5 63.2
5 64.2 65.2 66.0 65.2 67.7 67.5
6 65.0 63.2 64.8 64.3 66.3 65.7

Mean 60.4 60.1 63.3 63.3 64.7 63.6
– std 4.34 5.62 2.73 1.84 2.23 3.23

Structured 56.2 54.7 60.7 61.5 62.7 60.7
– std 1.92 1.18 0.942 0.471 1.04 1.93

Natural 64.5 65.5 65.9 65.1 66.8 66.5
– std 0.377 1.97 0.822 0.579 0.66 0.748

Table 58: Accuracy per prompt template for OPT-13B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 64.0 69.8 68.2 67.8 62.2
2 68.2 57.8 69.5 68.0 66.8 63.7
3 54.3 62.2 65.2 63.2 64.3 66.3
4 58.3 63.3 64.3 63.7 63.5 64.0
5 66.0 58.5 67.2 65.3 63.7 62.7
6 64.7 57.5 68.3 66.2 64.8 61.5

Mean 61.0 60.6 67.4 65.8 65.1 63.4
– std 5.51 2.68 2.06 1.92 1.6 1.55

Structured 55.8 63.2 66.4 65.0 65.2 64.2
– std 1.8 0.741 2.41 2.25 1.87 1.68

Natural 66.3 57.9 68.3 66.5 65.1 62.6
– std 1.44 0.419 0.939 1.12 1.28 0.899

Table 59: Accuracy per prompt template for OPT-30B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 62.2 62.7 66.0 65.2 65.5 65.0
2 62.0 58.7 69.0 65.7 66.3 69.0
3 60.3 63.5 62.7 60.8 60.5 61.5
4 65.0 66.8 57.8 57.2 57.2 56.2
5 60.3 55.8 70.0 66.0 67.2 71.0
6 59.0 54.5 68.3 65.3 67.7 70.2

Mean 61.5 60.3 65.6 63.4 64.1 65.5
– std 1.92 4.37 4.24 3.27 3.87 5.28

Structured 62.5 64.3 62.2 61.1 61.1 60.9
– std 1.93 1.77 3.37 3.27 3.41 3.62

Natural 60.4 56.3 69.1 65.7 67.1 70.1
– std 1.23 1.76 0.698 0.287 0.579 0.822
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Table 60: Accuracy per prompt template for OPT-66B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 59.3 56.2 56.7 56.5 55.7 54.3
2 66.5 67.3 65.3 64.2 67.2 65.2
3 56.5 64.3 55.5 55.0 56.2 52.2
4 62.0 61.5 66.5 63.0 61.7 63.7
5 62.5 66.0 64.8 63.7 65.7 65.0
6 61.2 63.8 60.2 62.5 64.7 64.7

Mean 61.3 63.2 61.5 60.8 61.9 60.8
– std 3.06 3.61 4.3 3.65 4.5 5.43

Structured 59.3 60.7 59.6 58.2 57.9 56.7
– std 2.25 3.36 4.93 3.47 2.72 5.0

Natural 63.4 65.7 63.4 63.5 65.9 65.0
– std 2.26 1.44 2.3 0.713 1.03 0.205

Table 61: Accuracy per prompt template for OPT-175B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 56.7 58.0 64.8 61.0 65.0 62.3
2 52.7 53.3 67.3 63.2 68.0 65.8
3 54.5 68.5 60.0 55.3 57.8 56.7
4 64.0 66.7 61.5 58.0 62.0 58.7
5 52.0 52.0 65.0 63.8 67.8 65.2
6 52.2 51.7 64.7 63.2 68.0 66.0

Mean 55.3 58.4 63.9 60.8 64.8 62.4
– std 4.19 6.87 2.42 3.13 3.79 3.62

Structured 58.4 64.4 62.1 58.1 61.6 59.2
– std 4.06 4.58 2.0 2.33 2.95 2.32

Natural 52.3 52.3 65.7 63.4 67.9 65.7
– std 0.294 0.694 1.16 0.283 0.0943 0.34

Table 62: Accuracy per prompt template for Cohere-409.3M (Cohere-small).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.2 49.7 52.7 51.7 53.5 56.0
2 47.5 50.7 52.7 53.2 55.8 57.8
3 57.2 55.5 55.2 55.5 55.7 57.0
4 54.8 53.8 54.5 56.8 54.8 54.5
5 48.5 50.7 52.8 52.7 56.0 58.8
6 47.5 51.0 52.5 53.7 55.3 58.8

Mean 51.6 51.9 53.4 53.9 55.2 57.2
– std 3.91 2.05 1.05 1.72 0.847 1.54

Structured 55.4 53.0 54.1 54.7 54.7 55.8
– std 1.3 2.43 1.05 2.16 0.903 1.03

Natural 47.8 50.8 52.7 53.2 55.7 58.5
– std 0.471 0.141 0.125 0.408 0.294 0.471
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Table 63: Accuracy per prompt template for Cohere-6.067B (Cohere-medium).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 54.2 55.3 51.8 56.3 55.3
2 61.8 62.8 64.3 63.8 65.2 64.7
3 57.2 53.3 58.5 55.3 57.8 55.3
4 56.0 53.3 57.0 53.2 55.8 56.7
5 57.8 60.7 64.0 64.2 64.7 64.2
6 56.2 62.8 66.2 64.0 62.8 66.0

Mean 57.3 57.9 60.9 58.7 60.4 60.4
– std 2.24 4.32 4.11 5.38 3.92 4.65

Structured 56.0 53.6 56.9 53.4 56.6 55.8
– std 1.02 0.424 1.31 1.44 0.85 0.66

Natural 58.6 62.1 64.8 64.0 64.2 65.0
– std 2.36 0.99 0.974 0.163 1.03 0.759

Table 64: Accuracy per prompt template for Cohere-13.12B (Cohere-large).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 55.3 57.3 56.3 55.0 58.5 59.0
2 59.2 64.2 68.0 66.3 64.7 69.5
3 57.2 62.8 61.0 59.0 64.2 62.3
4 55.5 61.3 56.3 54.0 59.0 59.8
5 56.8 64.3 66.7 64.2 65.7 69.8
6 59.2 60.7 66.5 63.7 65.0 68.3

Mean 57.2 61.8 62.5 60.4 62.9 64.8
– std 1.56 2.41 4.88 4.69 2.94 4.55

Structured 56.0 60.5 57.9 56.0 60.6 60.4
– std 0.852 2.32 2.22 2.16 2.58 1.41

Natural 58.4 63.1 67.1 64.7 65.1 69.2
– std 1.13 1.67 0.665 1.13 0.419 0.648

Table 65: Accuracy per prompt template for Cohere-52B (Cohere-xl).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 56.0 60.7 70.3 65.3 66.3 68.7
2 62.8 65.0 64.3 64.2 65.0 64.3
3 54.0 65.3 62.8 60.2 64.0 63.5
4 53.8 55.5 61.8 64.8 64.3 64.7
5 62.2 65.7 67.3 63.0 63.7 65.3
6 62.2 65.7 64.2 62.3 65.0 67.8

Mean 58.5 63.0 65.1 63.3 64.7 65.7
– std 3.97 3.77 2.87 1.72 0.855 1.89

Structured 54.6 60.5 65.0 63.4 64.9 65.6
– std 0.993 4.0 3.79 2.3 1.02 2.22

Natural 62.4 65.5 65.3 63.2 64.6 65.8
– std 0.283 0.33 1.44 0.785 0.613 1.47
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Table 66: Accuracy per prompt template for GPT-3-350M (ada).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 55.3 57.2 58.3 57.5 58.2 60.5
2 46.7 56.8 56.3 59.5 59.2 61.7
3 54.0 54.5 53.3 54.0 56.5 56.7
4 53.5 52.8 54.7 56.7 58.8 59.7
5 49.8 57.3 55.3 58.5 58.8 61.8
6 49.5 57.2 56.3 60.2 61.5 61.2

Mean 51.5 56.0 55.7 57.7 58.8 60.3
– std 3.02 1.72 1.55 2.04 1.48 1.75

Structured 54.3 54.8 55.4 56.1 57.8 59.0
– std 0.759 1.81 2.11 1.5 0.974 1.64

Natural 48.7 57.1 56.0 59.4 59.8 61.6
– std 1.4 0.216 0.471 0.698 1.19 0.262

Table 67: Accuracy per prompt template for GPT-3-1.3B (babbage).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 55.7 60.7 61.0 59.0 60.7 57.8
2 63.0 62.5 65.7 61.7 63.0 59.3
3 56.2 59.0 60.5 59.3 64.8 61.0
4 53.3 59.7 60.7 62.5 65.0 66.7
5 59.2 62.5 63.7 61.8 61.5 58.7
6 59.0 60.2 64.3 61.2 62.2 57.7

Mean 57.7 60.8 62.6 60.9 62.9 60.2
– std 3.1 1.33 2.01 1.31 1.6 3.11

Structured 55.1 59.8 60.7 60.3 63.5 61.8
– std 1.27 0.698 0.205 1.58 1.98 3.68

Natural 60.4 61.7 64.6 61.6 62.2 58.6
– std 1.84 1.08 0.838 0.262 0.613 0.66

Table 68: Accuracy per prompt template for GPT-3-6.7B (curie).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 58.3 63.0 64.8 67.7 64.0
2 57.5 65.2 63.2 65.3 65.8 65.2
3 57.0 54.2 59.2 61.2 60.8 59.3
4 53.3 61.7 62.8 63.8 64.7 60.7
5 55.3 64.2 62.5 64.5 65.8 63.7
6 52.5 63.5 63.7 64.0 66.2 64.3

Mean 54.8 61.2 62.4 63.9 65.2 62.9
– std 1.92 3.83 1.48 1.32 2.14 2.12

Structured 54.5 58.1 61.7 63.3 64.4 61.3
– std 1.74 3.07 1.75 1.52 2.82 1.97

Natural 55.1 64.3 63.1 64.6 65.9 64.4
– std 2.05 0.698 0.492 0.535 0.189 0.616
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Table 69: Accuracy per prompt template for GPT-3-175B (davinci).
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 61.2 67.3 66.3 62.7 66.7 66.2
2 53.7 65.3 68.8 69.3 71.0 69.7
3 58.7 65.8 68.2 64.7 65.0 65.3
4 64.0 62.8 71.3 68.7 66.2 67.8
5 54.2 66.3 69.0 70.0 70.0 70.8
6 51.7 66.7 68.7 68.3 71.0 70.0

Mean 57.2 65.7 68.7 67.3 68.3 68.3
– std 4.4 1.44 1.46 2.65 2.43 2.03

Structured 61.3 65.3 68.6 65.4 66.0 66.4
– std 2.16 1.87 2.06 2.49 0.713 1.03

Natural 53.2 66.1 68.8 69.2 70.7 70.2
– std 1.08 0.589 0.125 0.698 0.471 0.464

Table 70: Accuracy per prompt template for BlenderBot-90M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 46.7 51.5 46.7 46.7 46.5 46.5
2 46.7 51.3 46.5 46.7 46.7 46.7
3 46.7 46.7 46.7 46.7 46.3 46.8
4 46.7 46.7 46.7 46.7 46.5 46.7
5 46.7 50.0 46.7 46.7 46.7 46.7
6 46.5 53.5 46.3 46.7 46.7 46.7

Mean 46.7 49.9 46.6 46.7 46.6 46.7
– std 0.0745 2.52 0.153 7.11e-15 0.149 0.0898

Structured 46.7 48.3 46.7 46.7 46.4 46.7
– std 7.11e-15 2.26 7.11e-15 7.11e-15 0.0943 0.125

Natural 46.6 51.6 46.5 46.7 46.7 46.7
– std 0.0943 1.44 0.163 7.11e-15 7.11e-15 7.11e-15

Table 71: Accuracy per prompt template for BlenderBot-2.7B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.0 53.2 53.3 53.0 52.8 53.3
2 53.3 53.3 53.3 53.3 53.3 53.3
3 53.2 53.2 53.3 53.2 53.2 53.2
4 53.5 53.5 53.5 53.3 52.8 53.0
5 53.3 53.3 53.3 53.3 53.3 53.3
6 53.3 53.3 53.3 53.3 53.3 53.3

Mean 53.4 53.3 53.3 53.2 53.1 53.2
– std 0.269 0.1 0.0745 0.111 0.227 0.111

Structured 53.6 53.3 53.4 53.2 52.9 53.2
– std 0.33 0.141 0.0943 0.125 0.189 0.125

Natural 53.3 53.3 53.3 53.3 53.3 53.3
– std 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15
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Table 72: Accuracy per prompt template for BlenderBot-9.4B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.7 51.5 53.0 53.0 53.0 54.0
2 53.2 53.8 54.2 52.5 52.2 52.2
3 53.3 49.7 52.0 54.0 54.2 55.5
4 54.0 55.3 52.5 54.0 53.5 53.7
5 53.3 52.8 53.5 53.2 53.5 53.3
6 52.7 52.0 51.7 53.5 52.8 53.7

Mean 53.4 52.5 52.8 53.4 53.2 53.7
– std 0.407 1.77 0.859 0.537 0.63 0.978

Structured 53.7 52.2 52.5 53.7 53.6 54.4
– std 0.287 2.33 0.408 0.471 0.492 0.787

Natural 53.1 52.9 53.1 53.1 52.8 53.1
– std 0.262 0.736 1.05 0.419 0.531 0.634

Table 73: Accuracy per prompt template for T0-3B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 48.7 49.5 46.5 46.7 46.7 46.7
2 46.7 47.5 46.7 46.7 46.7 46.7
3 49.2 48.3 46.7 46.7 46.7 46.7
4 51.7 49.0 46.7 46.7 46.7 46.7
5 46.7 49.2 46.7 46.7 46.7 46.7
6 46.7 49.8 46.8 46.7 46.7 46.7

Mean 48.3 48.9 46.7 46.7 46.7 46.7
– std 1.84 0.773 0.0898 7.11e-15 7.11e-15 7.11e-15

Structured 49.9 48.9 46.6 46.7 46.7 46.7
– std 1.31 0.492 0.0943 7.11e-15 7.11e-15 7.11e-15

Natural 46.7 48.8 46.7 46.7 46.7 46.7
– std 7.11e-15 0.974 0.0471 7.11e-15 7.11e-15 7.11e-15

Table 74: Accuracy per prompt template for T0-11B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.5 47.7 47.3 46.8 46.7 46.7
2 49.3 47.5 46.7 46.7 46.8 46.7
3 65.3 48.8 47.3 46.7 46.7 46.7
4 63.8 48.0 47.0 46.7 46.7 46.7
5 48.0 47.2 46.7 46.7 47.0 46.8
6 49.7 47.5 47.0 46.8 47.0 47.0

Mean 55.6 47.8 47.0 46.7 46.8 46.8
– std 7.04 0.515 0.245 0.0471 0.134 0.111

Structured 62.2 48.2 47.2 46.7 46.7 46.7
– std 3.38 0.464 0.141 0.0471 7.11e-15 7.11e-15

Natural 49.0 47.4 46.8 46.7 46.9 46.8
– std 0.726 0.141 0.141 0.0471 0.0943 0.125
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Table 75: Accuracy per prompt template for Flan-T5-780M.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.5 63.3 62.2 60.7 61.5 60.2
2 66.5 65.8 65.3 62.8 65.5 65.0
3 61.7 60.2 58.8 60.8 59.8 59.7
4 58.0 50.2 50.7 51.3 52.3 54.8
5 63.8 69.0 64.3 63.2 65.2 65.5
6 65.3 68.8 64.8 62.3 64.7 63.8

Mean 63.3 62.9 61.0 60.2 61.5 61.5
– std 2.79 6.44 5.1 4.08 4.61 3.73

Structured 61.4 57.9 57.2 57.6 57.9 58.2
– std 2.66 5.59 4.82 4.45 4.0 2.44

Natural 65.2 67.9 64.8 62.8 65.1 64.8
– std 1.1 1.46 0.408 0.368 0.33 0.713

Table 76: Accuracy per prompt template for Flan-T5-3B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 58.8 56.8 56.7 57.5 60.0
2 51.2 50.8 59.0 59.2 59.0 59.7
3 54.8 51.3 49.7 49.0 48.7 48.5
4 55.3 50.0 48.0 49.0 49.3 50.8
5 51.0 54.3 57.2 58.0 58.0 57.8
6 48.0 51.2 58.7 59.0 58.0 59.8

Mean 52.5 52.7 54.9 55.1 55.1 56.1
– std 2.65 3.02 4.37 4.42 4.33 4.67

Structured 54.9 53.4 51.5 51.6 51.8 53.1
– std 0.262 3.88 3.81 3.63 4.01 4.97

Natural 50.1 52.1 58.3 58.7 58.3 59.1
– std 1.46 1.56 0.787 0.525 0.471 0.92

Table 77: Accuracy per prompt template for Flan-T5-11B.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.3 61.0 63.7 65.0 62.5 64.3
2 61.5 59.7 63.2 62.3 64.0 68.0
3 56.5 63.0 60.2 57.3 56.7 56.8
4 61.7 47.7 51.7 50.3 50.3 49.5
5 61.5 55.8 64.8 64.7 65.5 66.3
6 59.2 57.5 66.3 63.7 66.0 67.7

Mean 60.8 57.4 61.7 60.5 60.8 62.1
– std 2.42 4.94 4.82 5.25 5.62 6.78

Structured 60.8 57.2 58.5 57.5 56.5 56.9
– std 3.24 6.79 5.04 6.0 4.98 6.04

Natural 60.7 57.7 64.8 63.6 65.2 67.3
– std 1.08 1.6 1.27 0.984 0.85 0.741
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Table 78: Accuracy per prompt template for Cohere-command-6b.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 65.0 63.2 71.7 70.2 71.3 70.3
2 64.8 64.2 66.8 67.5 69.8 71.7
3 68.0 65.5 69.2 65.5 66.8 68.2
4 70.0 68.5 69.2 71.2 71.7 73.2
5 66.3 65.0 66.8 67.5 70.5 69.8
6 63.7 63.7 67.7 67.5 70.0 69.5

Mean 66.3 65.0 68.6 68.2 70.0 70.5
– std 2.13 1.74 1.71 1.9 1.59 1.61

Structured 67.7 65.7 70.0 69.0 69.9 70.6
– std 2.05 2.17 1.18 2.49 2.22 2.05

Natural 64.9 64.3 67.1 67.5 70.1 70.3
– std 1.07 0.535 0.424 0.0 0.294 0.974

Table 79: Accuracy per prompt template for Cohere-command-52b.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 65.2 74.2 77.8 75.8 75.5 76.0
2 61.7 72.0 73.5 75.3 75.2 74.5
3 56.7 74.5 77.3 77.2 76.5 75.0
4 68.2 70.7 76.0 74.8 75.3 75.3
5 54.8 72.7 74.8 76.2 74.8 74.7
6 54.8 73.0 73.0 74.5 75.0 74.5

Mean 60.2 72.8 75.4 75.6 75.4 75.0
– std 5.19 1.29 1.8 0.903 0.546 0.529

Structured 63.4 73.1 77.0 75.9 75.8 75.4
– std 4.87 1.72 0.759 0.984 0.525 0.419

Natural 57.1 72.6 73.8 75.3 75.0 74.6
– std 3.25 0.419 0.759 0.694 0.163 0.0943

Table 80: Accuracy per prompt template for text-ada-001-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 60.8 62.8 60.8 59.0 58.7 58.8
2 50.7 56.3 54.8 56.0 57.7 52.7
3 63.7 58.5 60.8 59.0 56.7 57.5
4 61.8 56.3 59.3 58.3 61.0 56.7
5 53.3 55.5 55.2 55.7 58.0 54.3
6 48.7 54.7 54.7 56.2 57.7 53.5

Mean 56.5 57.3 57.6 57.4 58.3 55.6
– std 5.82 2.7 2.75 1.43 1.34 2.22

Structured 62.1 59.2 60.3 58.8 58.8 57.7
– std 1.2 2.7 0.707 0.33 1.76 0.865

Natural 50.9 55.5 54.9 56.0 57.8 53.5
– std 1.88 0.653 0.216 0.205 0.141 0.653
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Table 81: Accuracy per prompt template for text-babbage-001-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 67.5 64.0 66.3 63.0 64.0 64.7
2 63.0 62.5 66.2 64.2 66.5 68.2
3 65.3 65.2 66.0 63.2 64.7 64.5
4 65.2 63.5 65.7 62.7 63.0 64.8
5 61.8 64.3 66.5 64.0 66.3 67.8
6 64.0 63.8 66.2 64.2 66.7 66.0

Mean 64.5 63.9 66.1 63.6 65.2 66.0
– std 1.82 0.815 0.25 0.605 1.4 1.5

Structured 66.0 64.2 66.0 63.0 63.9 64.7
– std 1.06 0.713 0.245 0.205 0.698 0.125

Natural 62.9 63.5 66.3 64.1 66.5 67.3
– std 0.899 0.759 0.141 0.0943 0.163 0.957

Table 82: Accuracy per prompt template for text-curie-001-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 70.7 70.2 72.5 70.8 70.8 70.7
2 66.5 59.3 70.3 69.7 68.3 71.2
3 73.2 70.2 73.5 69.7 71.8 69.7
4 71.3 68.0 71.0 69.8 71.0 69.0
5 65.5 58.8 70.0 70.2 68.5 70.7
6 66.5 59.8 70.7 70.8 69.0 70.8

Mean 69.0 64.4 71.3 70.2 69.9 70.4
– std 2.9 5.14 1.25 0.478 1.35 0.754

Structured 71.7 69.5 72.3 70.1 71.2 69.8
– std 1.07 1.04 1.03 0.497 0.432 0.698

Natural 66.2 59.3 70.3 70.2 68.6 70.9
– std 0.471 0.408 0.287 0.45 0.294 0.216

Table 83: Accuracy per prompt template for text-davinci-001-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 76.5 73.7 75.7 75.7 76.3 76.8
2 72.0 72.5 74.3 75.2 76.0 75.3
3 74.8 74.2 75.7 77.2 75.8 76.8
4 68.0 70.2 72.8 72.8 73.3 75.0
5 72.5 73.2 74.3 74.3 75.3 75.7
6 70.0 72.7 74.3 74.7 75.0 75.3

Mean 72.3 72.7 74.5 75.0 75.3 75.8
– std 2.82 1.28 0.991 1.34 0.986 0.724

Structured 73.1 72.7 74.7 75.2 75.1 76.2
– std 3.67 1.78 1.37 1.83 1.31 0.849

Natural 71.5 72.8 74.3 74.7 75.4 75.4
– std 1.08 0.294 0.0 0.368 0.419 0.189
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Table 84: Accuracy per prompt template for text-davinci-002-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 73.7 76.2 80.2 79.5 79.8 80.7
2 69.5 73.5 78.2 78.5 76.7 79.8
3 73.0 78.7 82.8 82.8 82.7 82.8
4 71.3 79.7 80.5 80.8 82.0 81.5
5 67.5 72.5 79.2 79.2 77.0 79.8
6 68.5 73.2 76.5 76.5 76.2 79.2

Mean 70.6 75.6 79.6 79.5 79.1 80.6
– std 2.28 2.79 1.96 1.94 2.6 1.22

Structured 72.7 78.2 81.2 81.0 81.5 81.7
– std 1.01 1.47 1.16 1.36 1.24 0.865

Natural 68.5 73.1 78.0 78.1 76.6 79.6
– std 0.816 0.419 1.11 1.14 0.33 0.283

Table 85: Accuracy per prompt template for text-davinci-003-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 74.3 71.7 79.8 80.2 80.7 80.3
2 71.8 75.0 80.2 78.8 78.2 78.3
3 71.8 73.7 79.7 79.5 79.2 81.2
4 65.2 74.2 78.5 78.2 79.7 79.5
5 72.2 75.3 80.2 78.5 78.2 78.8
6 72.2 76.0 79.7 78.8 78.3 79.0

Mean 71.2 74.3 79.7 79.0 79.0 79.5
– std 2.84 1.38 0.57 0.666 0.929 0.975

Structured 70.4 73.2 79.3 79.3 79.9 80.3
– std 3.84 1.08 0.591 0.829 0.624 0.694

Natural 72.1 75.4 80.0 78.7 78.2 78.7
– std 0.189 0.419 0.236 0.141 0.0471 0.294

Table 86: Accuracy per prompt template for ChatGPT-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 77.8 73.3 72.7 72.7 74.2 74.5
2 73.2 76.2 78.7 78.2 79.7 79.2
3 72.7 74.0 74.3 74.7 75.0 74.8
4 59.3 73.7 60.8 63.5 66.0 68.0
5 74.7 76.8 77.8 77.7 79.3 78.8
6 74.8 76.7 79.0 79.0 79.2 78.5

Mean 72.1 75.1 73.9 74.3 75.6 75.6
– std 5.94 1.48 6.29 5.29 4.79 3.9

Structured 69.9 73.7 69.3 70.3 71.7 72.4
– std 7.8 0.287 6.02 4.88 4.07 3.14

Natural 74.2 76.6 78.5 78.3 79.4 78.8
– std 0.732 0.262 0.51 0.535 0.216 0.287
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Table 87: Accuracy per prompt template for GPT-4-unknown.
Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 83.3 82.7 84.0 84.2 85.5 84.5
2 81.8 80.8 80.8 78.0 79.3 79.7
3 84.7 83.7 84.2 85.3 85.5 85.3
4 80.5 84.3 82.5 84.3 83.3 83.7
5 79.5 81.0 80.8 77.0 79.0 79.0
6 80.8 81.3 79.8 79.0 79.8 80.8

Mean 81.8 82.3 82.0 81.3 82.1 82.2
– std 1.76 1.36 1.67 3.37 2.81 2.44

Structured 82.8 83.6 83.6 84.6 84.8 84.5
– std 1.75 0.66 0.759 0.497 1.04 0.653

Natural 80.7 81.0 80.5 78.0 79.4 79.8
– std 0.942 0.205 0.471 0.816 0.33 0.741
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L Timestamps API calls

For reproducibility purposes, Table 88, 89, and 90 contain the dates and times the APIs from OpenAI
and Cohere were queried for the results.

Table 88: Timestamp each was evaluated through OpenAI’s API (1/2).
model timestamp
GPT-3-ada/0-shot 2022-09-22 13:13:29
GPT-3-ada/1-shot 2022-09-22 15:11:13
GPT-3-ada/5-shot 2022-09-22 15:40:12
GPT-3-ada/10-shot 2022-09-22 18:14:18
GPT-3-ada/15-shot 2022-09-22 19:15:29
GPT-3-ada/30-shot 2022-09-22 22:47:58
GPT-3-babbage/0-shot 2022-09-22 23:19:05
GPT-3-babbage/1-shot 2022-09-22 23:39:53
GPT-3-babbage/5-shot 2022-09-23 00:01:32
GPT-3-babbage/10-shot 2022-09-23 00:24:27
GPT-3-babbage/15-shot 2022-09-23 00:49:13
GPT-3-babbage/30-shot 2022-09-23 01:15:44
GPT-3-curie/0-shot 2022-09-22 14:04:32
GPT-3-curie/1-shot 2022-09-23 02:09:14
GPT-3-curie/5-shot 2022-09-23 02:32:20
GPT-3-curie/10-shot 2022-09-23 02:56:43
GPT-3-curie/15-shot 2022-09-23 03:23:19
GPT-3-curie/30-shot 2022-09-23 03:52:30
GPT-3-davinci/0-shot 2022-09-22 12:21:48
GPT-3-davinci/1-shot 2022-09-23 14:27:15
GPT-3-davinci/5-shot 2022-09-23 15:10:40
GPT-3-davinci/10-shot 2022-09-23 16:04:53
GPT-3-davinci/15-shot 2022-09-23 17:17:04
GPT-3-davinci/30-shot 2022-09-23 18:36:38
OpenAI-text-ada-001/0-shot 2022-08-17 16:59:45
OpenAI-text-ada-001/1-shot 2022-08-17 18:23:12
OpenAI-text-ada-001/5-shot 2022-08-17 19:16:48
OpenAI-text-ada-001/10-shot 2022-08-17 20:24:16
OpenAI-text-ada-001/15-shot 2022-08-17 21:21:46
OpenAI-text-ada-001/30-shot 2022-08-17 22:44:47
OpenAI-text-babbage-001/0-shot 2022-08-17 11:50:44
OpenAI-text-babbage-001/1-shot 2022-08-17 12:22:08
OpenAI-text-babbage-001/5-shot 2022-08-17 12:50:59
OpenAI-text-babbage-001/10-shot 2022-08-17 13:27:52
OpenAI-text-babbage-001/15-shot 2022-08-17 14:57:43
OpenAI-text-babbage-001/30-shot 2022-08-17 15:45:16
OpenAI-text-curie-001/0-shot 2022-08-18 04:39:55
OpenAI-text-curie-001/1-shot 2022-08-18 05:10:17
OpenAI-text-curie-001/5-shot 2022-08-18 05:40:56
OpenAI-text-curie-001/10-shot 2022-08-18 06:15:28
OpenAI-text-curie-001/15-shot 2022-08-18 06:53:09
OpenAI-text-curie-001/30-shot 2022-08-18 07:35:40
OpenAI-text-davinci-001/0-shot 2022-08-26 20:26:21
OpenAI-text-davinci-001/1-shot 2022-08-26 21:02:31
OpenAI-text-davinci-001/5-shot 2022-08-26 21:35:19
OpenAI-text-davinci-001/10-shot 2022-08-27 07:14:02
OpenAI-text-davinci-001/15-shot 2022-08-27 07:58:25
OpenAI-text-davinci-001/30-shot 2022-08-27 08:44:42
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Table 89: Timestamp each was evaluated through OpenAI’s API - continued (2/2).
model timestamp
OpenAI-text-davinci-002/0-shot 2022-08-10 21:41:50
OpenAI-text-davinci-002/1-shot 2022-08-11 10:04:17
OpenAI-text-davinci-002/5-shot 2022-08-12 15:41:45
OpenAI-text-davinci-002/10-shot 2022-08-12 16:41:14
OpenAI-text-davinci-002/15-shot 2022-08-16 12:11:43
OpenAI-text-davinci-002/30-shot 2022-08-16 14:35:38
OpenAI-text-davinci-003/0-shot 2023-03-15 11:35:23
OpenAI-text-davinci-003/1-shot 2023-04-04 13:12:05
OpenAI-text-davinci-003/5-shot 2023-03-15 12:30:39
OpenAI-text-davinci-003/10-shot 2023-04-04 14:01:03
OpenAI-text-davinci-003/15-shot 2023-04-04 15:23:29
OpenAI-text-davinci-003/30-shot 2023-04-06 15:08:38
OpenAI-gpt-3.5.turbo/0-shot 2023-04-05 13:33:09
OpenAI-gpt-3.5.turbo/1-shot 2023-04-05 16:36:45
OpenAI-gpt-3.5.turbo/5-shot 2023-04-06 08:46:09
OpenAI-gpt-3.5.turbo/10-shot 2023-04-06 09:54:07
OpenAI-gpt-3.5.turbo/15-shot 2023-04-06 10:57:18
OpenAI-gpt-3.5.turbo/30-shot 2023-04-06 12:03:59
OpenAI-gpt-4/0-shot 2023-04-06 17:38:16
OpenAI-gpt-4/1-shot 2023-04-06 19:41:59
OpenAI-gpt-4/5-shot 2023-04-06 22:56:31
OpenAI-gpt-4/10-shot 2023-04-08 12:06:03
OpenAI-gpt-4/15-shot 2023-04-08 17:32:04
OpenAI-gpt-4/30-shot 2023-04-08 19:56:26
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Table 90: Timestamp each model was evaluated through Cohere’s API.
model timestamp
Cohere-small/0-shot 2022-08-16 22:22:17
Cohere-small/1-shot 2022-08-17 08:22:43
Cohere-small/5-shot 2022-08-17 09:19:57
Cohere-small/10-shot 2022-08-17 10:43:53
Cohere-small/15-shot 2022-08-17 12:53:02
Cohere-small/30-shot 2022-08-17 13:46:08
Cohere-medium/0-shot 2022-08-17 15:14:02
Cohere-medium/1-shot 2022-08-17 16:00:21
Cohere-medium/5-shot 2022-08-17 18:23:38
Cohere-medium/10-shot 2022-08-17 19:16:00
Cohere-medium/15-shot 2022-08-17 20:24:12
Cohere-medium/30-shot 2022-08-17 21:20:28
Cohere-large/0-shot 2022-08-17 22:47:49
Cohere-large/1-shot 2022-08-17 23:27:00
Cohere-large/5-shot 2022-08-18 00:10:08
Cohere-large/10-shot 2022-08-18 00:56:55
Cohere-large/15-shot 2022-08-18 01:48:30
Cohere-large/30-shot 2022-08-18 02:47:14
Cohere-xl/0-shot 2022-07-29
Cohere-xl/1-shot 2022-07-31
Cohere-xl/5-shot 2022-08-02
Cohere-xl/10-shot 2022-08-02 15:16:45
Cohere-xl/15-shot 2022-08-07 13:55:44
Cohere-xl/30-shot 2022-08-16 19:51:08
Cohere-command-medium/0-shot 2023-04-04 09:54:27
Cohere-command-medium/1-shot 2023-04-04 11:51:07
Cohere-command-medium/5-shot 2023-04-04 13:03:07
Cohere-command-medium/10-shot 2023-04-04 13:31:47
Cohere-command-medium/15-shot 2023-04-04 14:06:10
Cohere-command-medium/30-shot 2023-04-04 14:42:13
Cohere-command-xl/0-shot 2023-04-04 10:25:30
Cohere-command-xl/1-shot 2023-04-04 15:27:01
Cohere-command-xl/5-shot 2023-04-04 15:59:47
Cohere-command-xl/10-shot 2023-04-04 16:36:22
Cohere-command-xl/15-shot 2023-04-04 17:22:58
Cohere-command-xl/30-shot 2023-04-04 18:16:54
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Table 91: Timestamp, duration, and emissions per experiment with non-API models. (1/4)
model timestamp duration

EleutherAI-125m-0-shot 2022-09-01T21:33:14 8549.649220
EleutherAI-125m-1-shot 2022-09-02T00:10:03 640.861120
EleutherAI-125m-5-shot 2022-09-02T00:26:27 982.369876
EleutherAI-125m-10-shot 2022-09-02T00:51:24 1495.525381
EleutherAI-125m-15-shot 2022-09-02T01:29:03 2257.290708
EleutherAI-125m-30-shot 2022-09-02T09:04:03 27298.375266
EleutherAI-2.7b-0-shot 2022-09-03T00:36:14 3752.897449
EleutherAI-2.7b-1-shot 2022-09-03T02:04:16 5279.884696
EleutherAI-2.7b-5-shot 2022-09-03T04:28:19 8641.654516
EleutherAI-2.7b-10-shot 2022-09-03T08:18:13 13792.592126
EleutherAI-2.7b-15-shot 2022-09-03T13:33:25 18909.551123
EleutherAI-2.7b-30-shot 2022-09-03T22:47:06 33219.682098
EleutherAI-20b-0-shot 2022-08-25T07:40:55 1378.197924
EleutherAI-20b-1-shot 2022-08-25T08:15:23 807.702344
EleutherAI-20b-5-shot 2022-08-25T15:39:51 859.585535
EleutherAI-20b-10-shot 2022-08-25T16:18:50 1175.128651
EleutherAI-20b-15-shot 2022-08-25T16:47:30 1713.266182
EleutherAI-20b-30-shot 2022-08-25T17:45:28 3469.811664
EleutherAI-6b-0-shot 2022-08-24T22:29:30 1287.627453
EleutherAI-6b-1-shot 2022-08-24T23:22:30 1831.554774
EleutherAI-6b-5-shot 2022-08-25T00:16:57 3255.128955
EleutherAI-6b-10-shot 2022-08-25T01:23:21 3971.650578
EleutherAI-6b-15-shot 2022-08-25T02:26:23 3772.113814
EleutherAI-6b-30-shot 2022-08-25T04:18:30 6719.419030
EleutherAI-1.3b-0-shot 2022-09-02T09:54:06 3000.666020
EleutherAI-1.3b-1-shot 2022-09-02T10:46:30 3142.207699
EleutherAI-1.3b-5-shot 2022-09-02T12:25:25 5933.046596
EleutherAI-1.3b-10-shot 2022-09-02T12:39:00 8509.257493
EleutherAI-1.3b-15-shot 2022-09-02T18:00:39 11615.289366
EleutherAI-1.3b-30-shot 2022-09-02T23:33:39 19978.306457

M Compute and Emissions

Find below in Table 91 until Table 94 the timestamps, durations, and emissions per experiment (calcu-
lated with the CodeCarbon library in Python). Find below in Table 95 until Table 98 the cpu-type and
count and gpu-type and count per experiment. In terms of compute the following GPU hours can be es-
timated if we assume each run is entirely done on the GPU (which is not true in reality, but worst case):

NVIDIA A100-SXM4-40GB used for 926.4291392151515 hours.

Tesla V100-PCIE-32GB used for 29.282544113265143 hours.

Tesla V100-PCIE-16GB used for 11.462701331244574 hours.
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Table 92: Timestamp, duration, and emissions per experiment with non-API models. (2/4)
model timestamp duration

BLOOM-3b-0-shot 2022-08-31T12:54:37 5178.369790
BLOOM-3b-1-shot 2022-08-31T14:39:32 6292.560350
BLOOM-3b-5-shot 2022-08-31T17:37:29 10675.230701
BLOOM-3b-10-shot 2022-08-31T21:59:27 15715.744792
BLOOM-3b-15-shot 2022-09-01T03:41:02 20492.823278
BLOOM-3b-30-shot 2022-09-01T15:47:21 43577.882397
BLOOM-7b1-0-shot 2022-08-25T04:56:35 625.931470
BLOOM-7b1-1-shot 2022-08-25T05:07:13 630.628939
BLOOM-7b1-5-shot 2022-08-25T05:24:22 1022.138932
BLOOM-7b1-10-shot 2022-08-25T05:49:00 1471.008220
BLOOM-7b1-15-shot 2022-08-25T06:23:26 2058.455127
BLOOM-7b1-30-shot 2022-08-25T07:29:46 3972.772039
BLOOM-560m-0-shot 2022-08-29T15:35:52 2541.248956
BLOOM-560m-1-shot 2022-08-29T18:52:16 2532.794568
BLOOM-560m-5-shot 2022-08-29T20:16:16 5038.547060
BLOOM-560m-10-shot 2022-08-29T22:17:43 7285.239875
BLOOM-560m-15-shot 2022-08-30T00:38:23 8438.096533
BLOOM-560m-30-shot 2022-08-30T04:38:44 14419.447170
BLOOM-1b1-0-shot 2022-08-30T05:18:44 2398.828856
BLOOM-1b1-1-shot 2022-08-30T06:06:45 2879.435828
BLOOM-1b1-5-shot 2022-08-30T07:35:59 5352.607075
BLOOM-1b1-10-shot 2022-08-30T10:15:02 9541.535419
BLOOM-1b1-15-shot 2022-08-30T13:22:42 11257.077128
BLOOM-1b1-30-shot 2022-08-30T18:08:15 17131.797610
BLOOM-176b-0-shot 2022-10-14T12:51:11 3015.240235
BLOOM-176b-1-shot 2022-10-14T13:57:53 3906.461752
BLOOM-176b-5-shot 2022-10-14T20:41:10 7411.725385
BLOOM-176b-10-shot 2022-10-23T21:43:21 14462.201855
BLOOM-176b-15-shot 2022-10-24T01:14:10 12609.026736
BLOOM-176b-30-shot 2022-10-14T20:47:02 33159.499966
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Table 93: Timestamp, duration, and emissions per experiment with non-API models. (3/4)
model timestamp duration

OPT-13b-0-shot 2022-08-25T07:07:08 878.202579
OPT-13b-1-shot 2022-08-25T07:31:30 458.133617
OPT-13b-5-shot 2022-08-25T07:37:39 578.308507
OPT-13b-10-shot 2022-08-25T08:01:50 821.158826
OPT-13b-15-shot 2022-08-25T08:20:49 1131.479665
OPT-13b-30-shot 2022-08-25T16:05:27 2235.869414
OPT-350m-0-shot 2022-09-16T17:26:28 389.173905
OPT-350m-1-shot 2022-09-16T17:33:42 424.832551
OPT-350m-5-shot 2022-09-16T18:00:14 1583.824094
OPT-350m-10-shot 2022-09-16T18:32:12 1908.822462
OPT-350m-15-shot 2022-09-16T19:03:23 1863.625027
OPT-350m-30-shot 2022-09-16T19:47:29 2637.811867
OPT-125m-0-shot 2022-09-16T15:15:56 273.178967
OPT-125m-1-shot 2022-09-16T15:20:28 259.680856
OPT-125m-5-shot 2022-09-16T15:41:37 1259.801105
OPT-125m-10-shot 2022-09-16T16:09:59 1693.598805
OPT-125m-15-shot 2022-09-16T16:41:46 1899.415318
OPT-125m-30-shot 2022-09-16T17:19:51 2276.441314
OPT-6.7b-0-shot 2022-08-24T23:03:07 1140.485014
OPT-6.7b-1-shot 2022-08-24T23:17:51 872.225225
OPT-6.7b-5-shot 2022-08-24T23:34:40 995.894396
OPT-6.7b-10-shot 2022-08-24T23:55:44 1252.956499
OPT-6.7b-15-shot 2022-08-25T00:23:04 1627.749039
OPT-6.7b-30-shot 2022-08-25T01:05:49 2553.054289
OPT-2.7b-0-shot 2022-09-18T16:35:05 686.197892
OPT-2.7b-1-shot 2022-09-18T16:45:11 593.508211
OPT-2.7b-5-shot 2022-09-18T17:12:11 1613.313387
OPT-2.7b-10-shot 2022-09-18T17:44:48 1949.808232
OPT-2.7b-15-shot 2022-09-18T18:22:02 2225.927837
OPT-2.7b-30-shot 2022-09-18T19:09:05 2815.327871
OPT-30b-0-shot 2022-08-25T19:03:37 591.665447
OPT-30b-1-shot 2022-08-25T19:14:32 645.923823
OPT-30b-5-shot 2022-08-25T16:44:22 1825.821606
OPT-30b-10-shot 2022-08-25T17:07:22 1372.752916
OPT-30b-15-shot 2022-08-25T17:41:05 2015.006104
OPT-30b-30-shot 2022-08-25T18:10:39 3859.078056
OPT-1.3b-0-shot 2022-09-17T17:53:50 595.193443
OPT-1.3b-1-shot 2022-09-17T18:03:45 579.367790
OPT-1.3b-5-shot 2022-09-17T18:33:18 1759.103432
OPT-1.3b-10-shot 2022-09-17T19:12:19 2327.300123
OPT-1.3b-15-shot 2022-09-17T19:48:32 2161.637401
OPT-1.3b-30-shot 2022-09-17T20:37:00 2893.829010
OPT-175b-0-shot 2022-10-19T15:02:56 2387.104187
OPT-175b-1-shot 2022-10-19T16:34:06 1589.972279
OPT-175b-5-shot 2022-10-19T17:25:58 3072.591171
OPT-175b-10-shot 2022-10-19T17:33:15 6211.692086
OPT-175b-15-shot 2022-10-19T21:29:16 8019.585246
OPT-175b-30-shot 2022-10-19T21:36:53 19901.470347
OPT-66b-0-shot 2022-08-25T18:58:11 2834.901372
OPT-66b-1-shot 2022-08-25T19:22:09 1427.806986
OPT-66b-5-shot 2022-08-25T19:47:39 1521.168440
OPT-66b-10-shot 2022-08-25T20:24:56 2228.407874
OPT-66b-15-shot 2022-08-25T21:41:21 3370.689256
OPT-66b-30-shot 2022-08-26T00:31:36 6816.312183
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Table 94: Timestamp, duration, and emissions per experiment with non-API models. (4/4)
model timestamp duration

BlenderBot-2.7b-0-shot 2022-09-04T08:09:56 3656.381540
BlenderBot-2.7b-1-shot 2022-09-12T15:58:01 4051.858183
BlenderBot-2.7b-5-shot 2022-09-12T17:16:20 4696.628979
BlenderBot-2.7b-10-shot 2022-09-12T18:35:53 4772.083818
BlenderBot-2.7b-15-shot 2022-09-12T19:54:13 4698.638356
BlenderBot-2.7b-30-shot 2022-09-12T21:10:34 4579.460884
BlenderBot-9.4b-0-shot 2022-10-22T04:04:24 614.201131
BlenderBot-9.4b-1-shot 2022-10-22T17:17:21 659.975971
BlenderBot-9.4b-5-shot 2022-10-22T17:31:48 839.336277
BlenderBot-9.4b-10-shot 2022-10-22T17:46:18 843.852691
BlenderBot-9.4b-15-shot 2022-10-22T17:53:41 1262.038660
BlenderBot-9.4b-30-shot 2022-10-22T18:23:25 853.334728
BlenderBot-90m-0-shot 2022-09-14T15:11:44 273.134700
BlenderBot-90m-1-shot 2022-09-14T15:17:38 351.542638
BlenderBot-90m-5-shot 2022-09-14T15:29:50 730.774348
BlenderBot-90m-10-shot 2022-09-14T15:47:22 1050.647882
BlenderBot-90m-15-shot 2022-09-14T16:07:27 1204.079804
BlenderBot-90m-30-shot 2022-09-14T16:28:55 1285.913686
T0-3b-0-shot 2022-10-21T17:33:36 348.245298
T0-3b-1-shot 2022-10-24T23:20:57 350.730799
T0-3b-5-shot 2022-10-24T23:29:21 474.378557
T0-3b-10-shot 2022-10-25T15:56:54 676.111759
T0-3b-15-shot 2022-10-25T16:12:55 928.215524
T0-3b-30-shot 2022-10-24T23:30:17 1961.897054
T0-11b-0-shot 2022-10-21T15:38:13 2289.815276
T0-11b-1-shot 2022-10-22T19:18:25 814.872760
T0-11b-5-shot 2022-10-22T19:41:45 1368.644314
T0-11b-10-shot 2022-10-22T20:17:30 2112.628515
T0-11b-15-shot 2022-10-22T21:06:30 2904.655213
T0-11b-30-shot 2022-10-22T22:41:16 5648.105648
Flan-T5-3b-0-shot 2022-10-24T11:20:36 617.820384
Flan-T5-3b-1-shot 2022-10-25T12:29:59 348.405589
Flan-T5-3b-5-shot 2022-10-25T12:38:24 474.872964
Flan-T5-3b-10-shot 2022-10-25T12:50:00 665.592482
Flan-T5-3b-15-shot 2022-10-25T13:05:34 902.197151
Flan-T5-3b-30-shot 2022-10-25T13:37:14 1864.885266
Flan-T5-780m-0-shot 2022-10-24T11:54:09 160.503411
Flan-T5-780m-1-shot 2022-10-25T14:41:28 3816.321305
Flan-T5-780m-5-shot 2022-10-25T14:46:09 251.699700
Flan-T5-780m-10-shot 2022-10-25T14:52:09 331.340966
Flan-T5-780m-15-shot 2022-10-25T14:59:00 381.107934
Flan-T5-780m-30-shot 2022-10-25T15:11:18 705.711192
Flan-T5-11b-0-shot 2022-10-24T10:25:09 1111.283857
Flan-T5-11b-1-shot 2022-10-24T10:56:52 654.411412
Flan-T5-11b-5-shot 2022-10-25T17:26:50 1403.159768
Flan-T5-11b-10-shot 2022-10-25T18:29:59 3756.529085
Flan-T5-11b-15-shot 2022-10-25T19:21:15 3042.271478
Flan-T5-11b-30-shot 2022-10-25T20:57:13 5722.244579
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Table 95: Compute used per experiment with non-API models. (1/4)
model cpus cpu model gpu model

EleutherAI-125m-0-shot 10 Apple M1 Max
EleutherAI-125m-1-shot 10 Apple M1 Max
EleutherAI-125m-5-shot 10 Apple M1 Max
EleutherAI-125m-10-shot 10 Apple M1 Max
EleutherAI-125m-15-shot 10 Apple M1 Max
EleutherAI-125m-30-shot 10 Apple M1 Max
EleutherAI-2.7b-0-shot 10 Apple M1 Max
EleutherAI-2.7b-1-shot 10 Apple M1 Max
EleutherAI-2.7b-5-shot 10 Apple M1 Max
EleutherAI-2.7b-10-shot 10 Apple M1 Max
EleutherAI-2.7b-15-shot 10 Apple M1 Max
EleutherAI-2.7b-30-shot 10 Apple M1 Max
EleutherAI-20b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-20b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-6b-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
EleutherAI-1.3b-0-shot 10 Apple M1 Max
EleutherAI-1.3b-1-shot 10 Apple M1 Max
EleutherAI-1.3b-5-shot 10 Apple M1 Max
EleutherAI-1.3b-10-shot 10 Apple M1 Max
EleutherAI-1.3b-15-shot 10 Apple M1 Max
EleutherAI-1.3b-30-shot 10 Apple M1 Max
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Table 96: Compute used per experiment with non-API models. (2/4)
model cpus cpu model gpu model

BLOOM-3b-0-shot 10 Apple M1 Max
BLOOM-3b-1-shot 10 Apple M1 Max
BLOOM-3b-5-shot 10 Apple M1 Max
BLOOM-3b-10-shot 10 Apple M1 Max
BLOOM-3b-15-shot 10 Apple M1 Max
BLOOM-3b-30-shot 10 Apple M1 Max
BLOOM-7b1-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-7b1-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
BLOOM-560m-0-shot 10 Apple M1 Max
BLOOM-560m-1-shot 10 Apple M1 Max
BLOOM-560m-5-shot 10 Apple M1 Max
BLOOM-560m-10-shot 10 Apple M1 Max
BLOOM-560m-15-shot 10 Apple M1 Max
BLOOM-560m-30-shot 10 Apple M1 Max
BLOOM-1b1-0-shot 10 Apple M1 Max
BLOOM-1b1-1-shot 10 Apple M1 Max
BLOOM-1b1-5-shot 10 Apple M1 Max
BLOOM-1b1-10-shot 10 Apple M1 Max
BLOOM-1b1-15-shot 10 Apple M1 Max
BLOOM-1b1-30-shot 10 Apple M1 Max
BLOOM-176b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BLOOM-176b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
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Table 97: Compute used per experiment with non-API models. (3/4)
model cpus cpu model gpu model

OPT-13b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-13b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-350m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-350m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-125m-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-6.7b-0-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-1-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-5-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-10-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-15-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-6.7b-30-shot 1 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-2.7b-0-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-1-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-5-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-10-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-15-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-2.7b-30-shot 24 Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz 4 x Tesla V100-PCIE-32GB
OPT-30b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-30b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-1.3b-0-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-1-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-5-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-10-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-15-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-1.3b-30-shot 40 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz 4 x Tesla V100-PCIE-16GB
OPT-175b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-175b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
OPT-66b-0-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-1-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-5-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-10-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-15-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
OPT-66b-30-shot 48 Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz 8 x NVIDIA A100-40GB
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Table 98: Compute used per experiment with non-API models. (4/4)
model cpus cpu model gpu model

BlenderBot-2.7b-0-shot 10 Apple M1 Max
BlenderBot-2.7b-1-shot 10 Apple M1 Max
BlenderBot-2.7b-5-shot 10 Apple M1 Max
BlenderBot-2.7b-10-shot 10 Apple M1 Max
BlenderBot-2.7b-15-shot 10 Apple M1 Max
BlenderBot-2.7b-30-shot 10 Apple M1 Max
BlenderBot-9.4b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-9.4b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
BlenderBot-90m-0-shot 10 Apple M1 Max
BlenderBot-90m-1-shot 10 Apple M1 Max
BlenderBot-90m-5-shot 10 Apple M1 Max
BlenderBot-90m-10-shot 10 Apple M1 Max
BlenderBot-90m-15-shot 10 Apple M1 Max
BlenderBot-90m-30-shot 10 Apple M1 Max
T0-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
T0-11b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-3b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-780m-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-0-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-1-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-5-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-10-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-15-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
Flan-T5-11b-30-shot 96 Intel(R) Xeon(R) CPU @ 2.20GHz 16 x NVIDIA A100-40GB
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