
Contextual Ambient Occlusion
Andrey Titov*

École de technologie
supérieure

Concordia University

Marta Kersten-Oertel†

Concordia University
Simon Drouin‡

École de technologie supérieure

ABSTRACT

In this paper, we present a new volumetric ambient occlusion algo-
rithm called Contextual Ambient Occlusion (CAO) that supports
real-time clipping. The algorithm produces ambient occlusion im-
ages of exactly the same quality as Local Ambient Occlusion (LAO)
while enabling real-time modification to the shape used to clip the
volume. The main idea of the algorithm is that clipping only affects
the ambient value of a small number of voxels, so by identifying
these voxels and recalculating the ambient factor only for them,
it is possible to significantly increase the rendering performance
(by 2-5x) without decreasing the quality of the rendered image.
Due to its fast performance, the algorithm is suitable for interactive
environments where clipping changes could occur every frame. Ad-
ditionally, the algorithm doesn’t have any stereoscopic inconsistency,
which makes it suitable for mixed reality environments.

Index Terms: Computing methodologies—Computer graphics—
Rendering; Applied computing—Life and medical sciences—
Computational biology—Imaging

1 INTRODUCTION

Ambient occlusion (AO) is a global illumination technique in com-
puter graphics that is used to estimate how much each particle in the
scene is illuminated with ambient lighting. The ambient factor of a
particle can be viewed as an “accessibility” of the particle [9]. The
general idea is that particles that are more obstructed and thus less ac-
cessible receive less ambient light and become darker consequently.
In volume rendering, the particle is surrounded with semi-transparent
or opaque voxels that cause this darkening by absorbing the ambient
light and not producing any emission [5].

One of the variations of volumetric AO, Local Ambient Occlu-
sion (LAO), is a shading technique that could be used in volume
rendering to provide better understanding of volumetric structures
by darkening regions less likely to be exposed to ambient light [6].
However, the computation of a darkening factor is expensive because
it requires sampling the neighborhood of a voxel and is usually com-
puted prior to visualization. When using interactive volumetric
clipping techniques, the ambient occlusion term needs to be recom-
puted every time the clipping region is modified because any change
to the voxel opacity will affect how much neighboring voxels are
obstructed. This computation is difficult to achieve in real-time, as
can be seen on Fig. 2. In this paper, we propose a new technique
called Contextual Ambient Occlusion (CAO) that enables fast re-
computation of regions where ambient occlusion is likely to have
changed every frame, while maintaining temporal stability.

The main idea of the algorithm is that in LAO, the ambient factor
of a voxel is affected only by a small number of surrounding voxels
in a certain spherical radius. Therefore, when parts of the volume
are clipped, only a small number of voxels have their value affected

*e-mail: andrey.titov.1@ens.etsmtl.ca
†e-mail: marta@ap-lab.ca
‡e-mail: simon.drouin@etsmtl.ca

Figure 1: CAO with a concave clipping shape (torus).

by the clipping. In our algorithm, we propose a pipeline that allows
us to identify those voxels and perform the LAO recalculation only
for them. Fig. 1 illustrates an example of an image that we were able
to obtain with this algorithm.

The algorithm was specifically designed for volume ray cast-
ing where a perspective transformation (which includes all linear
transformations such as translation, rotation, and scaling) could be
applied to the clipping region every frame. Therefore, it is partic-
ularly well suited for interactive visualization of volumetric data
where the user controls the position and rotation of the clipping
regions, such as with the interactive clipping technique presented by
Joshi et al. [7]. In addition to the fast calculation time, the algorithm
achieves high AO quality because it uses the discrete volume ren-
dering integral for opacity calculations, similar to Hernell et al. [6].
However, unlike the implementation described by Hernell et al. [6]
where only one ray is cast per frame, the algorithm calculates the
final AO factor for all rays every frame, which avoids having a blurry
effect that comes from the combination of multiple frames. This
makes it possible to use our algorithm even with a significant change
of the position, rotation or scale of the clipping region every frame.

In addition to the previous advantages, the new method is compat-
ible with virtual reality (VR) and augmented reality (AR) displays
because all the ambient occlusion factor calculations are done in data
space. This avoids the problem of screen-space stereoscopic incon-
sistency [13] and makes the algorithm scale well with an increasing
resolution and number of viewports. We evaluated the performance
of the algorithm in comparison with a naive implementation where
the ambient factor is recalculated for all voxels every frame and

Figure 2: Ray cast performed for each voxel to calculate the LAO
factor. Each red point represents a tri-linearly interpolated sample
taken from the volume. The ambient factors of all rays are then
aggregated together to create a single ambient value for the voxel.

found that our algorithm offers a 2-5x speedup. Additionally, if we
compare our algorithm to the one proposed by Hernell et al. [6], the
latter takes multiple frames (e.g. 6 to 54 to achieve a similar quality
to images presented in Fig. 10) to recover from a change of clipping
frames, which is unacceptable for interactive VR environments, and
our algorithm fixes this problem.

2 RELATED WORK

One of the most popular techniques to calculate ambient occlusion
that is commonly used in real-time computer graphics is Screen-
Space Ambient Occlusion (SSAO), which has the advantages of only
requiring a depth map as an input and having good performance due
to the fact that all calculations are done in screen-space [1]. However,
in volume rendering where a depth map cannot be obtained due to
the absence of isosurfaces in the dataset that needs to be visualized,
alternate algorithms to estimate the ambient factor have to be used.

One of the first papers to present a real-time implementation
of AO-alike volume shading technique was Vicinity Shading [14].
This algorithm first calculates the normal for each voxel, and then
sends 3D Bresenham rays in a half-spherical neighborhood at the
same side as the normal vector. Each ray traverses the volume until
it reaches a voxel whose opacity is higher, and the results of all
rays are aggregated together using averaging. This averaged value
then represents that vicinity value of the voxel, which can also be
interpreted as the ambient factor of the voxel.

Dı́az et al. [2] presented an algorithm that speeds up the pre-
calculation part compared to vicinity shading and doesn’t require
calculating the normal of every voxel. The algorithm uses the con-
cept of 3D summed area tables (SAT) which are used to quickly
aggregate and calculate the average opacity of multiple voxels. In
the precalculation step, a 3D SAT volume of opacities is constructed
from the initial volume and used during rendering to quickly evalu-
ate the average vicinity value for a single voxel with very few texel
fetches. The biggest disadvantage of this algorithm is that 3D SATs
give only a rough approximation of the ambient value because all
voxels used to calculate the vicinity value have equal weight, no
matter their distance from the voxel. To improve upon this problem,
another algorithm based on the idea of using 3D SATs was presented
by Schlegel et al. [12]. This improved algorithm changes how the
3D SAT is used at runtime. Instead of simply estimating the average

Table 1: Comparison of existing volumetric ambient occlusion meth-
ods. Quality represents the relative quality of the obtained ambient
value. The “Real-time modification to” column indicates what type of
modification could be done in real-time within the algorithm without a
loss in performance. The red, yellow and green circles represent low,
medium and high quality of the ambient factor correspondingly.

Author(s) Name Quality Real-time modification to:
Radius TF Clipping

Stewart
[14]

Vicinity
shading

✗ ✗ ✗

Ropinski et
al. [11]

Clustered
histograms

✗ ✓ ✗

Dı́az et
al. [2]

SAT of
opacities

✓ ✗ ✗

Hernell et
al. [2]

Local
Ambient
Occlusion

✓ ✗ ✗

Schlegel et
al. [12]

Shelled
SAT of
opacities

✓ ✗ ✗

Engel &
Ropinski
[3]

Deep-
learned AO

✗ ✓ ✓

Ours Contextual
Ambient
Occlusion

✗ ✗ ✓

vicinity value around the voxel, the algorithm calculates “shells”
around the volume where each one has a different distance from the
voxel. Then, the values of all shells are aggregated together using
the absorption formula presented by Max [8], similar to the standard
volume rendering integral. However, even in that case, due to the
aggregation of many voxels together, only a rough estimation of the
ambient factor is obtained.

Unlike 3D SAT table algorithms which focus on fast precalcu-
lation and rendering time, some other algorithms focus on having
a high quality of the ambient value by focusing on the physical
accuracy of the ambient value calculation. Such is the case of the
Local Ambient Occlusion (LAO) algorithm presented by Hernell
et al. [6]. This algorithm presents an expensive precalculation step
where for each voxel its ambient value is calculated. This calculation
consists of casting multiple rays in a spherical pattern around each
voxel. Each of the rays samples the opacities in the volume and
aggregates them using the absorption formula described by Max [8].
The values of all rays are then averaged together to create a single
ambient value for the voxel. The algorithm produces high quality
results as further voxels affect the ambient value exponentially less
than closer ones, which is more physically accurate.

Some ambient occlusion algorithms focus on being able to prop-
erly estimate the ambient factor if the opacity transfer function of
the volume changes in real-time. Such is the case of the clustered
histograms algorithm presented by Ropinski et al. [11], whose main
idea is that voxels with approximately the same neighborhood will
have roughly the same ambient factor independently of the transfer
function used. In this algorithm, for each voxel, a local histogram of
neighboring voxels is created, and then similar histograms are clus-
tered together. This histogram stores that degree of influence that
each neighboring voxel has on the main voxel using inverse distance
weighting. Consequently, a new 3D texture is filled which contains
the cluster index for every voxel. With this information, the ambient
factor is calculated in real-time by applying the transfer function
on the histogram. In 2021, a different approach was proposed to

estimate the ambient factor with dynamic transfer function change
by Engel and Ropinski [3]. In this algorithm, deep learning was
used to predict the impact of a change of the transfer function on the
ambient value. Many combinations of MRI volumes and transfer
functions were created and rendered with Monte Carlo ray tracing,
and the resulting voxel ambient values were learned. The created
model could then be used to predict the ambient value for any MRI
image and any opacity transfer function.

In Table 1, we presented a summary of volumetric ambient occlu-
sion algorithms where we compared them in terms of their ambient
factor quality, and we also evaluated what types of real-time changes
can be done to the algorithm. In order to rate the quality, we sep-
arated all the algorithms into 3 logical groups, ranging from low
to high that measure how physically accurate the ambient factor
is. The high-quality group encompasses all algorithms that follow
the absorption model presented by Max [8] and perform spherical
ray casting. The medium-quality group consists of algorithms that
provide some variation of inverse weighting for voxels based on
their distance from the voxel for which the ambient value is calcu-
lated. The low-quality group consists of algorithms that calculate an
unweighted average of opacities of neighboring voxels for a single
voxel.

3 METHODS

The CAO algorithm is able to recalculate in real-time the changes
to occlusion that occur in the volume when parts of this volume
are clipped, while achieving exactly the same quality as LAO. Be-
cause the algorithm simply prevents unaffected voxels from being
recalculated, the calculation is always exact and remains stable over
successive frames. All of the ambient occlusion computations are
done in data space to avoid the stereoscopic screen-space inconsis-
tency problem described by Shi et al. [13], which makes it suitable
for VR and AR environments.

3.1 Pipeline
The central idea of the CAO algorithm is that we render an inflated
version of the clipping shape in two depth buffers, and then we use
these buffers to determine which voxels need recomputation of the
ambient factor.

The algorithm requires as input a volume V stored in a 3D texture,
the opacity transfer function TFo as well as the clipping mesh M.
The mesh M should satisfy the requirements described by Weiskopf
et al. [16], meaning it has to be either convex, or concave with the
limitation that it could be fully rendered with exactly two opacity
peeling steps [4]. For example, as indicated in Fig. 1, a concave
shape such as a torus can be used in this algorithm because it satisfies
this constraint.

We propose a novel approach to obtain the correct ambient factor
for all voxels every frame by only recalculating the ambient factor
for voxels where it was affected by clipping. We use shadow test
volume clipping (see Sect. 3.2) to perform the clipping and dilation
maps (see Sect. 3.3) to determine which voxels were affected by
clipping.

A visual representation of the pipeline is given in Fig. 3, where
the steps executed using a compute shader are marked as C.S., while
the steps executed using the rendering pipeline are indicated with
R.P.

Steps done before ray casting:

1. (C.S.) The ambient factor is computed for all voxels using
LAO spherical raycasting assuming that no clipping is applied
on the volume. The resulting AO values are stored in a volume
called VPAO and used later.

2. (R.P.) The front and back faces of the clipping mesh are ren-
dered using two depth-only rendering passes and the resulting
depth maps are stored in two textures.

3. (C.S.) Dilation maps are computed from the depth maps cre-
ated in step 1 and stored in two textures. The dilation maps
are computed by calculating the Minkowski sum between the
depth map and a sphere that represents the LAO rays cast
region.

Steps done during rendering:

4. (C.S.) Shadow test volume clipping (see Sect. 3.2) is done for
each voxel of the initial volume V , and the result is stored in a
volume Vo containing the opacity of each voxel after clipping
is applied. Additionally, a mask volume Vm is populated that
indicates for each voxel if it was clipped, and in the case that it
was not, whether its ambient value was affected by clipping.

5. (C.S.) A volume containing the final LAO coefficients VAO for
the image is outputted. The volume Vm is read to determine
whether the LAO value should be recalculated with a spherical
ray cast, or if the initial ambient value stored in VPAO could be
used as-is.

6. (R.P.) The initial volume V is rendered using shadow test
volume clipping (see Sect. 3.2), and at every ray step the VAO
volume is sampled to determine the ambient factor for the
current ray sample.

3.2 Shadow test volume clipping
In our implementation, we use a clipping algorithm similar to shadow
test clipping presented by Weiskopf et al. [16], which we adapted
to be used with ray casting volume rendering. It is used during the
computation of LAO and to render the clipped volume. Shadow test
clipping is a modification of convex volume cutting based on depth
clipping described by Weiskopf et al. [16]. The advantage of this
algorithm is that it makes it very simple to test for any point inside
the volume if it is clipped, by only requiring to sample two depth
maps.

In standard depth clipping [16], a convex mesh is inserted in the
volume, and the boundary of the mesh is used to separate the clipped
parts of the visible ones. In our case, we consider the region outside
the mesh as being visible, while the inside part is considered to be
invisible, and therefore clipped. This corresponds to depth clipping
described by Weiskopf et al. [15], which can be seen as a subtraction
of the clipping mesh from the original volume. However, other
types of logical operations can be supported too. The algorithm
could be adapted to work with volume probing [15] where the region
inside the mesh is visible and everything else is invisible. This
would correspond to the intersection logical operator between the
mesh and the volume. The modification would require performing
a contraction instead of a dilation of the clipping mesh in step 3 of
Sect. 3.4, as well as inverting the conditions described in Sect. 3.5
in steps 4c and 4e.

In the original implementation of depth-based volume cutting
[16], the front and back faces of the clipping mesh are rendered
from the point of view of the observer in two different passes, and
the created depth buffers Z f ront and Zback are stored. Then, dur-
ing rendering, each fragment1 f is considered as visible only if
it passed the following clipping test (assuming that smaller depth
values correspond to closer objects to the camera):

visible(f) = (z f ≤ z f ront)∨(z f ≥ zback), (1)

where visible(f) is a Boolean function that indicates if the frag-
ment f is visible (i.e. not clipped), z f corresponds to the depth

1Note that the word “fragment” is used to describe samples of the volume
because the original clipping algorithms were implemented with texture
mapping [16]. In ray casting, “sample” should be used instead to denote
information retrieval from a 3D texture.

Figure 3: Visual representations of the 6 steps necessary to obtain the volume shaded using CAO. Steps 1-3 are done once before the rendering,
while steps 4-6 are done every frame. C.S. represents compute shaders while R.P. stands for the rendering pipeline.

value of f , and z f ront and zback represent the depths within the depth
buffers Z f ront and Zback for the current pixel location of f .

Shadow test volume clipping is a modification of the depth-based
clipping where the location from which Z f ront and Zback are com-
puted differs from the location of the observer [16]. In this scenario,
these two depth buffers are created from an arbitrary position in the
scene with projection parameters that may differ from the projection
camera, and we will further refer to it as the clipping camera. Be-
cause of this change, when the clipping test is performed on each
fragment f during rendering, this fragment should be transformed
to the coordinate space of the clipping camera. This technique is
referred to as shadow test clipping because the idea of this technique
is very similar to shadow mapping [17], where a light source creates
a depth map of the scene, and each sample in the scene has to be
transformed into the coordinate space of the light source projection
camera, and its depth is compared to the one in the shadow map to
determine whether the sample is lit or in a shadow. An illustration
of shadow test clipping is given in Fig. 4.

In our implementation, we use shadow test volume clipping both
during the computation of the volume containing LAO information,
but also during the rendering of the volume. As indicated in Fig. 4,
we use an orthogonal projection for the clipping camera to obtain
the highest precision in the depth buffers. During the rendering, the
position and rotation of the virtual camera is synchronized with the
clipping mesh, so that the depth maps never change from the point
of view of the camera. This makes it possible to precalculate these

depth maps before the rendering and never change them after, unless
the geometry of the clipping mesh would dynamically change.

3.3 Local Update of LAO
The key idea of CAO is that clipping modifications only affect the
ambient factor of a small number of voxels located close to the
clipping boundary, so LAO could be recalculated only for the voxels
that were affected by clipping. This is illustrated in Fig. 5, where all
voxels fall into 3 categories: (a) voxels that were clipped, (b) non-
clipped voxels whose ambient factor was affected by the clipping
and (c) non-clipped voxels that weren’t affected by the clipping.
By only recalculating the ambient factor of voxels that fall into
category (b), it is possible to significantly speed up the calculation
time of LAO without compromising the quality of the final rendered
image. In order to do so, the CAO algorithm precalculates the LAO
factor for all voxels of a volume before any clipping is applied, and
intelligently recalculates LAO only for those affected voxels.

To distinguish which voxels have an ambient factor affected by
clipping, a Minkowski sum is calculated between the clipping mesh
and a sphere representing the neighborhood considered for LAO
calculation, as illustrated in Fig. 6. The radius of the sphere must
correspond to the length of the rays sent during the ray casting for
each voxel. The mesh created from this Minkowski sum could be
used with depth-based mesh clipping to delimit the region of voxels
for which LAO should be recalculated. We will further refer to it as
the dilation shape.

Figure 4: Shadow test volume clipping. The clipping camera is at-
tached to the clipping mesh and renders its front and back faces once
to depth buffers. These depth buffers are then used every frame to
determine which fragments are clipped by performing a clipping test.
Each fragment needs to be transformed to the coordinate space of
the clipping camera, sample the depth buffers and then perform the
clipping test to determine whether the fragment is visible.

In the actual implementation, this Minskowski sum doesn’t need
to be explicitly performed and the dilation shape doesn’t need to be
created in the form of a mesh because doing so is computationally ex-
pensive, and a significantly simpler approach could be taken instead.
Since the initial clipping mesh already creates depth maps used for
depth-based volume clipping, the depth maps of the dilation shape
could be computed using them. Therefore, instead of computing a
Minkowski sum in 3D, it can be calculated in 2D by adding a half-
spherical depth map to the depth maps created by the initial mesh.
This sum will create the depth map of the dilation shape which is
then used to classify voxels. Since the rendering of the volume will
be done with shadow test volume clipping, this operation would only
need to be performed once before the rendering begins.

3.4 Precomputation of the Dilation Shape Depth Maps

Before starting rendering, three precalculation steps should be com-
pleted.

1. The ambient factor is computed for all voxels in the volume
in a spherical neighborhood using LAO and the result
is stored in a volume called VPAO. In order to compute the
ambient factor for a single ray, the absorption model is used [6].
Thus, for a ray k sent from the voxel x the ambient factor is
expressed as:

Ak(x) =
1
M

M
∑
m=1

m−1
∏
i=1
(1−ai), (2)

where M represents the number of samples taken by the ray,
m and i are used to iterate through the samples (assuming
that smaller numbers corresponds to closer samples), and ai
represents the opacity at the i-th sample. To combine the
ambient values of all rays, the following formula is used (which
performs an averaging):

A(x) = 1
K

K
∑
k=1

wk Ak(x), (3)

Figure 5: 3 possible categories for the voxel. The green circles repre-
sent the spherical neighborhood used to perform the LAO calculation.
The orange line represents the boundary of the clipping mesh.

Figure 6: 3 possible categories for the voxel. The green circles repre-
sent the spherical neighborhood used to perform the LAO calculation.
The orange and the purple lines represent the boundaries of the clip-
ping mesh and the dilation shape correspondingly.

where K represents the number of rays, k is used to iterate
through the rays, Ak(x) represents the ambient value of the
ray k, and wk is an optional parameter that could be used to
perform directional weighting. The obtained ambient factor
A(x) ranges from 0 (the voxel is fully occluded) to 1 (the voxel
is completely unobstructed).

2. A “clipping” camera is introduced in the scene which
renders the clipping mesh with two depth-only passes
to two framebuffer objects (FBOs) using orthogonal
projection. The clipping camera is used to render this mesh
from some point in the scene, similar to how a light source
generates a depth map in shadow mapping (see Fig. 4). The
front and the back faces of the mesh are rendered into each
FBO correspondingly, and the value of empty pixels of Z f ront
is inverted. This way, for any voxel in the volume, it can
easily be determined if it is clipped by transforming it to the
coordinate space of the clipping camera. The two FBOs Z f ront
and Zback are kept without change for all future rendering.

Figure 7: Computation performed for every pixel during the Minkowski
sum calculation. The algorithm “inflates” the original depth map using
a spherical depth map and stores the biggest value that was possible
to obtain. Note that here, the creation of Dback from Zback is illustrated.

The 3D pose of the clipping mesh relative to the clipping
camera should respect some constraints. If the clipping mesh
is convex, then it should be positioned in the center of the
clipping camera and have a margin around it to leave space for
the dilation map generated in step 3. If the mesh is concave,
then an additional limitation should be respected, which is
that the clipping mesh could be rendered with 2 depth peeling
passes from the point of view of the clipping camera. If this
limitation is not respected, the clipping mesh would cut regions
similar to the convex hull of the concave mesh.

3. The Minkowski sum of the clipping mesh and the LAO
ray cast region is rendered to two additional FBOs. This
Minkoski sum doesn’t need to actually be represented with a
mesh in order to be projected, it can be calculated in screen
space from the two FBOs which contain the original projected
mesh. These new textures containing the depth maps of the
dilation shape are called D f ront and Dback.

To calculate D f ront from Z f ront , a compute shader needs to
be executed that will combine the depth map Z f ront with a
spherical kernel that represents the depth map of a sphere, as
illustrated in Fig. 7. The compute shader instantiates a thread
for each pixel of the output depth map D f ront , which has the
same 2D dimensions as Z f ront . The algorithm requires input
the radius of the sphere called rxy which is measured in pixels,
as well as the z-offset rz which represents a depth in the range
[0,1]. These values are calculated by projecting the dilation
radius in the coordinates of the carving camera and measuring
the pixel length, as well as the depth. This dilation radius
depends on the length of the rays used in step 1. Given that
the thread calculated the dilated depth value of pixel (x,y),
the following steps are executed for each pixel in the circular
neighborhood rxy around this pixel. To index each of those
pixels, (i, j) is used:

(a) The depth value within Z f ront of the pixel located at
position (i, j) is fetched and stored in the variable zmesh.

(b) The relative depth value zsphere of the dilation sphere is

Figure 8: Comparison between CAO images created (left) without
anti-aliasing and (right) with anti-aliasing with N = 32 . Both images
are rendered with a 54-ray spherical raycast.

calculated using the following formula:

zsphere = rz ∗

¿
ÁÁÀ1−(norm((x− i,y− j))

rxy
)

2

(4)

(c) The depth value zsphere is subtracted from zmesh and the
result is stored in a variable zdilated .

(d) The smallest depth value zdilated obtained for any (i, j)
voxel is then stored in D f ront for the pixel (x,y).

Then, the same process is repeated for the buffers Zback and
Dback with the exceptions that in step 3c, zsphere is added to
zmesh and the maximum instead of the minimum zdilated value
is stored in Dback.

3.5 Steps performed each frame
Each frame, the following computation is performed:

4. A compute shader clips the initial volume V and outputs
a 3D texture Vo where all the clipped voxels are set to be
transparent, while the visible voxels hold the opacity of the
voxel. Additionally, the mask volume Vm is populated. Here,
the computer shader code is executed once for each voxel, and
outputs either 0 (for zero opacity or full transparency), the
original opacity of the voxel as if no clipping was applied, or
the anti-aliased opacity value. Fig. 8 illustrates the importance
of using anti-aliasing when filling the Vo volume.

To calculate the anti-aliased opacity value, multisample anti-
aliasing (MSAA) is used. First, for each voxel, one sample is
taken in its center, and 8 samples are taken at the corners of
the voxel. The algorithm executed for each sample is shadow
test clipping which also includes populating the mask volume
Vm in addition to filling the opacity volume Vo:

(a) The sample is transformed to the coordinate space of
the clipping camera. The resulting xy coordinates will
correspond to a pixel position in the FBO, while the z
component corresponds to the depth of the sample in the
clipping camera coordinate space.

(b) The near (Z f ront) and far (Zback) depth maps obtained in
the precalculation step 2 are sampled at the 2D position
obtained in step 4a, which gives two depth values.

(c) The depth of the sample obtained in step 4a is compared
to the depths obtained in step 4b. If the depth of the
sample is between the depth values of Z f ront and Zback,
the sample is considered to be invisible, otherwise it is

considered as visible. If the voxel is visible, a counter
Cvisible is incremented that keeps track of the number of
visible samples.

(d) The D f ront and far Dback dilation maps obtained in the
precalculation step 3 are sampled at the 2D position
obtained in step 4a, which gives two depth values.

(e) The depth of the sample obtained in step 4a is compared
to the depths obtained in step 4d. If the depth of the
sample is between the depth values of D f ront and Dback,
a counter Cdilated is incremented that keeps track of the
number of samples inside the dilation shape.

After this, a check is made to determine if antialiasing should
be used:

• If the algorithm determines that the 9 samples are either
all visible or all invisible, then it means that the voxel
was not affected by anti-aliasing, and its value is used
directly. In that case, if all samples are visible, the
opacity transfer function is applied to the original voxel
value and saved in the Vo volume. If all samples are
invisible, then an opacity of 0 is stored in Vo for the
voxel.

• If some of the samples are visible and some are not, then
N additional samples are taken at predefined positions
in the [−1,−1,−1] to the [1,1,1] neighborhood of the
voxel, for a total of N +9 samples. For these samples,
the steps (a), (b) and (c) are repeated again, continuing to
increment the counter of the number of visible samples
Cvisible. After this calculation is done, the anti-aliased
opacity is obtained using the following formula:

OAA =
Cvisible
N +9

Ovoxel (5)

where Cvisible represents the number of visible samples,
N represents the number of anti-aliasing samples, and
Ovoxel represents the opacity of the voxel after the opac-
ity transfer function was applied to it. OAA is further
saved into the Vo volume for the corresponding voxel.

In addition to calculating the anti-aliased opacity for each
voxel, the compute shader also outputs a 3D mask Vm that
would indicate to which of the following categories the voxel
corresponds: clipped (category a), not clipped, but LAO factor
affected by clipping (category b) and not affected by clipping
(category c). To determine this, a simple check is executed on
the counters:

• If Cdilated is equal to 0, it means that the voxel is com-
pletely outside the dilation shape, which means that it
corresponds to category c, and a value of 1 is stored in
Vm for the current voxel.

• Otherwise, if Cvisible is bigger than 0, it means that the
voxel is outside the clipping shape but inside the dilation
shape, so it corresponds to category b, and a value of 0.5
is stored.

• Otherwise, the voxel is completely clipped (category a),
so a value of 0 is stored.

5. A compute shader reads the mask volume, calculates the
LAO factor in a different manner depending on the mask
value Vm, and outputs the LAO factor to the VAO volume.
If the voxel is of category a, then no calculation is performed
and the ambient factor that is saved is 1. If the category is c,

Table 2: Scenes tested during the evaluation.

Scene Resolution Samples
Per Ray

Clipping
Mesh

% Voxels
Recalcu-

lated
Engine 256×256×110 20 sphere 14.94

Beetle 416×416×247 40 cube 20.24

Skeleton 512×512×512 50 rectang.
prism

16.13

then no LAO calculation is performed either, and instead the
precalculated VPAO volume is sampled and its value is copied
in the output VAO volume as-is. Finally, if the category is b,
only then the LAO calculation is performed for the voxel.

For each voxel in category b, rays are sent in K predefined
directions, similarly to how it was made in step 1 for the
volume VPAO. The ambient factors of all rays are then averaged,
and this value is written in the output 3D texture VAO.

6. The volume V is rendered with a ray casting algorithm, and
for each sample of each ray, the VAO volume is sampled to
determine the ambient factor. Here, the volume is rendered
using standard ray casting, and at every sample of each ray,
shadow test volume clipping using the Z f ront and Zback depth
maps is used to determine if the sample is visible or not. If it
is visible, then the VAO volume is sampled.

4 EVALUATION

To evaluate the CAO algorithm, 3 scenes were created, each featuring
a different dataset with different parameters, as indicated in Table 2.
The volumes were taken from the ImageVis3D 1 dataset. In each
scene, a volume was rendered, from which a region was clipped
away. We used a single-color transfer function for each volume to
better highlight the effect of LAO rendering on the dataset. The 3
rendered volumes are demonstrated in Fig. 10 with two different
LAO ray numbers: low (6 rays) and high (54 rays). A close-up
view is given in Fig. 11. Regarding the number samples N used for
anti-aliasing, we used 32 for a total of 41 samples including the 9
original ones taken for all voxels. To execute all our tests, we used a
Windows 10 machine with an AMD Ryzen 7 5800X CPU, 32 GB of
RAM and an AMD RX 6700XT GPU with 12 GB of VRAM.

First, we evaluated the percentage of voxels that would need to
be recalculated in our CAO algorithm, which we have also written
in Table 2. This was measured by comparing the number of voxels
within the Vm volume that were marked as requiring recalculation
compared to the total number of voxels in the volume. As can
be seen from that table, this percentage is relatively low, hovering
around 15-20%. Note that the samples of the LAO rays have a
distance of 1 mm between each other, which also corresponds to the
Euclidian distance between any two neighboring voxels.

Second, we measured the rendering performance of the CAO
algorithm and compared it to a naive implementation where LAO
was recalculated for all voxels every frame, as can be seen in Table 3.
In the naive implementation, the Vm volume as well as the depth
maps of the dilation shape D f ront and Dback were not calculated.
However, the output image produced by the naive LAO algorithm
is exactly the same as the CAO one. Additionally, we compared
the performance of the algorithm with Solid Color rendering where
the same color was applied to all samples instead of LAO, but this
implementation also featured shadow test volume clipping.

Third, we determined the computation cost breakdown when
calculating a single frame of each of the 3 scenes using the LAO and
CAO algorithms, with 6 and 54 rays, as can bee seen in Fig. 9. The
graphs demonstrate that in terms of the amount of calculations, the

Table 3: Mean frames per second (FPS) for each scene. The speedup
represents the ratio of the framerate of our algorithm (CAO) compared
to a naive implementation (LAO).

Scene Number
of Rays

Solid
Color

LAO -
FPS

CAO -
FPS

Speedup
of CAO

Engine 6 272.846 111.549 184.902 1.66
14 67.910 155.245 2.29
26 42.831 126.378 2.95
54 22.543 85.363 3.79

Beetle 6 128.288 15.497 42.581 2.75
14 7.509 25.581 3.41
26 4.192 16.063 3.83
54 2.012 8.526 4.24

Skeleton 6 95.142 4.316 17.514 4.06
14 2.020 9.594 4.75
26 1.107 5.729 5.18
54 0.529 2.825 5.34

longest step to perform along those described in Sect. 3.5 is step 5,
where the spherical ray cast is performed. Further, with increasing
dimensions of the volume that is rendered, the proportion of the step
5 computations becomes even larger, overshadowing steps 4 and 6
in terms of calculation time.

Finally, knowing that the algorithm produces exactly the same
image as LAO, to make sure that our implementation is correct, we
compared the screenshots produced by the LAO and CAO algorithms
for the 3 scenes. We have created screenshots using 6, 14, 26 and 54
ray configurations and we made a per-pixel comparison between the
LAO and CAO images for each configuration. We have found that
every pair of pixels had the exact same RGB components, confirming
the correctness of our implementation. This result was expected
because our CAO algorithm dynamically determines every frame
what voxels could have a LAO value that is affected by clipping,
and performs a recalculation on these voxels. Thus, with a correct
implementation, it is impossible to obtain a different AO value for
LAO and CAO.

5 DISCUSSION

The most important advantage of our algorithm is that it offers
exactly the same quality of image as the LAO algorithm presented
by Hernell et al. [6], while reducing AO factor recomputation time
when clipping parameters are modified. This algorithm produces
a physically accurate ambient factor, as it follows the absorption
model described by Max [8]. We propose a more sophisticated
rendering pipeline for the LAO algorithm that is able to take care of
carving within the volume while maintaining proper recalculation
of the ambient factor. Additionally, our algorithm supports clipping
with all convex shapes and concave shapes that can be rendered with
two opacity peeling steps [4].

When compared to LAO, it can be seen from Table 3 that our
algorithm offers a significant speedup, with 2-5x the frame rate
compared to a full recalculation of all voxels. It can also be seen that
the speedup is higher for volumes with a higher 3D resolution and
with a higher number of rays. This is expected because in those cases
the total amount of computation necessary for the spherical ray cast
becomes larger, so cutting down the amount of computation at this
step yields the best speedup, as can be seen in Fig. 9. For example,
for our largest dataset (Skeleton), for the 26 and 54 ray cases, the
speedup was 5.18 and 5.34 correspondingly. Thus, our algorithm
is especially useful when a high-quality ambient factor needs to be
calculated every frame with a volume with high dimensions.

Additionally, since the calculation is done in data space, it avoids
the stereoscopic screen-space inconsistency described by Shi et
al. [13], which can result in viewer discomfort. This inconsistency

Figure 9: Runtime computation cost breakdown for a single frame
using the LAO and CAO algorithms, in milliseconds (ms). ”Clipping”
corresponds to the step 4 of the algorithm explained in Sect. 3.5,
”Spherical ray cast” corresponds to step 5, ”Rendering” corresponds
to step 6, and ”Overhead” represents time spent by the Unity engine
on calculations not related to AO.

exists in screen-space algorithms such as SSAO due to the fact the
left and right eye view slightly different parts of the dataset, which
might consequently lead to a different calculated ambient value for
the same object in each eye.

The algorithm that we presented is particularly suitable for inter-
active environments where the position and rotation of the clipping
region might change every frame. Unlike the algorithm presented by
Hernell et al. [6] in which only one LAO ray is cast per frame, in our
implementation a full ray cast is performed every frame. Because of
this, the user always perceives the final LAO image without having
blurring or visual artifacts from previous frames, which makes it
more suitable for scenarios where the clipping region is controlled
by direct user input. Such is the case of interactive VR and AR envi-
ronments where the clipping region is controlled with hand gestures
or controllers with 6 degrees of freedom, so small changes to the
clipping region could occur every frame due to hand shaking. In
addition to this, the AO calculation performance scales well with
increased number of viewports and the resolution in each of the view-
ports. This is due to the fact that CAO is calculated in data space,
but also because the rendering of the volume is done with shadow
test volume clipping, which avoids needing to generate the depth

map for every viewport like it is done by Weiskopf et al. [16]. This
further makes the algorithm suitable for VR and AR displays which
may have more than one viewport and a relatively high resolution
for each eye.

The main drawback of the algorithm is that it requires a significant
amount of video memory, especially when rendering volumes with a
high spatial resolution. As can be seen in Fig. 3, there are 5 volumes
with the same dimensions as the dataset that have to be kept in video
memory simultaneously. Another drawback is that any change to
the opacity transfer function would require a recomputation of the
volume VPAO that stores the precalculated LAO values. In that case,
the framerate of the algorithm would decrease to the one shown for
the LAO algorithm in Table 3. However, as can be seen from this
table, even in that case the framerate will remain highly interactive,
and only the configurations where the dataset has high dimensions
and a high number of rays would be severely affected.

6 CONCLUSION

In this paper we have presented a novel volumetric ambient occlu-
sion algorithm that was optimized to work with real-time clipping
of the volume. In this algorithm, we determine during each frame
which voxels’ ambient value was affected by clipping and we per-
form an LAO recomputation only on these voxels. Since those
affected voxels are located in a small radius around the clipping
shape, their number is significantly lower than the total number of
voxels in the volume. Our algorithm is able to find these voxels by
calculating the dilated depth map of the clipping volume, and then by
using shadow test volume clipping to determine if the voxels require
recomputation. The algorithm offers a 2-5x speedup over recalcu-
lating the ambient factor of all voxels every frame. Additionally,
the algorithm is suitable for interactive environments since the final
image is generated every frame, and it is suitable for VR and AR
environments since it doesn’t have any stereoscopic inconsistency.

In the future, more tests should be made to quantify the effect
of different parameters on the quality of the rendering. The effect
of the number of rays used during spherical ray casting should be
evaluated to determine the right compromise between the quality of
the rendered image and the performance. Additionally, the effect
of the resolution of the FBOs of the clipping camera needs to be
evaluated both in terms of the quality of the created image, as well
as the performance. Moreover, the use of more complex concave
meshes could be explored. With these meshes, P depth peeling
passes may be required, in which case P depth and dilation buffers
should be used, similar to how concave mesh clipping was described
by Weiskopf et al. [16]. Further, a more rigorous evaluation should
be done to determine how our algorithm combined with interactive
clipping helps the perception of volumetric data compared to more
basic volume rendering techniques such as Phong shading [10] or
using a simple 1-dimensional transfer function.

REFERENCES

[1] L. Bavoil and M. Sainz. Screen Space Ambient Occlusion. Tech. rep.,
Nvidia Corporation, Oct. 2008.

[2] J. Dı́az, P.-P. Vázquez, I. Navazo, and F. Duguet. Real-time ambient oc-
clusion and halos with Summed Area Tables. Computers and Graphics,
34(4):337–350, Aug. 2010. doi: 10.1016/j.cag.2010.03.005

[3] D. Engel and T. Ropinski. Deep Volumetric Ambient Occlusion. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1268–
1278, Feb. 2021. Conference Name: IEEE Transactions on Visualiza-
tion and Computer Graphics. doi: 10.1109/TVCG.2020.3030344

[4] C. Everitt. Interactive Order-Independent Transparency. undefined,
2001. doi: 10.1.1.18.9286

[5] F. Hernell, P. Ljung, and A. Ynnerman. Efficient Ambient and Emissive
Tissue Illumination using Local Occlusion in Multiresolution Volume
Rendering. The Eurographics Association, 2007. Accepted: 2014-01-
29T17:53:52Z ISSN: 1727-8376. doi: 10.2312/VG/VG07/001-008

[6] F. Hernell, P. Ljung, and A. Ynnerman. Local Ambient Occlusion in
Direct Volume Rendering. IEEE Transactions on Visualization and
Computer Graphics, 16(4):548–559, July 2010. Conference Name:
IEEE Transactions on Visualization and Computer Graphics. doi: 10.
1109/TVCG.2009.45

[7] A. Joshi, D. Scheinost, K. Vives, D. Spencer, L. Staib, and X. Pa-
pademetris. Novel interaction techniques for neurosurgical planning
and stereotactic navigation. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1587–1594, Nov. 2008. Conference Name:
IEEE Transactions on Visualization and Computer Graphics. doi: 10.
1109/TVCG.2008.150

[8] N. Max. Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, June
1995. Conference Name: IEEE Transactions on Visualization and
Computer Graphics. doi: 10.1109/2945.468400

[9] G. Miller. Efficient algorithms for local and global accessibility shading.
In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’94, pp. 319–326. Association
for Computing Machinery, New York, NY, USA, 1994. doi: 10.1145/
192161.192244

[10] B. T. Phong. Illumination for computer generated pictures. Communi-
cations of the ACM, 18(6):311–317, June 1975. doi: 10.1145/360825.
360839

[11] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann,
and K. Hinrichs. Interactive Volume Rendering with Dy-
namic Ambient Occlusion and Color Bleeding. Com-
puter Graphics Forum, 27(2):567–576, 2008. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2008.01154.x. doi: 10.1111/j.1467-8659.2008.01154.x

[12] P. Schlegel, M. Makhinya, and R. Pajarola. Extinction-Based Shading
and Illumination in GPU Volume Ray-Casting. IEEE Transactions on
Visualization and Computer Graphics, 17(12):1795–1802, Dec. 2011.
Conference Name: IEEE Transactions on Visualization and Computer
Graphics. doi: 10.1109/TVCG.2011.198

[13] P. Shi, M. Billeter, and E. Eisemann. Stereo-consistent screen-space
ambient occlusion. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 5(1):2:1–2:12, 2022. doi: 10.1145/3522614

[14] A. Stewart. Vicinity shading for enhanced perception of volumetric
data. In IEEE Visualization, 2003. VIS 2003., pp. 355–362, Oct. 2003.
doi: 10.1109/VISUAL.2003.1250394

[15] D. Weiskopf, K. Engel, and T. Ertl. Volume clipping via per-fragment
operations in texture-based volume visualization. In IEEE Visualization,
2002. VIS 2002., pp. 93–100, Oct. 2002. doi: 10.1109/VISUAL.2002.
1183762

[16] D. Weiskopf, K. Engel, and T. Ertl. Interactive clipping techniques
for texture-based volume visualization and volume shading. IEEE
Transactions on Visualization and Computer Graphics, 9(3):298–312,
July 2003. Conference Name: IEEE Transactions on Visualization and
Computer Graphics. doi: 10.1109/TVCG.2003.1207438

[17] L. Williams. Casting curved shadows on curved surfaces. In Proceed-
ings of the 5th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’78, pp. 270–274. Association for Computing
Machinery, New York, NY, USA, Aug. 1978. doi: 10.1145/800248.
807402

6 Rays 54 Rays

Figure 10: Comparison between the images created using CAO for the 3 scenes using a 6-ray and a 54-ray spherical ray cast. The top, middle
and bottom rows demonstrate the Engine, Beetle and Skeleton scenes correspondingly.

6 Rays 54 Rays

Figure 11: Close-up of the images created using CAO for the 3 scenes using a 6-ray and a 54-ray spherical ray cast. The top, middle and bottom
rows demonstrate the Engine, Beetle and Skeleton scenes correspondingly.

	Introduction
	Related Work
	Methods
	Pipeline
	Shadow test volume clipping
	Local Update of LAO
	Precomputation of the Dilation Shape Depth Maps
	Steps performed each frame

	Evaluation
	Discussion
	Conclusion

