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ABSTRACT

Diffusion models have attained significant performance in image/video generation
and related tasks. However, while diffusion models excel in delivering excellent
results, they suffer from substantial computational complexity due to their large
volume of parameters. This poses a significant issue for deployment on mobile de-
vices and hampers the practical applications of diffusion models. In this work, we
propose a new post-training quantization approach designed to reduce the compu-
tation complexity and memory cost of diffusion models. As the distributions of
the outputs of diffusion models differ significantly across timesteps, our approach
first splits the timesteps into different groups and optimizes the quantization con-
figuration of each group separately. We then formulate the quantization of each
group as a rate-distortion optimization problem to minimize the output distortion
caused by quantization given the model size constraint. Because output distor-
tion is highly related to model accuracy, by minimizing the output distortion, our
approach is able to compress diffusion models to low bit widths without hurting
accuracy. Furthermore, our approach applies Taylor series expansion approxi-
mation and proposes an efficient method to find the optimal bit allocation across
layers with linear time complexity. Extensive experimentation over four datasets
including CIFAR-10, CelebaHQ, LSUN-Bedroom, and LSUN-Church validates
the effectiveness of our approach. Empirical results show that our approach ob-
tains a notable improvement over state-of-the-art when the model is quantized to
low bit widths.

1 INTRODUCTION

Diffusion models ( Song & Ermon (2019); Ho et al. (2020); Song et al. (2020; 2021); Dhariwal &
Nichol (2021); Ramesh et al. (2022)) have proven highly effective performance in producing images
and videos with both exceptional diversity and fidelity. Recent advancements have showcased their
superior results compared to state-of-the-art GAN models, which often struggle with unstable train-
ing. As a versatile class of generative models, diffusion models have exhibited their efficacy across
a spectrum of applications.

However, the great performance of diffusion models is counterbalanced by their considerable com-
putational consumption. State-of-the-art diffusion models typically demand billions of or even more
parameters to obtain a powerful generative neural network. The large volume of parameters, along
with its associated memory requirement and computational cost, poses significant challenges for the
deployment of diffusion models on mobile devices, especially on resource-constrained platforms
such as phones, drones, watches, and self-driving cars. Given the increasing demand for mobile vi-
sion applications relying on diffusion models as a cornerstone technique, it is important to compress
diffusion models to reduce the time latency and lower the energy consumption.

Quantization ( Han et al. (2015b); Zhu et al. (2017); Zhang et al. (2018); Hubara et al. (2016); Zhou
et al. (2017; 2016); Rastegari et al. (2016)) is one of the powerful methods for model compression.
Instead of utilizing the original 32-bit floating-point representation, parameters can be quantized
into lower bit-widths such as 8-bit or even less to reduce model size and computation. More im-
portantly, Post-Training Quantization (PTQ) eliminates the need of re-training, which makes quan-
tization more practical and can significantly save the cost, as re-training itself is very expensive and
even not possible in scenarios where retraining data is not available. Although a lot of post-training
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quantization methods have been proposed, most of them are developed for Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs). Given that diffusion models possess a distinct
network architecture with unique features, employing Post-Training Quantization methods designed
for CNNs and ViTs is not optimal, as they fail to capitalize on the nature of diffusion models. One
main feature of diffusion models is that diffusion models have many timesteps and the distributions
of layer outputs differ significantly across timesteps.

Several works studying post-training quantization methods tailored for diffusion models have been
propossed, such as PTQ4DM Shang et al. (2023), Q-Diffusion Li et al. (2023a), PTQD He et al.
(2023), Q-DM Li et al. (2023b), APQ-DM Wang et al. (2024), and TFMQ-DM Huang et al. (2024).
However, one common issue in prior works is that they use equal bit width to quantize weights and
activations of all layers. Because parameters in different layers react very distinctively to quantiza-
tion, it is more reasonable to use mixed precision for quantization. Moreover, in prior works, the
output distortion caused by quantization is not minimized. As output distortion is highly related to
accuracy, large distortion may lead to serious accuracy loss.

In this paper, we propose a novel post-training quantization approach for diffusion models. Our
approach adopts mixed-precision quantization and uses different bit widths to quantize parameters
in different layers. As the distributions of activations differ significantly across timesteps, we splits
the timesteps into groups and optimizes the quantization configuration of each step separately. We
formulate the quantization of each timestep as a rate-distortion optimization problem to maximally
maintain the accuracy when quantized to low bit widths by minimizing the output distortion caused
by quantization. To solve the optimization problem efficiently, our approach applys first-order Tay-
lor approximation where an important additivity property is observed, that is the output distortion
caused by quantizing all layers equals the sum of output distortion due to the quantization of each
single layer. Utilizing such additivity property, we propose an efficient optimization method with
only linear time complexity to find the solution.

Extensive experiments have been conducted on four datasets to validate the effectiveness of our
approach. Our approach advances the state-of-the-art noticeably and can reduce the bit width to 6
bits on diffusion models without compromising accuracy. The key contributions of this paper are
summarized as follows:

• We propose a novel post-training quantization approach for diffusion model compression.
First, our approach adopts mixed precision to quantize parameters in different layers. We
then split the timesteps into groups and optimize the quantization configuration of each
timestep separately. The quantization of each timestep is formulated as a rate-distortion
optimization problem, where output distortion caused by quantization is minimized. To
the best of our knowledge, this is the first work which explicitly proposes rate-distortion
optimization for the quantization of diffusion models.

• We propose a very efficient method to solve the optimization problem, where we apply first-
order Taylor approximation and observe an important additivity property. A mathematical
derivation is provided for the additivity property. By utilizing the additivity property, we
develop an efficient algorithm with only linear time complexity to find the solution.

• Extensive experiments have been conducted to demonstrate the effectiveness. Our approach
noticeably outperforms state-of-the-art over four benchmark datasets.

2 RELATED WORKS

In this section, we discuss prior works relevant to our paper. We first review post-training quantiza-
tion methods designed for Convolutional Neural Networks, where most of post-training quantization
works lie in this category. We then discuss the post-training quantization works developed for diffu-
sion models. Our approach belongs to the second category.

2.1 POST-TRAINING QUANTIZATION FOR CONVOLUTIONAL NEURAL NETWORKS

Most of post-training quantization works belong to this category. Choukroun et al. devised an
approach that treats quantization as a Minimum Mean Squared Error (MMSE) problem Choukroun
et al. (2019), allowing for low-bit precision inference without requiring retraining. Banner et al.
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introduced the first practical 4-bit post-training quantization method Banner et al. (2019) through
a combination of analytical clipping, per-channel bit allocation, and bias correction. Zhao et al.
improved post-training quantization by introducing Outlier Channel Splitting (OCS) Zhao et al.
(2019), a technique that duplicates channels containing outliers and reduces their values by half.
Nagel et al. introduced adaptive rounding as a refined weight rounding mechanism for post-training
quantization Nagel et al. (2020), dynamically adjusting to both data and task loss for enhanced
effectiveness. Additionally, Nagel et al. proposed data-free quantization Nagel et al. (2019) by
incorporating weight equalization and bias correction.

Several studies have also been conducted to achieve extremely low bit widths through post-training
quantization. Cai et al. (2020) introduced Zero-Shot Quantization (ZSQ) as a method for achieving
ultra-low-bit neural networks by distilling datasets based on statistics derived from batch normaliza-
tion layers. Fang et al. (2020) employed piecewise uniform quantization for weights, resulting in im-
proved accuracy on ImageNet using a 2-piece configuration. Li et al. (2023a) leveraged the Hessian
of cross-layer weights to establish block-wise layer dependencies when optimizing the quantizer.
Zhong et al. (2022) proposed an innovative fine-tuning loss that preserved multiclass discriminative
qualities through the integration of synthetically generated data. Oh et al. (2022) utilized a logarith-
mic quantization scheme, complemented by corresponding shifter arithmetic operations, to replace
multipliers, thereby enabling higher arithmetic precision while maintaining low representative preci-
sion. Lin et al. (2023) introduced a bit-shrinking algorithm aimed at gradually quantizing networks
to lower bit-widths, which helps flatten the loss landscape and mitigates the risk of encountering
suboptimal local minima during the fine-tuning process. Ma et al. (2023) employed orthogonal lin-
ear optimization to efficiently search bit-allocation in mixed-precision post-training quantization,
resulting in significant time savings.

The above approaches mainly targeted the quantization of Convolutional Neural Networks. How-
ever, directly applying them to quantize diffusion models may yield sub-optimal outcomes. This
is because Diffusion Models have a distinct network architecture with unique features, which is
different with Convolutional Neural Networks.

2.2 POST-TRAINING QUANTIZATION FOR DIFFUSION MODELS

Several Post-training Quantization methods have been proposed recently for Diffusion Models. Li
et al. (2023a) proposed Q-Diffusion, which is a PTQ method tailored specifically to the distinctive
multi-timestep pipeline and the architecture of diffusion models. Their approach aims to compress
the noise estimation network to expedite the generation process. They identified the primary chal-
lenge of quantizing diffusion models with dynamic output distributions across multiple time steps
and the bimodal activation distribution of shortcut layers. To tackle these challenges, they employed
timestep-aware calibration and split shortcut quantization.

On the other hand, Shang et al. departed from traditional training-aware compression methods and
introduced a post-training quantization approach named PTQ4DM Shang et al. (2023) to accelerate
diffusion models. They focused on developing a diffusion-model-specific PTQ method by exam-
ining PTQ applied to diffusion models from three perspectives: quantized operations, calibration
dataset, and calibration metric. Drawing insights from their comprehensive investigations, they
synthesized and utilized several strategies to devise their method, particularly targeting the unique
multi-time-step structure of diffusion models. He et al. (2023) recognized that at each denoising
step, quantization noise causes deviations in the estimated mean and mismatches with the predeter-
mined variance schedule. To address this, PTQD is proposed to eliminate quantization noise through
the use of correlated noise and residual noise correction techniques. Li et al. (2023b) identified that
the bottlenecks in low-bit quantized diffusion models stem from significant distribution oscillations
in activations and quantization errors accumulate during the multi-step denoising process. To ad-
dress these issues, they propose Q-DM, an efficient low-bit quantized diffusion model that achieves
a high compression ratio while maintaining competitive performance in image generation tasks.

To address key limitations in conventional quantization frameworks by designing distribution-aware
quantization functions and optimizing calibration timesteps, Wang et al. (2024) propose an accurate
post-training quantization framework for diffusion models (APQ-DM). Significant improvement of
image generation performance has been achieved with minimal computational overhead. To miti-
gate the inefficiencies of PTQ in diffusion models, which typically suffer from extended inference
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times and high memory demands, Huang et al. (2024) proposed Temporal Feature Maintenance
Quantization (TFMQ-DM). This method enhanced compression efficiency and preserved temporal
information by focusing on time-step-specific features, achieving near full-precision model perfor-
mance under 4-bit weight quantization. Zhao et al. (2024) introduced MixDQ, a mixed-precision
quantization method that handles both the imbalance sensitivity and alignment degradation prob-
lems for diffusion quantization. Sui et al. (2024) developed a novel weight quantization method that
quantizes the UNet from Stable Diffusion v1.5 to 1.99 bits.

3 APPROACH

In this section, we present our post-training quantization approach designed for diffusion models.
We first introduce the formulation of quantization in our approach where quantization is formulated
as a rate-distortion optimization problem. We then present the algorithm to solve the optimization
problem and discuss the time complexity of our method. As the distributions of activation are
different across the time steps, we thus divide the timesteps into groups and optimize the quantization
of each group separately. Then for each of the groups, we apply mixed precision and find the optimal
bit widths for the layers, given the fact that different layers react differently to quantization.

3.1 PRELIMINARIES

Diffusion Models apply a Markov chain to generate images and videos where the forward diffusion
process adds Gaussian noise to data x0 ∼ q(x0) for T times, resulting in noisy samples x0, ..., xT :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

in which βt ∈ (0, 1) denotes the variance schedule handling the strength of the Gaussian noise of
each step. On the other hand, diffusion models have a reverse process to remove the noise from
a sample from the Gaussian noise input xT ∈ (0,1) to generate images gradually. However, the
reverse conditional distribution q(xt−1|xt) is unavailable, as a result, diffusion models sample from
a learned conditional distribution pθ(xt−1|xt) = N (xt−1; ũθ,t(xt), β̃tI).

Quantization aims to use smaller bit widths to represent each parameter. Instead of using 32-bit or
16-bit floating point representation, one can quantize parameters into lower bit widths (say 8 bits or 4
bits) to compress model size and reduce computation. In this work, we quantizes all the weights and
inputs (activations) involved in each layer. Following prior quantization scheme, we do not quantize
biases in normalization layer, as the volume of the parameters contained in these layers is negligible.
More specifically, our approach adopts uniform scalar quantization to quantize parameters. Given
input W, the quantized value is defined as,

q(W) = ∆ · Clip(⌊W
∆

⌋,−2b−1, 2b−1 − 1), (2)

where ∆ is the quantization step size and b is the bit width. ∆ and b are two hyper-parameters. Clip
denotes the clipping function which clips the elements that exceed ranges.

3.2 FORMULATION WITH DISTORTION MINIMIZATION

Our approach first splits timesteps into groups and optimizes the quantization of each group sep-
arately. Specifically, we adopt mixed precision to quantize parameters in different layers. The
quantization of each timestep group is formulated as a rate-distortion optimization problem where
the learning objective is to minimize output distortion caused by quantization. Let O denote the
output of the original model and Ô denote the output of that quantized model, our approach aims
to minimize the output distortion when parameters are quantized. The output distortion is defined
as the Mean Square Error (MSE) added by the Structural Similarity Index Measure (SSIM) loss
between O and Ô,

Γ(O, Ô) =
∥O− Ô∥2

∥O∥2F · ∥Ô∥2F
+

(2uOuÔ + c1)(2σOÔ + c2)

(u2
O + u2

Ô
+ c1)(σ2

O + σ2
Ô
+ c2)

(3)

where uO is the pixel sample mean of O, uÔ is the pixel sample mean of Ô, σO is the variance of
O, σÔ is the variance of Ô, σOÔ is the covariance of O and Ô, and c1 and c2 are two variables to
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stabilize the division. By directly optimizing the output distortion between O and Ô, our approach
can well maintain the accuracy when models are quantized to low bit widths.

Furthermore, we adopt mixed precision to quantize parameters in different layers. Because pa-
rameters in different layer react very distinctively to quantization, for layers which are sensitive to
quantize, large bit widths should be allocated to quantize them. While for other layers which are less
sensitive, one can allocate small bit widths to quantize. As a result, using equal bit width to quantize
parameters in all layers is not reasonable. The quantization with mixed precision is formulated as a
rate-distortion optimization problem where output distortion is minimized, given the size constraint,

argmin
q(W†

1),...,q(W
†
l ),q(I

†
1),...,q(I

†
l )

ΓW†
1,...,W

†
l ,I

†
1,...,I

†
l
(O, Ô)

s.t.

l∑
i=1

sW†
i
+

l∑
i=1

sI†i
≤ S,

(4)

where S denotes the total size of the model after quantization, sW†
i

is the size of quantized weights

W†
i (i.e., q(W†

i )) of layer i which equal to the number of weights multiplied by the bit width of this
layer, sI†i is the size of quantized activations I†i (i.e., q(I†i )) of layer i which equal to the number of
activations multiplied by the bit width of this layer, and l is the total number of layers.

3.3 FIRST ORDER TAYLOR APPROXIMATION

Directly optimizing 4 is difficult because of the huge search space of bit widths, which increases
exponentially as the number of layers where in practice it can be tens of thousand or even more. We
utilize first-order Taylor approximation and observe an important additivity property. As a result,
the output distortion ΓW†

1,...,W
†
l ,I

†
1,...,I

†
l
(O, Ô) can be rewritten in the following way: Actually,

by utilizing Taylor Series Expansion approximation, output distortion ΓW†
1,...,W

†
l ,I

†
1,...,I

†
l
(O, Ô),

caused by quantizing all filters and regions, can be decomposed to the sum of output distortions due
to the quantization of each individual item

Property 1. The output distortion caused by quantizing all layers equal to the sum of output distor-
tions due to the quantization of each individual layer,

ΓW†
1,...,W

†
l ,I

†
1,...,I

†
l
(Ol, Ôl) =

l∑
i=1

ΓW†
i
(O, Ô) +

l∑
i=1

ΓI†i
(O, Ô) (5)

if the model is continuously differentiable in every layer and quantization errors can be considered
as small deviations distributed with zero mean.

Mathematical Derivation. The proof of 5 is as follows. Let F(W1,W2, ...,Wl) denote a diffu-
sion model weighted by l layers and F̃(W1,W2, ...,Wl, s1, s2, ..., sl) denote a modified diffusion
model of F where an element-wise add layer with parameter si is followed for each input region ai.
Based on this definition, we have

F(W1,W2, ...,Wl) = F̃(W1,W2, ...,Wl, 0, 0, ..., 0) (6)

Define two variables X0 and ∆X , where X0 =
(
W1, ...,Wl, 0, ..., 0

)
and ∆X =(

∆W1, ...,∆Wl,∆s1, ...,∆sl
)
. Here we use ∆Wi and ∆si denote the quantization errors of

weights and activations, respectively. Assume that the quantization error can be considered as small
deviation. We apply the Taylor series expansion up to first order term on F̃ at X0,

F̃(X0 +∆X)− F̃(X0) =
∑
i

∂F̃
∂Wi

·∆Wi +
∑
i

∂F̃
∂si

·∆si (7)

Then ∥F̃(X0 +∆X)− F̃(X0)∥2 can be written as(∑
i

∆Wi
⊤ · ∂F̃

∂Wi

⊤

+
∑
i

∆si
⊤ · ∂F̃

∂si

⊤)
·
(∑

i

∂F̃
∂Wi

·∆Wi +
∑
i

∂F̃
∂si

·∆si

)
(8)
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Figure 1: Demonstration of the additivity property of output distortion. The vertical axis represents
the left side of Equation (5). The horizontal axis represents the right side of Equation (5).

Because quantization errors in different layers are independently distributed with zero mean, the
cross terms of (8) disappear when taking the expectation. That is:

E(∆Wi
⊤ · ∂F̃

∂Wi

⊤

· ∂F̃
∂Wj

·∆Wj) = E(∆Wi
⊤) · ∂F̃

∂Wi

⊤

· ∂F̃
∂Wj

· E(∆Wj) = 0 (9)

as is the case also for the cross products between Wi and sj (all i, j), and si and sj (i ̸= j). Then,
we can obtain

E(∥F̃(X0 +∆X)− F̃(X0)∥2) =
∑
i

E
(
∥ ∂F̃
∂Wi

·∆Wi∥2
)
+

∑
i

E
(
∥∂F̃
∂si

·∆si∥2
)

(10)

Eq. (10) is the result we want because, again, according to the Taylor series expansion up to first
order terms, we have

∂F̃
∂Wi

·∆Wi = F̃(...,Wi +∆Wi, ...,Wl, 0, ...)− F̃(...,Wi, ...,Wl, 0, ...) (11)

Similarly, we have another equation for inputs,

∂F̃
∂si

·∆si = F̃(W1, ...,Wl, 0, ...,∆si, ...)− F̃(W1, ...,Wl, 0, ..., 0, ...) (12)

After dividing both sides of (10) by the dimensionality of the output vector of the neural network,
the left side becomes ΓW†

1,...,W
†
n,I

†
1,...,I

†
m
(O, Ô) and the right side becomes the sum of all output

distortion due to the quantization of each individual filters and regions. Figure 1 shows an illustration
of the additivity property. In Figure 1, all the points are closed to the diagonal, meaning that the
additivity property holds.

3.4 OPTIMIZATION AND COMPLEXITY ANALYSIS

After utilizing the additivity property in 5, the formulation can be rewritten as

argmin
q(W†

1),...,q(W
†
l ),q(I

†
1),...,q(I

†
l )

l∑
i=1

ΓW†
i
(O, Ô) +

l∑
i=1

ΓI†i
(O, Ô)

s.t.

l∑
i=1

sW†
i
+

l∑
i=1

sI†i
≤ S,

(13)

We adopt Lagrangian formulation to solve (13). The Lagrangian cost function of (13) is defined as

l∑
i=1

ΓW†
i
(O, Ô) +

l∑
i=1

ΓI†i
(O, Ô)− γ · (

l∑
i=1

sW†
i
+

l∑
i=1

sI†i
), (14)
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where γ decides the trade-off between the output error and the total size of the network. We then
set the partial derivatives of (14) to zero w.r.t. each sW†

i
and sI†i

to find the extreme value. We then
have the optimal condition,

∂ΓW†
i
(O, Ô)

∂sW†
i

=
∂ΓI†i

(O, Ô)

∂sI†i

= γ. (15)

The above equation expresses the extreme value condition, which is that the slopes of output error
versus size curves must be equal. Based on this condition, we can find the solution by generating
the output error versus the size curve for each filter and region and choosing the points with an equal
slope on the curves.

According to 15, we solve the joint optimization problem by enumerating γ and selecting the point
with slope equal to γ on each output error versus size curve. We generate the output error versus size
curves for all layers’ weights and activations. An output error versus size curve is a discrete curve
with B points, by setting the quantization bit width from 1-bit to B-bits. We enumerate different γ
to find the best one with minimal output error and without exceeding the constraint of model size.
Let N denotes the number of curves and M denotes the number of points in each curve. The time
complexity to solve the joint optimization problem is O(K ·M ·N), where K is the total number of
slope γ to be evaluated. This indicates that our solution is linear time complexity and independent
on the number of parameters.

4 EXPERIMENTS

Datasets and models. We perform image generation experiments using two widely-adopted diffu-
sion models: Denoising Diffusion Probabilistic Models (DDPM) Ho et al. (2020) and Denoising
Diffusion Implicit Models (DDIM) Song et al. (2021). Both models train the image denoiser
over the course of 1,000 time steps. To evaluate the performance of these models, we utilize four
well-established benchmark datasets. The first is CIFAR-10 (32×32) Krizhevsky (2009), which
contains 50,000 training images across 10 classes. Next, we use the CelebA-HQ dataset Liu
et al. (2015) at a resolution of 256×256, consisting of 30,000 high-quality celebrity face images.
Additionally, we incorporate LSUN-Bedrooms and LSUN-Churches Fisher et al. (2015), both with
image resolutions of 256×256, each providing 50,000 training images. These datasets enable a
comprehensive evaluation of model performance across diverse image types, from natural scenes to
human faces.

Quantization settings. Following the approach of previous work Huang et al. (2024), we apply
channel-wise quantization to the model’s weights and layer-wise quantization to its activations.
These quantization strategies help reduce the model’s memory footprint and computational require-
ments while maintaining performance. Additionally, based on empirical findings from traditional
model quantization techniques Han et al. (2015a); Mohammad et al. (2016), we preserve the input
and output layers in full precision (FP) to prevent significant degradation in accuracy. Maintaining
these critical layers in FP ensures that the model retains high-quality data representation at the
beginning and end of the network, where precision is most impactful.

Evaluation metrics. For each experiment, we assess the performance of the diffusion models using
the Frechet Inception Distance (FID), a widely recognized metric for evaluating the quality of images
generated by generative models. FID measures the distance between the distribution of generated
images and that of real images (referred to as the ‘ground truth’), providing insight into both the
fidelity and diversity of the generated samples. Lower FID scores indicate closer alignment between
the generated and real images, signifying higher image quality.

In addition to FID, we also report the Inception Score (IS) as a complementary metric. Unlike FID,
IS evaluates the generated images based solely on their own distribution, without comparison to real
images. It assesses both the recognizability of the generated images and the diversity within the set,
making it a useful reference for understanding model performance in isolation. By using both FID
and IS, we provide a comprehensive evaluation of the generative capabilities. All experiments are
conducted using a single NVIDIA-A100-SXM4 GPU and implemented in the PyTorch framework.
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Table 1: Experiment on 4/5/6/7/8-bit quantized diffusion models generating image on four datasets.
“Bits” denotes the bit-width of weights/activations.

Model Dataset Bits FID↓ IS↑ Model Dataset Bits FID↓ IS ↑

D
D

PM
CIFAR-10

FP 3.30 9.47

D
D

IM

LSUN-Bedroom

FP 7.89 2.81
8/8 3.16 9.48 8/8 8.09 2.85
7/7 3.17 9.43 7/7 8.21 2.78
6/6 3.37 9.29 6/6 9.37 2.32
5/5 6.13 9.01 5/5 14.65 1.83
4/4 33.03 6.76 4/4 39.88 1.51

Celeba-HQ

FP 9.01 2.50

LSUN-Church

FP 11.33 2.74
8/8 8.89 2.58 8/8 11.56 3.05
7/7 9.02 2.56 7/7 13.03 2.83
6/6 9.06 2.54 6/6 15.11 2.24
5/5 9.30 2.55 5/5 24.65 1.67
4/4 9.49 2.81 4/4 59.74 1.08

4.1 ABLATION STUDY

Table 1 presents the quantitative results of the proposed method on four used datasets. As shown, the
low-bit quantized models (i.e., models using 5 or fewer bits) for generalization, such as DDPM on
CIFAR-10 and DDIM on LSUN-Bedrooms and LSUN-Churches exhibit a significant performance
degradation in the image generation task compared to their full precision (FP) counterparts.

For instance, on CIFAR-10, there is a performance gap of 2.83 and 29.73 in FID score when using
5-bit and 4-bit quantization, respectively. Surprisingly, on CelebA-HQ, our proposed quantization
method allows DDPM to generate images comparable to the FP model, even with 5-bit and 4-bit
quantization (0.29 and 0.48 performance cap in terms of FID score respectively). On the LSUN-
Bedroom and LSUN-Church datasets, the performance degradation becomes pronounced when the
bit precision is reduced to 6 or lower. Specifically, the FID scores show a significant decline, indi-
cating that the quality of generated images deteriorates considerably with lower bit quantization.

This performance drop is likely due to the reduced capacity of low-bit models to capture fine-grained
details in the data, leading to a loss in image quality and diversity. While quantization effectively
reduces model size and computational cost, the results indicate that extreme low-bit quantization
introduces challenges in maintaining the fidelity of generated images.

4.2 MAIN RESULTS

The experimental results are presented in Table 2. We compare our method against baseline ap-
proaches within the same frameworks, such as DDPM on CIFAR-10 and CelebA-HQ, and DDIM
on LSUN-Bedroom and LSUN-Church, for the image generation task. The baseline methods in-
clude Q-Diffusion Li et al. (2023a), PTQ4DM Shang et al. (2023), PTQD He et al. (2023) and
APQ-DM Wang et al. (2024).

From the table, we can observe the following results for W8A8 quantization: (1) On CIFAR-10,
compared to the full precision (FP) model, our method achieves a 0.14 reduction in FID while
maintaining the same IS. When compared to the state-of-the-art (SOTA) method, PTQ4DM, our
approach yields a 0.12 FID improvement. (2) On CelebA-HQ, our method outperforms FP with a
0.12 reduction in FID and a 0.08 increase in IS, while also surpassing the SOTA (PTQ4DM) by 0.05
in FID. (3) On LSUN-Bedroom, our method shows a slight 0.2 increase in FID compared to FP, yet it
achieves the closest FID score among all SOTA methods. (4) On LSUN-Church, APQ-DM achieves
the best performance, surpassing the FP in terms of FID, while our method performs comparably to
PTQD. We can also observe that the performance trends across all methods for W6A6 are similar to
those observed for W8A8.

4.3 VISUALIZATION

Figure 2 demonstrates some examples of the images that are generated by different quantized Dif-
fusion models (DDPM and DDIM), where our method can still acquire plausible images with high-
quality details with weights and activations in low bitwidths (8bits and 6bits). For example, on
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Table 2: Comparisons with the state-of-the-arts data-free post-training quantization methods on im-
age generation for DDPM and DDIM diffusion models across various datasets and bitwidth setting.
It is important to note that the FID and IS scores for all methods were obtained by applying them to
the same baseline model.

Method Bitwidth CIFAR-10 CelebA-HQ LSUN-Bedroom LSUN-Church
FID↓ IS ↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

Baseline FP 3.3 9.47 9.01 2.50 7.89 2.81 11.33 2.74
Q-Diffusion

W8A8

3.72 9.26 9.16 2.31 8.69 2.60 12.48 2.70
PTQ4DM 3.28 9.21 8.94 2.33 9.23 2.56 13.20 2.74

PTQD 3.89 9.27 9.81 2.25 9.86 2.41 11.51 2.61
APQ-DM 3.31 9.47 9.33 2.47 8.92 2.94 11.16 2.72

ours 3.16 9.48 8.89 2.58 8.09 2.85 11.56 3.05
Q-Diffusion

W6A6

5.16 8.96 13.81 2.28 11.04 2.09 19.59 2.52
PTQ4DM 6.04 8.92 14.75 2.24 10.59 2.11 19.05 2.48

PTQD - - - - - - - -
APQ-DM 4.12 9.46 9.97 2.36 9.88 2.27 14.36 2.65

ours 3.37 9.29 9.06 2.54 9.37 2.32 15.11 2.24

FP 8 bits 6 bits

C
el
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a-

H
Q

B
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om

C
hu

rc
h

Figure 2: Random samples from W8A8 and W6A6 quantized and full-precision DDPM on CelebA-
HQ and DDIM on LSUN-Bedroom and Church.

CelebA-HQ, the images generated by our method with 6-bit quantization maintain nearly the same
fidelity as those produced by the FP model.

On LSUN-Bedroom and LSUN-Church, the images generated by our method with 8-bit quantiza-
tion maintain the same quality as those from the FP model. However, with 6-bit quantization, the
generated images experience a slight degradation in quality. Additional visualization results are
provided in the Appendix.

5 CONCLUSIONS

While diffusion models achieve impressive performance in image and video generation, their prac-
tical application is hindered by high computational complexity and memory demands. To overcome
these limitations, we propose a post-training quantization approach that reduces both computational
and memory requirements. Our method groups timesteps and optimizes their quantization configu-
rations independently, effectively minimizing output distortion while preserving accuracy at lower
bit widths.

We formulate the quantization of each group as a rate-distortion optimization problem and develop
an efficient algorithm to find the solution by apply first order Taylor approximation. Experiments
on various datasets show that our approach reduces the bit width to 5-6 bits while maintaining high
accuracy, outperforming state-of-the-art methods.
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A APPENDIX

A.1 DISTORTION CURVES OF ACTIVATION ACROSS LAYERS WITH VARIOUS TIMESTEPS

As mentioned earlier, we have observed that the activation distribution varies significantly across
different timesteps. In Figure 3, we illustrate the distribution of activation quantization distortion
across layers, measured at intervals of 100 timesteps from 100 to 1000 on the CIFAR-10 dataset.
This example highlights the variability in distortion at a fixed bit-width (i.e., 2 bits). Notably, the
level of distortion fluctuates across layers depending on the timestep, indicating that a uniform quan-
tization approach fails to capture the temporal nuances in activation distribution. This reinforces the
need for timestep-specific quantization strategies to mitigate distortion and maintain performance
consistency throughout the denoising process in diffusion models.

Figure 3: Distribution of activation quantization distortion across layers using our method on
the CIFAR-10 dataset at various time steps during the denoising process.

A.2 MORE VISUALIZATION RESULTS

In Figures 4 to 8, we present additional visualization results on CIFAR-10, Celeba-HQ, LSUN-
Bedroom, LSUN-Church and ImageNet.

For the CIFAR-10 dataset, we display image generation results using the DDPM model with 8, 7, 6,
5, and 4 bits, applying our quantization method. We can see that, compared to the results generated
from the FP model, the images produced at 6 bits are acceptable. However, once the bit-width drops
to 5 bits, the quality of the image generation declines significantly.

On the CelebA-HQ dataset, we observe that even at a bit-width of 5, the quality of image generation
remains acceptable when compared to images generated by the FP model. Despite the reduced bit-
width, the visual fidelity is well-preserved, demonstrating the robustness of the quantization method
in maintaining image quality under lower precision settings. This highlights the effectiveness of the
approach in balancing compression and performance. As the bit-width continues to drop to 4, the
quality of the generated images degrades significantly. The visual artifacts become more prominent,
and the fine details present in higher bit-width settings are lost. This substantial decline in image
quality underscores the challenges of maintaining performance at extremely low precision levels,
highlighting the trade-off between compression efficiency and visual fidelity.

On the LSUN-Bedroom dataset, it is evident that the fidelity of images generated by the DDIM
model with 8/7/6-bits quantization remains acceptable, maintaining a reasonable level of detail and
visual quality. However, when the bit-width is reduced to 5 bits, the degradation in image quality
becomes noticeable. Some of the generated images, such as the second and fifth examples, exhibit
significant artifacts and distortions, rendering them unacceptable. This demonstrates the sensitivity
of the model to lower bit-widths, where even a slight reduction in precision can lead to a marked
drop in generation performance, especially in more complex scenes.
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FP

8 bits

7 bits

6 bits

5 bits

4 bits

Figure 4: Random samples from 8/7/6/5/4 bits quantized and full-precision DDPM on CIFAR-
10. The resolution of each sample is 32×32.

On the LSUN-Church dataset, a similar trend is observed as with LSUN-Bedroom. The 6-bit quan-
tization is the lowest precision at which the quality of generated images remains acceptable when
applying our quantization method to the DDIM model. At this bit-width, the generated images
still retain sufficient detail and visual coherence. However, reducing the bit-width further leads to
a noticeable decline in quality, with prominent artifacts and distortions. This indicates that 6 bits
represent a critical threshold for maintaining image fidelity in complex datasets like LSUN-Church,
highlighting the importance of balancing quantization efficiency with visual performance.

For the experiment on ImageNet, we utilize the Latent Diffusion Model (LDM) as the generation
framework. Image generation results are showcased for the LDM model quantized to 8, 6, and 5
bits using our proposed quantization method. Observably, the quality of generated images remains
comparable to those produced by the FP model down to 6 bits. This demonstrates the effectiveness
of our quantization approach in preserving image fidelity while significantly reducing computational
requirements. However, at 5 bits, some image details are lost, indicating a lower bound for main-
taining comparable performance.

A.3 EFFECTIVENESS OF NEW DISTORTION METRICS

As mentioned earlier, we adopted a new metric (MSE+SSIM) instead of solely relying on MSE
to measure distortion when allocating different bit-widths across layers. To demonstrate the effec-
tiveness of this newly designed distortion metric, we conducted an ablation study comparing the
performance of our method using MSE alone versus the new metric on the CIFAR-10 dataset. The
results, shown in Table 3, reveal that applying the combined MSE+SSIM metric led to lower FID
scores for generated images when the DDPM model was quantized to 7, 6, 5, and 4 bits, compared
to using MSE as the sole metric. This improvement highlights the advantage of incorporating SSIM
to capture structural similarity alongside MSE, resulting in better visual quality during quantization.
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FP

8 bits

7 bits

6 bits

5 bits

4 bits

Figure 5: Random samples from 8/7/6/5/4 bits quantized and full-precision DDPM on Celeba-
HQ. The resolution of each sample is 256×256.

Table 3: Ablation study on the effectiveness of the new metric in improving the performance of
4/5/6/7/8-bit quantized DDPM models on the CIFAR-10 dataset.

Bit-width IS↑ IS(std) ↓ FID ↓
FP 9.47 0.121 3.30

MSE

8bits 9.51 0.067 3.13
7bits 9.51 0.060 3.23
6bits 9.46 0.088 3.42
5bits 8.99 0.086 6.39
4bits 6.69 0.106 34.88

MSE + SSIM

8bits 9.48 0.094 3.16
7bits 9.43 0.117 3.17
6bits 9.29 0.147 3.37
5bits 9.01 0.132 6.13
4bits 6.76 0.056 33.03

A.4 IMPACT OF QUANTIZATION ACROSS DIFFERENT MODEL LAYERS

Figure 9 demonstrates the bit allocation across different layers of the DDPM model on the CIFAR-
10 dataset, showcasing the impact of our proposed quantization method. We observe that with an
average bit allocation of 8 bits, some layers are quantized to 10 bits, while others are quantized to
8, 6, or even 4 bits. When the average bit allocation is 4 bits, the quantized bit values across layers
range from 10 to 2 bits, including 8, 6, and 4 bits. For certain layers, such as the 36th and 39th, no
bits are allocated.

A.5 RESULTS OF QUANTIZING ON WEIGHTS

We present FID score for weight quantization while maintaining full precision for activations in
DDPM models on the CIFAR-10 and CelebA-HQ datasets in Tab. 4. we observe that quantizing
only the weights allows parameters to be reduced to 6 bits without significant accuracy degradation
(loss < 0.2) on the CIFAR-10 dataset. Similarly, for DDPM on the CelebA-HQ dataset, weight
quantization to 6 bits achieves comparable performance, with accuracy loss remaining below 0.6.
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FP

8 bits

7 bits

6 bits

5 bits

Figure 6: Random samples from 8/7/6/5 bits quantized and full-precision DDIM on LSUN-
Bedroom. The resolution of each sample is 256×256.

Table 4: Results (FID) of quantization on weights of DDPM model across CIFAR-10 and CeleBA-
HQ datasets.

CIFAR-10 CeleBA-HQ
FP 3.30 9.01

w=8, a=32 3.14 8.87
w=7, a=32 3.15 8.98
w=6, a=32 3.30 9.04
w=5, a=32 6.09 9.27
w=4, a=32 32.27 9.45

A.6 DISCUSSION OF THE NUMBER OF TIMESTEP GROUPS
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Figure 7: Random samples from 8/7/6/5 bits quantized and full-precision DDIM on LSUN-
Church. The resolution of each sample is 256×256.
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Figure 8: Random samples from 8/6/5 bits quantized and full-precision LDM on ImageNet.
The resolution of each sample is 256×256.

Table 5 presents the FID scores of quantized DDPM model on the CIFAR-10 dataset with bit allo-
cations determined using distortion computations from two groups of time steps (e.g., the first 100
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Figure 9: Visualization of bit allocation across different layers of the DDPM model applied to
the CIFAR-10 dataset.

Table 5: Results (FID) of quantization results with different group numbers.
Bit Width 2 Groups (500 timesteps per group) 10 Groups (100 timesteps per group)

8 bits 58.58 45.44
7 bits 65.94 55.72
6 bits 74.46 66.39
5 bits 95.05 83.22
4 bits 105.88 92.62

and 500 time steps) and ten groups of time steps (e.g., the first 100, 200, ..., 1000 time steps). We
can see that using more groups of time steps, we can obtain a lower FID score.

A.7 THE IMPLEMENTATION DETAILS OF OPTIMIZATION
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Figure 10: Examples of the optimization method. In the left figure, the red point has minimal
intercept on Y-Axis and it is selected. The middle and right figures show the selected points on three
curves when λ = −0.5 and λ = 2.0, respectively.

We apply Lagrangian formulation to solve objective function (13). According to the additivity
property, the Lagrangian cost function of (13) is defined as

l∑
i=1

ΓW†
i
(O, Ô) +

l∑
i=1

ΓI†i
(O, Ô)− γ · (

l∑
i=1

sW†
i
+

l∑
i=1

sI†i
), (16)

in which γ decides the trade-off between bit rate and output distortion. Setting the partial derivations
of (16) to zero with respect to each sW†

i
and sI†i

, we obtain the optimal condition

∂ΓW†
i
(O, Ô)

∂sW†
i

=
∂ΓI†i

(O, Ô)

∂sI†i

= γ. (17)

for all 1 ≤ i ≤ l. Equation (17) expresses that the slopes of all rate-distortion curves (output distor-
tion versus bit rate) should be equal to obtain optimal bit allocation with minimal output distortion.
According to (17), we are able to solve objective function (13) efficiently by enumerating slope γ
and then choosing the point on each rate-distortion curve with slope equal to γ as the solution.
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Algorithm 1 Generating rate-distortion curves for the weights and activations of each layer
Input: Diffusion Model F ; Input I.
Output: Rate-distortion curves: Q1, Q2, ..., Q2l.

1: Compute original output vector Y = F(I).
2: for each group Ci (weights or activations in a layer) do
3: for bit-width b ranging from 1 bit to C bits do
4: Quantize Ci with b bits: Ci = q(Ci).
5: Compute the size R of quantized Ci, q(Ci).
6: Compute modified output vector Ŷ.
7: Compute output distortion d = distance(Y, Ŷ), which is SSIM + MSE.
8: Collect point P = (R, d).
9: Update Qi = Qi ∪ P .

10: end for
11: end for

Algorithm 2 Optimization via Lagrangian formulation
Input: Rate-distortion curves: Q1, Q2, ..., Q2l; Slope γ.
Output: Solution of optimal bit allocation S; Size of quantized model R.

1: Initialize S = ∅, R = 0.
2: for each rate-distortion curve Qi do
3: Initialize Ymin intercept = ∞, id = −1.
4: for each point P on Qi do
5: x0 = Pj → x, y0 = Pj → y, Yintercept = y0 − λ · x0.
6: if Yintercept < Ymin intercept then
7: Update Ymin intercept = Yintercept.
8: Update id = j.
9: end if

10: end for
11: Update S = S ∪ {Pid}, R = R+ Pid → x.
12: end for

The algorithm works as follows. Before optimization, we quantize weights and activations of each
layer with different bit widths and calculate the output distortion caused by quantization to generate
the rate-distortion curve for each layer’s weights and activations. After that, we assign a real value
to γ, and select the point with slope equal to γ on each curve. The selected points on all curves
correspond to a group of solution for bit allocation. In practice, we explore multiple values for γ until
the size of the quantized network meets constraint. We randomly select 50 images from ImageNet
dataset to calculate output distortion caused by quantization. Assume that we have N curves and M
points in each curve. The time complexity to find optimum bit allocation is O(K ·M · N), where
K is the total number of slope γ to be evaluated, M is the total number of bit widths, and N is the
total number of layers.

Figure 10 illustrates an example of the optimization method. The optimization starts from enumer-
ating the value γ. Given a γ, we find the point with the slope equal to γ on each curve. Specifically,
we compute the intercepts on Y-axis for all the lines with slope λ passing one of the points on the
curve. The point on the curve passed by the line with minimal intercept on Y-axis is selected. For
the selected point, the horizontal coordinate (the value in the X-axis direction) corresponds to the
bit width of the weights or activations in the layer. Algorithm 1 and 2 show the pseudo-codes to
generate rate-distortion curves and to optimize the bit allocation.
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