
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT AUTOREGRESSIVE INFERENCE FOR
TRANSFORMER PROBABILISTIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models for amortized probabilistic inference, such as neural
processes, prior-fitted networks, and tabular foundation models, excel at single-
pass marginal prediction. However, many real-world applications – from signal
interpolation to multi-column tabular predictions – require coherent joint distribu-
tions that capture dependencies between predictions. While purely autoregressive
architectures efficiently generate such distributions, they sacrifice the flexible set-
conditioning that makes these models powerful for meta-learning. Conversely, the
standard approach to obtain joint distributions from set-based models requires ex-
pensive re-encoding of the entire augmented conditioning set at each autoregres-
sive step. We introduce a causal autoregressive buffer that preserves the advan-
tages of both paradigms. Our approach decouples context encoding from updating
the conditioning set. The model processes the context once and caches it. A dy-
namic buffer then captures target dependencies: as targets are incorporated, they
enter the buffer and attend to both the cached context and previously buffered tar-
gets. This enables efficient batched autoregressive generation and one-pass joint
log-likelihood evaluation. A unified training strategy allows seamless integration
of set-based and autoregressive modes at minimal additional cost. Across syn-
thetic functions, EEG signals, cognitive models, and tabular data, our method
matches predictive accuracy of strong baselines while delivering up to 20× faster
joint sampling. Our approach combines the efficiency of autoregressive gener-
ative models with the representational power of set-based conditioning, making
joint prediction practical for transformer-based probabilistic models.

1 INTRODUCTION

Generating predictions conditioned on available data is a central challenge in machine learning.
Recent advances in amortized probabilistic inference and meta-learning have produced a powerful
class of set-based conditioning models capable of rapidly adapting to new tasks without retraining.
Methods such as neural processes (NPs; Garnelo et al. 2018a; Foong et al. 2020), their transformer-
based extensions (Nguyen & Grover, 2022; Chang et al., 2025), prior-fitted networks (PFNs; Müller
et al. 2022), and recent tabular foundation models (Hollmann et al., 2023; 2025; Jingang et al., 2025)
share a crucial architectural principle: they process variable-sized context sets through permutation-
invariant encoders that respect the exchangeability of observed data. This set-based design enables
these models to condition on arbitrary subsets of observations and produce accurate marginal pre-
dictive distributions over new target variables in a single forward pass.

While these models are highly efficient for marginal predictions, many real-world applications re-
quire coherent joint distributions over multiple targets. Tasks such as signal interpolation, behavioral
data modeling, and multi-column tabular prediction demand that we capture dependencies between
random variables. The standard solution deploys these models autoregressively (Bruinsma et al.,
2023). However, this breaks the set-based structure: each new prediction must be added back to the
conditioning set, introducing a computational bottleneck.

Specifically, autoregressive (AR) deployment requires iteratively expanding the conditioning set. To
generate K predictions, the k-th step conditions on the initial context C plus all k − 1 previous
predictions (Fig. 1, Top Left). Since set-based models process their inputs through self-attention
mechanisms to maintain permutation invariance, each new element triggers a complete re-encoding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Context Set Predictions

Encode
𝒪((N + k)2)

Concat

Context Set

Predictions

Encode 𝒪(N2)

Concat

Context Cache

Context Cache

Buffer

Standard Autoregressive Loop

Autoregressive with Buffer Loop (ours)

 𝒪(k)
 𝒪(N)

Target x⋆1

Target x⋆2

Target x⋆
K

…

Target x⋆1

Target x⋆2

Target x⋆
K

…

k = 1,…, K

k = 1,…, K

Figure 1: The autoregressive buffer enables fast joint inference by eliminating redundant con-
text re-computation. Left: Comparison of autoregressive inference strategies. Traditional autore-
gressive approach (top) requires re-encoding the entire augmented context set at each step—when
generating predictions for targets, leading to O(K(N + K)2) complexity. Our buffered approach
(bottom) encodes the context C once and caches it. New predictions enter a causal autoregressive
buffer that attends to both the static cache and previous buffer entries without re-encoding. Right:
Empirical validation. We compare transformer probabilistic models with and without the buffer
mechanism. Both strategies achieve comparable predictive accuracy, confirming the buffer pre-
serves model quality while delivering up to 20× faster sample generation at larger context sizes.

of the entire augmented set. This leads to prohibitiveO(K(N +K)2) complexity, severely limiting
applications with large contexts (N), long target sequences (K), or frequent sampling requirements.
Advances in efficient attention (Jaegle et al., 2021; Feng et al., 2023a) can reduce costs for large
static contexts but do not address the core problem of repeated recomputation inherent in autore-
gressive prediction: each incremental update requires a reprocessing of the conditioning set.

To address this limitation, we introduce the causal autoregressive buffer, an architectural mechanism
that decouples the expensive encoding of the static context from lightweight sequential prediction.
Inspired by the efficiency and scalability of purely autoregressive architectures in language modeling
(Brown et al., 2020) and image generation (Chen et al., 2020; Li et al., 2024), our buffer implements
a causal attention pattern for managing dependencies among generated targets – but crucially, it op-
erates alongside the set-based context rather than replacing it. Our approach first encodes the initial
context C and caches its representation. Targets added to the buffer can rapidly attend to both the
static context cache and previously buffered targets through causal masking, managing dependencies
among newly generated samples without requiring context re-encoding (Fig. 1, Bottom Left). This
eliminates the need for full context re-encoding at each step, drastically reducing computation. Cru-
cially, when the buffer is empty, our model’s behavior is identical to a standard model, preserving
marginal prediction quality. We show that a unified training strategy using masked attention and a
buffer-size curriculum allows a single model to handle both efficient marginal predictions and accel-
erated autoregressive sampling and likelihood evaluation with substantial speedups, while achieving
comparable predictive accuracy to standard AR approaches (Fig. 1, Right).

Our main contributions are:

1. We introduce the causal autoregressive buffer, a mechanism that decouples set-based con-
text encoding from sequential prediction, enabling efficient joint sampling and likelihood
evaluation from transformer-based amortized probabilistic models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2. We propose a unified training strategy using masked attention and buffer-size curriculum
that allows a single model to learn both modes of operation at minimal additional cost.

3. We demonstrate that our approach is broadly applicable to transformer-based probabilistic
models including TNPs/PFNs (Nguyen & Grover, 2022; Müller et al., 2022) and tabular
foundation models (TabICL; Jingang et al., 2025), achieving up to 20× speedup in joint
sampling while maintaining comparable predictive accuracy across diverse tasks.

2 PRELIMINARIES

We consider meta-learning problems where a model must adapt to new prediction tasks using ob-
served data, without task-specific retraining. Given a context set C = {(xn, yn)}Nn=1 with N
input-output pairs, and an analogous target set T = {(x⋆

m, y
⋆
m)}Mm=1, we aim to predict target

output values y⋆1:M at new target inputs x⋆
1:M . This is framed as learning a predictive distribu-

tion pθ(y⋆1:M |x⋆
1:M ; C) where θ are the model’s learnable parameters (Foong et al., 2020). Note:

Throughout the paper, we use index k instead of m when targets are processed autoregressively.

Transformer diagonal prediction maps. Transformer architectures (Vaswani et al., 2017) are a
natural fit for this set-based task. Methods such as (diagonal) transformer neural processes (TNPs;
Nguyen & Grover, 2022) and prior-fitted networks (PFNs; Müller et al., 2022) use two core attention
mechanisms. First, the model processes C using multi-head self-attention (MHSA). Then, each
target input x⋆

m queries this summary using multi-head cross-attention (MHCA). This structure leads
to an efficient diagonal predictive model where predictions are conditionally independent:

pθ(y
⋆
1:M | x⋆

1:M ; C) =

M∏
m=1

pθ(y
⋆
m | rtgt(x

⋆
m, rC(C))) . (1)

Here, rC(C) is the permutation-invariant summary of the context produced by the MHSA layers,
and rtgt(·, ·) is the final decoding function that produces a parametric prediction for y⋆m via MHCA.
This may consist of a single Gaussian, but more expressive parameterizations include Riemannian
distributions (Müller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang et al., 2025).
These models are efficiently trained via maximum-likelihood on random context-targets data splits.

Autoregressive sampling and likelihood evaluation. Many applications require capturing de-
pendencies across targets, which requires joint distributions. This need arises in two forms: (i)
generating coherent samples where targets exhibit dependencies, and (ii) evaluating joint likeli-
hoods. While Eq. (1) can be extended to handle dependent predictions using multivariate parametric
densities such as a multivariate Gaussian (Markou et al., 2022; Nguyen & Grover, 2022), a more
powerful solution employs an autoregressive factorization (Bruinsma et al., 2023):

pθ(y
⋆
1:K | x⋆

1:K ; C) =
K∏

k=1

pθ
(
y⋆k | x⋆

k; C ∪ {(x⋆
j , y

⋆
j)}k−1

j=1

)
. (2)

Crucially, this is not a new model, but a mode of deployment for models described by Eq. (1). This
captures dependencies by conditioning each prediction on previous targets.1 However, this creates
a computational bottleneck: the conditioning set changes at each step, requiring recomputation of
the context summary rC(·). Whether generating samples sequentially or evaluating likelihoods, this
leads to O(K(N+K)2) complexity. Moreover, parallel autoregressive sampling or evaluation is
cumbersome, as generating B parallel sequences requires B copies of the model.

Our goal is to improve efficiency for both sequential and parallel sampling and likelihood evalua-
tion by encoding the context once and reusing it throughout. Existing autoregressive update schemes
break this caching: when targets join the conditioning set, the context representation must be recom-
puted. Our key insight is to separate the roles of initial context C and predicted targets {(x⋆

j , y
⋆
j)}j<k.

We preserve permutation invariance for the initial context (encoded once and cached) while handling
target dependencies through a separate causal mechanism. When needed, the buffer can be merged
back into the context to restore full permutation invariance. This selective relaxation – in-between
fully set-based and purely autoregressive models – enables efficient sequential and parallel opera-
tions while maintaining the strengths of set-based conditioning.

1In practice, Eq. (2) is not exact for likelihood evaluation as it breaks permutation invariance of the model.
However, an approximation can be obtained via Monte Carlo by averaging over multiple target orderings.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 EFFICIENT AUTOREGRESSIVE INFERENCE

Core contribution. Our method conditions predictions on a static, task-defining context C and a
dynamic autoregressive buffer B. We parameterize the predictive distribution as

pθ(y
⋆
1:K | x⋆

1:K ; C) =

K∏
k=1

pθ(y
⋆
k | rtgt(x

⋆
k,b1:k−1, rC(C))) , bk = rB((x

⋆
k, y

⋆
k),b1:k−1, rC(C)),

(3)

where rB is the buffer encoder implemented with MHSA with causal masking, b1:k the first k
encoded data points in the buffer, and b1:0 = ∅. Crucially, rC(C) is computed once and cached. The
target decoder rtgt performs a single cross-attention over the concatenated keys/values from both the
cached context and the visible buffer prefix, then passes the result through a distribution head (e.g.,
an MLP parameterizing a mixture of Gaussians) to generate predictions.

To couple one-time set-based encoding with sequential dependence, the attention must satisfy four
requirements: (R1) the context is immutable: encoded once with self-attention and cached as
read-only; (R2) the buffer is strictly causal: token j may attend only to < j; (R3) information
flows out of the context but never back: no edges write into C; and (R4) each target attends to the
cached context and the visible buffer prefix to capture dependencies among previous predictions.

During training, we enforce (R1) – (R4) in a forward pass using a structured attention mask.
We implement this using a single transformer backbone that processes context, buffer, and target
tokens with distinct role embeddings; buffer tokens additionally carry learned positional embed-
dings indicating their autoregressive order. This allows us to compute all losses in parallel by
conditioning each target’s prediction on the context and a variable-sized, ground-truth buffer set.

Figure 2: Example training mask.

At inference, we use a two-stage process: a one-time
context encoding followed by prediction in the form
of either sampling or likelihood evaluation. Prediction
carries an attention cost of O(N2 +KN +K2), com-
posed of a one-time O(N2) for context self-attention,
O(KN) for all cross-attention reads from the cache,
and a total of O(K2) for causal self-attention within
the buffer. This provides a speedup over naive autore-
gressive methods, which cost O(K(N + K)2) due to
repeated context recomputation. When the buffer is
empty, our model’s behavior is identical to a standard
diagonal prediction map as Eq. (3) reduces to Eq. (1).
Architectural details appear in Appendix A.

Training details. The model is trained by minimizing
the expected negative log-likelihood over a prior distri-
bution of datasets P . Each training task is generated
by sampling a dataset D = {(xi, yi)}Ntot

i=1 ∼ P . A random partition distribution π is then used to
split the dataset into three disjoint sets: (1) the context set C = {(xn, yn)}Nn=1; (2) the buffer set
B = {(xk, yk)}Kk=1; and (3) the target set T = {(xm, ym)}Mm=1, with Ntot = N + K +M . For
each task, we impose a random order on the buffer set B and compute all predictions for the target
set T in a single forward pass. A structured attention mask controls whether each target can attend
to the buffer, and if so, how many elements: 50% of the targets only attend to the context C, 50%
attend to the context plus a prefix of the buffer B1:vm , where vm ∼ Uniform(1,K) for each target
(see Fig. 2). The training objective is:

L(θ) = ED∼P

[
E(C,B,T)∼π(·|D)

[
−

M∑
m=1

log pθ(ym | xm, C,B1:vm)

]]
, (4)

where B1:vm is the visible portion of the buffer for target m (vm = 0 for context-only targets). This
training curriculum ensures the model performs well regardless of the buffer’s state. The frequent
buffer-free predictions force the model to make high-quality marginal predictions from the initial
context alone. Simultaneously, training with exposure to a variable-sized buffer teaches the model

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

to flexibly incorporate additional in-context information. Minimizing this objective is equivalent
to minimizing the KL divergence between the model and the true posterior predictive distribution
under varying conditioning sets (Müller et al., 2022; Elsemüller et al., 2024).

During training, the buffer contains its own set of training data points, as described above. At
inference, we have two modes: (i) autoregressive sampling, where the buffer grows incrementally by
incorporating the model’s own generated samples; and (ii) parallel joint log-likelihood evaluation,
where we pack two sets of K target data points to evaluate all K conditionals in one pass (see
below). The sparsity pattern is identical in both regimes; only execution differs (single masked pass
for evaluation, prefill followed by sequential updates for sampling).

Autoregressive sampling. Given a context C and a sequence of target inputs x⋆
1, ... ,x

⋆
K , we gen-

erate samples by first performing a one-time prefill of C, caching its keys and values in an O(N2)
operation. We then decode sequentially following Eq. (3): for each step k = 1, . . . ,K, we form
a target query for input x⋆

k, attend to the cached context and causal buffer Bk−1, sample y⋆k from
the predictive distribution, and append (x⋆

k, y
⋆
k) to the buffer with its positional embedding. Only

the buffer’s key/value cache is incrementally updated, avoiding context recomputation and yielding
O(N2 +NK +K2) total complexity (detailed in Algorithm 1 in Appendix A.3).

Joint likelihood evaluation. Our framework can also evaluate the joint likelihood of a set of
K = M targets, {(x⋆

m, y
⋆
m)}Km=1, in a single forward pass. To achieve this, similar to the TNP-

A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i) buffer tokens
for the targets {(x⋆

k, y
⋆
k)}Kk=1, and (ii) separate query tokens for the same target inputs {x⋆

m}Km=1. A
causal attention mask ensures that each query for x⋆

m attends to the context C and only the preceding
buffer tokens B1:m−1 = {(x⋆

k, y
⋆
k)}k<m. This allows all conditional probabilities to be computed in

one pass: log pθ(y⋆1:K | x⋆
1:K , C) =

∑K
m=1 log pθ

(
y⋆m | x⋆

m, C,B1:m−1

)
. This is algebraically iden-

tical to sequential autoregressive evaluation but executes in a single forward pass with total attention
cost O(N2+KN+K2). The procedure is formalized in Algorithm 2 (Appendix A.4). Notably,
autoregressive likelihood estimates are order-dependent; to recover approximate permutation invari-
ance, we average the likelihood over multiple buffer orderings (Murphy et al., 2019).

Batched autoregressive sampling. Our method is particularly efficient for autoregressively gener-
ating multiple samples in a batch, conditional on the same context C (e.g., multiple joint predictions
for the same observed function values – see Fig. 1). A naive batched autoregressive approach must
re-encode a growing context set at every generation step for each of the B samples. To generate B
samples of length K, this results in a prohibitive total cost of O(BK(N + K)2). In contrast, our
approach performs the expensive context prefill (O(N2)) only once. This single context cache is
then efficiently reused across all B batched generation streams, with only the small, dynamic buffer
maintaining a separate state for each sample. This reduces the total cost toO(N2+B(NK+K2)),
making batched sampling practical even for large contexts and batches.

Architectural generality. Our buffer is a general mechanism applicable to other transformer vari-
ants. For instance, a Perceiver-style encoder (Jaegle et al., 2021) summarizes the context C into a
fixed set of P ≪ N latent tokens, also known as pseudo-tokens (Lee et al., 2019; Feng et al., 2023a;
Lara-Rangel et al., 2025). We can precompute the latent key/value representations once – autore-
gressive decoding then requires attending only to these P latents and the growing causal buffer. The
per-layer attention cost isO(NP+P 2) for the prefill andO(PK+K2) for decoding K samples. In
contrast, the approach without our buffer would incur a larger cost of O(NPK+P 2K+PK2).

4 RELATED WORK

Neural processes and prior-fitted networks. Our method can serve as a module component with
neural processes (NPs; Garnelo et al., 2018b;a; Bruinsma et al., 2021; Nguyen & Grover, 2022; Du-
tordoir et al., 2023; Chang et al., 2025) or prior-fitted networks (Müller et al., 2022; 2023; Hollmann
et al., 2023). Prior work on efficient NP methods has primarily focused on improving scalability with
respect to the context set size (Feng et al., 2022; 2023a), while also reducing memory usage (Feng
et al., 2023b) for independent prediction tasks. Instead, our method targets efficiency in autoregres-
sive joint sampling and evaluations, an area that has received limited attention in the NP literature.
Our contributions are complementary and can be combined with other architectural improvements.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Transformer probabilistic models. Recent advancements have increasingly leveraged trans-
former architectures for probabilistic modeling, framing Bayesian inference as an in-context learn-
ing task. These methods perform tasks such as approximating posterior distributions, modeling con-
ditional relationships, and estimating posterior predictive distributions, by conditioning on context
observations and possibly additional prior information (Mittal et al., 2023; Gloeckler et al., 2024;
Reuter et al., 2025; Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our work builds on
this direction by leveraging transformer-based variants of neural processes.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint
density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria
et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic au-
toregressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Within the NP
literature, our method is related to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover,
2022) which duplicates targets into queries and observed values. While TNP-A uses this duplication
for both training and inference, we recognize it’s only needed for likelihood evaluation. Bruinsma
et al. (2023) showed that deploying standard NPs autoregressively improves joint predictions but
requires expensive context re-encoding at each step. Our buffer mechanism combines insights from
both approaches: like TNP-A, we enable parallel likelihood evaluation, and like Bruinsma et al.
(2023), we model autoregressive dependencies while training on independent targets – our separate
buffer architecture avoids both TNP-A’s training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models for joint dis-
tributions follow two main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021; Lipman et al., 2023) that generate samples through
continuous-time dynamics, and autoregressive transformers (GPTs; Radford et al., 2018; Brown
et al., 2020) that generate sequences token-by-token with cached key-value states. While diffu-
sion dominates in continuous domains like images and video, autoregressive transformers excel
in discrete sequences and show excellent performance and scalability in multiple domains. Our
buffer mechanism brings the efficiency of autoregressive transformers to NPs and PFNs. Standard
NPs/PFNs struggle with joint prediction because they must re-encode the entire context at each
autoregressive step. Our approach instead mirrors language models: encode the set-based con-
text once (like a prompt) and generate efficiently through cached representations. Recent work has
shown these paradigms can be combined (Tang et al., 2025; Arriola et al., 2025; Wu et al., 2025),
suggesting future extensions.

5 EXPERIMENTS

Our experiments validate our method across diverse tasks: regression on synthetic functions, inter-
polation of real-world EEG data, Bayesian model selection on a multi-sensory perception model,
and pre-training of a tabular foundation model. We first conduct wall-clock benchmarks to quantify
efficiency gains, then assess predictive performance across these varied domains.

Baselines. We compare against models spanning the efficiency-expressivity tradeoff, all config-
ured with matched parameter counts, same input embeddings and output prediction heads unless
noted otherwise (details in Appendix B). TNP-D (Nguyen & Grover, 2022) assumes conditional
independence between targets; we evaluate it both with standard parallel decoding (TNP-D-Ind,
fast but limited) and with autoregressive deployment (TNP-D-AR, expressive but requires sequential
re-encoding). TNP-ND models target dependencies via a multivariate Gaussian, enabling one-pass
joint likelihood but limiting expressivity. TNP-A uses causal self-attention for full autoregressive
modeling but suffers from slow sequential sampling and high training cost. Additional task-specific
baselines are introduced as needed. TNP-ND aside, all models use a Gaussian mixture model output
head with 20 mixture components unless stated otherwise.

Evaluation focus. Our method trades exact set-based AR updates for efficiency. Our goal is to
demonstrate substantial speedups over baselines while maintaining comparable accuracy. Success
means matching predictive performance of state-of-the-art AR approaches (TNP-D-AR, TNP-A)
while being orders of magnitude faster.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1
Ti

m
e (

s)

Sample generation time

32 64 128 256 512 1024
N

10−3

10−2

10−1

Ti
m

e (
s)

Log-likelihood evaluation time

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

Training step time

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure 3: Wall-clock time (log scale) for (left) sampling, (center) joint log-likelihood evaluation,
and (right) a full training step, plotted as a function of the number of context points N . Our method
demonstrates significant speedups over expressive autoregressive baselines.

Table 1: Average log-likelihood (↑) results on synthetic functions and EEG example. Mean and
(SEM) over various functions and context sizes N , for M = 16 targets. See Appendix D.4 for
evaluation details and Table A2 for results with larger M . Deploying TNP w/ buffer with K = 1
tracks the best method, and for K = 16 (fast) in most cases performance only worsens slightly.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

GP 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018) 2.51 (0.019) 2.56 (0.019)
Sawtooth 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004) 1.00 (0.005) 1.09 (0.004)
EEG-Int 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014) 0.52 (0.013) 0.54 (0.014)

EEG-For 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003) 0.85 (0.004) 1.21 (0.003)

Computational efficiency. We benchmark wall-clock time for three key operations: autoregres-
sive sampling, joint log-likelihood evaluation, and a full training step (forward and backward pass).
All measurements are conducted on a unified codebase running on a single NVIDIA L40S GPU.
We optimized all baselines beyond their public versions with KV caching, FlashAttention-2 (Dao,
2023), and compilation, achieving 3− 10× speedups over the original implementations to ensure a
fair comparison. For our method, we developed a custom Triton kernel to optimize memory access
during batched sampling (details in Appendix C). Benchmarks in Fig. 3 use model architectures
matching subsequent experiments with buffer sizeK = 16. For sampling and likelihood evaluation:
M = 16 targets, batch size B = 256. For training: M = 256 targets, batch size B = 128.

As shown in Fig. 3, our method achieves a superior efficiency profile compared to expressive base-
lines. For autoregressive sampling (left), our method is 3− 20× faster than the fully autoregressive
TNP-A and TNP-D-AR. While TNP-D-Ind and TNP-ND are faster, they cannot capture complex
predictive dependencies, as shown later in this section. For log-likelihood evaluation (center), our
method’s speed is on par with the highly parallel TNP-A and is a factor of K× faster than the se-
quential TNP-D-AR. For training speed (right), the overhead of our method is minimal, resulting in
a training step time comparable to the fastest baselines (TNP-D, TNP-ND) and 4− 12× faster than
TNP-A, which incurs a significant computational cost due to its architecture. We provide additional
results, including benchmarks across a wider range of batch and target sizes, in Appendix C.

Synthetic functions. We consider two prediction tasks: (i) functions drawn from Gaussian pro-
cesses (GPs; Rasmussen & Williams, 2006) where the kernel type is sampled from a predefined
set, along with its hyperparameters, and (ii) a non-Gaussian sawtooth process with discontinuous
derivatives. All models are trained on data from these processes and evaluated on new draws (see
Appendix D.2). Results: As shown in Table 1, TNP w/ buffer (K = 16) achieves log-likelihoods
comparable to TNP-D-AR while providing substantial speedups (Fig. 3). To verify that our buffer
training doesn’t degrade standard AR capability, we deploy the same model withK = 1 (effectively
disabling the buffer by processing one point at a time). This matches TNP-D-AR performance ex-
actly, confirming that our approach preserves full AR quality when buffer acceleration isn’t used.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Multi sensory causal inference model comparison and prediction results. For model se-
lection, we use two metrics: log marginal likelihood root mean-squared error (LML RMSE) against
ground-truth, and difference in LML between ρ = 4/3 and ρ = 1, reported as RMSE (∆LML
RMSE). See Table A4 for K = 4 and R2 metric. For data prediction, we report average log-
likelihood (Average LL) for M = 16 targets, computed using the model selected by the model-
selection task. See Table A5 for more results on larger M and K = 4. Mean and (SEM); see
Appendix D.4 for details.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012) 3.56 (0.004) 3.47 (0.004)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019) 2.60 (0.010) 2.59 (0.011)

Average LL (↑) -2.76 (0.024) -2.77 (0.025) -3.12 (0.016) -2.76 (0.024) -2.76(0.024) -2.76 (0.024)

Electroencephalogram (EEG) data. Following Markou et al. (2022) and Bruinsma et al. (2023),
we train TNPs on EEG time series data (Zhang et al., 1995). Each trial contains 256 regularly
sampled measurements across 7 correlated channels. Details of dataset construction are provided
in Appendix D.2. We train on an interpolation setting as in Bruinsma et al. (2023) and evaluate
on both forecasting and interpolation tasks. Interpolation uses random splits into context/targets;
forecasting uses the first N points as context and the next M as targets (Appendices D.2 and D.4).
As in Table 1, our method with K=16 is comparable to TNP-D-AR (slightly worse for forecasting),
and substantially better than TNP-D (Ind) and TNP-ND. Additional results (larger M ; permutation
effects in forecasting) are in Appendices E.2 and E.3.

-1256 -1085 -914
LML (True)

-1256

-1085

-914

LM
L

(T
NP

 w
/ b

uf
fe

r)

R² = 1.00

=4/3
=1

-30 0 30
 LML (True)

-30

0

30

 L
M

L
(T

NP
 w

/ b
uf

fe
r)

R² = 0.92

Figure 4: Multisensory causal inference model
comparison versus ground-truth. (Left) Log
marginal likelihood (LML) comparison for both
ρ = 1 and ρ = 4/3. (Right) LML difference
(ρ = 4/3 − ρ = 1) comparison. Our method
closely aligns with the ground-truth.

Multisensory causal inference model com-
parison and data prediction. We evaluate
our method on a popular computational neu-
roscience model that determines how the
brain combines sensory stimuli from different
sources (Körding et al., 2007). Using publicly
available data from an audio-visual localization
experiment (Liu et al., 2025), we consider
two model variants differing in their auditory
recalibration parameter ρ ∈ {1, 4/3} and
evaluate two tasks: (1) Model selection. For
each method, we train two TNP models on two
simulators, one with ρ = 1 and the other with
ρ = 4/3. We then use the trained models for the
challenging task of computing the log marginal
likelihood (LML) of real experimental data.
Computing the LML requires evaluating the joint likelihood (Murphy, 2012):

LML = log p(y1:N |x1:N) =

N∑
i=1

log p(yi|xi, {(xj , yj)}j<i) (5)

which is inherently an autoregressive prediction task, as each prediction conditions on all previous
data points, so perfectly suited for our models. For each dataset, we estimate the ground-truth LML
for both ρ = 1 and ρ = 4/3 using S-VBMC, a method proven effective on similar problems (Acerbi
et al., 2018; Silvestrin et al., 2025). We report LML RMSE and ∆LML RMSE (the difference
between model metrics, useful for model comparison) in Table 2. (2) Data prediction. Using
the model selected in (1), we predict outputs on the real dataset and report average log-likelihood
(Table 2). See Appendix D.3 for experimental details and Appendix D.4 for evaluation settings.

Results. We evaluate our method using data from the 15 participants of the original study, extracting
two non-overlapping subsets of 400 experimental trials each (400 data points), resulting in a total
of 30 datasets. The model trained with ρ = 4/3 generally achieves better (higher) LML than ρ = 1,
aligning with the original finding that participants are remapping their auditory space to match the
visual range (Liu et al., 2025). Fig. 4 shows that the LML and ∆LML approximations obtained with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Average Log-likelihood (↑) results on UCI datasets with TabICL. We evaluate our
proposed AR-Buffer mechanism integrated into a TabICL foundation model against independent
and standard AR baselines. Performance is measured on both interpolation (Int) and forecasting
(For) tasks across three real-world datasets. Results are reported as mean and standard error over 16
randomly sampled mini-datasets (N = 128, M = 32).

Electric Consumption Gas Turbine Bike Sharing
Int For Int For Int For

Independent 1.60 (0.10) 1.02 (0.29) -0.39 (0.14) -1.16 (0.60) 1.54 (0.06) 0.97 (0.11)
Standard AR 1.63 (0.10) 1.38 (0.27) -0.38 (0.14) -0.75 (0.33) 1.57 (0.06) 1.21 (0.10)

AR w/ buffer (K = 32) 1.61 (0.10) 1.35 (0.27) -0.38 (0.14) -0.76 (0.33) 1.57 (0.06) 1.18 (0.10)

our method are remarkably close to the ground-truth. Furthermore, our method performs on par with
TNP-D-AR and outperforms all other baselines on model comparison (Table 2). All models except
TNP-ND perform similarly on the data prediction task. For additional results, see Appendix F.

Small-scale tabular foundation model. We integrate our autoregressive buffer into the TabICL
foundation model architecture (Jingang et al., 2025). While the original work focused on classifi-
cation, we pre-train our model from scratch for regression tasks. We reuse TabICL’s set encoder to
efficiently compute feature embeddings upfront and focus modifications on the final dataset-wise
in-context learning transformer. Our core methodological contribution is the buffer mechanism, im-
plemented by a structured attention mask. This allows the model to condition on its recent predic-
tions by storing them in a dynamic buffer, while keeping the context cache static and avoiding costly
recomputation during autoregressive inference. We pre-train this architecture on synthetic data from
a structural causal model (SCM) prior (Hollmann et al., 2023; Jingang et al., 2025), where each
training instance is formed by partitioning datasets into distinct sets of context, buffer, and target
points. Our network size and training scale are comparable to the original TabPFN (Hollmann et al.,
2023); the model is pre-trained on 10.24 million synthetic datasets containing 1 to 10 features and 8
to 1024 context points, with a buffer size of K = 32. Full details are provided in Appendix D.5.

Results. We evaluate on three UCI2 time-series datasets: Individual Household Electric Power Con-
sumption, Gas Turbine CO and NOx Emission, and Bike Sharing, of input dimensionality 6, 9, and
10, respectively. We form 16 tasks per dataset with N=128 context and M=32 targets under inter-
polation (Int) and forecasting (For). We compare three inference modes with the same backbone:
“Ind” (independent predictions), “Standard AR” (conventional step-by-step autoregression, K=1
equivalent), and “AR w/ buffer” (ours, K=32). Results in Table 3 show that standard AR and AR
w/ buffer consistently outperform independent predictions, and AR w/ buffer matches standard AR
within standard errors, indicating that using a buffer of sizeK=32 preserves AR dependencies while
enabling efficient autoregressive inference.

6 DISCUSSION & CONCLUSION

We introduce a causal autoregressive buffer that decouples one-time context encoding from
lightweight sequential updates in transformer-based probabilistic models. By caching context
keys/values and routing target-to-target dependencies through a causal buffer, we reduce attention
cost from O(K(N+K)2) to O(N2 + NK + K2). Across synthetic functions, EEG interpola-
tion, multisensory modeling, and tabular prediction, our method matches autoregressive baselines
while achieving up to 20× faster joint sampling with minimal additional training cost over standard
models, and up to 10× lower training cost than autoregressive-specific baselines. These gains are
strongest when joint samples are needed repeatedly from the same large context with moderate target
count. The primary limitation is degraded performance when target count exceeds training bounds
of the buffer. Future work should prioritize handling larger buffer sizes through advanced positional
encodings, variable-length buffers, and adaptive merge policies. The autoregressive buffer makes
joint prediction practical where full autoregression was previously prohibitive.

2https://archive.ics.uci.edu/

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work uses only publicly available datasets and synthetic simulators, with no sensitive data
involved. The methods are for research purposes and pose no foreseeable ethical risks. We have
followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide an anonymized code archive in the supplementary materials containing the training
and evaluation pipelines along with configuration files. All experiments use public datasets or,
when applicable, a simulator for synthetic data. Algorithmic details are presented in Algorithms 1
and 2, and all hyperparameters and training schedules are specified in the configuration files and
documented in the appendix. Ablation studies are also reported in the appendix. We do not release
pretrained weights, and no special data licenses or usage constraints apply.

REFERENCES

Luigi Acerbi. Variational Bayesian Monte Carlo. Advances in Neural Information Processing Sys-
tems, 31:8222–8232, 2018.

Luigi Acerbi. Variational Bayesian Monte Marlo with noisy likelihoods. Advances in Neural Infor-
mation Processing Systems, 33:8211–8222, 2020.

Luigi Acerbi, Kalpana Dokka, Dora E Angelaki, and Wei Ji Ma. Bayesian comparison of explicit
and implicit causal inference strategies in multisensory heading perception. PLoS Computational
Biology, 14(7):e1006110, 2018.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner.
The Gaussian neural process. In 3rd Symposium on Advances in Approximate Bayesian Inference,
2021.

Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. In International Conference on Learning Representations, 2023.

Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi.
Amortized probabilistic conditioning for optimization, simulation and inference. International
Conference on Artificial Intelligence and Statistics, 2025.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International Conference on Machine Learning, pp. 1691–
1703. PMLR, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Uncertainty in
artificial intelligence, pp. 1263–1273. PMLR, 2020.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion pro-
cesses. In International Conference on Machine Learning, pp. 8990–9012. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Koethe, and
Stefan T. Radev. Sensitivity-aware amortized bayesian inference. Transactions on Machine
Learning Research, 2024.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Efficient queries
transformer neural processes. In Sixth Workshop on Meta-Learning at the Conference on Neural
Information Processing Systems, 2022.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottle-
necked attentive neural processes. In The Eleventh International Conference on Learning Repre-
sentations, ICLR 2023. PMLR (Proceedings of Machine Learning Research), 2023a.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed.
Constant memory attention block. In Workshop on Efficient Systems for Foundation Models @
ICML2023, 2023b.

Andrew YK Foong, Wessel P Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
Richard E Turner. Meta-learning stationary stochastic process prediction with convolutional neu-
ral processes. In Advances in Neural Information Processing Systems, volume 33, pp. 8284–8295,
2020.

Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Ali Eslami,
and Yee Whye Teh. Neural processes. In ICML Workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018b.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International conference on machine learning, pp. 881–889. PMLR,
2015.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-
in-one simulation-based inference. In International Conference on Machine Learning. PMLR,
2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. In The Eleventh International Con-
ference on Learning Representations, 2023.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International conference on machine learning, pp. 2078–2087. PMLR, 2018.

Bobby Huggins, Chengkun Li, Marlon Tobaben, Mikko J. Aarnos, and Luigi Acerbi. PyVBMC:
Efficient Bayesian inference in Python. Journal of Open Source Software, 8(86):5428, 2023. doi:
10.21105/joss.05428. URL https://doi.org/10.21105/joss.05428.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021.

11

https://doi.org/10.21105/joss.05428

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

QU Jingang, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular foun-
dation model for in-context learning on large data. In Forty-second International Conference on
Machine Learning, 2025.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

David C Knill and Alexandre Pouget. The Bayesian brain: the role of uncertainty in neural coding
and computation. Trends in Neurosciences, 27(12):712–719, 2004.

Konrad P Körding, Ulrik Beierholm, Wei Ji Ma, Steven Quartz, Joshua B Tenenbaum, and Ladan
Shams. Causal Inference in Multisensory Perception. PLOS ONE, 2(9):e943, 2007.

Jose Lara-Rangel, Nanze Chen, and Fengzhe Zhang. Exploring pseudo-token approaches in trans-
former neural processes. arXiv preprint arXiv:2504.14416, 2025.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Proceed-
ings of the fourteenth international conference on artificial intelligence and statistics, pp. 29–37.
JMLR Workshop and Conference Proceedings, 2011.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

Shuze Liu, Trevor Holland, Wei Ji Ma, and Luigi Acerbi. Distilling noise characteristics and prior
expectations in multisensory causal inference. 2025.

Sulin Liu, Peter J Ramadge, and Ryan P Adams. Generative marginalization models. In Proceedings
of the 41st International Conference on Machine Learning, pp. 31773–31807, 2024.

Stratis Markou, James Requeima, Wessel P Bruinsma, Anna Vaughan, and Richard E Turner. Practi-
cal conditional neural processes via tractable dependent predictions. In International Conference
on Learning Representations, 2022.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus A Brubaker. Ex-
ploring exchangeable dataset amortization for bayesian posterior inference. In ICML 2023 Work-
shop on Structured Probabilistic Inference and Generative Modeling, 2023.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amor-
tized in-context bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do Bayesian inference. In International Conference on Learning Representations,
2022.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In International Conference on Machine Learning, pp. 25444–25470.
PMLR, 2023.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA,
2012.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-aware meta learning
via sequence modeling. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 123–134. PMLR, 2022.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in Neural Information Processing Systems, 30, 2017.

Massimiliano Patacchiola, Aliaksandra Shysheya, Katja Hofmann, and Richard E Turner. Trans-
former neural autoregressive flows. In ICML 2024 Workshop on Structured Probabilistic Infer-
ence & Generative Modeling, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

Arik Reuter, Tim GJ Rudner, Vincent Fortuin, and David Rügamer. Can transformers learn full
bayesian inference in context? International Conference on Machine Learning, 2025.

Francesco Silvestrin, Chengkun Li, and Luigi Acerbi. Stacking Variational Bayesian Monte Carlo.
arXiv preprint arXiv:2504.05004, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR). ICLR, May 2021.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with hybrid autoregressive
transformer. In The Thirteenth International Conference on Learning Representations, 2025.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In Inter-
national Conference on Machine Learning, pp. 467–475. PMLR, 2014.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1–37,
2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A Osborne. Distribution trans-
formers: Fast approximate Bayesian inference with on-the-fly prior adaptation. arXiv preprint
arXiv:2502.02463, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Xiao Lei Zhang, Henri Begleiter, Bernice Porjesz, Wenyu Wang, and Ann Litke. Event related
potentials during object recognition tasks. Brain research bulletin, 38(6):531–538, 1995.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table of Contents
A Method Details 15

A.1 Modules and notation . 15
A.2 Training mask that implements (R1)–(R4) . 15
A.3 Algorithm for Autoregressive sampling . 16
A.4 Algorithm for joint log-likelihood . 17

B Transformer Neural Process Baselines Details 17
B.1 TNP-D . 17
B.2 TNP-ND . 17
B.3 TNP-A . 18

C Computational Efficiency Details 18
C.1 Scaling with Batch Size . 18
C.2 Impact of Custom Triton Kernel . 19
C.3 Comparison to Open-Source Baselines . 19
C.4 Training Time Scaling . 20
C.5 Impact of Attention Patterns on Training Speed 21

D Experimental Details 22
D.1 Model Configuration . 22
D.2 Datasets . 23
D.3 Multisensory causal inference model and experiment details 24
D.4 Evaluation Details . 27
D.5 Tabular model details . 28

E Additional Log Likelihood Results on Synthetic and EEG Tasks 29
E.1 Predictive Power of Different Heads . 29
E.2 Results of Larger M . 29
E.3 EEG Forecasting w/ and w/o Target Permutation 30

F Additional multisensory causal inference model results 31

G Use of Large Language Models 31

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A METHOD DETAILS

This appendix spells out the modules used in Eq. equation 3, the single block-sparse attention mask
that implements requirements (R1)–(R4), and the exact procedures for autoregressive sampling and
one-pass joint log-likelihood evaluation.

A.1 MODULES AND NOTATION

We work with three token sets ordered as [C | B | T], of sizes N,K,M , respectively. Throughout
this paper, let

Ex : X →Rd, Ey : Y→Rd, a : {1, . . . ,K}→Rd

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role
embeddings that indicate token type, denoted by erole

ctx , erole
buf , and erole

tgt for context, buffer, and target
tokens, respectively.

Context encoder rC . Given context pairs C = {(xn, yn)}Nn=1, construct context tokens: ectx
n =

Ex(xn) + Ey(yn) + erole
ctx , process them with bidirectional MHSA (no positional embeddings), and

cache per-layer keys/values:

{KVℓ
C}Lℓ=1 = rC(C) (computed once; immutable).

Buffer encoder rB. For a buffer prefix B1:k = {(x⋆
j , y

⋆
j)}kj=1, form tokens ebuf

j = Ex(x
⋆
j) +

Ey(y
⋆
j)+a(j)+erole

buf , then apply strictly causal MHSA on {ebuf
j }j≤k so that each token is restricted to

attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to
the cached context {KVℓ

C}. This yields per-layer KVℓ
B1:k

that we update incrementally at inference:

{KVℓ
B1:k
}Lℓ=1 = rB (B1:k, rC(C)) .

Target decoder rtgt and prediction head. For a target input x⋆
m we create a query token

etgt
m = Ex(x

⋆
m) + erole

tgt . The target decoder rtgt performs a single cross-attention from etgt
m to the

concatenated keys/values of the context cache {KVℓ
C} and the visible buffer prefix {KVℓ

B1:vm
},

followed by normalization and an MLP:

hm = rtgt

(
etgt
m,

[
{KVℓ

C}, {KVℓ
B1:vm

}
])
, ϕm = ψ(hm),

where ψ is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 TRAINING MASK THAT IMPLEMENTS (R1)–(R4)

We concatenate tokens as [C | B | T] with sizesN ,K, andM , respectively, and use one block-sparse
attention mask consisting of the following five unmasked sections (everything else is masked):

(1) Self-attention within context. Context tokens attend bidirectionally to other context tokens.
Context never attends to buffer or targets (context is read-only outside this block).

(2) Buffer reads context (cross-attention). Each buffer token can read (attend to) all context tokens.
This lets the buffer incorporate task information from the cached context while keeping the context
cache immutable.

(3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a
buffer token at position j can only read earlier buffer positions <j (no future reads). This encodes
the autoregressive dependency among realized targets.

(4) Targets read context (cross-attention). Each target query can read the entire cached context.
There are no edges between targets.

(5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible
prefix of the buffer. The visible prefix length for target m is vm: training (teacher forcing): we
set vm=0 for 50% of targets and sample vm ∼ Uniform{1, . . . ,K} for the rest (the curriculum);

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Transformer diagonal prediction map training mask Transformer diagonal prediction map training mask w/ AR buffer

Context self-attn
Buffer self-attn

Buffer-context cross-attn
Target-context cross-attn

Target-buffer cross-attn

Figure A1: Block-sparse attention masks with and without an autoregressive buffer. Left: a
diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target
reads the entire context. Right: our buffered variant inserts an autoregressive memory B between
context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within
buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

sampling: at step k, the active query sees the realized prefix k−1; one-pass joint log-likelihood:
packed queries use vm=m−1 to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets;
and buffer never reads targets. This single pattern implements the four requirements from the main
text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access
to (context + visible buffer). See Fig. A1 for the diagram.

Complexity. Under this mask, a full prediction pass costsO(N2+NK+K2) attention operations
per layer: one-time O(N2) for C, O(NK) for reads from C, and O(K2) for causal buffer self-
attention. This replaces the O

(
K(N+K)2

)
cost of naive AR re-encoding. Packing B target orders

in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding
O
(
N2 +B(NK +K2)

)
.

A.3 ALGORITHM FOR AUTOREGRESSIVE SAMPLING

Algorithm 1 Autoregressive sample generation for K targets

Require: Context C = {(xn, yn)}Nn=1, target inputs {x⋆k}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Initialize {KVℓ
B1:0
} ▷ empty buffer cache

3: for k = 1 to K do
4: hk ← rtgt

(
Ex(x

⋆
k)+e

role
tgt ,

[
{KVℓ

C}, {KVℓ
B1:k−1

}
])

5: Sample y⋆k ∼ pθ(·;ψ(hk))

6: Append (x⋆k, y
⋆
k); update {KVℓ

B1:k
} (strictly causal)

7: end for
8: return {y⋆k}Kk=1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 ALGORITHM FOR JOINT LOG-LIKELIHOOD

Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context C = {(xn, yn)}Nn=1, ordered targets {(x⋆k, y⋆k)}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Build all K buffer tokens; compute {KVℓ
B1:K
} under causal mask

3: Build target queries {Ex(x
⋆
k)+e

role
tgt }Kk=1

4: Mask: target k sees B1:k−1 and all of C
5: Compute {log pk}Kk=1;
6: return

∑K
k=1 log pk

B TRANSFORMER NEURAL PROCESS BASELINES DETAILS

In this section, we outline the baseline TNPs. Further details can be seen in Nguyen & Grover
(2022). The numerical settings, including the exact dimension and number of layers of each module,
is given in Appendix D.1.

B.1 TNP-D

This model takes as input a context set {(xn, yn)}Nn=1 and a target set {x⋆
m}Mm=1. Similar to Ap-

pendix A, the context embeddings ectx
n is processed with bidirectional MHSA (no positional encod-

ings). The target is then naively decoded by

hm = rtgt

(
etgt
m, rC(C)

)
, ϕm = ψ(hm),

ψ is the distribution head (e.g., Gaussian as in the original paper, or mixture-of-Gaussians as we
mainly use). The mask of this approach is shown in Fig. A1 left. The training of this model maxi-
mizes the log likelihood

∑
m log p(y⋆m;ϕm) (maximum likelihood of independent targets).

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-
D-AR methods.

TNP-D-Ind simultaneously produces independent distributions of the targets. This approach is fast
because the context and target points are processed only once, but it cannot capture the dependency
of different targets.

TNP-D-AR decodes the distribution sequentially. The context set grows as sampled targets are
appended. Each target conditions on the context set and all previous targets. This method model
targets jointly, but incurs repeated encoding and decoding.

Note in particular that TNP-D-Ind is invariant to the order of target, while TNP-D-AR is order-
sensitive and we approximate the preditive distribution by averaging over multiple target orderings.

B.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a
joint multivariate Gaussian distribution over the outputs (the embedder and transformer operations
identical to TNP-D-Ind). In particular,

hm = rtgt

(
etgt
m, rC(C)

)
, ϕ = ψND(h1, ...,hM),

where ψND is the multivariate Gaussian head.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At deployment,
the joint samples and log-likelihood can be computed in a single pass. This model is invariant to the
order of target points.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 TNP-A

The key difference between this model and TNP-D is the transformer operation. This model
process three sets: the context {(xn, yn)}Nn=1, the target {x⋆

m}Mm=1, and the observed target
{(x⋆

m, y
⋆
m)}Mm=1. To differentiate, we denote the embeddings of {(x⋆

m, y
⋆
m)}Mm=1 by {ey,tgt

m }. Sim-
ilar to TNP-D, the context embeddings attend to each other. For the target set, each etgt

m attends
to the context and the previous observed target embeddings ey,tgt

j<m. Likewise, the observed target
embeddings attends to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022).
The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single
pass, assuming the observations are given (e.g., for training and test log likelihood evaluations). For
prediction generation, however, each sampled target needs to be re-encoded and attended for the
generation of next targets, requiring a sequential re-encoding process. The causal mask on the target
set is sensitive to the target order, and thus the final likelihood is an average over multiple random
permutations. Note that this model processes duplicated target set–{x⋆

m}Mm=1 and an observed se-
quence {(x⋆

m, y
⋆
m)}Mm=1; this creates significant computational overhead in both the training and the

inference, particularly when the target set is large (see e.g. Appendix C and Figs. A7 to A9).

C COMPUTATIONAL EFFICIENCY DETAILS

This section provides additional empirical results to support the efficiency claims made in the main
paper. We present an analysis of performance scaling with batch size, an ablation study of our
custom kernel, a comparison against unoptimized open-source baselines, and further ablations on
training time. In all subsequent plots, the absence of a data point for a given method indicates that
the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

C.1 SCALING WITH BATCH SIZE

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and
joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock
time as a function of the number of context points N for various batch sizes. The results confirm
that our method’s performance advantage over autoregressive baselines like TNP-A is consistent and
often widens as the context and batch size increases.

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range
of batch sizes B.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Log-likelihood evaluation time (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded
range of batch sizes B.

C.2 IMPACT OF CUSTOM TRITON KERNEL

To isolate the contribution of our custom attention kernel, we compare the sampling time of our
method with and without this optimization. The kernel is designed to accelerate a key computational
step: the cross-attention between the batched target embeddings (batch sizeB) and the concatenation
of a batched buffer cache with a shared context cache (batch size 1). A naive implementation would
explicitly expand the context cache tensorB times to match the batch dimension before the attention
operation. This “expand” operation is memory-bandwidth intensive and creates a large, redundant
intermediate tensor.

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations.
The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch,
calculating the attention on-the-fly without ever materializing the full expanded tensor in slower
global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial
speedup that grows with the batch size B.

32 64 128 256 512 1024
N

10−1

6 × 10−2

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

Ours (w/ Triton) Ours (w/o Triton)

Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the
custom Triton kernel across different context and batch sizes.

C.3 COMPARISON TO OPEN-SOURCE BASELINES

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline
implementations against their standard, publicly available versions. The results for sampling and
likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently
3− 10× faster than their standard counterparts. This confirms that our method’s performance gains
are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

101
Ti

m
e (

s)
B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

TNP-D-Ind (base)
TNP-D-Ind (compiled)

TNP-D-AR (base)
TNP-D-AR (compiled)

TNP-A (base)
TNP-A (compiled)

TNP-ND (base) TNP-ND (compiled)

Figure A5: Comparison of our optimized baseline implementations against standard open-source
versions for autoregressive sampling.

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

101

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Log-likelihood evaluation time (M=16)

TNP-A (base) TNP-A (compiled) TNP-ND (base) TNP-ND (compiled)

Figure A6: Comparison of our optimized baseline implementations against standard open-source
versions for joint log-likelihood evaluation.

C.4 TRAINING TIME SCALING

We further analyze the scaling of training step time with respect to the number of target points M
for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256,
respectively. The results show that as the context, target, or batch size increases, TNP-A becomes
increasingly exppensive to train relative to all other methods.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e
(s

)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=64)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A7: Training step time vs. number of target points M for batch size B = 64.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−1

100
Ti

m
e

(s
)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=128)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A8: Training step time vs. number of target points M for batch size B = 128.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e
(s

)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=256)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A9: Training step time vs. number of target points M for batch size B = 256.

C.5 IMPACT OF ATTENTION PATTERNS ON TRAINING SPEED

A key difference between the baseline models is their compatibility with modern, efficient attention
implementations. The causal attention mask required by TNP-A during training is incompatible
with kernels like FlashAttention, forcing it to use PyTorch’s standard, but slower, “math” attention
backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

To determine if TNP-A’s slow training is fundamental to its architecture or merely an artifact of this
kernel incompatibility, we conduct a controlled ablation. We disable FlashAttention for all methods,
forcing a fair comparison on the same standard PyTorch attention backend. The results, shown in
Figs. A10 to A12, are unequivocal. Even on a level playing field, TNP-A’s training time is orders
of magnitude slower than all other methods. This confirms that its high computational cost is an
inherent consequence of its autoregressive design, not just an implementation detail.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−1

100
Ti

m
e (

s)
M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=64)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A10: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 64.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=128)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A11: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 128.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=256)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A12: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 256.

D EXPERIMENTAL DETAILS

D.1 MODEL CONFIGURATION

In our paper, we use MLP to map context pairs, buffer pairs, or target points into tokens. Then
a transformer is applied to the sequence of tokens. We use mixture-of-Gaussian (GMM) head as
our main head distribution (more expressive than single Gaussian head, as demonstrated in Ap-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

pendix E). In general, we train all models (bar the tabular model; see Appendix D.5 for details) with
the following settings.

Training configurations.

• Optimizer: Adam with learning rate 1× 10−4 (unless stated otherwise), β = (0.9, 0.999),
no weight decay. For TNP w/ buffer, we use the same settings but apply weight decay of
0.01 for stability.

• Scheduler: Cosine schedule with warmup; warmup ratio 0.1 for all experiments. for TNP
w/ buffer, we use a warmup ratio of 0.05.

• Training loop: 32 epochs.

Embedder. We use a 3-layer MLP with 256 hidden layer dimension and 128 output dimension.
There is a skip connection between the input and the first hidden layer.

Transformer backbone. This has 6 layers of transformer encoder modules, each with a multi-
head attention of 4 heads and dimension 128 followed by an MLP feedforward of 2 layers, dimension
128 → 256 → 128. This is the transformer attending context, buffer, and target set (Appendix A
and Appendix B).

Prediction head. Note first that different distribution heads involve individual parameterization
structures. Therefore, another layer of distribution-specific NNs is required to process the above
transformer outputs. This NN module is considered part of the distribution head (the ψ in Ap-
pendix A and Appendix B).

For our method, TNP-D, and TNP-A, the head consists of 2 layers of MLP with dimension 128→
256 → 3 ∗ Dy ∗ Ncomponents, where Dy is the output dimension of the problem and Ncomponents is
the number of Gaussian components. The MLP output is then chunked into weights, means, and
standard deviations (of the same shape) which parameterize the GMM, and the outputs are sampled
in parallel for Dy > 1. We set Ncomponents = 20 for all tasks except for EEG where Ncomponents = 8.

For TNP-ND, we use the setting from Nguyen & Grover (2022), where the targets are mapped to
a mean and a Cholesky matrix, which parameterize the multivariate Gaussian. The mean of each
target is mapped by an MLP with dimension 128 → 256 → Dy . The Cholesky matrix requires
two steps: (i) the target tokens (conditioned on context via the above transformer backbone) are
first decoded into H ∈ RM×20 by another 3-layer transformer (no positional encoding, 4 heads,
each layer with dimension 128 and MLP 128 → 256 → 128, no mask) and then an MLP projector
(128→ 256→ 20); (ii) the Cholesky matrix is taken as L = lower(HHT).

Trained model selection. We track the loss value in each epoch as we train the models. The
parameters with the best loss value are selected for the evaluations.

D.2 DATASETS

Gaussian Process (GP) Functions. As a first toy case, we test on GP functions (see Rasmussen
& Williams 2006 for details of GPs). In this example, a batch contains 128 functions of one di-
mensional inputs (D = 1) and one dimensional observations (Dy = 1). The inputs are sampled
from interval [−2, 2] using the Sobol sequence. For each batch, we first sample a kernel class from
squared-exponential (RBF), Matérn-3/2, Matérn-5/2 with probabilities 0.4, 0.3, and 0.3, respectively.
Conditional on the chosen class, each function receives its own kernel hyperparameters: the variance
σ2
f ∼ Uniform[0.5, 1.5] and the lengthscale ℓ ∼ Uniform[0.1, 1], broadly covering diverse classes

of functions of amplitude around 1. We then sample functions from GP (0,k), where k represents
the sampled kernels, and add i.i.d. Gaussian observation noise with variance 10−5. The resulting
values are randomly partitioned into context, buffer, and target sets. Note that within a batch the
kernel class is fixed, whereas the hyperparameters are sampled independently for each function.

During the training, we sample N between 4 and 192 and the maximum number of buffer is 16.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Sawtooth Functions. The second example is the non-Gaussian sawtooth functions (Bruinsma
et al., 2023). In this example, a batch contains 128 functions of one dimensional inputs (D = 1)
and one dimensional observations (Dy = 1). The inputs are sampled from interval [−2, 2] using the
Sobol sequence. An input x and output y follows:

y(x) = ynonoise(x) + ϵ,

ynonoise(x) = (ω(⟨u,x⟩ − ϕ)) mod 1,

where u ∈ RD is a direction sampled uniformly from the unit sphere via u = g/∥g∥2 with g ∼
N (0, ID); ω, ϕ, and ϵ denote the frequency, phase offset, and additive noise, respectively; and the
parameters are drawn independently as ω ∼ Uniform[3, 5], ϕ ∼ Uniform[0, 1], and ϵ ∼ N (0, σ2)
with noise scale σ ∼ Uniform[0.05, 0.1].

During the training, we sample N between 8 and 128 and the maximum number of buffer is 16.

Electroencephalogram (EEG). The dataset contains 11, 520 trials of 122 subjects from 7 corre-
lated channels with 256 time points each. The output channels are individually standardized to zero
mean and unit variance. We randomly select 10 for the test set, reserve 10 for cross-validation, and
the remaining for the train set. This leaves 7802 trials for the training and 896 for testing.

During the training, the trials are replicated for 200 times and shuffled. Each batch contains 32
trials sampled from the shuffled set. We select between 4 and 192 of the 256 time points to be
context points, 32 buffer points, with the remaining being target points. Each batch has a fixed size
of context set.

We evaluate on both interpolation (random masking) and forecasting (temporal masking) tasks using
the test subjects. The test set splits the 256 time points into context and target. For interpolation, we
sample the specified number of context and target points from the full time sequence (Appendix E).
For forecasting, we take the first N points as context set and the consecutive M points as target set.
Forecasting with N = 192 context and M = 64 target sets involves the full sequence.

Multisensory causal inference model dataset. In the last example, we adopt one of the multisen-
sory causal inference models described in Liu et al. (2025) to build a simulator, which we then use
to generate training data (full setup and generation procedure, as well as a description of the exper-
iment, are provided in Appendix D.3). The inputs x correspond to the experimentally manipulated
variables of the study, namely rtype, sA, sV and Vlevel, where rtype denotes the task type (auditory vs
visual localization), sA and sV are the true locations of auditory and visual cues presented to human
participants, and Vlevel the level of noise applied to visual cues. We first generate sets of input points
for the simulator to obtain the outputs y, which represent the predicted responses.

For training, we construct two datasets from the simulator with different values of ρ, a variable of the
model regulating the level of recalibration of the auditory perceptual range (with ρ = 1 representing
no recalibration and ρ = 4/3 representing a full recalibration to the visual range, see Appendix D.3
for more details), and train two separate models for each setting. We sample N between 0 and 400,
fix Nt = 256, and set the buffer size to a maximum of 16. For the zero-context case, we introduce
“dummy point”, to indicate the absence of context to the model. During evaluation, we use the
publicly available dataset obtained from the experiment described in Liu et al. (2025)3. For each
of the 15 participants in the study, we extract two non-overlapping subsets of experimental data of
400 trials each. We do so by stratifying on the joint levels of Vlevel ∈ {0, 1, 2} and rtype ∈ {0, 1}
(more details on these variables below), and extracting the two sets such that (i) within each split the
six (3 × 2) strata are represented as evenly as possible, and (ii) the per-stratum counts are matched
between splits. This yields 30 batches overall (2 per participant).

For details of the real experiments and the complete data generation setup in the simulator, see
Appendix D.3.

D.3 MULTISENSORY CAUSAL INFERENCE MODEL AND EXPERIMENT DETAILS

To probe our method’s suitability for Bayesian model comparison, we consider a computational
neuroscience study investigating multisensory causal inference, described in Liu et al. (2025).

3https://github.com/LSZ2001/Audiovisual-causal-inference

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.3.1 ORIGINAL NEUROSCIENCE EXPERIMENT

Stimuli and procedure. In this work, we take into account a subset of the experimental data
obtained from 15 human participants who, at each experimental trial, were asked to perform one of
two localization tasks, which the authors refer to as bisensory visual (BV) and bisensory auditory
(BA) localization. In both cases they were presented with an auditory cue, located at an angle
uniformly sampled among {−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦} from the participant, and a visual
one, either at the same location as the auditory one (≈ 1/2 of trials) or at an angle uniformly sampled
between −20◦ and 20◦. They were either asked to report the location of the visual (BV) or the
auditory (BA) stimulus on a screen. Here we call those locations sV and sA, respectively. The
level of noise Vlevel associated with the visual stimulus location was experimentally manipulated by
modifying the size of the stimulus itself. In practice, this meant presenting a small (Vlevel = 0; ≈ 1/3
of trials), medium (Vlevel = 1; ≈ 1/3 of trials) or big (Vlevel = 2; ≈ 1/3 of trials) visual stimulus.

Each participant completed a total of 1000 trials.

Cognitive models. Here we focus on two versions of the “vanilla” model described in the original
paper. On each trial, the participant is assumed to believe the two stimuli could come from either a
common (C = 1) or different (C = 2) source, assigning a fixed prior probability p(C = 1) = psame
to the former case. Regardless of this, the participant has Gaussian priors over stimuli locations
p(sA) = N (sA | 0, σ2

S) and p(sV) = N (sV | 0, σ2
S).

A key assumption of the model is that participants do not have direct access to the true location of
the stimuli, but only to noisy auditory and visual percepts, a common feature in Bayesian models of
perception (Knill & Pouget, 2004). These percepts are modeled as xA = ρ(s+εA) and xV = s+εV
respectively in case of a common source, and xA = ρ(sA + εA) and xV = sV + εV in case
of separate sources. Here s = sA = sV represents their common location when C = 1, while
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V) represent the auditory and visual perceptual noise. While

σA is assumed to be fixed, σV can assume three separate values (σ(low)
V , σ(med)

V , σ(high)
V) based on the

(experimentally manipulated) size of the visual stimulus Vlevel. Finally, ρ represents a “recalibration”
factor to account for the fact that the range of auditory stimuli (30◦) is different from that of visual
ones (40◦). In our experiment, this is the factor that differentiates the two models we set out to
compare: in the first, we set ρ = 1; in the second, we set ρ = 4/3 (thus re-mapping auditory percepts
to the same scale as visual ones).

Here we describe a BA trial, but the following is easily generalizable to BV ones. When asked about
the location of the auditory stimulus, participants are assumed to consider both scenarios (common
vs different sources) by evaluating

p(s | C = 1) = p(s | xA, xV , σA, σV , σS),
p(sA | C = 2) = p(sA | xA, σA, σS),

as well as

p(C | xA, xV , σA, σV , σS , psame).

The final estimate ŝA of the location is then inferred by weighting the two hypotheses (common vs
separate sources) by their posterior probability, so

ŝA =p(C = 1 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
s · p(s | C = 1)ds+

p(C = 2 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
sA · p(sA | C = 2)dsA.

(6)

Finally, the response of the participant is modeled as y ∼ N (ŝA, σ
2
M) with a probability of 1−λ, and

y ∼ Uniform[−45, 45] with a probability of λ. Here λ represents the “lapse rate”, or the probability
of a participant being distracted/disengaged and giving a random answer (which we fix at 0.02),
while σM represents motor noise.

Both models thus have 7 free parameters, which we re-parametrize as logσ(low)
V , logσ(med)

V , logσ(high)
V ,

logσA, logσS , logσM and logitpsame for the purposes of simulation and model-fitting.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.3.2 SIMULATION

For training all models, we produce∼1.5 millions synthetic datasets. In what follows we go through
the simulation of a single trial. As trials are independent from one another, generating more of them
simply involves repeating this process.

Stimuli. Following the setup used in Liu et al. (2025), we sample sA ∼
Uniform{−15,−10,−5, 0, 5, 10, 15} and C ∼ Uniform{1, 2}. Then we either sample
sV ∼ Uniform[−20, 20] as a continuous variable (if C = 2) or we set sV = sA (if C = 1). We
then sample Vlevel ∼ Uniform{0, 1, 2}, representing the perceptual noise associated with sV . This
regulates whether σV = σ

(low)
V , σV = σ

(med)
V or σV = σ

(high)
V .

Finally, we sample rtype ∼ Uniform{0, 1}, representing the task (BV if rtype = 0, BA if rtype = 1).

Parameters. For each synthetic dataset, we sample the 7 free parameters from Gaussians truncated
at two standard deviations above and below the mean. Here we use the notation Ntruncated(µ, σ

2) to
denote such distributions, with µ being the mean and σ the standard deviation. What follows are the
distributions from which each parameter was sampled.

logσ(low)
V ∼Ntruncated(0, 1.5

2);

logσ(med)
V ∼Ntruncated(logσ(low)

V + 1, 12);

logσ(high)
V ∼Ntruncated(logσ(med)

V + 0.75, 0.52);

logσA ∼Ntruncated(1.75, 0.5
2);

logσS ∼Ntruncated(2.5, 1
2);

logσM ∼Ntruncated(1.5, 1.5
2);

logitpsame ∼Ntruncated(1.5, 1.5
2).

Note that logσ(low)
V , logσ(med)

V , and logσ(high)
V are not independent from each other, but carry the

assumption that in most cases logσ(low)
V < logσ(med)

V < logσ(high)
V , which reflects the intent of the

experimental manipulation of Vlevel.

Responses. Here we describe a scenario in which rtype = 1 (BA trial), but the process is the same
for rtype = 0. In simulating the responses, we follow the hierarchical structure specified by the
model. First we computed the sensory percepts xA = ρ(sA + εA) and xV = sV + εV by sampling
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V). We then evaluate ŝA (recall we are considering a BA trial) as

in Eq. (6), and sample the final response as either y ∼ N (ŝA, σ
2
M) or y ∼ Uniform[−45, 45], with

a probability regulated by the lapse rate λ (which we set to 0.02, see above).

D.3.3 GROUND-TRUTH ACQUISITION

Here we describe how we obtained our log marginal likelihood (LML) estimates (in the form of
lower bounds, see below), which we then use as ground-truth to compare our approach to baselines.

Problem setting. Fitting the cognitive model to a dataset involves finding the posterior over model
parameters given empirical data and model

p(θ | y,X, ρ) = p(y | θ,X, ρ)p(θ)
p(y | X, ρ)

, (7)

where
θ = {logσ(low)

V , logσ(med)
V , logσ(high)

V , logσA, logσS , logσM , logitpsame},

X = {s(t)A , s
(t)
V , V

(t)
level, r

(t)
type}400t=1,

and
y = {y(t)}400t=1.

Here t represents the trial number within the dataset (recall we are using data splits of 400 trials each,
see Appendix D.2), and we set p(θ) to the truncated Gaussians we use for sampling the parameters

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

in our simulation (see Appendix D.3.2), with probability density of values beyond the truncation
boundaries set to a “floor value” of N (5 | 0, 1).
While the posterior over parameters is often instrumental in answering scientific questions, the cru-
cial quantity we are interested in estimating is the model evidence (also called marginal likelihood)
p(y | X, ρ) (i.e., the denominator in Eq. (7)), as it represents a straightforward metric for model
selection. In fact, assuming a flat prior over models p(ρ = 1) = p(ρ = 4/3) = 0.5, the model
evidence as a function of ρ represents the unnormalized posterior over models.

Stacking Variational Bayesian Monte Carlo. To compute a reliable estimate of the marginal
likelihood to use as our ground-truth, we use Stacking Variational Bayesian Monte Carlo (S-VBMC,
Silvestrin et al., 2025). This is a principled approach to merge (“stack”) approximate posteriors
generated by a set of independent runs of its parent algorithm, Variational Bayesian Monte Carlo
(VBMC, Acerbi, 2018; 2020). This is done in a simple post-processing step, which has been shown
to greatly improve the approximate posterior quality in a variety of challenging settings. In addition
to a posterior distribution, S-VBMC outputs an estimate of the evidence lower bound (ELBO),
which, as the name suggests, is a lower bound on the (log) model evidence (Blei et al., 2017),
the quantity we are interested in for model comparison. As the approximation of the posterior
approaches the true one, this quantity gets closer to the true model evidence, with equality when
the approximation is perfect. As S-VBMC proved very effective in computational neuroscience
problems (Silvestrin et al., 2025), including one very similar to the one considered here (Acerbi
et al., 2018), we deem it a suitable method for estimating a lower bound on model evidence to use
as a ground-truth.

While an in-depth description of S-VBMC and VBMC is beyond the scope of this work (an inter-
ested reader should refer to the original papers cited above), in the following paragraphs we briefly
report details of our implementation of both.

VBMC implementation details. To obtain an approximate posterior, the Python implementation
of VBMC (Huggins et al., 2023) requires absolute and plausible upper and lower bounds for each
parameter. We use the sampling bounds defined in Appendix D.3.2 as absolute bounds, and replicate
the process considering 1.5 standard deviations (as opposed to 2) from the mean to establish the
plausible ones.

Another required input is a target density function (i.e., the unnormalized posterior), for which we
use the numerator of Eq. (7), p(y | θ,X, ρ)p(θ). We do this both with ρ = 1 and ρ = 4/3,
representing the two models we set out to compare.

Finally, VBMC requires a starting point in the parameter space, which we uniformly sample between
plausible bounds independently for each inference run.

S-VBMC implementation details. After obtaining 20 converging VBMC runs for each of our 30
datasets (2 for each of the 15 participants, see Appendix D.2) for both models, we stack the resulting
posteriors with S-VBMC. We maintain the default settings, therefore the only inputs required are the
VBMC runs themselves. With this, we obtain a total of 60 “stacked” ELBOs (two per each dataset,
corresponding to our two competing models) to use as ground-truth.

D.4 EVALUATION DETAILS

In this paper log likelihood values are always averaged (LL divided by the number of target points
M).

GP & Sawtooth functions. We evaluate likelihood values over 1024 functions, each repeated 4
times with models trained on different seeds and context sizes N = 8, 16, 32, 64, 128 (statistics
of 1024 ∗ 4 ∗ 5 evaluations). Each likelihood evaluation is an average of 128 permutations (log
averaged likelihood). In other words, we have 1024 ∗ 4 ∗ 5 averaged likelihoods, and each averaged
value merges 128 orders of the target set.

EEG data. We train each model once with a fixed seed; the evaluations are over 896 trials from
20 subjects held out during training, each repeated with N = 8, 16, 32, 64, 128, 192. For the EEG
forecasting, the target set consists of time points immediately after context points, and, in the main

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

results (Table 1), the target set permutations are applied, as done in Bruinsma et al. (2023). We
additionally demonstrate in appendix Table A3 that forecasting with permuted target set outperforms
fixed sorted target. The number of permutations we apply is 128.

Multisensory causal inference model. We train one model for each setting of ρ (ρ = 1 and
ρ = 4/3). In the model selection scenario, the full 400-point dataset from each of the 30 batches is
used as the target, and we evaluate the LML across all cases. This procedure is repeated 5 times,
with 128 different sequence permutations per run. In the data prediction scenario, we first select
the winning model from the model selection stage, and then compute log likelihoods on the same
30 batches, each repeated with N = 8, 16, 32, 64, 128, 256. The results of both experiments are
summarized in Table 2. Here we also use 128 permutation for all batches.

D.5 TABULAR MODEL DETAILS

D.5.1 ARCHITECTURE

Set encoder. We reuse the first two stages of TabICL without modification: the distribution-aware
column processor (TFcol, implemented with induced self-attention blocks) followed by the
context-aware row-wise transformer (TFrow) with RoPE. Scalars are mapped by a 1→ 128 linear
layer; each column is then processed across rows by an ISAB stack (Lee et al., 2019) with three
blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256. The row-wise
encoder has three layers with four heads, feed-forward hidden dimension of 256, and RoPE
base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding a
256-dimensional row embedding (2× 128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample
for context, buffer, and target rows (dimension 128; only selects the subset of the vector correspond-
ing to the [CLS] token dimensions). Context and buffer tokens receive the target value additively
via a small target encoder (linear 1→128. Buffer tokens also receive a learned positional embedding
indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute
the set encoder once, and makes the buffer explicit at the token level.

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise trans-
former with twelve layers and four heads, model width 128, and feed-forward size 256. The atten-
tion mask is the only architectural change relative to TabICL: context attends bidirectionally and
is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the
cached context and to the causal prefix of the buffer; there are no edges into context from buffer or
targets. The maximum buffer size is 32 tokens and we query 512 targets per task.

Prediction head. Predictions use a GMM head with 20 components and a minimum standard
deviation of 10−3.

Caching. The column and row set encoder is computed once for all rows. During autoregressive
decoding we cache keys/values for the context once and update only the buffer cache, so the same
context cache is reused across parallel generations.

D.5.2 DATA GENERATION AND PREPROCESSING

SCM prior and task family. We generate datasets with the MLP-based structured causal model
(SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime
of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style)
connectivity and then define each variable c as c = f(Pa(c)) + ε, where Pa(c) are its parents, f
is a small MLP with nonlinearity, and ε is independent noise. Unless stated otherwise, we sample
the feature dimension d ∈ [1, 10], and per-task context sizes N ∈ [8, 1024]; targets are continuous
responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including
mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source,
which we handle with the TabICL preprocessing described below.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table A1: Head comparison on synthetic function. We compare average log-likelihood (↑) results
on our main GMM head and on standard Gaussian distribution head.

TNP-D TNP w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)
Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

TNP-D-Gaussian TNP Gaussian w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.50 (0.019) 2.13 (0.023) 2.48 (0.019) 2.53 (0.019) 2.53 (0.019)
GP (M = 128) 3.23 (0.013) 2.06 (0.023) 3.25 (0.013) 3.27 (0.013) 3.27 (0.013)
Sawtooth (M = 16) 0.96 (0.004) 0.82 (0.006) 0.85 (0.006) 0.98 (0.004) 0.99 (0.004)
Sawtooth (M = 128) 1.10 (0.003) 0.82 (0.005) 1.10 (0003) 1.11 (0.003) 1.11 (0.003)

Sampling of task partitions. For each generated dataset we draw a random partition (C,B, T)
with N ∼ Uniform{8, ... , 1024}, buffer capacity fixed at K = 32, and target count M = 512. Per
batch, we fix (d,N,K,M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL PreprocessingPipeline and fit it on context features only.
The fitted transform is then applied to context, buffer, and target features. Regression targets are
standardized using context statistics, i.e., ỹ = (y − µy,C)/σy,C , and the same (µ, σ) are used for
buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang
et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo–Johnson); and (iii) outlier
handling via a z-score threshold τ = 4.0. At transform time, values outside the fitted range are
clipped to the training (context) min/max before normalization, mirroring TabICL’s behavior.

D.5.3 TRAINING PROCEDURE

We train with AdamW (learning rate 1 × 10−4, β=(0.9, 0.95), weight decay 0.0), batch
size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone.
Mixed-precision training uses AMP with bfloat16. All runs use float32 tensors at the data
interface. A cosine schedule with warmup is used (cosine with warmup); warmup steps=
2000 takes precedence over the nominal warmup ratio= 0.20; num cycles= 1. Automatic
mixed precision is enabled with amp dtype=bfloat16. Each training step draws a batch of 64
independent tasks (datasets) with feature dimension d sampled from {1, ... , 10} and context size N
from {8, ... , 1024}; buffer size and target count are fixed at K=32 and M=512. Training is capped
at max steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately
64× 160,000 = 10.24 million synthetic tasks seen during pretraining. The global data seed is 123.
We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

E ADDITIONAL LOG LIKELIHOOD RESULTS ON SYNTHETIC AND EEG
TASKS

E.1 PREDICTIVE POWER OF DIFFERENT HEADS

In this paper, we use GMM as our prediction head. We compare the predictive performance of
GMM to standard Gaussian distribution head. In Table A1, GMM is able to achieve better predictive
performance, particularly on the non-Gaussian Sawtooth functions.

E.2 RESULTS OF LARGER M

As a supplementary results of Table 1, we evaluate log likelihood values on larger target set. For
TNP w/ buffer, we evaluate K points per Algorithm 2 and proceed to the next target subsets by

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table A2: Average Log-likelihood (↑) results on synthetic functions and EEG example. Supple-
mentary results of Table 1 on larger target set and various deployed K. When M > K, we evaluate
every K targets once and perform AR for M/K steps.

TNP-D TNP-ND TNP-A
AR Ind

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 2.27 (0.023) 3.10 (0.012)

Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004)
Sawtooth (M = 128) 1.14 (0.003) 0.94 (0.005) 0.39 (0.005) 1.12 (0.003)

EEG-Int (M = 16) 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014)
EEG-Int (M = 64) 0.88 (0.011) 0.35 (0.014) 0.50 (0.010) 0.95 (0.012)

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)

TNP w/ buffer
K=16 K=4 K=1

GP (M = 16) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)

Sawtooth (M = 16) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

EEG-Int (M = 16) 0.52 (0.013) 0.54 (0.014) 0.54 (0.014)
EEG-Int (M = 64) 0.90 (0.011) 0.91 (0.011) 0.91 (0.011)

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)

Table A3: EEG forecasting w/ and w/o target set permutation. The target set of EEG forecasting
is the points immediate after the context set. Our main paper applies permutation to the target set
while this table compares against forecasting of fixed temporal order (sorted).

TNP-D TNP-ND TNP-A
AR Ind

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 16, sorted) 0.85 (0.005) -0.74 (0.008) -0.004 (0.005) 1.14 (0.004)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)
EEG-For (M = 64, sorted) 0.89 (0.005) -1.08 (0.007) -0.23 (0.004) 1.16 (0.003)

TNP w/ buffer
K=16 K=4 K=1

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 16, sorted) 0.76 (0.006) 0.87 (0.005) 1.09 (0.004)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)
EEG-For (M = 64, sorted) 0.78 (0.005) 0.89 (0.004) 1.11 (0.004)

conditioning on the context and evaluated points. This requires M/K steps of evaluations. The
results are reported in Table A2. As we decrese the deployment K, the performance of our TNP w/
buffer becomes stronger, while more iterations (and thus computational time) are required.

E.3 EEG FORECASTING W/ AND W/O TARGET PERMUTATION

In our main paper, the EEG forecasting task is evaluated with the permuted target set, as done
in Bruinsma et al. (2023). We repeat the experiment by forecasting the target of a fixed temporal
order. In Table A3, we show that averaging over random target order provide better performance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table A4: Multisensory causal inference model selection extra results. Supplement for table
Table 2 on model comparison case with extra evaluation on K = 4 and R2 metrics for LML and
∆LML.

TNP-D TNP-ND TNP-A
AR Ind

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019)
LML R2 (↑) 1.00 (0.000) -0.43 (0.000) -7.22 (0.003) 1.00 (0.000)
∆LML R2 (↑) 0.93 (0.001) -14.47 (0.000) -6.74 (0.014) 0.87 (0.002)

TNP w/ buffer
K=16 K=4 K=1

LML RMSE (↓) 3.56 (0.004) 3.48 (0.002) 3.47 (0.004)
∆LML RMSE (↓) 2.60 (0.010) 2.59 (0.009) 2.59 (0.011)
LML R2 (↑) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
∆LML R2 (↑) 0.92 (0.001) 0.92 (0.001) 0.92 (0.001)

Table A5: Multisensory causal inference model data prediction task normalized log-likelihood
(↑) results. Supplementary results of Table 2, with extra evaluation on K = 4 and on larger target
set M = 128.

TNP-D TNP-ND TNP-A
AR Ind

Pred LL (M = 16) -2.76 (0.021) -2.77 (0.025) -3.12 (0.019) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.74 (0.016) -3.17 (0.012) -2.71 (0.015)

TNP w/ buffer
K=16 K=4 K=1

Pred LL (M = 16) -2.76 (0.024) -2.76 (0.024) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.71 (0.015) -2.71 (0.015)

F ADDITIONAL MULTISENSORY CAUSAL INFERENCE MODEL RESULTS

As supplementary results to Table 2, we include additional metrics and evaluation settings. Specif-
ically, for the model comparison task, we report the coefficient of determination (R2) for both the
LML and ∆LML with respect to the ground-truth (see Table A4). For the data prediction task, we
present results with a larger target size of M = 128 (see Table A5). In addition, for completeness,
we evaluate both the model comparison and data prediction tasks with K = 4. With varying K, we
observe little to almost no performance degradation compared to TNP-D AR, especially for the data
prediction case.

G USE OF LARGE LANGUAGE MODELS

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of
this work to support idea generation, brainstorming, and the exploration of possible methodological
directions. LLMs were also employed for tasks such as identifying related work through web search
and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate
components of the codebase, visualization scripts, and test codes. They were also used for drafting
parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully
reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining
clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity
of the content.

32

	Introduction
	Preliminaries
	Efficient Autoregressive Inference
	Related Work
	Experiments
	Discussion & Conclusion
	
	Method Details
	Modules and notation
	Training mask that implements (R1)–(R4)
	Algorithm for Autoregressive sampling
	Algorithm for joint log-likelihood

	Transformer Neural Process Baselines Details
	TNP-D
	TNP-ND
	TNP-A

	Computational Efficiency Details
	Scaling with Batch Size
	Impact of Custom Triton Kernel
	Comparison to Open-Source Baselines
	Training Time Scaling
	Impact of Attention Patterns on Training Speed

	Experimental Details
	Model Configuration
	Datasets
	Multisensory causal inference model and experiment details
	Original neuroscience experiment
	Simulation
	Ground-truth acquisition

	Evaluation Details
	Tabular model details
	Architecture
	Data generation and preprocessing
	Training procedure

	Additional Log Likelihood Results on Synthetic and EEG Tasks
	Predictive Power of Different Heads
	Results of Larger M
	EEG Forecasting w/ and w/o Target Permutation

	Additional multisensory causal inference model results
	Use of Large Language Models

