
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT AUTOREGRESSIVE INFERENCE FOR
TRANSFORMER PROBABILISTIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models for amortized probabilistic inference, such as neural
processes, prior-fitted networks, and tabular foundation models, excel at single-
pass marginal prediction. However, many real-world applications require co-
herent joint distributions that capture dependencies between predictions. While
purely autoregressive architectures efficiently generate such distributions, they
sacrifice the flexible set-conditioning that makes these models powerful for meta-
learning. Conversely, the standard approach to obtain joint distributions from set-
based models requires expensive re-encoding of an updated context set at each au-
toregressive step. We introduce a causal autoregressive buffer that preserves the
advantages of both paradigms. Our approach decouples context encoding from
updating the conditioning set. The model processes the context once and caches
it, while a dynamic buffer captures target dependencies: as targets are incorpo-
rated, they enter the buffer and attend to both the cached context and previously
buffered targets. This enables efficient batched autoregressive generation and one-
pass joint predictive density evaluation. Training seamlessly integrates set-based
and autoregressive modes at minimal additional cost. Across synthetic functions,
EEG signals, cognitive models, and tabular data, our method matches the predic-
tive accuracy of strong baselines while delivering up to 20× faster joint sampling.

1 INTRODUCTION

Generating predictions conditioned on available data is a central challenge in machine learning.
Recent advances in amortized probabilistic inference and meta-learning have produced a powerful
class of set-based conditioning models capable of rapidly adapting to new tasks without retraining.
Methods such as neural processes (NPs; Garnelo et al. 2018a; Foong et al. 2020), their transformer-
based extensions (Nguyen & Grover, 2022; Chang et al., 2025), prior-fitted networks (PFNs; Müller
et al. 2022), and recent tabular foundation models (Hollmann et al., 2023; 2025; Jingang et al., 2025)
share a crucial architectural principle: they process variable-sized context sets through permutation-
invariant encoders that respect the exchangeability of observed data. This set-based design enables
these models to condition on arbitrary subsets of observations and produce accurate marginal pre-
dictive distributions over new target variables in a single forward pass.

While these models are highly efficient for marginal predictions, many real-world applications re-
quire coherent joint distributions over multiple targets. Tasks such as signal interpolation, behavioral
data modeling, and multi-column tabular prediction demand that we capture dependencies between
random variables. The standard solution deploys these models autoregressively (Bruinsma et al.,
2023). However, this incurs significant computational overhead: each new prediction must be added
back to the conditioning set, triggering a complete re-encoding of the expanded context.

Autoregressive (AR) deployment involves iteratively expanding the conditioning set as follows: to
generate K predictions, the k-th step conditions on the initial context C plus all k − 1 previous
predictions (Fig. 1, Top Left). Since set-based models process their inputs through self-attention
mechanisms to maintain permutation invariance, each new element triggers a complete re-encoding
of the entire augmented set. This leads to prohibitiveO(K(N +K)2) complexity, severely limiting
applications with large contexts (N), long target sequences (K), or frequent sampling requirements.
Advances in efficient attention (Jaegle et al., 2021; Feng et al., 2023) can reduce costs for large static

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Context Set Predictions

Encode
𝒪((N + k)2)

Concat

Context Set

Predictions

Encode 𝒪(N2)

Concat

Context Cache

Context Cache

Buffer

Standard Autoregressive Loop

Autoregressive with Buffer Loop (ours)

 𝒪(k)
 𝒪(N)

Target x⋆1

Target x⋆2

Target x⋆
K

…

Target x⋆1

Target x⋆2

Target x⋆
K

…

k = 1,…, K

k = 1,…, K

Figure 1: The autoregressive buffer enables fast joint inference by eliminating redundant con-
text re-computation. Left: Comparison of autoregressive inference strategies. Traditional autore-
gressive approach (top) requires re-encoding the entire augmented context set at each step when
generating predictions for targets, leading to O(K(N + K)2) complexity, where N is the context
set size and K the number of targets. Our buffered approach (bottom) encodes the context C once
and caches it. New predictions enter a causal autoregressive buffer that attends to both the static
cache and previous buffer entries without re-encoding. Right: Empirical validation. We compare
transformer probabilistic models with and without the buffer mechanism. Both strategies achieve
comparable predictive accuracy, confirming that the buffer preserves model quality while delivering
up to 20× faster sample generation at larger context sizes.

contexts but do not address the core problem of repeated recomputation inherent in autoregressive
prediction: each incremental update requires a reprocessing of the conditioning set.

To address this limitation, we introduce the causal autoregressive buffer, an architectural mechanism
that decouples the expensive encoding of the static context from lightweight sequential prediction.
Inspired by the efficiency and scalability of purely autoregressive architectures in language modeling
(Brown et al., 2020) and image generation (Chen et al., 2020; Li et al., 2024), our buffer implements
a causal attention pattern for managing dependencies among generated targets – but crucially, it op-
erates alongside the set-based context rather than replacing it. Our approach first encodes the initial
context C and caches its representation. Targets added to the buffer can rapidly attend to both the
static context cache and previously buffered targets through causal masking, managing dependen-
cies among newly generated samples without requiring context re-encoding (Fig. 1, Bottom Left).
This eliminates the need for full context re-encoding at each step, drastically reducing computation.
Crucially, when the buffer is empty, our model’s behavior is identical to a standard model, preserv-
ing marginal prediction quality. We show that a unified training strategy using masked attention and
a buffer-size curriculum allows a single model to handle both efficient marginal predictions and ac-
celerated autoregressive sampling and joint predictive density evaluation with substantial speedups,
while achieving comparable predictive accuracy to standard AR approaches (Fig. 1, Right).

Our main contributions are:

1. We introduce the causal autoregressive buffer, a mechanism that decouples set-based con-
text encoding from sequential prediction, enabling efficient joint sampling and predictive
density evaluation from transformer-based amortized probabilistic models.

2. We propose a unified training strategy using masked attention and buffer-size curriculum
that allows a single model to learn both modes of operation at minimal additional cost.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We demonstrate that our approach is broadly applicable to transformer-based probabilistic
models including TNPs/PFNs (Nguyen & Grover, 2022; Müller et al., 2022) and tabular
foundation models (TabICL; Jingang et al., 2025), achieving up to a 20× speedup in joint
sampling while maintaining comparable predictive accuracy across diverse tasks.

2 PRELIMINARIES

We consider meta-learning problems where a model must adapt to new prediction tasks using ob-
served data, without task-specific retraining. Given a context set C = {(xn, yn)}Nn=1 with N
input-output pairs, and an analogous target set T = {(x⋆

m, y
⋆
m)}Mm=1, we aim to predict target

output values y⋆1:M at new target inputs x⋆
1:M . This is framed as learning a predictive distribu-

tion pθ(y⋆1:M |x⋆
1:M ; C) where θ are the model’s learnable parameters (Foong et al., 2020). Note:

Throughout the paper, we use index k instead of m when targets are processed autoregressively.

Transformer diagonal prediction maps. Transformer architectures (Vaswani et al., 2017) are a
natural fit for this set-based task. Methods such as (diagonal) transformer neural processes (TNPs;
Nguyen & Grover, 2022) and prior-fitted networks (PFNs; Müller et al., 2022) use two core attention
mechanisms. First, the model processes C using multi-head self-attention (MHSA). Then, each
target input x⋆

m queries this summary using multi-head cross-attention (MHCA). This structure leads
to an efficient diagonal predictive model where predictions are conditionally independent:

pθ(y
⋆
1:M | x⋆

1:M ; C) =

M∏
m=1

pθ(y
⋆
m | rtgt(x

⋆
m, rC(C))) . (1)

Here, rC(C) is the permutation-invariant summary of the context produced by the MHSA layers1,
and rtgt(·, ·) is the final decoding function that produces a parametric prediction for y⋆m via MHCA.
This may consist of a single Gaussian, but more expressive parameterizations include Riemannian
distributions (Müller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang et al., 2025).
These models are efficiently trained via maximum-likelihood on random context-targets data splits.

Autoregressive sampling and predictive density evaluation. Many applications require captur-
ing dependencies across targets, which requires joint distributions. This need arises in two forms: (i)
generating coherent samples where targets exhibit dependencies, and (ii) evaluating joint predictive
densities. While Eq. (1) can be extended to handle dependent predictions using multivariate para-
metric densities such as a multivariate Gaussian (Markou et al., 2022; Nguyen & Grover, 2022), a
more powerful solution employs an autoregressive factorization (Bruinsma et al., 2023):

pθ(y
⋆
1:K | x⋆

1:K ; C) =
K∏

k=1

pθ
(
y⋆k | x⋆

k; C ∪ {(x⋆
j , y

⋆
j)}k−1

j=1

)
. (2)

Crucially, this is not a new model, but a mode of deployment for models described by Eq. (1). This
captures dependencies by conditioning each prediction on previous targets.2 However, this creates a
computational bottleneck: the conditioning set changes at each step, requiring recomputation of the
context summary rC(·). Whether generating samples sequentially or evaluating predictive densities,
this leads to O(K(N+K)2) complexity. Moreover, parallel autoregressive sampling or evaluation
is cumbersome, as generating B parallel sequences requires B copies of the model.

Our goal is to improve efficiency for both sequential and parallel sampling and predictive density
evaluation by encoding the context once and reusing it throughout. Existing autoregressive up-
date schemes break this caching: when targets join the conditioning set, the context representation
must be recomputed. Our key insight is to separate the roles of initial context C and predicted tar-
gets {(x⋆

j , y
⋆
j)}j<k. We preserve permutation invariance for the initial context (encoded once and

cached) while handling target dependencies through a separate causal mechanism. When needed,
the buffer can be merged back into the context to restore full permutation invariance. This selec-
tive relaxation – in-between fully set-based and purely autoregressive models – enables efficient
sequential and parallel operations while maintaining the strengths of set-based conditioning.

1See Appendix H.1 for evidence of the impact of permutation invariance for the context set.
2 Eq. (2) imposes a specific factorization order. While fixing the order can be a valid modeling choice under

certain circumstances, this breaks permutation invariance. In cases where permutation invariance is required, a
Monte Carlo approximation can be obtained by averaging over multiple target orderings.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 EFFICIENT AUTOREGRESSIVE INFERENCE

Core contribution. Our method conditions predictions on a static, task-defining context C and a
dynamic autoregressive buffer B. We parameterize the predictive distribution as

pθ(y
⋆
1:K | x⋆

1:K ; C) =

K∏
k=1

pθ(y
⋆
k | rtgt(x

⋆
k, [rC(C),b1:k−1])) , bk = rB((x

⋆
k, y

⋆
k), [rC(C),b1:k−1]),

(3)

where rB is the buffer encoder implemented with MHSA with causal masking, b1:k the first k
encoded data points in the buffer, and b1:0 = ∅. Crucially, rC(C) is computed once and cached. The
target decoder rtgt performs a single cross-attention over the concatenated keys/values from both
the cached context and the visible buffer prefix ([rC(C),b1:k−1]), then passes the result through a
distribution head (e.g., an MLP parameterizing a mixture of Gaussians) to generate predictions.3

To couple one-time set-based encoding with sequential dependence, the attention must satisfy four
requirements: (R1) the context is immutable: encoded once with self-attention and cached as
read-only; (R2) the buffer is strictly causal: token j may attend only to < j; (R3) information
flows out of the context but never back: no edges write into C; and (R4) each target attends to the
cached context and the visible buffer prefix to capture dependencies among previous predictions.

During training, we enforce (R1) – (R4) in a forward pass using a structured attention mask.
We implement this using a single transformer backbone that processes context, buffer, and target
tokens with distinct role embeddings; buffer tokens additionally carry learned positional embed-
dings 4 indicating their autoregressive order. This allows us to compute all losses in parallel by
conditioning each target’s prediction on the context and a variable-sized, ground-truth buffer set.

Figure 2: Example training mask.

At inference, we use a two-stage process: a one-time
context encoding followed by prediction in the form of
either sampling or predictive density evaluation. Pre-
diction carries an attention cost of O(N2 + KN +
K2), composed of a one-time O(N2) for context self-
attention,O(KN) for all cross-attention reads from the
cache, and a total of O(K2) for causal self-attention
within the buffer. This provides a speedup over naive
autoregressive methods, which cost O(K(N + K)2)
due to repeated context recomputation. When the buffer
is empty, our model’s behavior is identical to a standard
diagonal prediction map as Eq. (3) reduces to Eq. (1).
Architectural details appear in Appendix A

Training details. The model is trained by minimizing
the expected negative log-likelihood over a prior distri-
bution of datasets P . Each training task is generated
by sampling a dataset D = {(xi, yi)}Ntot

i=1 ∼ P . A random partition distribution π is then used to
split the dataset into three disjoint sets: (1) the context set C = {(xn, yn)}Nn=1; (2) the buffer set
B = {(xk, yk)}Kk=1; and (3) the target set T = {(xm, ym)}Mm=1, with Ntot = N + K +M . We
randomly order the buffer set B and compute all predictions for the target set T in a single forward
pass. A structured attention mask controls whether each target can attend to the buffer, and if so,
how many elements: 50% of the targets attend only to the context C; 50% attend to the context plus
a prefix of the buffer B1:vm , where vm ∼ Uniform(1,K) (see Fig. 2). The training objective is:

L(θ) = ED∼P

[
E(C,B,T)∼π(·|D)

[
−

M∑
m=1

log pθ(ym | xm, C,B1:vm)

]]
, (4)

3Throughout this paper, K denotes the total number of targets to be predicted autoregressively. The buffer
stores up to K − 1 previously generated predictions, enabling the model to condition on these when predicting
the k-th target. Thus, when we refer to “buffer size K = 16”, the buffer contains at most 15 elements, allowing
for 16 total predictions. Setting K = 1 corresponds to standard AR inference without buffering (empty buffer).

4See Appendix H.2 for details on the role of positional embeddings.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where B1:vm is the visible portion of the buffer for target m (vm = 0 for context-only targets). This
training curriculum ensures the model performs well regardless of the buffer’s state. The frequent
buffer-free predictions force the model to make high-quality marginal predictions from the initial
context alone. Simultaneously, training with exposure to a variable-sized buffer teaches the model
to flexibly incorporate additional in-context information. Minimizing this objective is equivalent
to minimizing the KL divergence between the model and the true posterior predictive distribution
under varying conditioning sets (Müller et al., 2022; Elsemüller et al., 2024).

During training, the buffer contains its own set of training data points, as described above. At in-
ference, we have two modes: (i) autoregressive sampling, where the buffer grows incrementally by
incorporating the model’s own generated samples; and (ii) parallel joint predictive density evalua-
tion, where we pack two sets of K target data points to evaluate all K conditionals in one pass (see
below). The sparsity pattern is identical in both regimes; only execution differs (single masked pass
for evaluation, prefill followed by sequential updates for sampling).

Autoregressive sampling. Given a context C and a sequence of target inputs x⋆
1, ... ,x

⋆
K , we gen-

erate samples by first performing a one-time prefill of C, caching its keys and values in an O(N2)
operation. We then decode sequentially following Eq. (3): for each step k = 1, . . . ,K, we form
a target query for input x⋆

k, attend to the cached context and causal buffer Bk−1, sample y⋆k from
the predictive distribution, and append (x⋆

k, y
⋆
k) to the buffer with its positional embedding. Only

the buffer’s key/value cache is incrementally updated, avoiding context recomputation and yielding
O(N2 +NK +K2) total complexity (detailed in Algorithm 1 in Appendix A.3).

Joint predictive density evaluation. Our framework can also evaluate the joint predictive density
of a set of K = M targets, {(x⋆

m, y
⋆
m)}Km=1, in a single forward pass. To achieve this, similar

to the TNP-A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i)
buffer tokens for the targets {(x⋆

k, y
⋆
k)}Kk=1, and (ii) separate query tokens for the same target inputs

{x⋆
m}Km=1. A causal attention mask ensures that each query for x⋆

m attends to the context C and
only the preceding buffer tokens B1:m−1 = {(x⋆

k, y
⋆
k)}k<m. This allows all conditional probabil-

ities to be computed in one pass: log pθ(y
⋆
1:K | x⋆

1:K , C) =
∑K

m=1 log pθ
(
y⋆m | x⋆

m, C,B1:m−1

)
.

This is identical to sequential autoregressive evaluation but executes in a single forward pass with
total attention cost O(N2+KN+K2); see Algorithm 2 in Appendix A.3. Notably, autoregressive
predictive density estimates are order-dependent; to recover approximate permutation invariance,
we average the predictive densities over multiple buffer orderings (Murphy et al., 2019). See Ap-
pendix H.3 for an analysis of how the number of buffer orderings affects estimate stability.

Batched autoregressive sampling. Our method is particularly efficient for autoregressively gener-
ating multiple samples in a batch, conditional on the same context C (e.g., multiple joint predictions
for the same observed function values – see Fig. 1). A naive batched autoregressive approach must
re-encode a growing context set at every generation step for each of the B samples. To generate B
samples of length K, this results in a prohibitive total cost of O(BK(N + K)2). In contrast, our
approach performs the expensive context prefill (O(N2)) only once. This single context cache is
then efficiently reused across all B batched generation streams, with only the small, dynamic buffer
maintaining a separate state for each sample. This reduces the total cost toO(N2+B(NK+K2)),
making batched sampling practical even for large contexts and batches.

Architectural generality. Our buffer is a general mechanism applicable to other transformer vari-
ants. For instance, a Perceiver-style encoder (Jaegle et al., 2021) summarizes the context C into a
fixed set of P ≪ N latent tokens, also known as pseudo-tokens (Lee et al., 2019; Feng et al., 2023;
Lara-Rangel et al., 2025). We can precompute the latent key/value representations once – autore-
gressive decoding then requires attending only to these P latents and the growing causal buffer. The
per-layer attention cost is O(NP+P 2) for the prefill and O(PK+K2) for decoding K samples.
Without our buffer, the cost is O(NPK+P 2K+PK2). To demonstrate this, we applied our buffer
to the latent bottlenecked attentive neural process (LBANP; Feng et al., 2023) architecture, a TNP
variant that encodes the context with pseudo-tokens. We found that our buffer yields higher predic-
tive densities than standard autoregressive inference with LBANP, likely because the buffer allows
the model to condition on both the latent summary and the explicit history of previous points, rather
than relying on the compressed latents alone. See Appendix H.4 for results and additional details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Transformer probabilistic models. Our method can serve as a modular component within neural
processes (NPs; Garnelo et al., 2018b;a; Bruinsma et al., 2021; Nguyen & Grover, 2022; Dutordoir
et al., 2023; Chang et al., 2025) or prior-fitted networks (PFNs; Müller et al., 2022; 2023; Hollmann
et al., 2023). Prior work on efficient NP methods has primarily focused on improving scalability with
respect to the context set size (Feng et al., 2022; 2023) and on reducing memory usage (Feng et al.,
2024) for independent prediction tasks. By contrast, our method targets efficiency in autoregressive
joint sampling and evaluation, an area that has received limited attention. Our contributions are com-
plementary and can be combined with other architectural improvements. Recent work increasingly
leverages transformer architectures for probabilistic modeling, framing Bayesian inference as an in-
context learning task. These methods perform tasks such as approximating posterior distributions,
modeling conditional relationships, and estimating posterior predictive distributions by conditioning
on context observations and, optionally, additional prior information (Mittal et al., 2023; Gloeckler
et al., 2024; Reuter et al., 2025; Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our
work builds on this direction by leveraging transformer-based variants of neural processes and prior-
fitted networks. The effectiveness of PFNs has led to transformer-based tabular foundation models
such as TabPFN (Hollmann et al., 2023; 2025) and TabICL (Jingang et al., 2025), which demon-
strate strong performance on tabular data through in-context learning approaches. The “in-context
learning” over rows within these models follows the same attention mechanisms as standard trans-
former neural processes and PFNs; our method integrates naturally with these models, serving as a
complementary module for efficient joint sampling and prediction.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint
density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria
et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic autore-
gressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Our method is related
to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover, 2022) which duplicates targets
into queries and observed values. While TNP-A uses this duplication for both training and inference,
we recognize it is only needed for predictive density evaluation. Bruinsma et al. (2023) showed that
deploying standard NPs autoregressively improves joint predictions but requires expensive context
re-encoding at each step. Our buffer mechanism combines insights from both approaches: like
TNP-A, we enable parallel predictive density evaluation, and like Bruinsma et al. (2023), we model
autoregressive dependencies while training on independent targets – our separate buffer architecture
avoids both TNP-A’s training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models follow two
main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021; Lipman et al., 2023) that generate samples through continuous-time dynamics, and
autoregressive transformers (GPTs; Radford et al., 2018; Brown et al., 2020) that generate sequences
token-by-token with cached key-value states. While diffusion dominates in continuous domains
like images and video, autoregressive transformers excel in discrete sequences and show excellent
performance and scalability in multiple domains. Our buffer mechanism brings the efficiency of
autoregressive transformers to NPs and PFNs. Standard NPs/PFNs struggle with joint prediction
because they must re-encode the entire context at each autoregressive step. Our approach instead
mirrors language models: encode the set-based context once (like a prompt) and generate efficiently
through cached representations. Recent work has shown these paradigms can be combined (Tang
et al., 2025; Arriola et al., 2025; Wu et al., 2025), suggesting future extensions. There has also been
recent work unifying masked diffusion (Lou et al., 2024; Shi et al., 2024; Sahoo et al., 2025) with
any-order autoregressive models, which our buffer component is a representative of. Addressing the
inefficiency of processing masked tokens, Partition Generative Models (PGMs; Deschenaux et al.,
2025) employ self-attention among observed tokens and cross-attention from unmasked to masked
tokens. This functionally mirrors the context-target attention pattern used in TNPs and PFNs, sug-
gesting a structural convergence in how masked diffusion models and TNPS/PFNs parameterize
their predictive conditional densities using attention.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1
Ti

m
e (

s)

Sample generation

32 64 128 256 512 1024
N

10−3

10−2

10−1

Ti
m

e (
s)

Density evaluation

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

Training step

32 64 128 256 512 1024
N

10−2

10−1

100

Pe
ak

 V
RA

M
 (G

B)

Memory

Ours

TNP-D
-A

R
TNP-A

TNP-D
-In

d

TNP-N
D

0.0

0.5

1.0

N
or

m
al

iz
ed

 sc
or

e

Predictive performance

Ours
TNP-D-AR
TNP-A
TNP-D-Ind
TNP-ND

Figure 3: Wall-clock time (log scale) for (a) sampling, (b) density evaluation, and (c) a training
step, along with (d) peak memory usage versus context points N , with (e) normalized predictive
performance averaged across six tasks. Our method closely matches autoregressive baselines in
predictive performance while offering significant speedups and lower memory usage.

5 EXPERIMENTS

Our experiments validate our method across diverse tasks: regression on synthetic functions, inter-
polation of real-world EEG data, Bayesian model selection on a multisensory perception model, and
pre-training of a tabular foundation model. We first conduct wall-clock and memory benchmarks to
quantify efficiency gains, then assess predictive performance across these varied domains.

Baselines. We compare against models spanning the efficiency-expressivity tradeoff, all config-
ured with matched parameter counts, same input embeddings and output prediction heads unless
noted otherwise (details in Appendix B). TNP-D (Nguyen & Grover, 2022) assumes conditional
independence between targets; we evaluate it both with standard parallel decoding (TNP-D-Ind,
fast but limited) and with autoregressive deployment (TNP-D-AR, expressive but requires sequential
re-encoding). TNP-ND models target dependencies via a multivariate Gaussian, enabling one-pass
joint predictive density evaluation but limiting expressivity. TNP-A uses causal self-attention for
full autoregressive modeling but suffers from slow sequential sampling and high training cost. Ad-
ditional task-specific baselines are introduced as needed. TNP-ND aside, all models use a Gaussian
mixture model output head with 20 mixture components unless stated otherwise.

Computational efficiency. Our method trades exact set-based AR updates for efficiency. We aim
for substantial speedups over baselines while maintaining comparable accuracy. Success means
matching predictive performance of state-of-the-art AR approaches while being orders of magni-
tude faster. We benchmark wall-clock time for: (i) autoregressive sampling, (ii) joint predictive
density evaluation, and (iii) a full training step (forward and backward pass), as well as (iv) peak
memory usage. All measurements use a unified codebase and run on a single NVIDIA L40S GPU.
We optimized all baselines beyond their public versions with KV caching, FlashAttention-2 (Dao,
2023), and compilation, achieving 3 − 10× speedups over original implementations to ensure fair
comparison. For our method, we developed a custom Triton kernel to optimize memory access
during batched sampling (details in Appendix C). Benchmarks in Fig. 3 use model architectures
matching subsequent experiments with buffer size K = 16. For sampling and predictive density

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Average predictive density (↑) results on synthetic functions and EEG example. Mean
and (SEM) over various functions and context sizes N , for M = 16 targets. See Appendix D.5 for
evaluation details and Table A2 for results with larger M . Deploying TNP w/ buffer with K = 1
tracks the best method, and for K = 16 (fast) in most cases performance only worsens slightly.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

GP 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018) 2.51 (0.019) 2.56 (0.019)
Sawtooth 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004) 1.00 (0.005) 1.09 (0.004)
EEG-Int 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014) 0.52 (0.013) 0.54 (0.014)

EEG-For 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003) 0.85 (0.004) 1.21 (0.003)

evaluation: M = 16 targets, batch size B = 256. For training: M = 256 targets, batch size
B = 128.

Our method achieves a superior efficiency profile compared to expressive baselines. For autoregres-
sive sampling (Fig. 3, top left), our method is 3 − 20× faster than the fully autoregressive TNP-A
and TNP-D-AR. While TNP-D-Ind and TNP-ND are faster, they cannot capture complex predictive
dependencies, as shown later in this section. For predictive density evaluation (Fig. 3, top center),
our method’s speed is on par with the highly parallel TNP-A and is a factor of K× faster than the
sequential TNP-D-AR. For training speed (Fig. 3, top right), the overhead of our method is minimal,
resulting in a training step time comparable to the fastest baselines (TNP-D, TNP-ND) and 4− 12×
faster than TNP-A, which incurs a significant computational cost due to its architecture. For memory
usage (Fig. 3, bottom left), our method requires 6 − 7× less VRAM than TNP-D-AR and TNP-A
at large context sizes (N = 1024), scaling efficiently due to only needing to cache a single context
independent of batch size. For predictive performance (Fig. 3, bottom center), we show normalized
scores5 averaged across the six tasks presented in Tables 1 and 2; our method closely matches the
expressive autoregressive baselines (TNP-D-AR, TNP-A) while substantially outperforming TNP-
D-Ind and TNP-ND. We provide additional results, including benchmarks across a wider range of
batch and target sizes and memory usage comparison, in Appendix C.

Synthetic functions. We consider two prediction tasks: (i) functions drawn from Gaussian pro-
cesses (GPs; Rasmussen & Williams, 2006) where the kernel type is sampled from a set, along
with its hyperparameters, and (ii) a non-Gaussian sawtooth process with discontinuous derivatives.
All models are trained and evaluated on distinct draws from these processes (see Appendix D.2).
Results: As shown in Table 1, TNP w/ buffer (K = 16)6 achieves performance comparable to TNP-
D-AR while providing substantial speedups (Fig. 3). To verify buffer training doesn’t degrade AR
capability, we deploy with K = 1, matching the performance of TNP-D-AR exactly.

Electroencephalogram (EEG) data. Following Markou et al. (2022) and Bruinsma et al. (2023),
we train TNPs on EEG time series data (Zhang et al., 1995). Each trial contains 256 regularly
sampled measurements across 7 correlated channels. See Appendix D.2 for dataset details. We train
on an interpolation setting and evaluate on both forecasting and interpolation tasks. Interpolation
uses random context/target splits; forecasting uses the first N points as context and the next M as
targets (Appendices D.2 and D.5). As shown in Table 1, our method with K=16 is comparable to
TNP-D-AR (slightly worse for forecasting), and substantially better than TNP-D (Ind) and TNP-ND.
Additional results (larger M ; permutation effects in forecasting) are in Appendices E.2 and E.3.

Multisensory causal inference model comparison and data prediction. We evaluate our
method on a popular computational neuroscience model that determines how the brain combines
sensory stimuli from different sources (Körding et al., 2007). Using publicly available data from an
audio-visual localization experiment (Liu et al., 2025), we consider two model variants, each with
7 free parameters, differing only in their auditory recalibration parameter ρ ∈ {1, 4/3}, and evaluate
two tasks: (1) Model selection. For each method, we train two models on simulators with ρ = 1 and

5We compute normalized scores for each task by linearly rescaling the average log predictive densities so
that the worst-performing method scores 0 and the best-performing method scores 1.

6See Appendix H.5 for ablations on different buffer sizes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Multisensory causal inference model comparison and prediction results. For model
selection, we use two metrics: log marginal likelihood root mean-squared error (LML RMSE)
against ground-truth, and difference in LML between ρ = 4/3 and ρ = 1, reported as RMSE
(∆LML RMSE). For data prediction, we report average predictive density estimates (Average LL)
for M = 16 targets, computed using the model selected by the model-selection task. See Ap-
pendix D.5 for additional details and evaluations.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012) 3.56 (0.004) 3.47 (0.004)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019) 2.60 (0.010) 2.59 (0.011)

Average LL (↑) -2.76 (0.024) -2.77 (0.025) -3.12 (0.016) -2.76 (0.024) -2.76(0.024) -2.76 (0.024)

ρ = 4/3. We use the trained models for the challenging task of computing the log marginal likelihood
(LML) of real experimental data, which requires evaluating the joint likelihood (Murphy, 2012):

LML = log p(y1:N |x1:N) =

N∑
i=1

log p(yi|xi, {(xj , yj)}j<i) (5)

which is inherently an autoregressive prediction task, as each prediction conditions on all pre-
vious data points, so it is perfectly suited for our models. For each dataset, we estimate the
ground-truth LML for both ρ = 1 and ρ = 4/3 using S-VBMC, a method proven effective on
similar problems (Acerbi et al., 2018; Silvestrin et al., 2025). We report LML RMSE and ∆LML
RMSE (the difference between model metrics, useful for model comparison) in Table 2. (2)
Data prediction. Using the model selected in (1), we predict outputs on the real dataset and
report average log-predictive densities (Table 2). See Appendix D.3 for experimental details and
Appendix D.5 for evaluation settings.

-1256 -1085 -914
LML (True)

-1256

-1085

-914

LM
L

(T
NP

 w
/ b

uf
fe

r)

R² = 1.00

=4/3
=1

-30 0 30
 LML (True)

-30

0

30
 L

M
L

(T
NP

 w
/ b

uf
fe

r)
R² = 0.92

Figure 4: Multisensory causal inference model
comparison versus ground-truth. (Left) Log
marginal likelihood (LML) comparison for both
ρ = 1 and ρ = 4/3. (Right) LML difference
(ρ = 4/3 − ρ = 1) comparison. Our method
closely aligns with the ground-truth.

Results. We evaluate our method using data
from the 15 participants of the original study,
extracting two non-overlapping subsets of 400
experimental trials each (400 data points), re-
sulting in a total of 30 datasets. The model
trained with ρ = 4/3 generally achieves bet-
ter (higher) LML than ρ = 1, aligning with
the original finding that participants are remap-
ping their auditory space to match the visual
range (Liu et al., 2025). Fig. 4 shows that
the LML and ∆LML approximations obtained
with our method are remarkably close to the
ground-truth. Furthermore, our method per-
forms on par with TNP-D-AR and outperforms
all other baselines on model comparison (Ta-
ble 2). All models except TNP-ND perform
similarly on the data prediction task. For additional results, see Appendix F.

Small-scale tabular foundation model. We integrate our autoregressive buffer into the TabICL
foundation model architecture (Jingang et al., 2025). While the original work focused on classifi-
cation, we pre-train our model from scratch for regression tasks. We reuse TabICL’s set encoder to
efficiently compute feature embeddings upfront and focus modifications on the final dataset-wise
in-context learning transformer. Our core methodological contribution is the buffer mechanism,
implemented by a structured attention mask. This allows the model to condition on its recent pre-
dictions by storing them in a dynamic buffer. We pre-train this architecture on synthetic data from
a structural causal model (SCM) prior (Hollmann et al., 2023; Jingang et al., 2025), where each
training instance is formed by partitioning datasets into distinct sets of context, buffer, and target
points. Our network size and training scale are comparable to the original TabPFN (Hollmann et al.,
2023); the model is pre-trained on 10.24 million synthetic datasets containing 1 to 10 features and 8
to 1024 context points, with a buffer size of K = 32. Full details are provided in Appendix D.4.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Average log-predictive density (↑) results on UCI datasets with TabICL. We evaluate
our AR buffer integrated into a TabICL foundation model against independent and standard AR
baselines. Performance is measured on interpolation (Int) and forecasting (For) tasks across six
real-world datasets. Results are reported as mean and standard error over 16 randomly sampled
mini-datasets (M = 32) in low context (N = 16) and high context (N = 1024) settings.

LOW CONTEXT REGIME (N = 16)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 0.38 (0.22) -2.87 (0.77) -0.65 (0.15) -1.46 (0.26) 0.84 (0.11) -0.04 (0.17) -0.59 (0.14) -4.71 (0.46) 0.10 (0.12) -4.53 (1.07) -1.31 (0.07)

Standard AR 0.88 (0.19) -0.97 (0.52) -0.48 (0.13) -1.00 (0.18) 1.43 (0.11) 1.02 (0.13) -0.09 (0.14) -2.39 (0.22) 0.64 (0.12) -2.15 (0.35) -1.17 (0.08)

AR w/ buffer 0.78 (0.19) -1.00 (0.51) -0.48 (0.13) -0.98 (0.17) 1.31 (0.10) 0.94 (0.13) -0.10 (0.15) -2.41 (0.23) 0.55 (0.12) -2.15 (0.34) -1.16 (0.09)

HIGH CONTEXT REGIME (N = 1024)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 1.78 (0.06) 1.64 (0.18) -0.01 (0.16) -0.60 (0.29) 2.54 (0.05) 2.32 (0.07) 0.36 (0.07) -1.12 (0.35) 2.01 (0.06) 1.56 (0.19) -0.44 (0.08)

Standard AR 1.78 (0.06) 1.70 (0.18) -0.01 (0.16) -0.47 (0.27) 2.54 (0.05) 2.40 (0.10) 0.36 (0.07) -0.08 (0.22) 2.01 (0.06) 1.80 (0.13) -0.44 (0.08)

AR w/ buffer 1.79 (0.06) 1.70 (0.18) -0.01 (0.16) -0.48 (0.27) 2.53 (0.05) 2.39 (0.06) 0.36 (0.06) -0.12 (0.23) 2.01 (0.06) 1.64 (0.16) -0.44 (0.08)

Results. We evaluate on six UCI and Kaggle datasets:7 Individual Household Electric Power Con-
sumption, Gas Turbine CO and NOx Emission, Bike Sharing, Jena Climate, Power Consumption of
Tetouan City, and California Housing Prices. We form 16 tasks per dataset for both N = 16 and
N = 1024 context sizes and M=32 targets under interpolation (Int) and forecasting (For) tasks;
the latter for time-series datasets only (all excluding California Housing Prices). We compare three
inference modes: “Ind” (independent predictions), “Standard AR” (conventional step-by-step au-
toregression, K=1 equivalent), and “AR w/ buffer” (ours, K=32). Results in Table 3 show that
standard AR and AR w/ buffer consistently outperform independent predictions in low context set-
tings and in high context forecasting. Crucially, AR w/ buffer matches standard AR within standard
errors, demonstrating that the buffer preserves dependencies while enabling efficient autoregressive
inference. In Appendix G, we provide additional results for the N = 256 setting.

6 DISCUSSION

We introduce a causal autoregressive buffer that decouples one-time context encoding from
lightweight sequential updates in transformer-based probabilistic models. By caching context
keys/values and routing target-to-target dependencies through a causal buffer, we reduce the at-
tention cost fromO(K(N+K)2) toO(N2+NK+K2). Across synthetic functions, EEG interpo-
lation, multisensory modeling, and tabular prediction, our method matches autoregressive baselines
while achieving up to 20× faster joint sampling with minimal additional training cost over standard
models and up to 10× lower training cost than autoregressive-specific baselines.

There are several limitations. The first is the increased cost when scalingK to larger values. Runtime
and memory still include an O(K2) term from causal self-attention in the buffer, and we currently
learn a fixed set of buffer positional embeddings. Scaling to longer horizons without growing train-
ing complexity may be possible via rotary position embeddings (RoPE; Su et al., 2024) or attention
biasing (ALiBi; Press et al., 2022). Second, for long buffers, quality can drift relative to exact AR
that re-encodes the context at each step. Exploring similarities with the draft-verify process from
speculative decoding (Leviathan et al., 2023; Chen et al., 2023) could enable adaptive inference
strategies using the buffer for improved performance.

A practical strength of our method is its plug-and-play applicability: the buffer is implemented via
attention masks and token roles. While we currently perform joint training of the base model and
buffer, our method could be directly applied to pretrained NPs/PFNs. Parameter-efficient fine-tuning
(Houlsby et al., 2019; Hu et al., 2022) could offer a direct path to enable buffered inference without
full retraining. We also leave to future work a deeper exploration of alternative attention backbones
(e.g., Jaegle et al., 2021; see Appendix H.4) and broader inference tasks (Chang et al., 2025).

7UCI: https://archive.ics.uci.edu/. Kaggle: https://www.kaggle.com/.

10

https://archive.ics.uci.edu/
https://www.kaggle.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work uses only publicly available datasets and synthetic simulators, with no sensitive data
involved. The methods are for research purposes and pose no foreseeable ethical risks. We have
followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All experiments use public datasets or, when applicable, a simulator for synthetic data. Algorithmic
details are presented in Algorithms 1 and 2, and all hyperparameters and training schedules are spec-
ified in the configuration files and documented in the appendix. Ablation studies are also reported in
the appendix. We do not release pretrained weights, and no special data licenses or usage constraints
apply.

REFERENCES

Luigi Acerbi. Variational Bayesian Monte Carlo. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2018.

Luigi Acerbi. Variational Bayesian Monte Carlo with noisy likelihoods. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2020.

Luigi Acerbi, Kalpana Dokka, Dora E Angelaki, and Wei Ji Ma. Bayesian comparison of explicit
and implicit causal inference strategies in multisensory heading perception. PLoS Computational
Biology, 14(7):e1006110, 2018.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block Diffusion: Interpolating between autoregres-
sive and diffusion language models. In International Conference on Learning Representations,
2025.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 2020.

Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner.
The Gaussian neural process. In 3rd Symposium on Advances in Approximate Bayesian Inference,
2021.

Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. In International Conference on Learning Representations, 2023.

Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi.
Amortized probabilistic conditioning for optimization, simulation and inference. In International
Conference on Artificial Intelligence and Statistics. PMLR, 2025.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International Conference on Machine Learning. PMLR,
2020.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations, 2023.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Uncertainty in
artificial intelligence. PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Justin Deschenaux, Lan Tran, and Caglar Gulcehre. Partition generative modeling: Masked model-
ing without masks, 2025. URL https://arxiv.org/abs/2505.18883.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion pro-
cesses. In International Conference on Machine Learning. PMLR, 2023.

Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Koethe, and
Stefan T. Radev. Sensitivity-aware amortized bayesian inference. Transactions on Machine
Learning Research, 2024.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Efficient queries
transformer neural processes. In NeurIPS 2022 Workshop on Meta-Learning, 2022.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bot-
tlenecked attentive neural processes. In International Conference on Learning Representations,
2023.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed.
Memory efficient neural processes via constant memory attention block. In International Confer-
ence on Machine Learning. PMLR, 2024.

Andrew YK Foong, Wessel P Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and
Richard E Turner. Meta-learning stationary stochastic process prediction with convolutional neu-
ral processes. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2020.

Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Ali Eslami,
and Yee Whye Teh. Neural processes. In ICML 2018 Workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018b.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In International Conference on Machine Learning. PMLR, 2015.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-
in-one simulation-based inference. In International Conference on Machine Learning. PMLR,
2024.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models with-
out positional encodings still learn positional information. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pp. 1382–1390, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2020.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In International Conference on
Learning Representations, 2023.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning. PMLR, 2019.

12

https://arxiv.org/abs/2505.18883

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations. PMLR, 2022.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning. PMLR, 2018.

Bobby Huggins, Chengkun Li, Marlon Tobaben, Mikko J. Aarnos, and Luigi Acerbi. PyVBMC:
Efficient Bayesian inference in Python. Journal of Open Source Software, 8(86):5428, 2023. doi:
10.21105/joss.05428.

Kazuki Irie. Why are positional encodings nonessential for deep autoregressive transformers? re-
visiting a petroglyph. Findings of the Association for Computational Linguistics: ACL 2025, pp.
551–559, 2024.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International Conference on Machine
Learning. PMLR, 2021.

QU Jingang, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. TabICL: A tabular foun-
dation model for in-context learning on large data. In International Conference on Machine
Learning. PMLR, 2025.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2016.

David C Knill and Alexandre Pouget. The Bayesian brain: The role of uncertainty in neural coding
and computation. Trends in Neurosciences, 27(12):712–719, 2004.

Konrad P Körding, Ulrik Beierholm, Wei Ji Ma, Steven Quartz, Joshua B Tenenbaum, and Ladan
Shams. Causal inference in multisensory perception. PLoS One, 2(9):e943, 2007.

Jose Lara-Rangel, Nanze Chen, and Fengzhe Zhang. Exploring pseudo-token approaches in trans-
former neural processes. arXiv preprint arXiv:2504.14416, 2025.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In international
conference on artificial intelligence and statistics. PMLR, 2011.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
Transformer: A framework for attention-based permutation-invariant neural networks. In Inter-
national conference on machine learning. PMLR, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning. PMLR, 2023.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems,
2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations,
2023.

Shuze Liu, Trevor Holland, Wei Ji Ma, and Luigi Acerbi. Distilling noise characteristics and prior
expectations in multisensory causal inference. 2025.

Sulin Liu, Peter J Ramadge, and Ryan P Adams. Generative marginalization models. In Interna-
tional Conference on Machine Learning. PMLR, 2024.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In International Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Stratis Markou, James Requeima, Wessel P Bruinsma, Anna Vaughan, and Richard E Turner. Practi-
cal conditional neural processes via tractable dependent predictions. In International Conference
on Learning Representations, 2022.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus A Brubaker. Ex-
ploring exchangeable dataset amortization for bayesian posterior inference. In ICML 2023 Work-
shop on Structured Probabilistic Inference and Generative Modeling, 2023.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amor-
tized in-context Bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do Bayesian inference. In International Conference on Learning Representations,
2022.

Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. PFNs4BO: In-context learning
for bayesian optimization. In International Conference on Machine Learning. PMLR, 2023.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Kevin P Murphy. Probabilistic Machine Learning: Advanced Topics. MIT press, 2023.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019.

Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-aware meta learning
via sequence modeling. In International Conference on Machine Learning. PMLR, 2022.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2017.

Massimiliano Patacchiola, Aliaksandra Shysheya, Katja Hofmann, and Richard E Turner. Trans-
former neural autoregressive flows. In ICML 2024 Workshop on Structured Probabilistic Infer-
ence & Generative Modeling, 2024.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations. PMLR,
2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. URL https://openai.com/index/
language-unsupervised/.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

Arik Reuter, Tim GJ Rudner, Vincent Fortuin, and David Rügamer. Can transformers learn full
Bayesian inference in context? International Conference on Machine Learning, 2025.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and
Volodymyr Kuleshov. The diffusion duality. In International Conference on Machine Learning,
2025.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. In Advances in Neural Information Processing Systems,
2024.

Francesco Silvestrin, Chengkun Li, and Luigi Acerbi. Stacking Variational Bayesian Monte Carlo.
Transactions on Machine Learning Research, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing. PMLR, 2015.

14

https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with Hybrid AutoRegressive
Transformer. In International Conference on Learning Representations, 2025.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In Inter-
national Conference on Machine Learning. PMLR, 2014.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1–37,
2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems. Curran Associates, Inc., 2017.

George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A Osborne. Distribution trans-
formers: Fast approximate Bayesian inference with on-the-fly prior adaptation. arXiv preprint
arXiv:2502.02463, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dLLM: Training-free acceleration of diffusion LLM by enabling KV
cache and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Xiao Lei Zhang, Henri Begleiter, Bernice Porjesz, Wenyu Wang, and Ann Litke. Event related
potentials during object recognition tasks. Brain Research Bulletin, 38(6):531–538, 1995.

Chunsheng Zuo, Pavel Guerzhoy, and Michael Guerzhoy. Position information emerges in causal
transformers without positional encodings via similarity of nearby embeddings. In Proceedings
of the 31st International Conference on Computational Linguistics, pp. 9418–9430, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table of Contents
A Method Details 17

A.1 Modules and notation . 17
A.2 Training mask that implements (R1)–(R4) . 17
A.3 Algorithms for autoregressive sampling and log-likelihood evaluation 18

B Transformer Neural Process Baselines Details 19
B.1 TNP-D . 19
B.2 TNP-ND . 19
B.3 TNP-A . 19

C Computational Efficiency Details 20
C.1 Scaling with Batch Size . 20
C.2 Impact of Custom Triton Kernel . 21
C.3 Comparison to Open-Source Baselines . 21
C.4 Training Time Scaling . 22
C.5 Impact of Attention Patterns on Training Speed 23
C.6 Memory Usage . 24

D Experimental Details 25
D.1 Model Configuration . 25
D.2 Datasets . 26
D.3 Multisensory causal inference model and experiment details 27
D.4 Tabular model details . 30
D.5 Evaluation Details . 31

E Additional Log-Predictive Densiity Results on Synthetic and EEG Tasks 33
E.1 Predictive Power of Different Heads . 33
E.2 Results of Larger M . 33
E.3 EEG Forecasting w/ and w/o Target Permutation 34

F Additional multisensory causal inference model results 34

G Additional Tabular Foundation Model Results 34

H Ablations and Extra Experiments 35
H.1 Comparison to Non-Permutation-Invariant Transformers 35
H.2 Positional Embeddings Ablation . 35
H.3 Number of Samples Order Averaging Ablation 35
H.4 Extension to Latent Bottlenecked Attentive Neural Processes Model 36
H.5 Buffer Size Ablation . 37

I Use of Large Language Models 37

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A METHOD DETAILS

This appendix spells out the modules used in Eq. (3), the single block-sparse attention mask that
implements requirements (R1)–(R4), and the exact procedures for autoregressive sampling and one-
pass joint log-likelihood evaluation.

A.1 MODULES AND NOTATION

Our method uses three sets of tokens: context C, buffer B, and targets T , of sizes N,K,M , respec-
tively. Throughout this paper, let

Ex : X →Rd, Ey : Y→Rd, a : {1, . . . ,K}→Rd

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role
embeddings that indicate token type, denoted by erole

ctx , erole
buf , and erole

tgt for context, buffer, and target
tokens, respectively.

Context encoder rC . Given context pairs C = {(xn, yn)}Nn=1, construct context tokens: ectx
n =

Ex(xn) + Ey(yn) + erole
ctx , process them with bidirectional MHSA (no positional embeddings), and

cache per-layer keys/values:

{KVℓ
C}Lℓ=1 = rC(C) (computed once; immutable).

Buffer encoder rB. For a buffer prefix B1:k = {(x⋆
j , y

⋆
j)}kj=1, form tokens ebuf

j = Ex(x
⋆
j) +

Ey(y
⋆
j)+a(j)+erole

buf , then apply strictly causal MHSA on {ebuf
j }j≤k so that each token is restricted to

attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to
the cached context {KVℓ

C}. This yields per-layer KVℓ
B1:k

that we update incrementally at inference:

{KVℓ
B1:k
}Lℓ=1 = rB (B1:k, rC(C)) .

Target decoder rtgt and prediction head. For a target input x⋆
m we create a query token

etgt
m = Ex(x

⋆
m) + erole

tgt . The target decoder rtgt performs a single cross-attention from etgt
m to the

concatenated keys/values of the context cache {KVℓ
C} and the visible buffer prefix {KVℓ

B1:vm
},

followed by normalization and an MLP:

hm = rtgt

(
etgt
m,

[
{KVℓ

C}, {KVℓ
B1:vm

}
])
, ϕm = ψ(hm),

where ψ is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 TRAINING MASK THAT IMPLEMENTS (R1)–(R4)

We concatenate tokens as [C,B, T] with sizes N , K, and M , respectively, and use one block-sparse
attention mask consisting of the following five unmasked sections (everything else is masked):

(1) Self-attention within context. Context tokens attend bidirectionally to other context tokens.
Context never attends to buffer or targets (context is read-only outside this block).

(2) Buffer reads context (cross-attention). Each buffer token can read (attend to) all context tokens.
This lets the buffer incorporate task information from the cached context while keeping the context
cache immutable.

(3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a
buffer token at position j can only read earlier buffer positions <j (no future reads). This encodes
the autoregressive dependency among realized targets.

(4) Targets read context (cross-attention). Each target query can read the entire cached context.
There are no edges between targets.

(5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible
prefix of the buffer. The visible prefix length for target m is vm: training (teacher forcing): we
set vm=0 for 50% of targets and sample vm ∼ Uniform{1, . . . ,K} for the rest (the curriculum);

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Transformer diagonal prediction map training mask Transformer diagonal prediction map training mask w/ AR buffer

Context self-attn
Buffer self-attn

Buffer-context cross-attn
Target-context cross-attn

Target-buffer cross-attn

Figure A1: Block-sparse attention masks with and without an autoregressive buffer. Left: a
diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target
reads the entire context. Right: our buffered variant inserts an autoregressive memory B between
context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within
buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

Algorithm 1 Autoregressive sample generation for K targets

Require: Context C = {(xn, yn)}Nn=1, target inputs {x⋆k}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Initialize {KVℓ
B1:0
} ▷ empty buffer cache

3: for k = 1 to K do
4: hk ← rtgt

(
Ex(x

⋆
k)+e

role
tgt ,

[
{KVℓ

C}, {KVℓ
B1:k−1

}
])

5: Sample y⋆k ∼ pθ(·;ψ(hk))

6: Append (x⋆k, y
⋆
k); update {KVℓ

B1:k
} (strictly causal)

7: end for
8: return {y⋆k}Kk=1

sampling: at step k, the active query sees the realized prefix k−1; one-pass joint log-likelihood:
packed queries use vm=m−1 to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets;
and buffer never reads targets. This single pattern implements the four requirements from the main
text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access
to (context + visible buffer). See Fig. A1 for the diagram.

Complexity. Under this mask, a full prediction pass costsO(N2+NK+K2) attention operations
per layer: one-time O(N2) for C, O(NK) for reads from C, and O(K2) for causal buffer self-
attention. This replaces the O

(
K(N+K)2

)
cost of naive AR re-encoding. Packing B target orders

in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding
O
(
N2 +B(NK +K2)

)
.

A.3 ALGORITHMS FOR AUTOREGRESSIVE SAMPLING AND LOG-LIKELIHOOD EVALUATION

We include here the pseudocode for the main procedures used in our method. Algorithm 1 details
the autoregressive sampling procedure, and Algorithm 2 presents the joint likelihood evaluation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context C = {(xn, yn)}Nn=1, ordered targets {(x⋆k, y⋆k)}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Build all K buffer tokens; compute {KVℓ
B1:K
} under causal mask

3: Build target queries {Ex(x
⋆
k)+e

role
tgt }Kk=1

4: Mask: target k sees B1:k−1 and all of C
5: Compute {log pk}Kk=1;
6: return

∑K
k=1 log pk

B TRANSFORMER NEURAL PROCESS BASELINES DETAILS

We summarize the baseline transformer neural process (TNP) variants used in our comparisons,
following Nguyen & Grover (2022). Architectural hyperparameters appear in Appendix D.1.

B.1 TNP-D

This model takes as input a context set {(xn, yn)}Nn=1 and a target set {x⋆
m}Mm=1. Similar to Ap-

pendix A, the context embeddings ectx
n are processed with bidirectional MHSA with no positional

encodings. Each target is decoded by:

hm = rtgt

(
etgt
m, rC(C)

)
, ϕm = ψ(hm),

where ψ is the distribution head (Gaussian as in the original paper; we primarily use a mixture of
Gaussians). The left panel of Fig. A1 shows the training mask for TNP-D. This model is trained via
maximum likelihood estimation of independent targets given a fixed context set.

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-
D-AR methods. TNP-D-Ind decodes all targets independently in a single pass. It is fast (context and
targets encoded once), but cannot capture dependencies between targets.

TNP-D-AR decodes targets sequentially, appending each sampled (x⋆
m, y

⋆
m) to the context. This

captures joint structure but requires re-encoding the growing set at each step. TNP-D-Ind is invari-
ant to target order; TNP-D-AR is order-sensitive, so we approximate the predictive distribution by
averaging over multiple target orderings.

B.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a
joint multivariate Gaussian distribution over the outputs. The embedder and transformer backbone
are identical to those of TNP-D-Ind:

hm = rtgt

(
etgt
m, rC(C)

)
.

Then the joint distribution is obtained via

ϕ = ψND(h1, ... ,hM),

where ψND is the multivariate Gaussian head that outputs both a mean vector and valid covariance
matrix. The mean is produced per target, and a lightweight self-attention head over the set of tar-
gets yields fixed-width embeddings that are transformed into a valid covariance factor. This design
supports a variable number of targets and is invariant to target order.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At inference,
the joint samples and log-likelihood are computed in a single pass. This model is invariant to the
order of target points.

B.3 TNP-A

The key difference between this model and TNP-D is the attention mechanism on the target set.
This model processes three sets: the context {(xn, yn)}Nn=1, the target {x⋆

m}Mm=1, and the observed

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

target {(x⋆
m, y

⋆
m)}Mm=1. To differentiate, we denote the embeddings of {(x⋆

m, y
⋆
m)}Mm=1 by {ey,tgt

m }.
Similar to TNP-D, the context embeddings attend to each other. For the target set, each etgt

m attends
to the context and the previous observed target embeddings ey,tgt

j<m. Likewise, the observed target
embeddings attend to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022).

The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single
pass, assuming the observations are given (e.g., for training and test log-likelihood evaluations). For
prediction generation, however, each sampled target needs to be re-encoded and attended for the
generation of next targets, yielding a sequential re-encoding procedure. The causal mask on the
target set is sensitive to the target order, and thus the final likelihood is an average over multiple ran-
dom permutations. Note that this model processes duplicated target set–{x⋆

m}Mm=1 and an observed
sequence {(x⋆

m, y
⋆
m)}Mm=1; this creates significant computational overhead in both the training and

the inference, particularly when the target set is large (see e.g. Appendix C and Figs. A7 to A9).

Compared to our method, TNP-A can be viewed as TNP-D with a ‘frozen buffer’ {(x⋆
m, y

⋆
m)}Mm=1 of

size K =M containing the observed targets. For likelihood evaluation where all sets are processed
in one shot, the behavior of TNP-A and our approach are analogous, with the set {(x⋆

m, y
⋆
m)}Mm=1

serving a role similar to our buffer. However, for AR sampling, TNP-A repeatedly re-encodes the
full context and target sets after each sampled y⋆m, whereas our method dynamically adapts to new
samples. Moreover, since TNP-A does not afford a dynamic-size target set decoupled from the
‘in-context’ targets, training is much more expensive than our method (see Fig. 3 in the main text).

C COMPUTATIONAL EFFICIENCY DETAILS

This section provides additional empirical results to support the efficiency claims made in the main
paper. We present an analysis of performance scaling with batch size, an ablation study of our
custom kernel, a comparison against unoptimized open-source baselines, and further ablations on
training time. In all subsequent plots, the absence of a data point for a given method indicates that
the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

C.1 SCALING WITH BATCH SIZE

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and
joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock
time as a function of the number of context points N for various batch sizes. The results confirm
that our method’s performance advantage over autoregressive baselines like TNP-A is consistent and
often widens as the context and batch size increase.

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range
of batch sizes B.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Log-likelihood evaluation time (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded
range of batch sizes B.

C.2 IMPACT OF CUSTOM TRITON KERNEL

To isolate the contribution of our custom attention kernel, we compare the sampling time of our
method with and without this optimization. The kernel is designed to accelerate a key computational
step: the cross-attention between the batched target embeddings (batch sizeB) and the concatenation
of a batched buffer cache with a shared context cache (batch size 1). A naive implementation would
explicitly expand the context cache tensorB times to match the batch dimension before the attention
operation. This “expand” operation is memory-bandwidth intensive and creates a large, redundant
intermediate tensor.

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations.
The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch,
calculating the attention on-the-fly without ever materializing the full expanded tensor in slower
global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial
speedup that grows with the batch size B.

32 64 128 256 512 1024
N

10−1

6 × 10−2

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

Ours (w/ Triton) Ours (w/o Triton)

Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the
custom Triton kernel across different context and batch sizes.

C.3 COMPARISON TO OPEN-SOURCE BASELINES

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline
implementations against their standard, publicly available versions. The results for sampling and
likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently
3− 10× faster than their standard counterparts. This confirms that our method’s performance gains
are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

101
Ti

m
e (

s)
B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

TNP-D-Ind (base)
TNP-D-Ind (compiled)

TNP-D-AR (base)
TNP-D-AR (compiled)

TNP-A (base)
TNP-A (compiled)

TNP-ND (base) TNP-ND (compiled)

Figure A5: Comparison of our optimized baseline implementations against standard open-source
versions for autoregressive sampling.

32 64 128 256 512 1024
N

10−3

10−2

10−1

100

101

Ti
m

e (
s)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Log-likelihood evaluation time (M=16)

TNP-A (base) TNP-A (compiled) TNP-ND (base) TNP-ND (compiled)

Figure A6: Comparison of our optimized baseline implementations against standard open-source
versions for joint log-likelihood evaluation.

C.4 TRAINING TIME SCALING

We further analyze the scaling of training step time with respect to the number of target points M
for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256,
respectively. The results show that as the context, target, or batch size increases, TNP-A becomes
increasingly expensive to train relative to all other methods.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e
(s

)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=64)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A7: Training step time vs. number of target points M for batch size B = 64.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−1

100
Ti

m
e

(s
)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=128)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A8: Training step time vs. number of target points M for batch size B = 128.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e
(s

)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=256)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A9: Training step time vs. number of target points M for batch size B = 256.

C.5 IMPACT OF ATTENTION PATTERNS ON TRAINING SPEED

A key difference between the baseline models is their compatibility with modern, efficient attention
implementations. The causal attention mask required by TNP-A during training is incompatible
with kernels like FlashAttention, forcing it to use PyTorch’s standard, but slower, “math” attention
backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

In Appendix B, we discussed the duplicated processing of TNP-A on the target set, which incurs
significant computational overhead. To determine if TNP-A’s slow training is fundamental to its
architecture or merely an artifact of this kernel incompatibility, we conduct a controlled ablation.
We disable FlashAttention for all methods, forcing a fair comparison on the same standard PyTorch
attention backend. The results, shown in Figs. A10 to A12, are unequivocal. Even on a level playing
field, TNP-A’s training time is orders of magnitude slower than all other methods. This confirms
that its high computational cost is an inherent consequence of its autoregressive design, not just an
implementation detail.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024
N

10−1

100
Ti

m
e (

s)
M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=64)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A10: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 64.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=128)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A11: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 128.

32 64 128 256 512 1024
N

10−1

100

Ti
m

e (
s)

M=128

32 64 128 256 512 1024
N

M=256

32 64 128 256 512 1024
N

M=512

Training step time (forward + backward, B=256)

Ours TNP-D-Ind TNP-A TNP-ND

Figure A12: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 256.

C.6 MEMORY USAGE

Figure A13 reports peak GPU memory consumption during autoregressive sampling as a function
of context size N across different batch sizes B. Our method maintains consistently low memory
usage across all configurations, requiring 6–7× less VRAM than TNP-D-AR and TNP-A at large
context sizes (N = 1024). This efficiency stems from our fixed-size buffer mechanism: while
autoregressive baselines must cache representations that grow with context size and batch size, our
method only caches buffer representations of size K, independent of the batch. TNP-D-Ind and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

TNP-ND show lower memory usage but, as demonstrated in the main text, cannot capture complex
predictive dependencies.

32 64 128 256 512 1024
N

10−2

10−1

100

101

Pe
ak

 V
RA

M
 (G

B)

B=128

32 64 128 256 512 1024
N

B=256

32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Peak memory usage (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A13: Peak GPU memory usage during sampling as a function of context points N for differ-
ent batch sizes B. Our method scales efficiently due to its fixed buffer size, using substantially less
memory than expressive autoregressive baselines.

D EXPERIMENTAL DETAILS

D.1 MODEL CONFIGURATION

In our paper, we use MLP to map context pairs, buffer pairs, or target points to tokens. Then a trans-
former is applied to the sequence of tokens. We used mixture-of-Gaussian (GMM) head as our main
head distribution (more expressive than a single Gaussian head, as demonstrated in Appendix E).
In general, we train all models (except the tabular model; see Appendix D.4 for details) with the
following settings.

Training configurations.

• Optimizer: Adam with learning rate 1× 10−4 (unless stated otherwise), β = (0.9, 0.999),
no weight decay. For TNP w/ buffer, we use the same settings, but apply weight decay of
0.01 for stability.

• Scheduler: Cosine schedule with warmup; warmup ratio 0.1 for all experiments. for TNP
w/ buffer, we use a warmup ratio of 0.05.

• Training loop: 32 epochs.

Embedder. We use a 3-layer MLP with 256 hidden layer dimension and 128 output dimension.
There is a skip connection between the first linear layer and the MLP output.

Transformer backbone. This has 6 layers of transformer encoder modules, each with a multi-
head attention of 4 heads and dimension 128 followed by an MLP feedforward of 2 layers, dimension
128 → 256 → 128. This is the transformer attending context, buffer, and target set (Appendix A
and Appendix B).

Prediction head. Note first that different distribution heads involve individual parameterization
structures. Therefore, another layer of distribution-specific NNs is required to process the above
transformer outputs. This NN module is considered part of the distribution head (the ψ in Ap-
pendix A and Appendix B).

For our method, TNP-D, and TNP-A, the head consists of 2 layers of MLP with dimension 128→
256 → 3 ∗ Dy ∗ Ncomponents, where Dy is the output dimension of the problem and Ncomponents is
the number of Gaussian components. The MLP output is then chunked into weights, means, and
standard deviations (of the same shape) which parameterize the GMM, and the outputs are sampled
in parallel for Dy > 1. We set Ncomponents = 20 for all tasks except for EEG where Ncomponents = 8.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For TNP-ND, we use the setting from Nguyen & Grover (2022), where the targets are mapped to
a mean and a Cholesky matrix, which parameterize the multivariate Gaussian. The mean of each
target is mapped by an MLP with dimension 128 → 256 → Dy . The Cholesky matrix requires
two steps: (i) the target tokens (conditioned on context via the above transformer backbone) are
first decoded into H ∈ RM×20 by another 3-layer transformer (no positional encoding, 4 heads,
each layer with dimension 128 and MLP 128 → 256 → 128, no mask) and then an MLP projector
(128→ 256→ 20); (ii) the Cholesky matrix is taken as L = lower(HHT).

Trained model selection. We track the loss value in each epoch as we train the models. The
parameters with the best loss value on the validation set are selected for the evaluations on a separate
test set.

D.2 DATASETS

Gaussian Process (GP) Functions. As a first toy case, we test on GP functions (see Rasmussen
& Williams 2006 for details of GPs). In this example, a batch contains 128 functions of one di-
mensional inputs (D = 1) and one dimensional observations (Dy = 1). The inputs are sampled
from interval [−2, 2] using the Sobol sequence. For each batch, we first sample a kernel class from
squared-exponential (RBF), Matérn-3/2, Matérn-5/2 with probabilities 0.4, 0.3, and 0.3, respectively.
Conditional on the chosen class, each function receives its own kernel hyperparameters: the variance
σ2
f ∼ Uniform[0.5, 1.5] and the lengthscale ℓ ∼ Uniform[0.1, 1], broadly covering diverse classes

of functions of amplitude around 1. We then sample functions from GP (0,k), where k represents
the sampled kernels, and add i.i.d. Gaussian observation noise with variance 10−5. The resulting
values are randomly partitioned into context, buffer, and target sets. Note that within a batch the
kernel class is fixed, whereas the hyperparameters are sampled independently for each function.

During training, we sample the context set size N between 4 and 192 with a maximum buffer size
of 16.

Sawtooth Functions. The second example is the non-Gaussian sawtooth functions (Bruinsma
et al., 2023). In this example, a batch contains 128 functions of one dimensional inputs (D = 1)
and one dimensional observations (Dy = 1). The inputs are sampled from interval [−2, 2] using the
Sobol sequence. An input x and output y follows:

y(x) = ynonoise(x) + ϵ,

ynonoise(x) = (ω(⟨u,x⟩ − ϕ)) mod 1,

where u ∈ RD is a direction sampled uniformly from the unit sphere via u = g/∥g∥2 with g ∼
N (0, ID); ω, ϕ, and ϵ denote the frequency, phase offset, and additive noise, respectively; and the
parameters are drawn independently as ω ∼ Uniform[3, 5], ϕ ∼ Uniform[0, 1], and ϵ ∼ N (0, σ2)
with noise scale σ ∼ Uniform[0.05, 0.1].

During the training, we sample N between 8 and 128 and the maximum number of buffer is 16.

Electroencephalogram (EEG). The dataset contains 11, 520 trials of 122 subjects from 7 corre-
lated channels with 256 time points each. The output channels are individually standardized to zero
mean and unit variance. We randomly select 10 for the test set, reserve 10 for cross-validation, and
the remaining for the train set. This leaves 7802 trials for the training and 896 for testing.

During the training, the trials are replicated for 200 times and shuffled. Each batch contains 32
trials sampled from the shuffled set. We select between 4 and 192 of the 256 time points to be
context points, 32 buffer points, with the remaining being target points. Each batch has a fixed size
of context set.

We evaluate on both interpolation (random masking) and forecasting (temporal masking) tasks using
the test subjects. The test set splits the 256 time points into context and target. For interpolation, we
sample the specified number of context and target points from the full time sequence (Appendix E).
For forecasting, we take the first N points as context set and the consecutive M points as target set.
Forecasting with N = 192 context and M = 64 target sets involves the full sequence.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Multisensory causal inference model dataset. In the last example, we adopt one of the multisen-
sory causal inference models described in Liu et al. (2025) to build a simulator, which we then use
to generate training data (full setup and generation procedure, as well as a description of the exper-
iment, are provided in Appendix D.3). The inputs x correspond to the experimentally manipulated
variables of the study, namely rtype, sA, sV and Vlevel, where rtype denotes the task type (auditory vs
visual localization), sA and sV are the true locations of auditory and visual cues presented to human
participants, and Vlevel the level of noise applied to visual cues. We first generate sets of input points
for the simulator to obtain the outputs y, which represent the predicted responses.

For training, we construct two datasets from the simulator with different values of ρ, a variable of the
model regulating the level of recalibration of the auditory perceptual range (with ρ = 1 representing
no recalibration and ρ = 4/3 representing a full recalibration to the visual range, see Appendix D.3
for more details), and train two separate models for each setting. We sample N between 0 and 400,
fix Nt = 256, and set the buffer size to a maximum of 16. For the zero-context case, we introduce
one “dummy point”, to indicate the absence of context to the model. During evaluation, we use
the publicly available dataset obtained from the experiment described in Liu et al. (2025). For each
of the 15 participants in the study, we extract two non-overlapping subsets of experimental data of
400 trials each. We do so by stratifying on the joint levels of Vlevel ∈ {0, 1, 2} and rtype ∈ {0, 1}
(more details on these variables below), and extracting the two sets such that (i) within each split the
six (3 × 2) strata are represented as evenly as possible, and (ii) the per-stratum counts are matched
between splits. This yields 30 datasets overall (2 per participant).

For details of the real experiments and the complete data generation setup in the simulator, see
Appendix D.3.

Tabular foundation model. We pretrain a task-agnostic tabular model on synthetic data and eval-
uate it on three UCI datasets. This larger model uses a dedicated training procedure; architectural
and training details are in Appendix D.4, and the evaluation protocol is in Appendix D.5.

D.3 MULTISENSORY CAUSAL INFERENCE MODEL AND EXPERIMENT DETAILS

To probe our method’s suitability for Bayesian model comparison, we consider a computational
neuroscience study investigating multisensory causal inference, described in Liu et al. (2025).

D.3.1 ORIGINAL NEUROSCIENCE EXPERIMENT

Stimuli and procedure. In this work, we take into account a subset of the experimental data
obtained from 15 human participants who, at each experimental trial, were asked to perform one of
two localization tasks, which the authors refer to as bisensory visual (BV) and bisensory auditory
(BA) localization. In both cases they were presented with an auditory cue, located at an angle
uniformly sampled among {−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦} from the participant, and a visual
one, either at the same location as the auditory one (≈ 1/2 of trials) or at an angle uniformly sampled
between −20◦ and 20◦. They were either asked to report the location of the visual (BV) or the
auditory (BA) stimulus on a screen. Here we call those locations sV and sA, respectively. The
level of noise Vlevel associated with the visual stimulus location was experimentally manipulated by
modifying the size of the stimulus itself. In practice, this meant presenting a small (Vlevel = 0; ≈ 1/3
of trials), medium (Vlevel = 1; ≈ 1/3 of trials) or large (Vlevel = 2; ≈ 1/3 of trials) visual stimulus.

Each participant completed a total of 1000 trials.

Cognitive models. Here we focus on two versions of the “vanilla” model described in the original
paper (Liu et al., 2025). On each trial, the participant is assumed to believe the two stimuli could
come from either a common (C = 1) or different (C = 2) source, assigning a fixed prior probability
p(C = 1) = psame to the former case. Regardless of this, the participant has Gaussian priors over
stimuli locations p(sA) = N (sA | 0, σ2

S) and p(sV) = N (sV | 0, σ2
S).

A key assumption of the model is that participants do not have direct access to the true location of
the stimuli, but only to noisy auditory and visual percepts, a common feature in Bayesian models of
perception (Knill & Pouget, 2004). These percepts are modeled as xA = ρ(s+εA) and xV = s+εV
respectively in case of a common source, and xA = ρ(sA + εA) and xV = sV + εV in case

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

of separate sources. Here s = sA = sV represents their common location when C = 1, while
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V) represent the auditory and visual perceptual noise. While

σA is assumed to be fixed, σV can assume three separate values (σ(low)
V , σ(med)

V , σ(high)
V) based on the

(experimentally manipulated) size of the visual stimulus Vlevel. Finally, ρ represents a “recalibration”
factor to account for the fact that the range of auditory stimuli (30◦) is different from that of visual
ones (40◦). In our experiment, this is the factor that differentiates the two models we set out to
compare: in the first, we set ρ = 1; in the second, we set ρ = 4/3 (thus re-mapping auditory percepts
to the same scale as visual ones).

Here we describe a BA trial, but the following is easily generalizable to BV ones. When asked about
the location of the auditory stimulus, participants are assumed to consider both scenarios (common
vs different sources) by evaluating

p(s | C = 1) = p(s | xA, xV , σA, σV , σS),
p(sA | C = 2) = p(sA | xA, σA, σS),

as well as

p(C | xA, xV , σA, σV , σS , psame).

The final estimate ŝA of the location is then inferred by weighting the two hypotheses (common vs
separate sources) by their posterior probability, so

ŝA =p(C = 1 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
s · p(s | C = 1)ds+

p(C = 2 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
sA · p(sA | C = 2)dsA.

(6)

Finally, the response of the participant is modeled as y ∼ N (ŝA, σ
2
M) with a probability of 1−λ, and

y ∼ Uniform[−45, 45] with a probability of λ. Here λ represents the “lapse rate”, or the probability
of a participant being distracted/disengaged and giving a random answer (which we fix at 0.02),
while σM represents motor noise.

Both models thus have 7 free parameters, which we re-parametrize as logσ(low)
V , logσ(med)

V , logσ(high)
V ,

logσA, logσS , logσM and logitpsame for the purposes of simulation and model-fitting.

D.3.2 SIMULATION

For training all models, we produce∼1.5 millions synthetic datasets. In what follows we go through
the simulation of a single trial. As trials are independent from one another, generating more of them
simply involves repeating this process.

Stimuli. Following the setup used in Liu et al. (2025), we sample sA ∼
Uniform{−15,−10,−5, 0, 5, 10, 15} and C ∼ Uniform{1, 2}. Then we either sample
sV ∼ Uniform[−20, 20] as a continuous variable (if C = 2) or we set sV = sA (if C = 1). We
then sample Vlevel ∼ Uniform{0, 1, 2}, representing the perceptual noise associated with sV . This
regulates whether σV = σ

(low)
V , σV = σ

(med)
V or σV = σ

(high)
V .

Finally, we sample rtype ∼ Uniform{0, 1}, representing the task (BV if rtype = 0, BA if rtype = 1).

Parameters. For each synthetic dataset, the prior generative distributions for the 7 free param-
eters are Gaussians truncated at two standard deviations above and below the mean. We use
Ntruncated(µ, σ

2) to denote such distributions, with µ being the mean and σ the standard deviation.
Similarly to empirical Bayes approaches (Murphy, 2023), we use maximum-likelihood estimates of
the individual participants’ parameters from Liu et al. (2025) as a guide for setting these priors, so

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

as to generate realistic parameter ranges. The parameter distributions we use in this work are:

logσ(low)
V ∼Ntruncated(0, 1.5

2);

logσ(med)
V ∼Ntruncated(logσ(low)

V + 1, 12);

logσ(high)
V ∼Ntruncated(logσ(med)

V + 0.75, 0.52);

logσA ∼Ntruncated(1.75, 0.5
2);

logσS ∼Ntruncated(2.5, 1
2);

logσM ∼Ntruncated(0, 0.5
2);

logitpsame ∼Ntruncated(1.5, 1.5
2).

Note that logσ(low)
V , logσ(med)

V , and logσ(high)
V are not independent from each other, but carry the

assumption that in most cases logσ(low)
V ≲ logσ(med)

V ≲ logσ(high)
V , which reflects the intent of the

experimental manipulation of Vlevel.

Responses. Here we describe a scenario in which rtype = 1 (BA trial), but the process is the same
for rtype = 0. In simulating the responses, we follow the hierarchical structure specified by the
model. First we computed the sensory percepts xA = ρ(sA + εA) and xV = sV + εV by sampling
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V). We then evaluate ŝA (recall we are considering a BA trial) as

in Eq. (6), and sample the final response as either y ∼ N (ŝA, σ
2
M) or y ∼ Uniform[−45, 45], with

a probability regulated by the lapse rate λ (which we set to 0.02, see above).

D.3.3 GROUND-TRUTH ACQUISITION

Here we describe how we obtained our log marginal likelihood (LML) estimates (in the form of
lower bounds, see below), which we then use as ground-truth to compare our approach to baselines.

Problem setting. Fitting the cognitive model to a dataset involves finding the posterior over model
parameters given empirical data and model

p(θ | y,X, ρ) = p(y | θ,X, ρ)p(θ)
p(y | X, ρ)

, (7)

where
θ = {logσ(low)

V , logσ(med)
V , logσ(high)

V , logσA, logσS , logσM , logitpsame},

X = {s(t)A , s
(t)
V , V

(t)
level, r

(t)
type}400t=1,

and
y = {y(t)}400t=1.

Here t represents the trial number within the dataset (recall we are using data splits of 400 trials each,
see Appendix D.2), and we set p(θ) to the truncated Gaussians we use for sampling the parameters
in our simulation (see Appendix D.3.2), with probability density of values beyond the truncation
boundaries set to a “floor value” of N (5 | 0, 1).
While the posterior over parameters is often instrumental in answering scientific questions, the cru-
cial quantity we are interested in estimating is the model evidence (also called marginal likelihood)
p(y | X, ρ) (i.e., the denominator in Eq. (7)), as it represents a straightforward metric for model
selection. In fact, assuming a flat prior over models p(ρ = 1) = p(ρ = 4/3) = 0.5, the model
evidence as a function of ρ represents the unnormalized posterior over models.

Stacking Variational Bayesian Monte Carlo. To compute a reliable estimate of the marginal
likelihood to use as our ground-truth, we use Stacking Variational Bayesian Monte Carlo (S-VBMC,
Silvestrin et al., 2025). This is a principled approach to merge (“stack”) approximate posteriors
generated by a set of independent runs of its parent algorithm, Variational Bayesian Monte Carlo
(VBMC, Acerbi, 2018; 2020). This is done in a simple post-processing step, which has been shown
to greatly improve the approximate posterior quality in a variety of challenging settings. In addition
to a posterior distribution, S-VBMC outputs an estimate of the evidence lower bound (ELBO),

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

which, as the name suggests, is a lower bound on the (log) model evidence (Blei et al., 2017),
the quantity we are interested in for model comparison. As the approximation of the posterior
approaches the true one, this quantity gets closer to the true model evidence, with equality when
the approximation is perfect. As S-VBMC proved very effective in computational neuroscience
problems (Silvestrin et al., 2025), including one very similar to the one considered here (Acerbi
et al., 2018), we deem it a suitable method for estimating a lower bound on model evidence to use
as a ground-truth.

While an in-depth description of S-VBMC and VBMC is beyond the scope of this work (an inter-
ested reader should refer to the original papers cited above), in the following paragraphs we briefly
report details of our implementation of both.

VBMC implementation details. To obtain an approximate posterior, the Python implementation
of VBMC (Huggins et al., 2023) requires absolute and plausible upper and lower bounds for each
parameter. We use the sampling bounds defined in Appendix D.3.2 as absolute bounds, and replicate
the process considering 1.5 standard deviations (as opposed to 2) from the mean to establish the
plausible ones.

Another required input is a target density function (i.e., the unnormalized posterior), for which we
use the numerator of Eq. (7), p(y | θ,X, ρ)p(θ). We do this both with ρ = 1 and ρ = 4/3,
representing the two models we set out to compare.

Finally, VBMC requires a starting point in the parameter space, which we uniformly sample between
plausible bounds independently for each inference run.

S-VBMC implementation details. After obtaining 20 converging VBMC runs for each of our 30
datasets (2 for each of the 15 participants, see Appendix D.2) for both models, we stack the resulting
posteriors with S-VBMC. We maintain the default settings, therefore the only inputs required are the
VBMC runs themselves. With this, we obtain a total of 60 “stacked” ELBOs (two per each dataset,
corresponding to our two competing models) to use as ground-truth.

D.4 TABULAR MODEL DETAILS

This section describes the TabICL model and explains how the training dataset was generated. No-
tably, the base architecture used for this tabular data example is different from the one used in the
other experiments, highlighting the broad applicability of our method.

D.4.1 ARCHITECTURE

Set encoder. We reuse the first two stages of TabICL (Jingang et al., 2025) without modification:
the distribution-aware column processor (TFcol, implemented with induced self-attention blocks)
followed by the context-aware row-wise transformer (TFrow) with RoPE. Scalars are mapped by a
1 → 128 linear layer; each column is then processed across rows by an ISAB stack (Lee et al.,
2019) with three blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256.
The row-wise encoder has three layers with four heads, feed-forward hidden dimension of 256, and
RoPE base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding
a 256-dimensional row embedding (2× 128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample
for context, buffer, and target rows (dimension 128; only selects the subset of the vector correspond-
ing to the [CLS] token dimensions). Context and buffer tokens receive the target value additively
via a small target encoder (linear 1→128. Buffer tokens also receive a learned positional embedding
indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute
the set encoder once, and makes the buffer explicit at the token level.

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise trans-
former with twelve layers and four heads, model width 128, and feed-forward size 256. The atten-
tion mask is the only architectural change relative to TabICL: context attends bidirectionally and
is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the
cached context and to the causal prefix of the buffer; there are no edges into context from buffer or
targets. The maximum buffer size is 32 tokens and we query 512 targets per task.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Prediction head. Predictions use a GMM head with 20 components and a minimum standard
deviation of 10−3.

Caching. The column and row set encoder is computed once for all rows. During autoregressive
decoding we cache keys/values for the context once and update only the buffer cache, so the same
context cache is reused across parallel generations.

D.4.2 DATA GENERATION AND PREPROCESSING

SCM prior and task family. We generate datasets with the MLP-based structured causal model
(SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime
of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style)
connectivity and then define each variable c as c = f(Pa(c)) + ε, where Pa(c) are its parents, f
is a small MLP with nonlinearity, and ε is independent noise. Unless stated otherwise, we sample
the feature dimension d ∈ [1, 10], and per-task context sizes N ∈ [8, 1024]; targets are continuous
responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including
mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source,
which we handle with the TabICL preprocessing described below.

Sampling of task partitions. For each generated dataset we draw a random partition (C,B, T)
with N ∼ Uniform{8, ... , 1024}, buffer capacity fixed at K = 32, and target count M = 512. Per
batch, we fix (d,N,K,M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL PreprocessingPipeline and fit it on context features only.
The fitted transform is then applied to context, buffer, and target features. Regression targets are
standardized using context statistics, i.e., ỹ = (y − µy,C)/σy,C , and the same (µ, σ) are used for
buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang
et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo–Johnson); and (iii) outlier
handling via a z-score threshold τ = 4.0. At transform time, values outside the fitted range are
clipped to the training (context) min/max before normalization, mirroring TabICL’s behavior.

D.4.3 TRAINING PROCEDURE

We train with AdamW (learning rate 1 × 10−4, β=(0.9, 0.95), weight decay 0.0), batch
size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone.
Mixed-precision training uses AMP with bfloat16. All runs use float32 tensors at the data
interface. A cosine schedule with warmup is used (cosine with warmup); warmup steps=
2000 takes precedence over the nominal warmup ratio= 0.20; num cycles= 1. Automatic
mixed precision is enabled with amp dtype=bfloat16. Each training step draws a batch of 64
independent tasks (datasets) with feature dimension d sampled from {1, ... , 10} and context size N
from {8, ... , 1024}; buffer size and target count are fixed at K=32 and M=512. Training is capped
at max steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately
64× 160,000 = 10.24 million synthetic tasks seen during pretraining. The global data seed is 123.
We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

D.5 EVALUATION DETAILS

In this paper log-likelihood values are always averaged (LL divided by the number of target points
M).

GP & Sawtooth functions. We evaluate likelihood values over 1024 functions, each repeated 4
times with models trained on different seeds and context sizes N = 8, 16, 32, 64, 128 (statistics
of 1024 × 4 × 5 evaluations). Each likelihood evaluation is an average of 128 permutations (log
averaged likelihood). In other words, we have 1024×4×5 averaged likelihoods, and each averaged
value merges 128 orders of the target set.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table A1: Head comparison on synthetic function. We compare average log-likelihood (↑) results
on our main GMM head and on standard Gaussian distribution head.

TNP-D TNP w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)
Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

TNP-D-Gaussian TNP Gaussian w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.50 (0.019) 2.13 (0.023) 2.48 (0.019) 2.53 (0.019) 2.53 (0.019)
GP (M = 128) 3.23 (0.013) 2.06 (0.023) 3.25 (0.013) 3.27 (0.013) 3.27 (0.013)
Sawtooth (M = 16) 0.96 (0.004) 0.82 (0.006) 0.85 (0.006) 0.98 (0.004) 0.99 (0.004)
Sawtooth (M = 128) 1.10 (0.003) 0.82 (0.005) 1.10 (0003) 1.11 (0.003) 1.11 (0.003)

EEG data. We train each model once with a fixed seed; the evaluations are over 896 trials from
20 subjects held out during training, each repeated with N = 8, 16, 32, 64, 128, 192. For the EEG
forecasting, the target set consists of time points immediately after context points, and, in the main
results (Table 1), the target set permutations are applied, as done in Bruinsma et al. (2023). We
additionally demonstrate in appendix Table A3 that forecasting with permuted target set outperforms
fixed sorted target. The number of permutations we apply is 128.

Multisensory causal inference model. We train one model for each setting of ρ (ρ = 1 and
ρ = 4/3). In the model selection scenario, the full 400-point dataset from each of the 30 batches is
used as the target, and we evaluate the LML across all cases. This procedure is repeated 5 times,
with 128 different sequence permutations per run. In the data prediction scenario, we first select
the winning model from the model selection stage, and then compute log-likelihoods on the same
30 batches, each repeated with N = 8, 16, 32, 64, 128, 256. The results of both experiments are
summarized in Table 2. Here we also use 128 permutation for all batches.

Tabular foundation model. We pretrain a task-agnostic tabular model on synthetic data (Ap-
pendix D.4) and evaluate it on three UCI datasets: Individual Household Electric Power Consump-
tion8, Gas Turbine CO and NOx Emission DataSet9, Bike Sharing10, Jena climate dataset11, Power
Consumption of Tetouan City12, and California Housing Price13.

For each dataset, we evaluate likelihood values over 16 randomly sampled subsets. The context
and target sets are set to N = 128,M = 32. Each likelihood evaluation is an average of 128
permutations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table A2: Average Log-likelihood (↑) results on synthetic functions and EEG example. Supple-
mentary results of Table 1 on larger target set and various deployed K. When M > K, we evaluate
every K targets once and perform AR for M/K steps.

TNP-D TNP-ND TNP-A
AR Ind

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 2.27 (0.023) 3.10 (0.012)

Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004)
Sawtooth (M = 128) 1.14 (0.003) 0.94 (0.005) 0.39 (0.005) 1.12 (0.003)

EEG-Int (M = 16) 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014)
EEG-Int (M = 64) 0.88 (0.011) 0.35 (0.014) 0.50 (0.010) 0.95 (0.012)

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)

TNP w/ buffer
K=16 K=4 K=1

GP (M = 16) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)

Sawtooth (M = 16) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

EEG-Int (M = 16) 0.52 (0.013) 0.54 (0.014) 0.54 (0.014)
EEG-Int (M = 64) 0.90 (0.011) 0.91 (0.011) 0.91 (0.011)

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)

E ADDITIONAL LOG-PREDICTIVE DENSIITY RESULTS ON SYNTHETIC AND
EEG TASKS

E.1 PREDICTIVE POWER OF DIFFERENT HEADS

In this paper, we use GMM as our prediction head. We compare the predictive performance of
GMM to standard Gaussian distribution head. In Table A1, GMM is able to achieve better predictive
performance, particularly on the non-Gaussian Sawtooth functions.

E.2 RESULTS OF LARGER M

As a supplementary results of Table 1, we evaluate log-likelihood values on a larger target set. For
TNP w/ buffer, we evaluate K points per Algorithm 2 and proceed to the next target subsets by
conditioning on the context and evaluated points. This requires M/K steps of evaluations. The
results are reported in Table A2. As we decrease the number of buffer targets K 14, the performance
of our TNP w/ buffer becomes stronger, while more iterations (and thus computational time) are
required.

8https://archive.ics.uci.edu/dataset/235/individual+household+electric+
power+consumption

9https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+
emission+data+set

10https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
11https://www.kaggle.com/datasets/mnassrib/jena-climate
12https://archive.ics.uci.edu/dataset/849/power+consumption+of+tetouan+

city
13https://www.kaggle.com/datasets/camnugent/california-housing-prices
14Note that when K = 1, our method is equivalent to standard TNP-D AR, as the actual number of points in

the buffer is zero.

33

https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://www.kaggle.com/datasets/mnassrib/jena-climate
https://archive.ics.uci.edu/dataset/849/power+consumption+of+tetouan+city
https://archive.ics.uci.edu/dataset/849/power+consumption+of+tetouan+city
https://www.kaggle.com/datasets/camnugent/california-housing-prices

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table A3: EEG forecasting w/ and w/o target set permutation. The target set of EEG forecasting
is the points immediately after the context set. Our main paper applies permutation to the target set
while this table compares against forecasting of fixed temporal order (sorted).

TNP-D TNP-ND TNP-A
AR Ind

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 16, sorted) 0.85 (0.005) -0.74 (0.008) -0.004 (0.005) 1.14 (0.004)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)
EEG-For (M = 64, sorted) 0.89 (0.005) -1.08 (0.007) -0.23 (0.004) 1.16 (0.003)

TNP w/ buffer
K=16 K=4 K=1

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 16, sorted) 0.76 (0.006) 0.87 (0.005) 1.09 (0.004)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)
EEG-For (M = 64, sorted) 0.78 (0.005) 0.89 (0.004) 1.11 (0.004)

Table A4: Multisensory causal inference model selection extra results. Supplement forTable 2
on model comparison case with extra evaluation on K = 4 and R2 metrics for LML and ∆LML.

TNP-D TNP-ND TNP-A
AR Ind

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019)
LML R2 (↑) 1.00 (0.000) -0.43 (0.000) -7.22 (0.003) 1.00 (0.000)
∆LML R2 (↑) 0.93 (0.001) -14.47 (0.000) -6.74 (0.014) 0.87 (0.002)

TNP w/ buffer
K=16 K=4 K=1

LML RMSE (↓) 3.56 (0.004) 3.48 (0.002) 3.47 (0.004)
∆LML RMSE (↓) 2.60 (0.010) 2.59 (0.009) 2.59 (0.011)
LML R2 (↑) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
∆LML R2 (↑) 0.92 (0.001) 0.92 (0.001) 0.92 (0.001)

E.3 EEG FORECASTING W/ AND W/O TARGET PERMUTATION

In our main paper, the EEG forecasting task is evaluated with the permuted target set, following the
procedure of Bruinsma et al. (2023). We repeat the experiment by forecasting the target of a fixed
temporal order. In Table A3, we show that averaging over random target order as done in the paper,
provide better overall performance.

F ADDITIONAL MULTISENSORY CAUSAL INFERENCE MODEL RESULTS

As supplementary results to Table 2, we include additional metrics and evaluation settings. Specif-
ically, for the model comparison task, we report the coefficient of determination (R2) for both the
LML and ∆LML with respect to the ground-truth (see Table A4). For the data prediction task, we
present results with a larger target size of M = 128 (see Table A5). In addition, for completeness,
we evaluate both the model comparison and data prediction tasks with K = 4. With varying K, we
observe little to almost no performance degradation compared to TNP-D AR, especially for the data
prediction case.

G ADDITIONAL TABULAR FOUNDATION MODEL RESULTS

We report results for an intermediate context size (N = 256) in Table A6. Consistent with our
main findings, AR w/ buffer matches standard AR within standard errors across all tasks, while both
autoregressive methods outperform independent predictions on forecasting tasks.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table A5: Multisensory causal inference model data prediction task normalized log-likelihood
(↑) results. Supplementary results of Table 2, with extra evaluation on K = 4 and on larger target
set M = 128.

TNP-D TNP-ND TNP-A
AR Ind

Pred LL (M = 16) -2.76 (0.021) -2.77 (0.025) -3.12 (0.019) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.74 (0.016) -3.17 (0.012) -2.71 (0.015)

TNP w/ buffer
K=16 K=4 K=1

Pred LL (M = 16) -2.76 (0.024) -2.76 (0.024) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.71 (0.015) -2.71 (0.015)

Table A6: Average log-predictive density (↑) results on UCI datasets with TabICL (N = 256).
Results are reported as mean and standard error over 16 randomly sampled mini-datasets (M = 32)
for interpolation (Int) and forecasting (For) tasks.

INTERMEDIATE CONTEXT REGIME (N = 256)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 1.65 (0.15) 1.21 (0.30) -0.44 (0.16) -1.06 (0.32) 2.38 (0.05) 1.98 (0.11) 0.56 (0.08) -1.45 (0.44) 2.03 (0.06) 0.59 (0.18) -0.55 (0.12)

Standard AR 1.67 (0.14) 1.57 (0.22) -0.44 (0.16) -0.73 (0.23) 2.39 (0.05) 2.24 (0.09) 0.57 (0.08) 0.39 (0.18) 2.03 (0.06) 1.45 (0.15) -0.54 (0.12)

AR w/ buffer 1.67 (0.14) 1.56 (0.21) -0.44 (0.16) -0.76 (0.23) 2.38 (0.05) 2.23 (0.08) 0.57 (0.08) 0.28 (0.20) 2.03 (0.06) 1.30 (0.17) -0.54 (0.12)

H ABLATIONS AND EXTRA EXPERIMENTS

H.1 COMPARISON TO NON-PERMUTATION-INVARIANT TRANSFORMERS

To isolate the effect of permutation invariance in the context set, we replace our model with a plain
autoregressive decoder Transformer that treats the context as a fixed input sequence. This sequential
baseline performs substantially worse than our method in the GP task and across context sizes (see
Fig. A14), indicating that explicitly maintaining permutation invariance over the context set – or at
least part of it – is critical for performance.

H.2 POSITIONAL EMBEDDINGS ABLATION

We also trained our method without positional embeddings in the buffer and performed evaluations
with M = K = 16, as shown in Table A7, and observed no statistically significant difference in
predictive performance. This aligns with findings in causal-transformer work showing that models
can infer positional structure without explicit encodings (Haviv et al., 2022; Irie, 2024; Zuo et al.,
2025). While not strictly required, positional embeddings may still support future extensions, such
as scaling to larger buffer sizes via ALiBi (Press et al., 2022) or RoPE (Su et al., 2024).

Table A7: Average joint predictive log-density (↑) for positional embedding ablation on the GP task;
reported as mean (SEM).

TNP-D-AR TNP-D-Ind TNP-ND TNP-A Ours w/ pos. emb Ours w/o pos. emb

2.57 (0.02) 2.22 (0.02) 0.80 (0.08) 2.24 (0.02) 2.51 (0.02) 2.51 (0.02)

H.3 NUMBER OF SAMPLES ORDER AVERAGING ABLATION

We study the effect of the number of sequence samples (permutations) used for order averaging.
We report results on the multisensory causal inference task, where our method (with buffer size
K = 16) is used to compute the LML of a dataset by averaging over multiple permutations. As
shown in Fig. A15, increasing the number of permutations reduces the RMSE of the estimated joint

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

8 16 32 64 128
0.0

0.8

1.6

2.4

3.2

M = 1

8 16 32 64 128

M = 4

8 16 32 64 128

M = 16

Number of context points N

Jo
in

t l
og

-d
en

si
ty

TNP w/ buffer, K=M
TNP w/ buffer, K=1

TNP-D-AR Decoder Transformer

Figure A14: Average joint predictive log-density (↑) on the GP regression task comparing the De-
coder Transformer models with ours and gold standard TNP-D-AR on varying number of context
points N and number of targets M = 1, 4, 16.

2 4 16 32 64 128
N. of sequence samples

0

1

2

3

4

5

RM
SE

LML

2 4 16 32 64 128
N. of sequence samples

LML

Ours TPN-A TPN-D-AR

Figure A15: Average RMSE (↓) on the LML (left) and ∆LML (right) estimation in the multisensory
causal inference task for different numbers of sample permutations.

density relative to the true joint at a rate comparable to existing autoregressive baselines, while our
method remains significantly faster. This indicates that for our proposed method, order averaging
does not introduce additional performance degradation relative to the gold standard baselines for a
given number of permutations.

H.4 EXTENSION TO LATENT BOTTLENECKED ATTENTIVE NEURAL PROCESSES MODEL

To assess the generality of the proposed autoregressive buffer, we integrate it into a perceiver-style
Latent Bottlenecked Attentive Neural Processes (LBANP) architecture (Jaegle et al., 2021; Feng
et al., 2023). The context set is first encoded into a fixed-size latent array, and the autoregres-
sive buffer operates over targets on top of this latent array bottleneck. We evaluate this BNP with
buffer model on the GP regression task with 4 and 16 targets. As shown in Fig. A16, the LBANP
equipped with our autoregressive buffer matches or slightly outperforms a standard autoregressive
deployment of the Perceiver architecture (when K = 1). This result is likely due to the fact that the
buffer allows the model to explicitly represent the recent history of targets, bypassing the compressed
representation of the context for immediate short-term dependencies, thus slightly enhancing pre-
dictive performance. These results demonstrate that our method extends naturally to bottlenecked /
perceiver-style architectures, supporting its generality beyond full-attention models.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

8 16 32 64 128
-0.8

0.0

0.8

1.6

2.4
M = 4

8 16 32 64 128

M = 16

Number of context points N
Jo

in
t l

og
-d

en
si

ty

LBANP w/ buffer, K=M LBANP K=1 LBANP Ind

Figure A16: Autoregressive buffer extension on Latent Bottlenecked Attentive Neural Processes
(LBANP) model. Average joint predictive log-density (↑) on GP with varying number of context N
and number of targets M = 4, 16.

8 16 32 64
0

1

2

3

N = 4

8 16 32 64

N = 8

8 16 32 64

N = 16

8 16 32 64
0

1

2

3

N = 32

8 16 32 64

N = 64

8 16 32 64

N = 128

Number of targets (M)

Jo
in

t l
og

-d
en

si
ty

TNP w/ buffer, K=Targets TNP w/ buffer, K=1 TNP-D-AR

Figure A17: Average joint predictive log-density (↑) on the GP task across number of targets M up
to 64, with buffer size K set equal to M , for varying numbers of context points N from 4 to 128.

H.5 BUFFER SIZE ABLATION

We evaluate the effect of the buffer size K on the GP regression task, training a model with a
maximum buffer size K = 64. As shown in Fig. A17, the performance of our method remains
stable across this range and does not degrade relative to the autoregressive baseline, indicating that
increasing K up to 64 does not harm predictive quality.

I USE OF LARGE LANGUAGE MODELS

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of
this work to support idea generation, brainstorming, and the exploration of possible methodological

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

directions. LLMs were also employed for tasks such as identifying related work through web search
and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate
components of the codebase, visualization scripts, and test codes. They were also used for drafting
parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully
reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining
clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of
text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity
of the content.

38

	Introduction
	Preliminaries
	Efficient Autoregressive Inference
	Related Work
	Experiments
	Discussion
	
	Method Details
	Modules and notation
	Training mask that implements (R1)–(R4)
	Algorithms for autoregressive sampling and log-likelihood evaluation

	Transformer Neural Process Baselines Details
	TNP-D
	TNP-ND
	TNP-A

	Computational Efficiency Details
	Scaling with Batch Size
	Impact of Custom Triton Kernel
	Comparison to Open-Source Baselines
	Training Time Scaling
	Impact of Attention Patterns on Training Speed
	Memory Usage

	Experimental Details
	Model Configuration
	Datasets
	Multisensory causal inference model and experiment details
	Original neuroscience experiment
	Simulation
	Ground-truth acquisition

	Tabular model details
	Architecture
	Data generation and preprocessing
	Training procedure

	Evaluation Details

	Additional Log-Predictive Densiity Results on Synthetic and EEG Tasks
	Predictive Power of Different Heads
	Results of Larger M
	EEG Forecasting w/ and w/o Target Permutation

	Additional multisensory causal inference model results
	Additional Tabular Foundation Model Results
	Ablations and Extra Experiments
	Comparison to Non-Permutation-Invariant Transformers
	Positional Embeddings Ablation
	Number of Samples Order Averaging Ablation
	Extension to Latent Bottlenecked Attentive Neural Processes Model
	Buffer Size Ablation

	Use of Large Language Models

