EFFICIENT AUTOREGRESSIVE INFERENCE FOR TRANSFORMER PROBABILISTIC MODELS

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

020

021

022

024

025

026

027

028

029

031 032 033

034

037

038

040

041

042

043

044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Transformer-based models for amortized probabilistic inference, such as neural processes, prior-fitted networks, and tabular foundation models, excel at singlepass marginal prediction. However, many real-world applications – from signal interpolation to multi-column tabular predictions – require coherent joint distributions that capture dependencies between predictions. While purely autoregressive architectures efficiently generate such distributions, they sacrifice the flexible setconditioning that makes these models powerful for meta-learning. Conversely, the standard approach to obtain joint distributions from set-based models requires expensive re-encoding of the entire augmented conditioning set at each autoregressive step. We introduce a *causal autoregressive buffer* that preserves the advantages of both paradigms. Our approach decouples context encoding from updating the conditioning set. The model processes the context once and caches it. A dynamic buffer then captures target dependencies: as targets are incorporated, they enter the buffer and attend to both the cached context and previously buffered targets. This enables efficient batched autoregressive generation and one-pass joint log-likelihood evaluation. A unified training strategy allows seamless integration of set-based and autoregressive modes at minimal additional cost. Across synthetic functions, EEG signals, cognitive models, and tabular data, our method matches predictive accuracy of strong baselines while delivering up to $20 \times$ faster joint sampling. Our approach combines the efficiency of autoregressive generative models with the representational power of set-based conditioning, making joint prediction practical for transformer-based probabilistic models.

1 Introduction

Generating predictions conditioned on available data is a central challenge in machine learning. Recent advances in amortized probabilistic inference and meta-learning have produced a powerful class of set-based conditioning models capable of rapidly adapting to new tasks without retraining. Methods such as *neural processes* (NPs; Garnelo et al. 2018a; Foong et al. 2020), their transformer-based extensions (Nguyen & Grover, 2022; Chang et al., 2025), *prior-fitted networks* (PFNs; Müller et al. 2022), and recent *tabular foundation models* (Hollmann et al., 2023; 2025; Jingang et al., 2025) share a crucial architectural principle: they process variable-sized *context sets* through permutation-invariant encoders that respect the exchangeability of observed data. This set-based design enables these models to condition on arbitrary subsets of observations and produce accurate marginal predictive distributions over new target variables in a single forward pass.

While these models are highly efficient for *marginal* predictions, many real-world applications require coherent *joint* distributions over multiple targets. Tasks such as signal interpolation, behavioral data modeling, and multi-column tabular prediction demand that we capture dependencies between random variables. The standard solution deploys these models autoregressively (Bruinsma et al., 2023). However, this breaks the set-based structure: each new prediction must be added back to the conditioning set, introducing a computational bottleneck.

Specifically, autoregressive (AR) deployment requires iteratively expanding the conditioning set. To generate K predictions, the k-th step conditions on the initial context $\mathcal C$ plus all k-1 previous predictions (Fig. 1, Top Left). Since set-based models process their inputs through self-attention mechanisms to maintain permutation invariance, each new element triggers a complete re-encoding

Figure 1: The autoregressive buffer enables fast joint inference by eliminating redundant context re-computation. Left: Comparison of autoregressive inference strategies. Traditional autoregressive approach (top) requires re-encoding the entire augmented context set at each step—when generating predictions for targets, leading to $\mathcal{O}(K(N+K)^2)$ complexity. Our buffered approach (bottom) encodes the context $\mathcal C$ once and caches it. New predictions enter a causal autoregressive buffer that attends to both the static cache and previous buffer entries without re-encoding. Right: Empirical validation. We compare transformer probabilistic models with and without the buffer mechanism. Both strategies achieve comparable predictive accuracy, confirming the buffer preserves model quality while delivering up to $20 \times$ faster sample generation at larger context sizes.

of the entire augmented set. This leads to prohibitive $\mathcal{O}(K(N+K)^2)$ complexity, severely limiting applications with large contexts (N), long target sequences (K), or frequent sampling requirements. Advances in efficient attention (Jaegle et al., 2021; Feng et al., 2023a) can reduce costs for large *static* contexts but do not address the core problem of repeated recomputation inherent in autoregressive prediction: each incremental update requires a reprocessing of the conditioning set.

To address this limitation, we introduce the *causal autoregressive buffer*, an architectural mechanism that decouples the expensive encoding of the static context from lightweight sequential prediction. Inspired by the efficiency and scalability of purely autoregressive architectures in language modeling (Brown et al., 2020) and image generation (Chen et al., 2020; Li et al., 2024), our buffer implements a causal attention pattern for managing dependencies among generated targets – but crucially, it operates alongside the set-based context rather than replacing it. Our approach first encodes the initial context \mathcal{C} and caches its representation. Targets added to the buffer can rapidly attend to both the static context cache and previously buffered targets through causal masking, managing dependencies among newly generated samples without requiring context re-encoding (Fig. 1, Bottom Left). This eliminates the need for full context re-encoding at each step, drastically reducing computation. Crucially, when the buffer is empty, our model's behavior is identical to a standard model, preserving marginal prediction quality. We show that a unified training strategy using masked attention and a buffer-size curriculum allows a single model to handle both efficient marginal predictions and accelerated autoregressive sampling and likelihood evaluation with substantial speedups, while achieving comparable predictive accuracy to standard AR approaches (Fig. 1, Right).

Our main contributions are:

1. We introduce the *causal autoregressive buffer*, a mechanism that decouples set-based context encoding from sequential prediction, enabling efficient joint sampling and likelihood evaluation from transformer-based amortized probabilistic models.

- 2. We propose a unified training strategy using masked attention and buffer-size curriculum that allows a single model to learn both modes of operation at minimal additional cost.
- 3. We demonstrate that our approach is broadly applicable to transformer-based probabilistic models including TNPs/PFNs (Nguyen & Grover, 2022; Müller et al., 2022) and tabular foundation models (TabICL; Jingang et al., 2025), achieving up to 20× speedup in joint sampling while maintaining comparable predictive accuracy across diverse tasks.

2 Preliminaries

We consider meta-learning problems where a model must adapt to new prediction tasks using observed data, without task-specific retraining. Given a context set $\mathcal{C} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ with N input-output pairs, and an analogous target set $\mathcal{T} = \{(\mathbf{x}_m^\star, y_m^\star)\}_{m=1}^M$, we aim to predict target output values $y_{1:M}^\star$ at new target inputs $\mathbf{x}_{1:M}^\star$. This is framed as learning a predictive distribution $p_\theta(y_{1:M}^\star|\mathbf{x}_{1:M}^\star;\mathcal{C})$ where θ are the model's learnable parameters (Foong et al., 2020). Note: Throughout the paper, we use index k instead of m when targets are processed autoregressively.

Transformer diagonal prediction maps. Transformer architectures (Vaswani et al., 2017) are a natural fit for this set-based task. Methods such as (diagonal) *transformer neural processes* (TNPs; Nguyen & Grover, 2022) and *prior-fitted networks* (PFNs; Müller et al., 2022) use two core attention mechanisms. First, the model processes \mathcal{C} using multi-head self-attention (MHSA). Then, each target input \mathbf{x}_m^* queries this summary using multi-head cross-attention (MHCA). This structure leads to an efficient *diagonal* predictive model where predictions are conditionally independent:

$$p_{\boldsymbol{\theta}}(y_{1:M}^{\star} \mid \mathbf{x}_{1:M}^{\star}; \mathcal{C}) = \prod_{m=1}^{M} p_{\boldsymbol{\theta}}(y_{m}^{\star} \mid \mathbf{r}_{\text{tgt}}(\mathbf{x}_{m}^{\star}, \mathbf{r}_{\mathcal{C}}(\mathcal{C}))).$$
 (1)

Here, $\mathbf{r}_{\mathcal{C}}(\mathcal{C})$ is the permutation-invariant summary of the context produced by the MHSA layers, and $\mathbf{r}_{\text{tgt}}(\cdot,\cdot)$ is the final decoding function that produces a parametric prediction for y_m^{\star} via MHCA. This may consist of a single Gaussian, but more expressive parameterizations include Riemannian distributions (Müller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang et al., 2025). These models are efficiently trained via maximum-likelihood on random context-targets data splits.

Autoregressive sampling and likelihood evaluation. Many applications require capturing dependencies across targets, which requires joint distributions. This need arises in two forms: (i) *generating coherent samples* where targets exhibit dependencies, and (ii) *evaluating joint likelihoods*. While Eq. (1) can be extended to handle dependent predictions using multivariate parametric densities such as a multivariate Gaussian (Markou et al., 2022; Nguyen & Grover, 2022), a more powerful solution employs an autoregressive factorization (Bruinsma et al., 2023):

$$p_{\theta}(y_{1:K}^{\star} \mid \mathbf{x}_{1:K}^{\star}; \mathcal{C}) = \prod_{k=1}^{K} p_{\theta}(y_{k}^{\star} \mid \mathbf{x}_{k}^{\star}; \mathcal{C} \cup \{(\mathbf{x}_{j}^{\star}, y_{j}^{\star})\}_{j=1}^{k-1}).$$
 (2)

Crucially, this is not a new model, but a *mode of deployment* for models described by Eq. (1). This captures dependencies by conditioning each prediction on previous targets. However, this creates a computational bottleneck: the conditioning set changes at each step, requiring recomputation of the context summary $\mathbf{r}_{\mathcal{C}}(\cdot)$. Whether generating samples sequentially or evaluating likelihoods, this leads to $\mathcal{O}(K(N+K)^2)$ complexity. Moreover, *parallel* autoregressive sampling or evaluation is cumbersome, as generating B parallel sequences requires B copies of the model.

Our goal is to improve efficiency for both sequential and parallel sampling and likelihood evaluation by encoding the context once and reusing it throughout. Existing autoregressive update schemes break this caching: when targets join the conditioning set, the context representation must be recomputed. Our key insight is to separate the roles of initial context $\mathcal C$ and predicted targets $\{(\mathbf x_j^\star, y_j^\star)\}_{j < k}$. We preserve permutation invariance for the initial context (encoded once and cached) while handling target dependencies through a separate causal mechanism. When needed, the buffer can be merged back into the context to restore full permutation invariance. This selective relaxation – in-between fully set-based and purely autoregressive models – enables efficient sequential and parallel operations while maintaining the strengths of set-based conditioning.

¹In practice, Eq. (2) is not exact for likelihood evaluation as it breaks permutation invariance of the model. However, an approximation can be obtained via Monte Carlo by averaging over multiple target orderings.

3 EFFICIENT AUTOREGRESSIVE INFERENCE

Core contribution. Our method conditions predictions on a static, task-defining *context* C and a dynamic *autoregressive buffer* B. We parameterize the predictive distribution as

$$p_{\boldsymbol{\theta}}(y_{1:K}^{\star} \mid \mathbf{x}_{1:K}^{\star}; \mathcal{C}) = \prod_{k=1}^{K} p_{\boldsymbol{\theta}}(y_k^{\star} \mid \mathbf{r}_{tgt}(\mathbf{x}_k^{\star}, \mathbf{b}_{1:k-1}, \mathbf{r}_{\mathcal{C}}(\mathcal{C}))), \quad \mathbf{b}_k = \mathbf{r}_{\mathcal{B}}((\mathbf{x}_k^{\star}, y_k^{\star}), \mathbf{b}_{1:k-1}, \mathbf{r}_{\mathcal{C}}(\mathcal{C})),$$
(3)

where $\mathbf{r}_{\mathcal{B}}$ is the buffer encoder implemented with MHSA with causal masking, $\mathbf{b}_{1:k}$ the first k encoded data points in the buffer, and $\mathbf{b}_{1:0} = \emptyset$. Crucially, $\mathbf{r}_{\mathcal{C}}(\mathcal{C})$ is computed once and cached. The target decoder \mathbf{r}_{tgt} performs a single cross-attention over the concatenated keys/values from both the cached context and the visible buffer prefix, then passes the result through a distribution head (e.g., an MLP parameterizing a mixture of Gaussians) to generate predictions.

To couple one-time set-based encoding with sequential dependence, the attention must satisfy four requirements: (R1) the *context is immutable*: encoded once with self-attention and cached as read-only; (R2) the *buffer is strictly causal*: token j may attend only to j; (R3) information flows out of the context but never back: no edges write into \mathcal{C} ; and (R4) each target attends to the cached context and the visible buffer prefix to capture dependencies among previous predictions.

During training, we enforce (R1) – (R4) in a forward pass using a structured attention mask. We implement this using a single transformer backbone that processes context, buffer, and target tokens with distinct role embeddings; buffer tokens additionally carry learned positional embeddings indicating their autoregressive order. This allows us to compute all losses in parallel by conditioning each target's prediction on the context and a variable-sized, ground-truth buffer set.

At inference, we use a two-stage process: a one-time context encoding followed by prediction in the form of either sampling or likelihood evaluation. Prediction carries an attention cost of $\mathcal{O}(N^2+KN+K^2)$, composed of a one-time $\mathcal{O}(N^2)$ for context self-attention, $\mathcal{O}(KN)$ for all cross-attention reads from the cache, and a total of $\mathcal{O}(K^2)$ for causal self-attention within the buffer. This provides a speedup over naive autoregressive methods, which cost $\mathcal{O}(K(N+K)^2)$ due to repeated context recomputation. When the buffer is empty, our model's behavior is identical to a standard diagonal prediction map as Eq. (3) reduces to Eq. (1). Architectural details appear in Appendix A.

Training details. The model is trained by minimizing the expected negative log-likelihood over a prior distribution of datasets \mathcal{P} . Each training task is generated

Figure 2: Example training mask.

by sampling a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_{\text{tot}}} \sim \mathcal{P}$. A random partition distribution π is then used to split the dataset into three disjoint sets: (1) the *context set* $\mathcal{C} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$; (2) the *buffer set* $\mathcal{B} = \{(\mathbf{x}_k, y_k)\}_{k=1}^K$; and (3) the *target set* $\mathcal{T} = \{(\mathbf{x}_m, y_m)\}_{m=1}^M$, with $N_{\text{tot}} = N + K + M$. For each task, we impose a random order on the buffer set \mathcal{B} and compute all predictions for the target set \mathcal{T} in a single forward pass. A structured attention mask controls whether each target can attend to the buffer, and if so, how many elements: 50% of the targets only attend to the context \mathcal{C} , 50% attend to the context plus a prefix of the buffer $\mathcal{B}_{1:v_m}$, where $v_m \sim \text{Uniform}(1, K)$ for each target (see Fig. 2). The training objective is:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\mathcal{D} \sim \mathcal{P}} \left[\mathbb{E}_{(\mathcal{C}, \mathcal{B}, \mathcal{T}) \sim \pi(\cdot | \mathcal{D})} \left[-\sum_{m=1}^{M} \log p_{\boldsymbol{\theta}}(y_m \mid \mathbf{x}_m, \mathcal{C}, \mathcal{B}_{1:v_m}) \right] \right], \tag{4}$$

where $\mathcal{B}_{1:v_m}$ is the visible portion of the buffer for target m ($v_m = 0$ for context-only targets). This training curriculum ensures the model performs well regardless of the buffer's state. The frequent buffer-free predictions force the model to make high-quality marginal predictions from the initial context alone. Simultaneously, training with exposure to a variable-sized buffer teaches the model

to flexibly incorporate additional in-context information. Minimizing this objective is equivalent to minimizing the KL divergence between the model and the true posterior predictive distribution under varying conditioning sets (Müller et al., 2022; Elsemüller et al., 2024).

During training, the buffer contains its own set of training data points, as described above. At inference, we have two modes: (i) $autoregressive\ sampling$, where the buffer grows incrementally by incorporating the model's own generated samples; and (ii) $parallel\ joint\ log\ likelihood\ evaluation$, where we pack two sets of K target data points to evaluate all K conditionals in one pass (see below). The sparsity pattern is identical in both regimes; only execution differs (single masked pass for evaluation, prefill followed by sequential updates for sampling).

Autoregressive sampling. Given a context \mathcal{C} and a sequence of target inputs $\mathbf{x}_1^\star, \dots, \mathbf{x}_K^\star$, we generate samples by first performing a one-time *prefill* of \mathcal{C} , caching its keys and values in an $\mathcal{O}(N^2)$ operation. We then *decode sequentially* following Eq. (3): for each step $k=1,\dots,K$, we form a target query for input \mathbf{x}_k^\star , attend to the cached context and causal buffer \mathcal{B}_{k-1} , sample y_k^\star from the predictive distribution, and append $(\mathbf{x}_k^\star, y_k^\star)$ to the buffer with its positional embedding. Only the buffer's key/value cache is incrementally updated, avoiding context recomputation and yielding $\mathcal{O}(N^2+NK+K^2)$ total complexity (detailed in Algorithm 1 in Appendix A.3).

Joint likelihood evaluation. Our framework can also evaluate the joint likelihood of a set of K=M targets, $\{(\mathbf{x}_m^\star,y_m^\star)\}_{m=1}^K$, in a single forward pass. To achieve this, similar to the TNP-A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i) buffer tokens for the targets $\{(\mathbf{x}_k^\star,y_k^\star)\}_{k=1}^K$, and (ii) separate query tokens for the same target inputs $\{\mathbf{x}_m^\star\}_{m=1}^K$. A causal attention mask ensures that each query for \mathbf{x}_m^\star attends to the context $\mathcal C$ and only the preceding buffer tokens $\mathcal B_{1:m-1}=\{(\mathbf{x}_k^\star,y_k^\star)\}_{k< m}$. This allows all conditional probabilities to be computed in one pass: $\log p_{\boldsymbol \theta}(y_{1:K}^\star \mid \mathbf{x}_{1:K}^\star, \mathcal C) = \sum_{m=1}^K \log p_{\boldsymbol \theta}(y_m^\star \mid \mathbf{x}_m^\star, \mathcal C, \mathcal B_{1:m-1})$. This is algebraically identical to sequential autoregressive evaluation but executes in a single forward pass with total attention cost $\mathcal O(N^2+KN+K^2)$. The procedure is formalized in Algorithm 2 (Appendix A.4). Notably, autoregressive likelihood estimates are order-dependent; to recover approximate permutation invariance, we average the likelihood over multiple buffer orderings (Murphy et al., 2019).

Batched autoregressive sampling. Our method is particularly efficient for autoregressively generating multiple samples in a batch, conditional on the same context \mathcal{C} (e.g., multiple joint predictions for the same observed function values – see Fig. 1). A naive batched autoregressive approach must re-encode a growing context set at every generation step for each of the B samples. To generate B samples of length K, this results in a prohibitive total cost of $\mathcal{O}(BK(N+K)^2)$. In contrast, our approach performs the expensive context prefill $(\mathcal{O}(N^2))$ only *once*. This single context cache is then efficiently reused across all B batched generation streams, with only the small, dynamic buffer maintaining a separate state for each sample. This reduces the total cost to $\mathcal{O}(N^2+B(NK+K^2))$, making batched sampling practical even for large contexts and batches.

Architectural generality. Our buffer is a general mechanism applicable to other transformer variants. For instance, a Perceiver-style encoder (Jaegle et al., 2021) summarizes the context $\mathcal C$ into a fixed set of $P \ll N$ latent tokens, also known as *pseudo-tokens* (Lee et al., 2019; Feng et al., 2023a; Lara-Rangel et al., 2025). We can precompute the latent key/value representations once – autoregressive decoding then requires attending only to these P latents and the growing causal buffer. The per-layer attention cost is $\mathcal O(NP+P^2)$ for the prefill and $\mathcal O(PK+K^2)$ for decoding K samples. In contrast, the approach without our buffer would incur a larger cost of $\mathcal O(NPK+P^2K+PK^2)$.

4 RELATED WORK

Neural processes and prior-fitted networks. Our method can serve as a module component with neural processes (NPs; Garnelo et al., 2018b;a; Bruinsma et al., 2021; Nguyen & Grover, 2022; Dutordoir et al., 2023; Chang et al., 2025) or prior-fitted networks (Müller et al., 2022; 2023; Hollmann et al., 2023). Prior work on efficient NP methods has primarily focused on improving scalability with respect to the context set size (Feng et al., 2022; 2023a), while also reducing memory usage (Feng et al., 2023b) for independent prediction tasks. Instead, our method targets efficiency in autoregressive joint sampling and evaluations, an area that has received limited attention in the NP literature. Our contributions are complementary and can be combined with other architectural improvements.

Transformer probabilistic models. Recent advancements have increasingly leveraged transformer architectures for probabilistic modeling, framing Bayesian inference as an in-context learning task. These methods perform tasks such as approximating posterior distributions, modeling conditional relationships, and estimating posterior predictive distributions, by conditioning on context observations and possibly additional prior information (Mittal et al., 2023; Gloeckler et al., 2024; Reuter et al., 2025; Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our work builds on this direction by leveraging transformer-based variants of neural processes.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al., 2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic autoregressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Within the NP literature, our method is related to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover, 2022) which duplicates targets into queries and observed values. While TNP-A uses this duplication for both training and inference, we recognize it's only needed for likelihood evaluation. Bruinsma et al. (2023) showed that deploying standard NPs autoregressively improves joint predictions but requires expensive context re-encoding at each step. Our buffer mechanism combines insights from both approaches: like TNP-A, we enable parallel likelihood evaluation, and like Bruinsma et al. (2023), we model autoregressive dependencies while training on independent targets – our separate buffer architecture avoids both TNP-A's training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models for joint distributions follow two main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Lipman et al., 2023) that generate samples through continuous-time dynamics, and autoregressive transformers (GPTs; Radford et al., 2018; Brown et al., 2020) that generate sequences token-by-token with cached key-value states. While diffusion dominates in continuous domains like images and video, autoregressive transformers excel in discrete sequences and show excellent performance and scalability in multiple domains. Our buffer mechanism brings the efficiency of autoregressive transformers to NPs and PFNs. Standard NPs/PFNs struggle with joint prediction because they must re-encode the entire context at each autoregressive step. Our approach instead mirrors language models: encode the set-based context once (like a prompt) and generate efficiently through cached representations. Recent work has shown these paradigms can be combined (Tang et al., 2025; Arriola et al., 2025; Wu et al., 2025), suggesting future extensions.

5 EXPERIMENTS

Our experiments validate our method across diverse tasks: regression on synthetic functions, interpolation of real-world EEG data, Bayesian model selection on a multi-sensory perception model, and pre-training of a tabular foundation model. We first conduct wall-clock benchmarks to quantify efficiency gains, then assess predictive performance across these varied domains.

Baselines. We compare against models spanning the efficiency-expressivity tradeoff, all configured with matched parameter counts, same input embeddings and output prediction heads unless noted otherwise (details in Appendix B). *TNP-D* (Nguyen & Grover, 2022) assumes conditional independence between targets; we evaluate it both with standard parallel decoding (*TNP-D-Ind*, fast but limited) and with autoregressive deployment (*TNP-D-AR*, expressive but requires sequential re-encoding). *TNP-ND* models target dependencies via a multivariate Gaussian, enabling one-pass joint likelihood but limiting expressivity. *TNP-A* uses causal self-attention for full autoregressive modeling but suffers from slow sequential sampling and high training cost. Additional task-specific baselines are introduced as needed. TNP-ND aside, all models use a Gaussian mixture model output head with 20 mixture components unless stated otherwise.

Evaluation focus. Our method trades exact set-based AR updates for efficiency. Our goal is to demonstrate substantial speedups over baselines while maintaining comparable accuracy. Success means matching predictive performance of state-of-the-art AR approaches (TNP-D-AR, TNP-A) while being orders of magnitude faster.

Figure 3: Wall-clock time (log scale) for (left) sampling, (center) joint log-likelihood evaluation, and (right) a full training step, plotted as a function of the number of context points N. Our method demonstrates significant speedups over expressive autoregressive baselines.

Table 1: Average log-likelihood (\uparrow) results on synthetic functions and EEG example. Mean and (SEM) over various functions and context sizes N, for M=16 targets. See Appendix D.4 for evaluation details and Table A2 for results with larger M. Deploying TNP w/ buffer with K=1 tracks the best method, and for K=16 (fast) in most cases performance only worsens slightly.

	TNP-D		TNP-ND	TNP-A	TNP w/ buffer (ours)	
	AR	Ind			K=16 (fast)	K=1 (slow)
GP	2.57 (0.020)	2.22 (0.022)	0.80 (0.082)	2.24 (0.018)	2.51 (0.019)	2.56 (0.019)
Sawtooth	1.05 (0.004)	0.94 (0.005)	-0.43 (0.008)	0.98 (0.004)	1.00 (0.005)	1.09 (0.004)
EEG-Int	0.51 (0.013)	0.36 (0.014)	0.46 (0.011)	0.58 (0.014)	0.52 (0.013)	0.54 (0.014)
EEG-For	1.07 (0.004)	-0.74 (0.008)	-0.04 (0.005)	1.23 (0.003)	0.85 (0.004)	1.21 (0.003)

Computational efficiency. We benchmark wall-clock time for three key operations: autoregressive sampling, joint log-likelihood evaluation, and a full training step (forward and backward pass). All measurements are conducted on a unified codebase running on a single NVIDIA L40S GPU. We optimized all baselines beyond their public versions with KV caching, FlashAttention-2 (Dao, 2023), and compilation, achieving $3-10\times$ speedups over the original implementations to ensure a fair comparison. For our method, we developed a custom Triton kernel to optimize memory access during batched sampling (details in Appendix C). Benchmarks in Fig. 3 use model architectures matching subsequent experiments with buffer size K=16. For sampling and likelihood evaluation: M=16 targets, batch size B=256. For training: M=256 targets, batch size B=128.

As shown in Fig. 3, our method achieves a superior efficiency profile compared to expressive baselines. For autoregressive sampling (left), our method is $3-20\times$ faster than the fully autoregressive TNP-A and TNP-D-AR. While TNP-D-Ind and TNP-ND are faster, they cannot capture complex predictive dependencies, as shown later in this section. For log-likelihood evaluation (center), our method's speed is on par with the highly parallel TNP-A and is a factor of $K\times$ faster than the sequential TNP-D-AR. For training speed (right), the overhead of our method is minimal, resulting in a training step time comparable to the fastest baselines (TNP-D, TNP-ND) and $4-12\times$ faster than TNP-A, which incurs a significant computational cost due to its architecture. We provide additional results, including benchmarks across a wider range of batch and target sizes, in Appendix C.

Synthetic functions. We consider two prediction tasks: (i) functions drawn from Gaussian processes (GPs; Rasmussen & Williams, 2006) where the *kernel type* is sampled from a predefined set, along with its hyperparameters, and (ii) a non-Gaussian sawtooth process with discontinuous derivatives. All models are trained on data from these processes and evaluated on new draws (see Appendix D.2). *Results:* As shown in Table 1, TNP w/ buffer (K = 16) achieves log-likelihoods comparable to TNP-D-AR while providing substantial speedups (Fig. 3). To verify that our buffer training doesn't degrade standard AR capability, we deploy the same model with K = 1 (effectively disabling the buffer by processing one point at a time). This matches TNP-D-AR performance exactly, confirming that our approach preserves full AR quality when buffer acceleration isn't used.

Table 2: **Multi sensory causal inference model comparison and prediction results.** For *model selection*, we use two metrics: log marginal likelihood root mean-squared error (LML RMSE) against ground-truth, and difference in LML between $\rho=4/3$ and $\rho=1$, reported as RMSE (Δ LML RMSE). See Table A4 for K=4 and R^2 metric. For *data prediction*, we report average log-likelihood (Average LL) for M=16 targets, computed using the model selected by the model-selection task. See Table A5 for more results on larger M and K=4. Mean and (SEM); see Appendix D.4 for details.

	TNP-D		TNP-ND	TNP-A	TNP w/ bu	ıffer (ours)
	AR	Ind			K=16 (fast)	K=1 (slow)
LML RMSE (↓)	3.10 (0.005)	86.96 (0.000)	208.51 (0.041)	4.75 (0.012)	3.56 (0.004)	3.47 (0.004)
Δ LML RMSE (\downarrow)	2.44 (0.008)	36.18 (0.000)	25.60 (0.023)	3.29 (0.019)	2.60 (0.010)	2.59 (0.011)
Average LL (†)	-2.76 (0.024)	-2.77 (0.025)	-3.12 (0.016)	-2.76 (0.024)	-2.76(0.024)	-2.76 (0.024)

Electroencephalogram (EEG) data. Following Markou et al. (2022) and Bruinsma et al. (2023), we train TNPs on EEG time series data (Zhang et al., 1995). Each trial contains 256 regularly sampled measurements across 7 correlated channels. Details of dataset construction are provided in Appendix D.2. We train on an interpolation setting as in Bruinsma et al. (2023) and evaluate on both forecasting and interpolation tasks. Interpolation uses random splits into context/targets; forecasting uses the first N points as context and the next M as targets (Appendices D.2 and D.4). As in Table 1, our method with K=16 is comparable to TNP-D-AR (slightly worse for forecasting), and substantially better than TNP-D (Ind) and TNP-ND. Additional results (larger M; permutation effects in forecasting) are in Appendices E.2 and E.3.

Multisensory causal inference model com**parison and data prediction.** We evaluate our method on a popular computational neuroscience model that determines how the brain combines sensory stimuli from different sources (Körding et al., 2007). Using publicly available data from an audio-visual localization experiment (Liu et al., 2025), we consider two model variants differing in their auditory recalibration parameter $\rho \in \{1, 4/3\}$ and evaluate two tasks: (1) Model selection. For each method, we train two TNP models on two simulators, one with $\rho = 1$ and the other with $\rho = 4/3$. We then use the trained models for the challenging task of computing the log marginal likelihood (LML) of real experimental data.

Figure 4: Multisensory causal inference model comparison versus ground-truth. (Left) Log marginal likelihood (LML) comparison for both $\rho=1$ and $\rho=4/3$. (Right) LML difference ($\rho=4/3-\rho=1$) comparison. Our method closely aligns with the ground-truth.

Computing the LML requires evaluating the joint likelihood (Murphy, 2012):

$$LML = \log p(y_{1:N}|\mathbf{x}_{1:N}) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \{(\mathbf{x}_j, y_j)\}_{j < i})$$
 (5)

which is inherently an autoregressive prediction task, as each prediction conditions on all previous data points, so perfectly suited for our models. For each dataset, we estimate the ground-truth LML for both $\rho=1$ and $\rho=4/3$ using S-VBMC, a method proven effective on similar problems (Acerbi et al., 2018; Silvestrin et al., 2025). We report LML RMSE and Δ LML RMSE (the *difference* between model metrics, useful for model comparison) in Table 2. (2) **Data prediction.** Using the model selected in (1), we predict outputs on the real dataset and report average log-likelihood (Table 2). See Appendix D.3 for experimental details and Appendix D.4 for evaluation settings.

Results. We evaluate our method using data from the 15 participants of the original study, extracting two non-overlapping subsets of 400 experimental trials each (400 data points), resulting in a total of 30 datasets. The model trained with $\rho=4/3$ generally achieves better (higher) LML than $\rho=1$, aligning with the original finding that participants are remapping their auditory space to match the visual range (Liu et al., 2025). Fig. 4 shows that the LML and Δ LML approximations obtained with

Table 3: Average Log-likelihood (\uparrow) results on UCI datasets with TabICL. We evaluate our proposed AR-Buffer mechanism integrated into a TabICL foundation model against independent and standard AR baselines. Performance is measured on both interpolation (Int) and forecasting (For) tasks across three real-world datasets. Results are reported as mean and standard error over 16 randomly sampled mini-datasets (N=128, M=32).

	Electric Consumption Int For		Gas Turbine		Bike Sharing	
			Int	For	Int	For
Independent	1.60 (0.10)	1.02 (0.29)	-0.39 (0.14)	-1.16 (0.60)	1.54 (0.06)	0.97 (0.11)
Standard AR	1.63 (0.10)	1.38 (0.27)	-0.38 (0.14)	-0.75 (0.33)	1.57 (0.06)	1.21 (0.10)
AR w/ buffer $(K = 32)$	1.61 (0.10)	1.35 (0.27)	-0.38 (0.14)	-0.76 (0.33)	1.57 (0.06)	1.18 (0.10)

our method are remarkably close to the ground-truth. Furthermore, our method performs on par with TNP-D-AR and outperforms all other baselines on model comparison (Table 2). All models except TNP-ND perform similarly on the data prediction task. For additional results, see Appendix F.

Small-scale tabular foundation model. We integrate our autoregressive buffer into the TabICL foundation model architecture (Jingang et al., 2025). While the original work focused on classification, we pre-train our model from scratch for regression tasks. We reuse TabICL's set encoder to efficiently compute feature embeddings upfront and focus modifications on the final *dataset-wise in-context learning transformer*. Our core methodological contribution is the buffer mechanism, implemented by a structured attention mask. This allows the model to condition on its recent predictions by storing them in a dynamic buffer, while keeping the context cache static and avoiding costly recomputation during autoregressive inference. We pre-train this architecture on synthetic data from a *structural causal model* (SCM) prior (Hollmann et al., 2023; Jingang et al., 2025), where each training instance is formed by partitioning datasets into distinct sets of context, buffer, and target points. Our network size and training scale are comparable to the original TabPFN (Hollmann et al., 2023); the model is pre-trained on 10.24 million synthetic datasets containing 1 to 10 features and 8 to 1024 context points, with a buffer size of K=32. Full details are provided in Appendix D.5.

Results. We evaluate on three UCI² time-series datasets: Individual Household Electric Power Consumption, Gas Turbine CO and NOx Emission, and Bike Sharing, of input dimensionality 6, 9, and 10, respectively. We form 16 tasks per dataset with N=128 context and M=32 targets under interpolation (Int) and forecasting (For). We compare three inference modes with the same backbone: "Ind" (independent predictions), "Standard AR" (conventional step-by-step autoregression, K=1 equivalent), and "AR w/ buffer" (ours, K=32). Results in Table 3 show that standard AR and AR w/ buffer consistently outperform independent predictions, and AR w/ buffer matches standard AR within standard errors, indicating that using a buffer of size K=32 preserves AR dependencies while enabling efficient autoregressive inference.

6 Discussion & Conclusion

We introduce a causal autoregressive buffer that decouples one-time context encoding from lightweight sequential updates in transformer-based probabilistic models. By caching context keys/values and routing target-to-target dependencies through a causal buffer, we reduce attention cost from $\mathcal{O}(K(N+K)^2)$ to $\mathcal{O}(N^2+NK+K^2)$. Across synthetic functions, EEG interpolation, multisensory modeling, and tabular prediction, our method matches autoregressive baselines while achieving up to $20\times$ faster joint sampling with minimal additional training cost over standard models, and up to $10\times$ lower training cost than autoregressive-specific baselines. These gains are strongest when joint samples are needed repeatedly from the same large context with moderate target count. The primary limitation is degraded performance when target count exceeds training bounds of the buffer. Future work should prioritize handling larger buffer sizes through advanced positional encodings, variable-length buffers, and adaptive merge policies. The autoregressive buffer makes joint prediction practical where full autoregression was previously prohibitive.

²https://archive.ics.uci.edu/

ETHICS STATEMENT

This work uses only publicly available datasets and synthetic simulators, with no sensitive data involved. The methods are for research purposes and pose no foreseeable ethical risks. We have followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide an anonymized code archive in the supplementary materials containing the training and evaluation pipelines along with configuration files. All experiments use public datasets or, when applicable, a simulator for synthetic data. Algorithmic details are presented in Algorithms 1 and 2, and all hyperparameters and training schedules are specified in the configuration files and documented in the appendix. Ablation studies are also reported in the appendix. We do not release pretrained weights, and no special data licenses or usage constraints apply.

REFERENCES

- Luigi Acerbi. Variational Bayesian Monte Carlo. Advances in Neural Information Processing Systems, 31:8222–8232, 2018.
- Luigi Acerbi. Variational Bayesian Monte Marlo with noisy likelihoods. *Advances in Neural Information Processing Systems*, 33:8211–8222, 2020.
- Luigi Acerbi, Kalpana Dokka, Dora E Angelaki, and Wei Ji Ma. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception. *PLoS Computational Biology*, 14(7):e1006110, 2018.
- Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and diffusion language models. In *The Thirteenth International Conference on Learning Representations*, 2025.
- David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. *Journal of the American Statistical Association*, 112(518):859–877, 2017.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.
- Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner. The Gaussian neural process. In *3rd Symposium on Advances in Approximate Bayesian Inference*, 2021.
- Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional neural processes. In *International Conference on Learning Representations*, 2023.
- Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi. Amortized probabilistic conditioning for optimization, simulation and inference. *International Conference on Artificial Intelligence and Statistics*, 2025.
- Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In *International Conference on Machine Learning*, pp. 1691–1703. PMLR, 2020.
- Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In *The Twelfth International Conference on Learning Representations*, 2023.
- Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In *Uncertainty in artificial intelligence*, pp. 1263–1273. PMLR, 2020.
- Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion processes. In *International Conference on Machine Learning*, pp. 8990–9012. PMLR, 2023.

- Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Koethe, and Stefan T. Radev. Sensitivity-aware amortized bayesian inference. *Transactions on Machine Learning Research*, 2024.
 - Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Efficient queries transformer neural processes. In *Sixth Workshop on Meta-Learning at the Conference on Neural Information Processing Systems*, 2022.
 - Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent bottlenecked attentive neural processes. In *The Eleventh International Conference on Learning Representations, ICLR 2023.* PMLR (Proceedings of Machine Learning Research), 2023a.
 - Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Constant memory attention block. In *Workshop on Efficient Systems for Foundation Models* @ *ICML2023*, 2023b.
 - Andrew YK Foong, Wessel P Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard E Turner. Meta-learning stationary stochastic process prediction with convolutional neural processes. In *Advances in Neural Information Processing Systems*, volume 33, pp. 8284–8295, 2020.
 - Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J Rezende, and SM Ali Eslami. Conditional neural processes. In *International Conference on Machine Learning*, pp. 1704–1713, 2018a.
 - Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Ali Eslami, and Yee Whye Teh. Neural processes. In *ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models*, 2018b.
 - Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In *International conference on machine learning*, pp. 881–889. PMLR, 2015.
 - Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-in-one simulation-based inference. In *International Conference on Machine Learning*. PMLR, 2024.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.
 - Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that solves small tabular classification problems in a second. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model. *Nature*, 637(8045):319–326, 2025.
 - Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim Salimans. Autoregressive diffusion models. In *International Conference on Learning Representations*, 2022.
 - Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive flows. In *International conference on machine learning*, pp. 2078–2087. PMLR, 2018.
 - Bobby Huggins, Chengkun Li, Marlon Tobaben, Mikko J. Aarnos, and Luigi Acerbi. PyVBMC: Efficient Bayesian inference in Python. *Journal of Open Source Software*, 8(86):5428, 2023. doi: 10.21105/joss.05428. URL https://doi.org/10.21105/joss.05428.
 - Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver: General perception with iterative attention. In *International Conference on Machine Learning*, pp. 4651–4664. PMLR, 2021.

- QU Jingang, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. Tabicl: A tabular foundation model for in-context learning on large data. In *Forty-second International Conference on Machine Learning*, 2025.
 - Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. *Advances in neural information processing systems*, 29, 2016.
 - David C Knill and Alexandre Pouget. The Bayesian brain: the role of uncertainty in neural coding and computation. *Trends in Neurosciences*, 27(12):712–719, 2004.
 - Konrad P Körding, Ulrik Beierholm, Wei Ji Ma, Steven Quartz, Joshua B Tenenbaum, and Ladan Shams. Causal Inference in Multisensory Perception. *PLOS ONE*, 2(9):e943, 2007.
 - Jose Lara-Rangel, Nanze Chen, and Fengzhe Zhang. Exploring pseudo-token approaches in transformer neural processes. *arXiv preprint arXiv:2504.14416*, 2025.
 - Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp. 29–37. JMLR Workshop and Conference Proceedings, 2011.
 - Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A framework for attention-based permutation-invariant neural networks. In *International conference on machine learning*, pp. 3744–3753. PMLR, 2019.
 - Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation without vector quantization. *Advances in Neural Information Processing Systems*, 37: 56424–56445, 2024.
 - Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *International Conference on Learning Representations (ICLR)*, 2023.
 - Shuze Liu, Trevor Holland, Wei Ji Ma, and Luigi Acerbi. Distilling noise characteristics and prior expectations in multisensory causal inference. 2025.
 - Sulin Liu, Peter J Ramadge, and Ryan P Adams. Generative marginalization models. In *Proceedings* of the 41st International Conference on Machine Learning, pp. 31773–31807, 2024.
 - Stratis Markou, James Requeima, Wessel P Bruinsma, Anna Vaughan, and Richard E Turner. Practical conditional neural processes via tractable dependent predictions. In *International Conference on Learning Representations*, 2022.
 - Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus A Brubaker. Exploring exchangeable dataset amortization for bayesian posterior inference. In *ICML 2023 Workshop on Structured Probabilistic Inference and Generative Modeling*, 2023.
 - Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amortized in-context bayesian posterior estimation. *arXiv preprint arXiv:2502.06601*, 2025.
 - Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers can do Bayesian inference. In *International Conference on Learning Representations*, 2022.
 - Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning for bayesian optimization. In *International Conference on Machine Learning*, pp. 25444–25470. PMLR, 2023.
 - Kevin P. Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, Cambridge, MA, 2012.
 - Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs. In *International Conference on Learning Representations*, 2019.

- Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-aware meta learning via sequence modeling. In *Proceedings of the International Conference on Machine Learning (ICML)*, pp. 123–134. PMLR, 2022.
 - George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. *Advances in Neural Information Processing Systems*, 30, 2017.
 - Massimiliano Patacchiola, Aliaksandra Shysheya, Katja Hofmann, and Richard E Turner. Transformer neural autoregressive flows. In *ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling*, 2024.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
 - Carl Edward Rasmussen and Christopher KI Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006.
 - Arik Reuter, Tim GJ Rudner, Vincent Fortuin, and David Rügamer. Can transformers learn full bayesian inference in context? *International Conference on Machine Learning*, 2025.
 - Francesco Silvestrin, Chengkun Li, and Luigi Acerbi. Stacking Variational Bayesian Monte Carlo. *arXiv preprint arXiv:2504.05004*, 2025.
 - Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *Proceedings of the International Conference* on Machine Learning (ICML), pp. 2256–2265. PMLR, 2015.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations (ICLR)*. ICLR, May 2021.
 - Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, and Song Han. HART: Efficient visual generation with hybrid autoregressive transformer. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In *International Conference on Machine Learning*, pp. 467–475. PMLR, 2014.
 - Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural autoregressive distribution estimation. *Journal of Machine Learning Research*, 17(205):1–37, 2016.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30, 2017.
 - George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A Osborne. Distribution transformers: Fast approximate Bayesian inference with on-the-fly prior adaptation. *arXiv* preprint arXiv:2502.02463, 2025.
 - Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025.
 - Xiao Lei Zhang, Henri Begleiter, Bernice Porjesz, Wenyu Wang, and Ann Litke. Event related potentials during object recognition tasks. *Brain research bulletin*, 38(6):531–538, 1995.

Table of Contents

A	Method Details	15
	A.1 Modules and notation	15
	A.2 Training mask that implements (R1)–(R4)	15
	A.3 Algorithm for Autoregressive sampling	16
	A.4 Algorithm for joint log-likelihood	17
В	Transformer Neural Process Baselines Details	17
	B.1 TNP-D	17
	B.2 TNP-ND	17
	B.3 TNP-A	18
\mathbf{C}	Computational Efficiency Details	18
	C.1 Scaling with Batch Size	18
	C.2 Impact of Custom Triton Kernel	19
	C.3 Comparison to Open-Source Baselines	19
	C.4 Training Time Scaling	20
	C.5 Impact of Attention Patterns on Training Speed	21
D	Experimental Details	22
	D.1 Model Configuration	22
	D.2 Datasets	23
	D.3 Multisensory causal inference model and experiment details	24
	D.4 Evaluation Details	27
	D.5 Tabular model details	28
E	Additional Log Likelihood Results on Synthetic and EEG Tasks	29
	E.1 Predictive Power of Different Heads	29
	E.2 Results of Larger M	29
	E.3 EEG Forecasting w/ and w/o Target Permutation	30
F	Additional multisensory causal inference model results	31
G	Use of Large Language Models	31

A METHOD DETAILS

This appendix spells out the modules used in Eq. equation 3, the single block-sparse attention mask that implements requirements (R1)–(R4), and the exact procedures for autoregressive sampling and one-pass joint log-likelihood evaluation.

A.1 MODULES AND NOTATION

We work with three token sets ordered as $[C \mid \mathcal{B} \mid \mathcal{T}]$, of sizes N, K, M, respectively. Throughout this paper, let

$$\mathbf{E}_x: \mathcal{X} \to \mathbb{R}^d, \quad \mathbf{E}_u: \mathcal{Y} \to \mathbb{R}^d, \quad \mathbf{a}: \{1, \dots, K\} \to \mathbb{R}^d$$

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role embeddings that indicate token type, denoted by $e_{\rm ctx}^{\rm role}$, $e_{\rm buf}^{\rm role}$, and $e_{\rm tgt}^{\rm role}$ for context, buffer, and target tokens, respectively.

Context encoder $\mathbf{r}_{\mathcal{C}}$. Given context pairs $\mathcal{C} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$, construct context tokens: $e_n^{\text{ctx}} = \mathbf{E}_x(\mathbf{x}_n) + \mathbf{E}_y(y_n) + e_{\text{ctx}}^{\text{role}}$, process them with bidirectional MHSA (no positional embeddings), and cache per-layer keys/values:

$$\{KV_{\mathcal{C}}^{\ell}\}_{\ell=1}^{L} = \mathbf{r}_{\mathcal{C}}(\mathcal{C})$$
 (computed once; immutable).

Buffer encoder $\mathbf{r}_{\mathcal{B}}$. For a buffer prefix $\mathcal{B}_{1:k} = \{(\mathbf{x}_j^{\star}, y_j^{\star})\}_{j=1}^k$, form tokens $e_j^{\text{buf}} = \mathbf{E}_x(\mathbf{x}_j^{\star}) + \mathbf{E}_y(y_j^{\star}) + \mathbf{a}(j) + e_{\text{buf}}^{\text{role}}$, then apply *strictly causal* MHSA on $\{e_j^{\text{buf}}\}_{j \leq k}$ so that each token is restricted to attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to the cached context $\{KV_{\mathcal{C}}^{\ell}\}$. This yields per-layer $KV_{\mathcal{B}_{1:k}}^{\ell}$ that we update incrementally at inference:

$$\{ KV_{\mathcal{B}_{1:k}}^{\ell} \}_{\ell=1}^{\mathit{L}} \; = \; \mathbf{r}_{\mathcal{B}} \left(\mathcal{B}_{1:k}, \mathbf{r}_{\mathcal{C}}(\mathcal{C}) \right).$$

Target decoder \mathbf{r}_{tgt} and prediction head. For a target input \mathbf{x}_m^{\star} we create a query token $e_m^{tgt} = \mathbf{E}_x(\mathbf{x}_m^{\star}) + e_{tgt}^{role}$. The target decoder \mathbf{r}_{tgt} performs a *single cross-attention* from e_m^{tgt} to the *concatenated* keys/values of the context cache $\{KV_{\mathcal{C}}^{\ell}\}$ and the *visible* buffer prefix $\{KV_{\mathcal{B}_{1:v_m}}^{\ell}\}$, followed by normalization and an MLP:

$$\mathbf{h}_m = \mathbf{r}_{\mathrm{tgt}} \Big(e_m^{\mathrm{tgt}}, \ \left[\{ \mathrm{KV}_{\mathcal{C}}^\ell \}, \ \{ \mathrm{KV}_{\mathcal{B}_{1:v_m}}^\ell \} \right] \Big) \,, \qquad \boldsymbol{\phi}_m = \boldsymbol{\psi}(\mathbf{h}_m),$$

where ψ is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 TRAINING MASK THAT IMPLEMENTS (R1)-(R4)

We concatenate tokens as $[\mathcal{C} \mid \mathcal{B} \mid \mathcal{T}]$ with sizes N, K, and M, respectively, and use one block-sparse attention mask consisting of the following *five* unmasked sections (everything else is masked):

- (1) **Self-attention within context.** Context tokens attend bidirectionally to other context tokens. Context never attends to buffer or targets (context is read-only outside this block).
- (2) **Buffer reads context (cross-attention).** Each buffer token can read (attend to) all context tokens. This lets the buffer incorporate task information from the cached context while keeping the context cache immutable.
- (3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a buffer token at position j can only read earlier buffer positions < j (no future reads). This encodes the autoregressive dependency among realized targets.
- **(4) Targets read context (cross-attention).** Each target query can read the entire cached context. There are no edges between targets.
- (5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible prefix of the buffer. The visible prefix length for target m is v_m : training (teacher forcing): we set v_m =0 for 50% of targets and sample $v_m \sim \text{Uniform}\{1,\ldots,K\}$ for the rest (the curriculum);

Figure A1: Block-sparse attention masks with and without an autoregressive buffer. Left: a diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target reads the entire context. Right: our buffered variant inserts an autoregressive memory \mathcal{B} between context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

sampling: at step k, the active query sees the realized prefix k-1; one-pass joint log-likelihood: packed queries use $v_m = m-1$ to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets; and buffer never reads targets. This single pattern implements the four requirements from the main text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access to (context + visible buffer). See Fig. A1 for the diagram.

Complexity. Under this mask, a full prediction pass costs $\mathcal{O}(N^2+NK+K^2)$ attention operations per layer: one-time $\mathcal{O}(N^2)$ for \mathcal{C} , $\mathcal{O}(NK)$ for reads from \mathcal{C} , and $\mathcal{O}(K^2)$ for causal buffer self-attention. This replaces the $\mathcal{O}(K(N+K)^2)$ cost of naive AR re-encoding. Packing B target orders in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding $\mathcal{O}(N^2+B(NK+K^2))$.

A.3 ALGORITHM FOR AUTOREGRESSIVE SAMPLING

Algorithm 1 Autoregressive sample generation for K targets Require: Context $\mathcal{C} = \{(x_n, y_n)\}_{n=1}^N$, target inputs $\{x_k^\star\}_{k=1}^K$ 1: $\{KV_{\mathcal{C}}^\ell\} \leftarrow \mathbf{r}_{\mathcal{C}}(\mathcal{C})$ $\triangleright \mathcal{O}(N^2)$; cached 2: Initialize $\{KV_{\mathcal{B}_{1:0}}^\ell\}$ \triangleright empty buffer cache 3: for k=1 to K do 4: $\mathbf{h}_k \leftarrow \mathbf{r}_{\text{tgt}} \left(\mathbf{E}_x(x_k^\star) + e_{\text{tgt}}^{\text{role}}, \left[\{KV_{\mathcal{B}_{1:k-1}}^\ell\}\right]\right)$ 5: Sample $y_k^\star \sim p_\theta(\cdot; \psi(\mathbf{h}_k))$ 6: Append (x_k^\star, y_k^\star) ; update $\{KV_{\mathcal{B}_{1:k}}^\ell\}$ (strictly causal) 7: end for 8: return $\{y_k^\star\}_{k=1}^K$

A.4 ALGORITHM FOR JOINT LOG-LIKELIHOOD

Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context $C = \{(x_n, y_n)\}_{n=1}^N$, ordered targets $\{(x_k^{\star}, y_k^{\star})\}_{k=1}^K$

1: $\{KV_{\mathcal{C}}^{\ell}\} \leftarrow \mathbf{r}_{\mathcal{C}}(\mathcal{C})$

864

866

867

868

870

878 879

880

882 883

885

887

888 889

890 891

892

893

894

895

896 897

899

900

901

902

903

904

905 906

907 908

909

910

911

912 913 914

915

916

917

- $\triangleright \mathcal{O}(N^2)$; cached
- 2: Build all K buffer tokens; compute $\{KV_{\mathcal{B}_{1:K}}^{\ell}\}$ under causal mask
- 3: Build target queries $\{\mathbf{E}_{x}(x_{k}^{\star})+e_{\mathrm{tgt}}^{\mathrm{role}}\}_{k=1}^{K}$ 4: Mask: target k sees $\mathcal{B}_{1:k-1}$ and all of \mathcal{C} 5: Compute $\{\log p_{k}\}_{k=1}^{K}$; 6: **return** $\sum_{k=1}^{K} \log p_{k}$

Transformer Neural Process Baselines Details В

In this section, we outline the baseline TNPs. Further details can be seen in Nguyen & Grover (2022). The numerical settings, including the exact dimension and number of layers of each module, is given in Appendix D.1.

B.1 TNP-D

This model takes as input a context set $\{(\mathbf{x}_n,y_n)\}_{n=1}^N$ and a target set $\{\mathbf{x}_m^{\star}\}_{m=1}^M$. Similar to Appendix A, the context embeddings e_n^{ctx} is processed with bidirectional MHSA (no positional encodings). The target is then naively decoded by

$$\mathbf{h}_m = \mathbf{r}_{ ext{tgt}}\!\!\left(e_m^{ ext{tgt}}, \; \mathbf{r}_{\mathcal{C}}(\mathcal{C})
ight), \qquad oldsymbol{\phi}_m = \psi(\mathbf{h}_m),$$

 ψ is the distribution head (e.g., Gaussian as in the original paper, or mixture-of-Gaussians as we mainly use). The mask of this approach is shown in Fig. A1 left. The training of this model maximizes the log likelihood $\sum_{m} \log p(y_m^{\star}; \phi_m)$ (maximum likelihood of independent targets).

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-**D-AR** methods.

TNP-D-Ind simultaneously produces independent distributions of the targets. This approach is fast because the context and target points are processed only once, but it cannot capture the dependency of different targets.

TNP-D-AR decodes the distribution sequentially. The context set grows as sampled targets are appended. Each target conditions on the context set and all previous targets. This method model targets jointly, but incurs repeated encoding and decoding.

Note in particular that TNP-D-Ind is invariant to the order of target, while TNP-D-AR is ordersensitive and we approximate the preditive distribution by averaging over multiple target orderings.

B.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a joint multivariate Gaussian distribution over the outputs (the embedder and transformer operations identical to TNP-D-Ind). In particular,

$$\mathbf{h}_m = \mathbf{r}_{\mathrm{tgt}} \Big(e_m^{\mathrm{tgt}}, \ \mathbf{r}_{\mathcal{C}}(\mathcal{C}) \Big), \qquad \phi = \psi_{ND}(\mathbf{h}_1, ..., \mathbf{h}_M),$$

where ψ_{ND} is the multivariate Gaussian head.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At deployment, the joint samples and log-likelihood can be computed in a single pass. This model is invariant to the order of target points.

B.3 TNP-A

The key difference between this model and **TNP-D** is the transformer operation. This model process three sets: the context $\{(\mathbf{x}_n,y_n)\}_{n=1}^N$, the target $\{\mathbf{x}_m^\star\}_{m=1}^M$, and the observed target $\{(\mathbf{x}_m^\star,y_m^\star)\}_{m=1}^M$. To differentiate, we denote the embeddings of $\{(\mathbf{x}_m^\star,y_m^\star)\}_{m=1}^M$ by $\{e_m^{y,\mathrm{tgt}}\}$. Similar to **TNP-D**, the context embeddings attend to each other. For the target set, each e_m^{tgt} attends to the context and the previous observed target embeddings $e_{j < m}^{y,\mathrm{tgt}}$. Likewise, the observed target embeddings attends to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022). The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single pass, assuming the observations are given (e.g., for training and test log likelihood evaluations). For prediction generation, however, each sampled target needs to be re-encoded and attended for the generation of next targets, requiring a sequential re-encoding process. The causal mask on the target set is sensitive to the target order, and thus the final likelihood is an average over multiple random permutations. Note that this model processes duplicated target set— $\{\mathbf{x}_m^\star\}_{m=1}^M$ and an observed sequence $\{(\mathbf{x}_m^\star,y_m^\star)\}_{m=1}^M$; this creates significant computational overhead in both the training and the inference, particularly when the target set is large (see e.g. Appendix C and Figs. A7 to A9).

C COMPUTATIONAL EFFICIENCY DETAILS

This section provides additional empirical results to support the efficiency claims made in the main paper. We present an analysis of performance scaling with batch size, an ablation study of our custom kernel, a comparison against unoptimized open-source baselines, and further ablations on training time. In all subsequent plots, the absence of a data point for a given method indicates that the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

C.1 SCALING WITH BATCH SIZE

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock time as a function of the number of context points N for various batch sizes. The results confirm that our method's performance advantage over autoregressive baselines like TNP-A is consistent and often widens as the context and batch size increases.

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range of batch sizes B.

Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded range of batch sizes B.

C.2 IMPACT OF CUSTOM TRITON KERNEL

To isolate the contribution of our custom attention kernel, we compare the sampling time of our method with and without this optimization. The kernel is designed to accelerate a key computational step: the cross-attention between the batched target embeddings (batch size B) and the concatenation of a batched buffer cache with a *shared* context cache (batch size B). A naive implementation would explicitly expand the context cache tensor B times to match the batch dimension before the attention operation. This "expand" operation is memory-bandwidth intensive and creates a large, redundant intermediate tensor.

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations. The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch, calculating the attention on-the-fly without ever materializing the full expanded tensor in slower global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial speedup that grows with the batch size B.

Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the custom Triton kernel across different context and batch sizes.

C.3 COMPARISON TO OPEN-SOURCE BASELINES

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline implementations against their standard, publicly available versions. The results for sampling and likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently $3-10\times$ faster than their standard counterparts. This confirms that our method's performance gains are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.

Figure A5: Comparison of our optimized baseline implementations against standard open-source versions for autoregressive sampling.

Log-likelihood evaluation time (M = 16)

Figure A6: Comparison of our optimized baseline implementations against standard open-source versions for joint log-likelihood evaluation.

TNP-ND (base)

TNP-ND (compiled)

■ TNP-A (compiled)

C.4 TRAINING TIME SCALING

TNP-A (base)

We further analyze the scaling of training step time with respect to the number of target points M for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256, respectively. The results show that as the context, target, or batch size increases, TNP-A becomes increasingly exppensive to train relative to all other methods.

Figure A7: Training step time vs. number of target points M for batch size B = 64.

Figure A8: Training step time vs. number of target points M for batch size B=128.

Figure A9: Training step time vs. number of target points M for batch size B=256.

C.5 IMPACT OF ATTENTION PATTERNS ON TRAINING SPEED

A key difference between the baseline models is their compatibility with modern, efficient attention implementations. The causal attention mask required by TNP-A during training is incompatible with kernels like FlashAttention, forcing it to use PyTorch's standard, but slower, "math" attention backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

To determine if TNP-A's slow training is fundamental to its architecture or merely an artifact of this kernel incompatibility, we conduct a controlled ablation. We disable FlashAttention for *all* methods, forcing a fair comparison on the same standard PyTorch attention backend. The results, shown in Figs. A10 to A12, are unequivocal. Even on a level playing field, TNP-A's training time is orders of magnitude slower than all other methods. This confirms that its high computational cost is an inherent consequence of its autoregressive design, not just an implementation detail.

Figure A10: Training step time vs. number of target points M using the standard PyTorch attention backend (FlashAttention disabled). Batch size B=64.

Figure A11: Training step time vs. number of target points M using the standard PyTorch attention backend (FlashAttention disabled). Batch size B=128.

Figure A12: Training step time vs. number of target points M using the standard PyTorch attention backend (FlashAttention disabled). Batch size B=256.

D EXPERIMENTAL DETAILS

D.1 MODEL CONFIGURATION

In our paper, we use MLP to map context pairs, buffer pairs, or target points into tokens. Then a transformer is applied to the sequence of tokens. We use mixture-of-Gaussian (GMM) head as our main head distribution (more expressive than single Gaussian head, as demonstrated in Ap-

pendix E). In general, we train all models (bar the tabular model; see Appendix D.5 for details) with the following settings.

Training configurations.

- Optimizer: Adam with learning rate 1×10^{-4} (unless stated otherwise), $\beta = (0.9, 0.999)$, no weight decay. For TNP w/ buffer, we use the same settings but apply weight decay of 0.01 for stability.
- Scheduler: Cosine schedule with warmup; warmup ratio 0.1 for all experiments. for TNP w/ buffer, we use a warmup ratio of 0.05.
- Training loop: 32 epochs.

Embedder. We use a 3-layer MLP with 256 hidden layer dimension and 128 output dimension. There is a skip connection between the input and the first hidden layer.

Transformer backbone. This has 6 layers of transformer encoder modules, each with a multihead attention of 4 heads and dimension 128 followed by an MLP feedforward of 2 layers, dimension $128 \rightarrow 256 \rightarrow 128$. This is the transformer attending context, buffer, and target set (Appendix A and Appendix B).

Prediction head. Note first that different distribution heads involve individual parameterization structures. Therefore, another layer of distribution-specific NNs is required to process the above transformer outputs. This NN module is considered part of the distribution head (the ψ in Appendix A and Appendix B).

For our method, **TNP-D**, and **TNP-A**, the head consists of 2 layers of MLP with dimension $128 \rightarrow 256 \rightarrow 3*D_y*N_{\rm components}$, where D_y is the output dimension of the problem and $N_{\rm components}$ is the number of Gaussian components. The MLP output is then chunked into weights, means, and standard deviations (of the same shape) which parameterize the GMM, and the outputs are sampled in parallel for $D_y > 1$. We set $N_{\rm components} = 20$ for all tasks except for EEG where $N_{\rm components} = 8$.

For **TNP-ND**, we use the setting from Nguyen & Grover (2022), where the targets are mapped to a mean and a Cholesky matrix, which parameterize the multivariate Gaussian. The mean of each target is mapped by an MLP with dimension $128 \rightarrow 256 \rightarrow D_y$. The Cholesky matrix requires two steps: (i) the target tokens (conditioned on context via the above transformer backbone) are first decoded into $H \in \mathbb{R}^{M \times 20}$ by another 3-layer transformer (no positional encoding, 4 heads, each layer with dimension 128 and MLP $128 \rightarrow 256 \rightarrow 128$, no mask) and then an MLP projector $(128 \rightarrow 256 \rightarrow 20)$; (ii) the Cholesky matrix is taken as $L = \text{lower}(HH^T)$.

Trained model selection. We track the loss value in each epoch as we train the models. The parameters with the best loss value are selected for the evaluations.

D.2 DATASETS

Gaussian Process (GP) Functions. As a first toy case, we test on GP functions (see Rasmussen & Williams 2006 for details of GPs). In this example, a batch contains 128 functions of one dimensional inputs (D=1) and one dimensional observations ($D_y=1$). The inputs are sampled from interval [-2,2] using the Sobol sequence. For each batch, we first sample a kernel class from squared-exponential (RBF), Matérn- 3 /2, Matérn- 5 /2 with probabilities 0.4, 0.3, and 0.3, respectively. Conditional on the chosen class, each function receives its own kernel hyperparameters: the variance $\sigma_f^2 \sim \text{Uniform}[0.5, 1.5]$ and the lengthscale $\ell \sim \text{Uniform}[0.1, 1]$, broadly covering diverse classes of functions of amplitude around 1. We then sample functions from $\mathcal{GP}(0, \mathbf{k})$, where \mathbf{k} represents the sampled kernels, and add i.i.d. Gaussian observation noise with variance 10^{-5} . The resulting values are randomly partitioned into context, buffer, and target sets. Note that within a batch the kernel class is fixed, whereas the hyperparameters are sampled independently for each function.

During the training, we sample N between 4 and 192 and the maximum number of buffer is 16.

Sawtooth Functions. The second example is the non-Gaussian sawtooth functions (Bruinsma et al., 2023). In this example, a batch contains 128 functions of one dimensional inputs (D=1) and one dimensional observations $(D_y=1)$. The inputs are sampled from interval [-2,2] using the Sobol sequence. An input x and output y follows:

$$y(\mathbf{x}) = y_{\text{nonoise}}(\mathbf{x}) + \epsilon,$$

$$y_{\text{nonoise}}(\mathbf{x}) = (\omega(\langle u, \mathbf{x} \rangle - \phi)) \text{ mod } 1,$$

where $u \in \mathbb{R}^D$ is a direction sampled uniformly from the unit sphere via $u = g/\|g\|_2$ with $g \sim \mathcal{N}(0, I_D)$; ω , ϕ , and ϵ denote the frequency, phase offset, and additive noise, respectively; and the parameters are drawn independently as $\omega \sim \text{Uniform}[3, 5]$, $\phi \sim \text{Uniform}[0, 1]$, and $\epsilon \sim \mathcal{N}(0, \sigma^2)$ with noise scale $\sigma \sim \text{Uniform}[0.05, 0.1]$.

During the training, we sample N between 8 and 128 and the maximum number of buffer is 16.

Electroencephalogram (EEG). The dataset contains 11,520 trials of 122 subjects from 7 correlated channels with 256 time points each. The output channels are individually standardized to zero mean and unit variance. We randomly select 10 for the test set, reserve 10 for cross-validation, and the remaining for the train set. This leaves 7802 trials for the training and 896 for testing.

During the training, the trials are replicated for 200 times and shuffled. Each batch contains 32 trials sampled from the shuffled set. We select between 4 and 192 of the 256 time points to be context points, 32 buffer points, with the remaining being target points. Each batch has a fixed size of context set.

We evaluate on both interpolation (random masking) and forecasting (temporal masking) tasks using the test subjects. The test set splits the 256 time points into context and target. For interpolation, we sample the specified number of context and target points from the full time sequence (Appendix E). For forecasting, we take the first N points as context set and the consecutive M points as target set. Forecasting with N=192 context and M=64 target sets involves the full sequence.

Multisensory causal inference model dataset. In the last example, we adopt one of the multisensory causal inference models described in Liu et al. (2025) to build a simulator, which we then use to generate training data (full setup and generation procedure, as well as a description of the experiment, are provided in Appendix D.3). The inputs x correspond to the experimentally manipulated variables of the study, namely $r_{\rm type}$, s_A , s_V and $V_{\rm level}$, where $r_{\rm type}$ denotes the task type (auditory vs visual localization), s_A and s_V are the true locations of auditory and visual cues presented to human participants, and $V_{\rm level}$ the level of noise applied to visual cues. We first generate sets of input points for the simulator to obtain the outputs y, which represent the predicted responses.

For training, we construct two datasets from the simulator with different values of ρ , a variable of the model regulating the level of recalibration of the auditory perceptual range (with $\rho=1$ representing no recalibration and $\rho=4/3$ representing a full recalibration to the visual range, see Appendix D.3 for more details), and train two separate models for each setting. We sample N between 0 and 400, fix $N_t=256$, and set the buffer size to a maximum of 16. For the zero-context case, we introduce "dummy point", to indicate the absence of context to the model. During evaluation, we use the publicly available dataset obtained from the experiment described in Liu et al. $(2025)^3$. For each of the 15 participants in the study, we extract two non-overlapping subsets of experimental data of 400 trials each. We do so by stratifying on the joint levels of $V_{\text{level}} \in \{0,1,2\}$ and $r_{\text{type}} \in \{0,1\}$ (more details on these variables below), and extracting the two sets such that (i) within each split the six (3×2) strata are represented as evenly as possible, and (ii) the per-stratum counts are matched between splits. This yields 30 batches overall (2 per participant).

For details of the real experiments and the complete data generation setup in the simulator, see Appendix D.3.

D.3 MULTISENSORY CAUSAL INFERENCE MODEL AND EXPERIMENT DETAILS

To probe our method's suitability for Bayesian model comparison, we consider a computational neuroscience study investigating multisensory causal inference, described in Liu et al. (2025).

³https://github.com/LSZ2001/Audiovisual-causal-inference

D.3.1 ORIGINAL NEUROSCIENCE EXPERIMENT

Stimuli and procedure. In this work, we take into account a subset of the experimental data obtained from 15 human participants who, at each experimental trial, were asked to perform one of two localization tasks, which the authors refer to as bisensory visual (BV) and bisensory auditory (BA) localization. In both cases they were presented with an auditory cue, located at an angle uniformly sampled among $\{-15^{\circ}, -10^{\circ}, -5^{\circ}, 0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}\}$ from the participant, and a visual one, either at the same location as the auditory one ($\approx 1/2$ of trials) or at an angle uniformly sampled between -20° and 20° . They were either asked to report the location of the visual (BV) or the auditory (BA) stimulus on a screen. Here we call those locations s_V and s_A , respectively. The level of noise V_{level} associated with the visual stimulus location was experimentally manipulated by modifying the size of the stimulus itself. In practice, this meant presenting a small ($V_{\text{level}} = 0$; $\approx 1/3$ of trials), medium ($V_{\text{level}} = 1$; $\approx 1/3$ of trials) or big ($V_{\text{level}} = 2$; $\approx 1/3$ of trials) visual stimulus.

Each participant completed a total of 1000 trials.

Cognitive models. Here we focus on two versions of the "vanilla" model described in the original paper. On each trial, the participant is assumed to believe the two stimuli could come from either a common (C=1) or different (C=2) source, assigning a fixed prior probability $p(C=1) = p_{\text{same}}$ to the former case. Regardless of this, the participant has Gaussian priors over stimuli locations $p(s_A) = \mathcal{N}(s_A \mid 0, \sigma_S^2)$ and $p(s_V) = \mathcal{N}(s_V \mid 0, \sigma_S^2)$.

A key assumption of the model is that participants do not have direct access to the true location of the stimuli, but only to noisy auditory and visual percepts, a common feature in Bayesian models of perception (Knill & Pouget, 2004). These percepts are modeled as $x_A = \rho(s+\varepsilon_A)$ and $x_V = s+\varepsilon_V$ respectively in case of a common source, and $x_A = \rho(s_A + \varepsilon_A)$ and $x_V = s_V + \varepsilon_V$ in case of separate sources. Here $s = s_A = s_V$ represents their common location when C = 1, while $\varepsilon_A \sim \mathcal{N}(0,\sigma_A^2)$ and $\varepsilon_V \sim \mathcal{N}(0,\sigma_V^2)$ represent the auditory and visual perceptual noise. While σ_A is assumed to be fixed, σ_V can assume three separate values $(\sigma_V^{(\text{low})}, \sigma_V^{(\text{med})}, \sigma_V^{(\text{high})})$ based on the (experimentally manipulated) size of the visual stimulus V_{level} . Finally, ρ represents a "recalibration" factor to account for the fact that the range of auditory stimuli (30°) is different from that of visual ones (40°). In our experiment, this is the factor that differentiates the two models we set out to compare: in the first, we set $\rho = 1$; in the second, we set $\rho = 4/3$ (thus re-mapping auditory percepts to the same scale as visual ones).

Here we describe a BA trial, but the following is easily generalizable to BV ones. When asked about the location of the auditory stimulus, participants are assumed to consider both scenarios (common vs different sources) by evaluating

$$p(s \mid C = 1) = p(s \mid x_A, x_V, \sigma_A, \sigma_V, \sigma_S),$$

 $p(s_A \mid C = 2) = p(s_A \mid x_A, \sigma_A, \sigma_S),$

as well as

$$p(C \mid x_A, x_V, \sigma_A, \sigma_V, \sigma_S, p_{\text{same}}).$$

The final estimate \hat{s}_A of the location is then inferred by weighting the two hypotheses (common vs separate sources) by their posterior probability, so

$$\hat{s}_{A} = p(C = 1 \mid x_{A}, x_{V}, \sigma_{A}, \sigma_{V}, \sigma_{S}, p_{\text{same}}) \int_{-\infty}^{\infty} s \cdot p(s \mid C = 1) ds + p(C = 2 \mid x_{A}, x_{V}, \sigma_{A}, \sigma_{V}, \sigma_{S}, p_{\text{same}}) \int_{-\infty}^{\infty} s_{A} \cdot p(s_{A} \mid C = 2) ds_{A}.$$

$$(6)$$

Finally, the response of the participant is modeled as $y \sim \mathcal{N}(\hat{s}_A, \sigma_M^2)$ with a probability of $1 - \lambda$, and $y \sim \text{Uniform}[-45, 45]$ with a probability of λ . Here λ represents the "lapse rate", or the probability of a participant being distracted/disengaged and giving a random answer (which we fix at 0.02), while σ_M represents motor noise.

Both models thus have 7 free parameters, which we re-parametrize as $\log \sigma_V^{(\text{low})}$, $\log \sigma_V^{(\text{med})}$, $\log \sigma_V^{(\text{high})}$, $\log \sigma_A$, $\log \sigma_S$, $\log \sigma_M$ and $\log t p_{\text{same}}$ for the purposes of simulation and model-fitting.

D.3.2 SIMULATION

For training all models, we produce \sim 1.5 millions synthetic datasets. In what follows we go through the simulation of a single trial. As trials are independent from one another, generating more of them simply involves repeating this process.

Stimuli. Following the setup used in Liu et al. (2025), we sample $s_A \sim \text{Uniform}\{-15, -10, -5, 0, 5, 10, 15\}$ and $C \sim \text{Uniform}\{1, 2\}$. Then we either sample $s_V \sim \text{Uniform}[-20, 20]$ as a continuous variable (if C=2) or we set $s_V=s_A$ (if C=1). We then sample $V_{\text{level}} \sim \text{Uniform}\{0, 1, 2\}$, representing the perceptual noise associated with s_V . This regulates whether $\sigma_V = \sigma_V^{(\text{low})}$, $\sigma_V = \sigma_V^{(\text{med})}$ or $\sigma_V = \sigma_V^{(\text{high})}$.

Finally, we sample $r_{\text{type}} \sim \text{Uniform}\{0,1\}$, representing the task (BV if $r_{\text{type}} = 0$, BA if $r_{\text{type}} = 1$).

Parameters. For each synthetic dataset, we sample the 7 free parameters from Gaussians truncated at two standard deviations above and below the mean. Here we use the notation $\mathcal{N}_{\text{truncated}}(\mu, \sigma^2)$ to denote such distributions, with μ being the mean and σ the standard deviation. What follows are the distributions from which each parameter was sampled.

$$\begin{split} \log &\sigma_{V}^{(\text{low})} \sim &\mathcal{N}_{\text{truncated}}(0, 1.5^{2}); \\ \log &\sigma_{V}^{(\text{med})} \sim &\mathcal{N}_{\text{truncated}}(\log \sigma_{V}^{(\text{low})} + 1, 1^{2}); \\ \log &\sigma_{V}^{(\text{high})} \sim &\mathcal{N}_{\text{truncated}}(\log \sigma_{V}^{(\text{med})} + 0.75, 0.5^{2}); \\ \log &\sigma_{A} \sim &\mathcal{N}_{\text{truncated}}(1.75, 0.5^{2}); \\ \log &\sigma_{S} \sim &\mathcal{N}_{\text{truncated}}(2.5, 1^{2}); \\ \log &\sigma_{M} \sim &\mathcal{N}_{\text{truncated}}(1.5, 1.5^{2}); \\ \log &\text{if } p_{\text{same}} \sim &\mathcal{N}_{\text{truncated}}(1.5, 1.5^{2}). \end{split}$$

Note that $\log \sigma_V^{(\mathrm{low})}$, $\log \sigma_V^{(\mathrm{med})}$, and $\log \sigma_V^{(\mathrm{high})}$ are not independent from each other, but carry the assumption that in most cases $\log \sigma_V^{(\mathrm{low})} < \log \sigma_V^{(\mathrm{med})} < \log \sigma_V^{(\mathrm{high})}$, which reflects the intent of the experimental manipulation of V_{level} .

Responses. Here we describe a scenario in which $r_{\text{type}} = 1$ (BA trial), but the process is the same for $r_{\text{type}} = 0$. In simulating the responses, we follow the hierarchical structure specified by the model. First we computed the sensory percepts $x_A = \rho(s_A + \varepsilon_A)$ and $x_V = s_V + \varepsilon_V$ by sampling $\varepsilon_A \sim \mathcal{N}(0, \sigma_A^2)$ and $\varepsilon_V \sim \mathcal{N}(0, \sigma_V^2)$. We then evaluate \hat{s}_A (recall we are considering a BA trial) as in Eq. (6), and sample the final response as either $y \sim \mathcal{N}(\hat{s}_A, \sigma_M^2)$ or $y \sim \text{Uniform}[-45, 45]$, with a probability regulated by the lapse rate λ (which we set to 0.02, see above).

D.3.3 GROUND-TRUTH ACQUISITION

Here we describe how we obtained our log marginal likelihood (LML) estimates (in the form of lower bounds, see below), which we then use as ground-truth to compare our approach to baselines.

Problem setting. Fitting the cognitive model to a dataset involves finding the posterior over model parameters given empirical data and model

$$p(\boldsymbol{\theta} \mid \mathbf{y}, \mathbf{X}, \rho) = \frac{p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}, \rho)p(\boldsymbol{\theta})}{p(\mathbf{y} \mid \mathbf{X}, \rho)},$$
(7)

where

$$\begin{split} \boldsymbol{\theta} &= \{\log\!\sigma_V^{(\text{low})}, \log\!\sigma_V^{(\text{med})}, \log\!\sigma_V^{(\text{high})}, \log\!\sigma_A, \log\!\sigma_S, \log\!\sigma_M, \text{logit} p_{\text{same}}\}, \\ \mathbf{X} &= \{s_A^{(t)}, s_V^{(t)}, V_{\text{level}}^{(t)}, r_{\text{type}}^{(t)}\}_{t=1}^{400}, \end{split}$$

and

$$\mathbf{y} = \{y^{(t)}\}_{t=1}^{400}.$$

Here t represents the trial number within the dataset (recall we are using data splits of 400 trials each, see Appendix D.2), and we set $p(\theta)$ to the truncated Gaussians we use for sampling the parameters

in our simulation (see Appendix D.3.2), with probability density of values beyond the truncation boundaries set to a "floor value" of $\mathcal{N}(5 \mid 0, 1)$.

While the posterior over parameters is often instrumental in answering scientific questions, the crucial quantity we are interested in estimating is the model evidence (also called marginal likelihood) $p(\mathbf{y} \mid \mathbf{X}, \rho)$ (i.e., the denominator in Eq. (7)), as it represents a straightforward metric for model selection. In fact, assuming a flat prior over models $p(\rho = 1) = p(\rho = 4/3) = 0.5$, the model evidence as a function of ρ represents the unnormalized posterior over models.

Stacking Variational Bayesian Monte Carlo. To compute a reliable estimate of the marginal likelihood to use as our ground-truth, we use *Stacking Variational Bayesian Monte Carlo* (S-VBMC, Silvestrin et al., 2025). This is a principled approach to merge ("stack") approximate posteriors generated by a set of independent runs of its parent algorithm, Variational Bayesian Monte Carlo (VBMC, Acerbi, 2018; 2020). This is done in a simple post-processing step, which has been shown to greatly improve the approximate posterior quality in a variety of challenging settings. In addition to a posterior distribution, S-VBMC outputs an estimate of the evidence lower bound (ELBO), which, as the name suggests, is a lower bound on the (log) model evidence (Blei et al., 2017), the quantity we are interested in for model comparison. As the approximation of the posterior approaches the true one, this quantity gets closer to the true model evidence, with equality when the approximation is perfect. As S-VBMC proved very effective in computational neuroscience problems (Silvestrin et al., 2025), including one very similar to the one considered here (Acerbi et al., 2018), we deem it a suitable method for estimating a lower bound on model evidence to use as a ground-truth.

While an in-depth description of S-VBMC and VBMC is beyond the scope of this work (an interested reader should refer to the original papers cited above), in the following paragraphs we briefly report details of our implementation of both.

VBMC implementation details. To obtain an approximate posterior, the Python implementation of VBMC (Huggins et al., 2023) requires absolute and plausible upper and lower bounds for each parameter. We use the sampling bounds defined in Appendix D.3.2 as absolute bounds, and replicate the process considering 1.5 standard deviations (as opposed to 2) from the mean to establish the plausible ones.

Another required input is a target density function (i.e., the unnormalized posterior), for which we use the numerator of Eq. (7), $p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}, \rho)p(\boldsymbol{\theta})$. We do this both with $\rho = 1$ and $\rho = 4/3$, representing the two models we set out to compare.

Finally, VBMC requires a starting point in the parameter space, which we uniformly sample between plausible bounds independently for each inference run.

S-VBMC implementation details. After obtaining 20 converging VBMC runs for each of our 30 datasets (2 for each of the 15 participants, see Appendix D.2) for both models, we stack the resulting posteriors with S-VBMC. We maintain the default settings, therefore the only inputs required are the VBMC runs themselves. With this, we obtain a total of 60 "stacked" ELBOs (two per each dataset, corresponding to our two competing models) to use as ground-truth.

D.4 EVALUATION DETAILS

In this paper log likelihood values are always averaged (LL divided by the number of target points M).

GP & Sawtooth functions. We evaluate likelihood values over functions, each repeated 4 times with models trained on different seeds and context sizes N=8,16,32,64,128 (statistics of 1024*4*5 evaluations). Each likelihood evaluation is an average of 128 permutations (log averaged likelihood). In other words, we have 1024*4*5 averaged likelihoods, and each averaged value merges 128 orders of the target set.

EEG data. We train each model once with a fixed seed; the evaluations are over trials from 20 subjects held out during training, each repeated with N=8,16,32,64,128,192. For the EEG forecasting, the target set consists of time points immediately after context points, and, in the main

results (Table 1), the target set permutations are applied, as done in Bruinsma et al. (2023). We additionally demonstrate in appendix Table A3 that forecasting with permuted target set outperforms fixed sorted target. The number of permutations we apply is 128.

Multisensory causal inference model. We train one model for each setting of ρ ($\rho=1$ and $\rho=4/3$). In the model selection scenario, the full 400-point dataset from each of the 30 batches is used as the target, and we evaluate the LML across all cases. This procedure is repeated 5 times, with 128 different sequence permutations per run. In the data prediction scenario, we first select the winning model from the model selection stage, and then compute log likelihoods on the same 30 batches, each repeated with N=8,16,32,64,128,256. The results of both experiments are summarized in Table 2. Here we also use 128 permutation for all batches.

D.5 TABULAR MODEL DETAILS

D.5.1 ARCHITECTURE

Set encoder. We reuse the first two stages of TabICL without modification: the distribution-aware column processor (TF_{col} , implemented with induced self-attention blocks) followed by the context-aware row-wise transformer (TF_{row}) with RoPE. Scalars are mapped by a $1 \rightarrow 128$ linear layer; each column is then processed across rows by an ISAB stack (Lee et al., 2019) with three blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256. The row-wise encoder has three layers with four heads, feed-forward hidden dimension of 256, and RoPE base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding a 256-dimensional row embedding (2×128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample for context, buffer, and target rows (dimension 128; only selects the subset of the vector corresponding to the <code>[CLS]</code> token dimensions). Context and buffer tokens receive the target value *additively* via a small target encoder (linear $1 \rightarrow 128$. Buffer tokens also receive a learned positional embedding indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute the set encoder once, and makes the buffer explicit at the token level.

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise transformer with twelve layers and four heads, model width 128, and feed-forward size 256. The attention mask is the only architectural change relative to TabICL: context attends bidirectionally and is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the cached context and to the causal prefix of the buffer; there are no edges into context from buffer or targets. The maximum buffer size is 32 tokens and we query 512 targets per task.

Prediction head. Predictions use a GMM head with 20 components and a minimum standard deviation of 10^{-3} .

Caching. The column and row set encoder is computed once for all rows. During autoregressive decoding we cache keys/values for the context once and update only the buffer cache, so the same context cache is reused across parallel generations.

D.5.2 DATA GENERATION AND PREPROCESSING

SCM prior and task family. We generate datasets with the MLP-based *structured causal model* (SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style) connectivity and then define each variable c as $c = f(\operatorname{Pa}(c)) + \varepsilon$, where $\operatorname{Pa}(c)$ are its parents, f is a small MLP with nonlinearity, and ε is independent noise. Unless stated otherwise, we sample the feature dimension $d \in [1,10]$, and per-task context sizes $N \in [8,1024]$; targets are continuous responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source, which we handle with the TabICL preprocessing described below.

Table A1: **Head comparison on synthetic function.** We compare average log-likelihood (↑) results on our main GMM head and on standard Gaussian distribution head.

	TN	P-D	TNP w/ buffer			
	AR	Ind	K=16	K=4	K=1	
GP(M = 16)	2.57 (0.020)	2.22 (0.022)	2.51 (0.019)	2.55 (0.019)	2.56 (0.019)	
GP(M = 128)	3.29 (0.013)	2.15 (0.022)	3.27 (0.013)	3.28 (0.013)	3.29 (0.013)	
Sawtooth ($M = 16$)	1.05 (0.004)	0.94 (0.005)	1.00 (0.005)	1.08 (0.004)	1.09 (0.004)	
Sawtooth ($M = 128$)	1.15 (0.003)	1.16 (0.003)	1.15 (0.003)	1.16 (0.003)	1.16 (0.003)	
	TNP-D-Gaussian		TNP Gaussian w/ buffer			
	TNP-D-0	Gaussian	TNI	P Gaussian w/ b	uffer	
	TNP-D-0 AR	Gaussian Ind	TNI K=16	P Gaussian w/ bi K=4	uffer $K=1$	
GP(M = 16)						
GP (M = 16) GP (M = 128)	AR	Ind	K=16	K=4	K=1	
,	AR 2.50 (0.019)	Ind 2.13 (0.023)	K=16	K=4 2.53 (0.019)	K=1 2.53 (0.019)	

Sampling of task partitions. For each generated dataset we draw a random partition (C, B, T) with $N \sim \text{Uniform}\{8, \dots, 1024\}$, buffer capacity fixed at K = 32, and target count M = 512. Per batch, we fix (d, N, K, M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL *PreprocessingPipeline* and fit it on context features only. The fitted transform is then applied to context, buffer, and target features. Regression targets are standardized using context statistics, i.e., $\tilde{y} = (y - \mu_{y,\mathcal{C}})/\sigma_{y,\mathcal{C}}$, and the same (μ, σ) are used for buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo-Johnson); and (iii) outlier handling via a z-score threshold $\tau=4.0$. At transform time, values outside the fitted range are clipped to the training (context) min/max before normalization, mirroring TabICL's behavior.

D.5.3 TRAINING PROCEDURE

We train with AdamW (learning rate 1×10^{-4} , $\beta=(0.9,0.95)$, weight decay 0.0), batch size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone. Mixed-precision training uses AMP with bfloat16. All runs use float32 tensors at the data interface. A cosine schedule with warmup is used (cosine_with_warmup); warmup_steps= 2000 takes precedence over the nominal warmup_ratio= 0.20; num_cycles= 1. Automatic mixed precision is enabled with amp_dtype=bfloat16. Each training step draws a batch of 64 independent tasks (datasets) with feature dimension d sampled from $\{1,\ldots,10\}$ and context size N from $\{8,\ldots,1024\}$; buffer size and target count are fixed at K=32 and M=512. Training is capped at max_steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately $64\times 160,000=10.24$ million synthetic tasks seen during pretraining. The global data seed is 123. We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

E ADDITIONAL LOG LIKELIHOOD RESULTS ON SYNTHETIC AND EEG TASKS

E.1 PREDICTIVE POWER OF DIFFERENT HEADS

In this paper, we use GMM as our prediction head. We compare the predictive performance of GMM to standard Gaussian distribution head. In Table A1, GMM is able to achieve better predictive performance, particularly on the non-Gaussian Sawtooth functions.

E.2 RESULTS OF LARGER M

As a supplementary results of Table 1, we evaluate log likelihood values on larger target set. For TNP w/ buffer, we evaluate K points per Algorithm 2 and proceed to the next target subsets by

Table A2: Average Log-likelihood (\uparrow) results on synthetic functions and EEG example. Supplementary results of Table 1 on larger target set and various deployed K. When M>K, we evaluate every K targets once and perform AR for M/K steps.

	TNP-D		TNP-ND	TNP-A
	AR	Ind		
GP (M = 16)	2.57 (0.020)	2.22 (0.022)	0.80 (0.082)	2.24 (0.018)
GP (M = 128)	3.29 (0.013)	2.15 (0.022)	2.27 (0.023)	3.10 (0.012)
Sawtooth ($M=16$)	1.05 (0.004)	0.94 (0.005)	-0.43 (0.008)	0.98 (0.004)
Sawtooth ($M=128$)	1.14 (0.003)	0.94 (0.005)	0.39 (0.005)	1.12 (0.003)
$\begin{array}{l} \text{EEG-Int } (M=16) \\ \text{EEG-Int } (M=64) \end{array}$	0.51 (0.013)	0.36 (0.014)	0.46 (0.011)	0.58 (0.014)
	0.88 (0.011)	0.35 (0.014)	0.50 (0.010)	0.95 (0.012)
$\begin{array}{l} \text{EEG-For} \ (M=16) \\ \text{EEG-For} \ (M=64) \end{array}$	1.07 (0.004)	-0.74 (0.008)	-0.04 (0.005)	1.23 (0.003)
	1.12 (0.003)	-1.08 (0.007)	-0.23 (0.004)	1.20 (0.003)
		TNP w/ buffer		
	K=16	K=4	K=1	
GP (M = 16)	2.51 (0.019)	2.55 (0.019)	2.56 (0.019)	
GP (M = 128)	3.27 (0.013)	3.28 (0.013)	3.29 (0.013)	
Sawtooth ($M=16$)	1.00 (0.005)	1.08 (0.004)	1.09 (0.004)	
Sawtooth ($M=128$)	1.15 (0.003)	1.16 (0.003)	1.16 (0.003)	
$\begin{array}{l} \text{EEG-Int } (M=16) \\ \text{EEG-Int } (M=64) \end{array}$	0.52 (0.013) 0.90 (0.011)	0.54 (0.014) 0.91 (0.011)	0.54 (0.014) 0.91 (0.011)	
$\begin{array}{l} \text{EEG-For} \ (M=16) \\ \text{EEG-For} \ (M=64) \end{array}$	0.85 (0.004) 1.12 (0.003)	1.17 (0.003) 1.18 (0.003)	1.21 (0.003) 1.19 (0.003)	

Table A3: **EEG forecasting w/ and w/o target set permutation.** The target set of EEG forecasting is the points immediate after the context set. Our main paper applies permutation to the target set while this table compares against forecasting of fixed temporal order (sorted).

	TNP-D		TNP-ND	TNP-A
	AR	Ind		
EEG-For $(M=16)$	1.07 (0.004)	-0.74 (0.008)	-0.04 (0.005)	1.23 (0.003)
EEG-For $(M = 16, sorted)$	0.85 (0.005)	-0.74 (0.008)	-0.004 (0.005)	1.14 (0.004)
EEG-For $(M = 64)$	1.12 (0.003)	-1.08 (0.007)	-0.23 (0.004)	1.20 (0.003)
EEG-For ($M = 64$, sorted)	0.89 (0.005)	-1.08 (0.007)	-0.23 (0.004)	1.16 (0.003)
		TNP w/ buffer	•	
	K = 16	K=4	K=1	
EEG-For $(M=16)$	0.85 (0.004)	1.17 (0.003)	1.21 (0.003)	
EEG-For $(M = 16, sorted)$	0.76 (0.006)	0.87 (0.005)	1.09 (0.004)	
EEG-For $(M=64)$	1.12 (0.003)	1.18 (0.003)	1.19 (0.003)	
EEG-For ($M = 64$, sorted)	0.78 (0.005)	0.89 (0.004)	1.11 (0.004)	

conditioning on the context and evaluated points. This requires M/K steps of evaluations. The results are reported in Table A2. As we decrese the deployment K, the performance of our TNP w/ buffer becomes stronger, while more iterations (and thus computational time) are required.

E.3 EEG FORECASTING W/ AND W/O TARGET PERMUTATION

In our main paper, the EEG forecasting task is evaluated with the permuted target set, as done in Bruinsma et al. (2023). We repeat the experiment by forecasting the target of a fixed temporal order. In Table A3, we show that averaging over random target order provide better performance.

Table A4: Multisensory causal inference model selection extra results. Supplement for table Table 2 on model comparison case with extra evaluation on K=4 and R^2 metrics for LML and Δ LML.

	TNP-D		TNP-ND	TNP-A
	AR	Ind		
LML RMSE (↓)	3.10 (0.005)	86.96 (0.000)	208.51 (0.041)	4.75 (0.012)
Δ LML RMSE (\downarrow)	2.44 (0.008)	36.18 (0.000)	25.60 (0.023)	3.29 (0.019)
$LML R^2 (\uparrow)$	1.00 (0.000)	-0.43 (0.000)	-7.22 (0.003)	1.00 (0.000)
Δ LML R^2 (\uparrow)	0.93 (0.001)	-14.47 (0.000)	-6.74 (0.014)	0.87 (0.002)
		TNP w/ buffer		
	K=16	K=4	K=1	
LML RMSE (↓)	3.56 (0.004)	3.48 (0.002)	3.47 (0.004)	
Δ LML RMSE (\downarrow)	2.60 (0.010)	2.59 (0.009)	2.59 (0.011)	
$LML R^2 (\uparrow)$	1.00 (0.000)	1.00 (0.000)	1.00 (0.000)	
Δ LML R^2 (\uparrow)	0.92 (0.001)	0.92 (0.001)	0.92 (0.001)	

Table A5: Multisensory causal inference model data prediction task normalized log-likelihood (\uparrow) results. Supplementary results of Table 2, with extra evaluation on K=4 and on larger target set M=128.

	TNP-D		TNP-ND	TNP-A
	AR	Ind		
$\mathrm{Pred}\ \mathrm{LL}\ (M=16)$	-2.76 (0.021)	-2.77 (0.025)	-3.12 (0.019)	-2.76 (0.024)
$\mathrm{Pred}\ \mathrm{LL}\ (M=128)$	-2.71 (0.015)	-2.74 (0.016)	-3.17 (0.012)	-2.71 (0.015)
		TNP w/ buffer		
	K=16	K=4	K=1	
Pred LL $(M = 16)$	-2.76 (0.024)	-2.76 (0.024)	-2.76 (0.024)	
$\mathrm{Pred}\ \mathrm{LL}\ (M=128)$	-2.71 (0.015)	-2.71 (0.015)	-2.71 (0.015)	

F ADDITIONAL MULTISENSORY CAUSAL INFERENCE MODEL RESULTS

As supplementary results to Table 2, we include additional metrics and evaluation settings. Specifically, for the model comparison task, we report the coefficient of determination (R^2) for both the LML and Δ LML with respect to the ground-truth (see Table A4). For the data prediction task, we present results with a larger target size of M=128 (see Table A5). In addition, for completeness, we evaluate both the model comparison and data prediction tasks with K=4. With varying K, we observe little to almost no performance degradation compared to TNP-D AR, especially for the data prediction case.

G USE OF LARGE LANGUAGE MODELS

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of this work to support idea generation, brainstorming, and the exploration of possible methodological directions. LLMs were also employed for tasks such as identifying related work through web search and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate components of the codebase, visualization scripts, and test codes. They were also used for drafting parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of

text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity of the content.