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ABSTRACT

Transformer-based models for amortized probabilistic inference, such as neural
processes, prior-fitted networks, and tabular foundation models, excel at single-
pass marginal prediction. However, many real-world applications require co-
herent joint distributions that capture dependencies between predictions. While
purely autoregressive architectures efficiently generate such distributions, they
sacrifice the flexible set-conditioning that makes these models powerful for meta-
learning. Conversely, the standard approach to obtain joint distributions from set-
based models requires expensive re-encoding of an updated context set at each au-
toregressive step. We introduce a causal autoregressive buffer that preserves the
advantages of both paradigms. Our approach decouples context encoding from
updating the conditioning set. The model processes the context once and caches
it, while a dynamic buffer captures target dependencies: as targets are incorpo-
rated, they enter the buffer and attend to both the cached context and previously
buffered targets. This enables efficient batched autoregressive generation and one-
pass joint predictive density evaluation. Training seamlessly integrates set-based
and autoregressive modes at minimal additional cost. Across synthetic functions,
EEG signals, cognitive models, and tabular data, our method matches the predic-
tive accuracy of strong baselines while delivering up to 20× faster joint sampling.

1 INTRODUCTION

Generating predictions conditioned on available data is a central challenge in machine learning.
Recent advances in amortized probabilistic inference and meta-learning have produced a powerful
class of set-based conditioning models capable of rapidly adapting to new tasks without retraining.
Methods such as neural processes (NPs; Garnelo et al. 2018a; Foong et al. 2020), their transformer-
based extensions (Nguyen & Grover, 2022; Chang et al., 2025), prior-fitted networks (PFNs; Müller
et al. 2022), and recent tabular foundation models (Hollmann et al., 2023; 2025; Jingang et al., 2025)
share a crucial architectural principle: they process variable-sized context sets through permutation-
invariant encoders that respect the exchangeability of observed data. This set-based design enables
these models to condition on arbitrary subsets of observations and produce accurate marginal pre-
dictive distributions over new target variables in a single forward pass.

While these models are highly efficient for marginal predictions, many real-world applications re-
quire coherent joint distributions over multiple targets. Tasks such as signal interpolation, behavioral
data modeling, and multi-column tabular prediction demand that we capture dependencies between
random variables. The standard solution deploys these models autoregressively (Bruinsma et al.,
2023). However, this incurs significant computational overhead: each new prediction must be added
back to the conditioning set, triggering a complete re-encoding of the expanded context.

Autoregressive (AR) deployment involves iteratively expanding the conditioning set as follows: to
generate K predictions, the k-th step conditions on the initial context C plus all k − 1 previous
predictions (Fig. 1, Top Left). Since set-based models process their inputs through self-attention
mechanisms to maintain permutation invariance, each new element triggers a complete re-encoding
of the entire augmented set. This leads to prohibitiveO(K(N +K)2) complexity, severely limiting
applications with large contexts (N ), long target sequences (K), or frequent sampling requirements.
Advances in efficient attention (Jaegle et al., 2021; Feng et al., 2023) can reduce costs for large static
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Figure 1: The autoregressive buffer enables fast joint inference by eliminating redundant con-
text re-computation. Left: Comparison of autoregressive inference strategies. Traditional autore-
gressive approach (top) requires re-encoding the entire augmented context set at each step when
generating predictions for targets, leading to O(K(N + K)2) complexity, where N is the context
set size and K the number of targets. Our buffered approach (bottom) encodes the context C once
and caches it. New predictions enter a causal autoregressive buffer that attends to both the static
cache and previous buffer entries without re-encoding. Right: Empirical validation. We compare
transformer probabilistic models with and without the buffer mechanism. Both strategies achieve
comparable predictive accuracy, confirming that the buffer preserves model quality while delivering
up to 20× faster sample generation at larger context sizes.

contexts but do not address the core problem of repeated recomputation inherent in autoregressive
prediction: each incremental update requires a reprocessing of the conditioning set.

To address this limitation, we introduce the causal autoregressive buffer, an architectural mechanism
that decouples the expensive encoding of the static context from lightweight sequential prediction.
Inspired by the efficiency and scalability of purely autoregressive architectures in language modeling
(Brown et al., 2020) and image generation (Chen et al., 2020; Li et al., 2024), our buffer implements
a causal attention pattern for managing dependencies among generated targets – but crucially, it op-
erates alongside the set-based context rather than replacing it. Our approach first encodes the initial
context C and caches its representation. Targets added to the buffer can rapidly attend to both the
static context cache and previously buffered targets through causal masking, managing dependen-
cies among newly generated samples without requiring context re-encoding (Fig. 1, Bottom Left).
This eliminates the need for full context re-encoding at each step, drastically reducing computation.
Crucially, when the buffer is empty, our model’s behavior is identical to a standard model, preserv-
ing marginal prediction quality. We show that a unified training strategy using masked attention and
a buffer-size curriculum allows a single model to handle both efficient marginal predictions and ac-
celerated autoregressive sampling and joint predictive density evaluation with substantial speedups,
while achieving comparable predictive accuracy to standard AR approaches (Fig. 1, Right).

Our main contributions are:

1. We introduce the causal autoregressive buffer, a mechanism that decouples set-based con-
text encoding from sequential prediction, enabling efficient joint sampling and predictive
density evaluation from transformer-based amortized probabilistic models.

2. We propose a unified training strategy using masked attention and buffer-size curriculum
that allows a single model to learn both modes of operation at minimal additional cost.
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3. We demonstrate that our approach is broadly applicable to transformer-based probabilistic
models including TNPs/PFNs (Nguyen & Grover, 2022; Müller et al., 2022) and tabular
foundation models (TabICL; Jingang et al., 2025), achieving up to a 20× speedup in joint
sampling while maintaining comparable predictive accuracy across diverse tasks.

2 PRELIMINARIES

We consider meta-learning problems where a model must adapt to new prediction tasks using ob-
served data, without task-specific retraining. Given a context set C = {(xn, yn)}Nn=1 with N
input-output pairs, and an analogous target set T = {(x⋆

m, y
⋆
m)}Mm=1, we aim to predict target

output values y⋆1:M at new target inputs x⋆
1:M . This is framed as learning a predictive distribu-

tion pθ(y⋆1:M |x⋆
1:M ; C) where θ are the model’s learnable parameters (Foong et al., 2020). Note:

Throughout the paper, we use index k instead of m when targets are processed autoregressively.

Transformer diagonal prediction maps. Transformer architectures (Vaswani et al., 2017) are a
natural fit for this set-based task. Methods such as (diagonal) transformer neural processes (TNPs;
Nguyen & Grover, 2022) and prior-fitted networks (PFNs; Müller et al., 2022) use two core attention
mechanisms. First, the model processes C using multi-head self-attention (MHSA). Then, each
target input x⋆

m queries this summary using multi-head cross-attention (MHCA). This structure leads
to an efficient diagonal predictive model where predictions are conditionally independent:

pθ(y
⋆
1:M | x⋆

1:M ; C) =

M∏
m=1

pθ(y
⋆
m | rtgt(x

⋆
m, rC(C))) . (1)

Here, rC(C) is the permutation-invariant summary of the context produced by the MHSA layers1,
and rtgt(·, ·) is the final decoding function that produces a parametric prediction for y⋆m via MHCA.
This may consist of a single Gaussian, but more expressive parameterizations include Riemannian
distributions (Müller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang et al., 2025).
These models are efficiently trained via maximum-likelihood on random context-targets data splits.

Autoregressive sampling and predictive density evaluation. Many applications require captur-
ing dependencies across targets, which requires joint distributions. This need arises in two forms: (i)
generating coherent samples where targets exhibit dependencies, and (ii) evaluating joint predictive
densities. While Eq. (1) can be extended to handle dependent predictions using multivariate para-
metric densities such as a multivariate Gaussian (Markou et al., 2022; Nguyen & Grover, 2022), a
more powerful solution employs an autoregressive factorization (Bruinsma et al., 2023):

pθ(y
⋆
1:K | x⋆

1:K ; C) =
K∏

k=1

pθ
(
y⋆k | x⋆

k; C ∪ {(x⋆
j , y

⋆
j )}k−1

j=1

)
. (2)

Crucially, this is not a new model, but a mode of deployment for models described by Eq. (1). This
captures dependencies by conditioning each prediction on previous targets.2 However, this creates a
computational bottleneck: the conditioning set changes at each step, requiring recomputation of the
context summary rC(·). Whether generating samples sequentially or evaluating predictive densities,
this leads to O(K(N+K)2) complexity. Moreover, parallel autoregressive sampling or evaluation
is cumbersome, as generating B parallel sequences requires B copies of the model.

Our goal is to improve efficiency for both sequential and parallel sampling and predictive density
evaluation by encoding the context once and reusing it throughout. Existing autoregressive up-
date schemes break this caching: when targets join the conditioning set, the context representation
must be recomputed. Our key insight is to separate the roles of initial context C and predicted tar-
gets {(x⋆

j , y
⋆
j )}j<k. We preserve permutation invariance for the initial context (encoded once and

cached) while handling target dependencies through a separate causal mechanism. When needed,
the buffer can be merged back into the context to restore full permutation invariance. This selec-
tive relaxation – in-between fully set-based and purely autoregressive models – enables efficient
sequential and parallel operations while maintaining the strengths of set-based conditioning.

1See Appendix H.1 for evidence of the impact of permutation invariance for the context set.
2 Eq. (2) imposes a specific factorization order. While fixing the order can be a valid modeling choice under

certain circumstances, this breaks permutation invariance. In cases where permutation invariance is required, a
Monte Carlo approximation can be obtained by averaging over multiple target orderings.
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3 EFFICIENT AUTOREGRESSIVE INFERENCE

Core contribution. Our method conditions predictions on a static, task-defining context C and a
dynamic autoregressive buffer B. We parameterize the predictive distribution as

pθ(y
⋆
1:K | x⋆

1:K ; C) =

K∏
k=1

pθ(y
⋆
k | rtgt(x

⋆
k, [rC(C),b1:k−1])) , bk = rB((x

⋆
k, y

⋆
k), [rC(C),b1:k−1]),

(3)

where rB is the buffer encoder implemented with MHSA with causal masking, b1:k the first k
encoded data points in the buffer, and b1:0 = ∅. Crucially, rC(C) is computed once and cached. The
target decoder rtgt performs a single cross-attention over the concatenated keys/values from both
the cached context and the visible buffer prefix ([rC(C),b1:k−1]), then passes the result through a
distribution head (e.g., an MLP parameterizing a mixture of Gaussians) to generate predictions.3

To couple one-time set-based encoding with sequential dependence, the attention must satisfy four
requirements: (R1) the context is immutable: encoded once with self-attention and cached as
read-only; (R2) the buffer is strictly causal: token j may attend only to < j; (R3) information
flows out of the context but never back: no edges write into C; and (R4) each target attends to the
cached context and the visible buffer prefix to capture dependencies among previous predictions.

During training, we enforce (R1) – (R4) in a forward pass using a structured attention mask.
We implement this using a single transformer backbone that processes context, buffer, and target
tokens with distinct role embeddings; buffer tokens additionally carry learned positional embed-
dings 4 indicating their autoregressive order. This allows us to compute all losses in parallel by
conditioning each target’s prediction on the context and a variable-sized, ground-truth buffer set.

Figure 2: Example training mask.

At inference, we use a two-stage process: a one-time
context encoding followed by prediction in the form of
either sampling or predictive density evaluation. Pre-
diction carries an attention cost of O(N2 + KN +
K2), composed of a one-time O(N2) for context self-
attention,O(KN) for all cross-attention reads from the
cache, and a total of O(K2) for causal self-attention
within the buffer. This provides a speedup over naive
autoregressive methods, which cost O(K(N + K)2)
due to repeated context recomputation. When the buffer
is empty, our model’s behavior is identical to a standard
diagonal prediction map as Eq. (3) reduces to Eq. (1).
Architectural details appear in Appendix A

Training details. The model is trained by minimizing
the expected negative log-likelihood over a prior distri-
bution of datasets P . Each training task is generated
by sampling a dataset D = {(xi, yi)}Ntot

i=1 ∼ P . A random partition distribution π is then used to
split the dataset into three disjoint sets: (1) the context set C = {(xn, yn)}Nn=1; (2) the buffer set
B = {(xk, yk)}Kk=1; and (3) the target set T = {(xm, ym)}Mm=1, with Ntot = N + K +M . We
randomly order the buffer set B and compute all predictions for the target set T in a single forward
pass. A structured attention mask controls whether each target can attend to the buffer, and if so,
how many elements: 50% of the targets attend only to the context C; 50% attend to the context plus
a prefix of the buffer B1:vm , where vm ∼ Uniform(1,K) (see Fig. 2). The training objective is:

L(θ) = ED∼P

[
E(C,B,T )∼π(·|D)

[
−

M∑
m=1

log pθ(ym | xm, C,B1:vm)

]]
, (4)

3Throughout this paper, K denotes the total number of targets to be predicted autoregressively. The buffer
stores up to K − 1 previously generated predictions, enabling the model to condition on these when predicting
the k-th target. Thus, when we refer to “buffer size K = 16”, the buffer contains at most 15 elements, allowing
for 16 total predictions. Setting K = 1 corresponds to standard AR inference without buffering (empty buffer).

4See Appendix H.2 for details on the role of positional embeddings.
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where B1:vm is the visible portion of the buffer for target m (vm = 0 for context-only targets). This
training curriculum ensures the model performs well regardless of the buffer’s state. The frequent
buffer-free predictions force the model to make high-quality marginal predictions from the initial
context alone. Simultaneously, training with exposure to a variable-sized buffer teaches the model
to flexibly incorporate additional in-context information. Minimizing this objective is equivalent
to minimizing the KL divergence between the model and the true posterior predictive distribution
under varying conditioning sets (Müller et al., 2022; Elsemüller et al., 2024).

During training, the buffer contains its own set of training data points, as described above. At in-
ference, we have two modes: (i) autoregressive sampling, where the buffer grows incrementally by
incorporating the model’s own generated samples; and (ii) parallel joint predictive density evalua-
tion, where we pack two sets of K target data points to evaluate all K conditionals in one pass (see
below). The sparsity pattern is identical in both regimes; only execution differs (single masked pass
for evaluation, prefill followed by sequential updates for sampling).

Autoregressive sampling. Given a context C and a sequence of target inputs x⋆
1, ... ,x

⋆
K , we gen-

erate samples by first performing a one-time prefill of C, caching its keys and values in an O(N2)
operation. We then decode sequentially following Eq. (3): for each step k = 1, . . . ,K, we form
a target query for input x⋆

k, attend to the cached context and causal buffer Bk−1, sample y⋆k from
the predictive distribution, and append (x⋆

k, y
⋆
k) to the buffer with its positional embedding. Only

the buffer’s key/value cache is incrementally updated, avoiding context recomputation and yielding
O(N2 +NK +K2) total complexity (detailed in Algorithm 1 in Appendix A.3).

Joint predictive density evaluation. Our framework can also evaluate the joint predictive density
of a set of K = M targets, {(x⋆

m, y
⋆
m)}Km=1, in a single forward pass. To achieve this, similar

to the TNP-A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i)
buffer tokens for the targets {(x⋆

k, y
⋆
k)}Kk=1, and (ii) separate query tokens for the same target inputs

{x⋆
m}Km=1. A causal attention mask ensures that each query for x⋆

m attends to the context C and
only the preceding buffer tokens B1:m−1 = {(x⋆

k, y
⋆
k)}k<m. This allows all conditional probabil-

ities to be computed in one pass: log pθ(y
⋆
1:K | x⋆

1:K , C) =
∑K

m=1 log pθ
(
y⋆m | x⋆

m, C,B1:m−1

)
.

This is identical to sequential autoregressive evaluation but executes in a single forward pass with
total attention cost O(N2+KN+K2); see Algorithm 2 in Appendix A.3. Notably, autoregressive
predictive density estimates are order-dependent; to recover approximate permutation invariance,
we average the predictive densities over multiple buffer orderings (Murphy et al., 2019). See Ap-
pendix H.3 for an analysis of how the number of buffer orderings affects estimate stability.

Batched autoregressive sampling. Our method is particularly efficient for autoregressively gener-
ating multiple samples in a batch, conditional on the same context C (e.g., multiple joint predictions
for the same observed function values – see Fig. 1). A naive batched autoregressive approach must
re-encode a growing context set at every generation step for each of the B samples. To generate B
samples of length K, this results in a prohibitive total cost of O(BK(N + K)2). In contrast, our
approach performs the expensive context prefill (O(N2)) only once. This single context cache is
then efficiently reused across all B batched generation streams, with only the small, dynamic buffer
maintaining a separate state for each sample. This reduces the total cost toO(N2+B(NK+K2)),
making batched sampling practical even for large contexts and batches.

Architectural generality. Our buffer is a general mechanism applicable to other transformer vari-
ants. For instance, a Perceiver-style encoder (Jaegle et al., 2021) summarizes the context C into a
fixed set of P ≪ N latent tokens, also known as pseudo-tokens (Lee et al., 2019; Feng et al., 2023;
Lara-Rangel et al., 2025). We can precompute the latent key/value representations once – autore-
gressive decoding then requires attending only to these P latents and the growing causal buffer. The
per-layer attention cost is O(NP+P 2) for the prefill and O(PK+K2) for decoding K samples.
Without our buffer, the cost is O(NPK+P 2K+PK2). To demonstrate this, we applied our buffer
to the latent bottlenecked attentive neural process (LBANP; Feng et al., 2023) architecture, a TNP
variant that encodes the context with pseudo-tokens. We found that our buffer yields higher predic-
tive densities than standard autoregressive inference with LBANP, likely because the buffer allows
the model to condition on both the latent summary and the explicit history of previous points, rather
than relying on the compressed latents alone. See Appendix H.4 for results and additional details.
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4 RELATED WORK

Transformer probabilistic models. Our method can serve as a modular component within neural
processes (NPs; Garnelo et al., 2018b;a; Bruinsma et al., 2021; Nguyen & Grover, 2022; Dutordoir
et al., 2023; Chang et al., 2025) or prior-fitted networks (PFNs; Müller et al., 2022; 2023; Hollmann
et al., 2023). Prior work on efficient NP methods has primarily focused on improving scalability with
respect to the context set size (Feng et al., 2022; 2023) and on reducing memory usage (Feng et al.,
2024) for independent prediction tasks. By contrast, our method targets efficiency in autoregressive
joint sampling and evaluation, an area that has received limited attention. Our contributions are com-
plementary and can be combined with other architectural improvements. Recent work increasingly
leverages transformer architectures for probabilistic modeling, framing Bayesian inference as an in-
context learning task. These methods perform tasks such as approximating posterior distributions,
modeling conditional relationships, and estimating posterior predictive distributions by conditioning
on context observations and, optionally, additional prior information (Mittal et al., 2023; Gloeckler
et al., 2024; Reuter et al., 2025; Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our
work builds on this direction by leveraging transformer-based variants of neural processes and prior-
fitted networks. The effectiveness of PFNs has led to transformer-based tabular foundation models
such as TabPFN (Hollmann et al., 2023; 2025) and TabICL (Jingang et al., 2025), which demon-
strate strong performance on tabular data through in-context learning approaches. The “in-context
learning” over rows within these models follows the same attention mechanisms as standard trans-
former neural processes and PFNs; our method integrates naturally with these models, serving as a
complementary module for efficient joint sampling and prediction.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint
density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria
et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic autore-
gressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Our method is related
to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover, 2022) which duplicates targets
into queries and observed values. While TNP-A uses this duplication for both training and inference,
we recognize it is only needed for predictive density evaluation. Bruinsma et al. (2023) showed that
deploying standard NPs autoregressively improves joint predictions but requires expensive context
re-encoding at each step. Our buffer mechanism combines insights from both approaches: like
TNP-A, we enable parallel predictive density evaluation, and like Bruinsma et al. (2023), we model
autoregressive dependencies while training on independent targets – our separate buffer architecture
avoids both TNP-A’s training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models follow two
main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021; Lipman et al., 2023) that generate samples through continuous-time dynamics, and
autoregressive transformers (GPTs; Radford et al., 2018; Brown et al., 2020) that generate sequences
token-by-token with cached key-value states. While diffusion dominates in continuous domains
like images and video, autoregressive transformers excel in discrete sequences and show excellent
performance and scalability in multiple domains. Our buffer mechanism brings the efficiency of
autoregressive transformers to NPs and PFNs. Standard NPs/PFNs struggle with joint prediction
because they must re-encode the entire context at each autoregressive step. Our approach instead
mirrors language models: encode the set-based context once (like a prompt) and generate efficiently
through cached representations. Recent work has shown these paradigms can be combined (Tang
et al., 2025; Arriola et al., 2025; Wu et al., 2025), suggesting future extensions. There has also been
recent work unifying masked diffusion (Lou et al., 2024; Shi et al., 2024; Sahoo et al., 2025) with
any-order autoregressive models, which our buffer component is a representative of. Addressing the
inefficiency of processing masked tokens, Partition Generative Models (PGMs; Deschenaux et al.,
2025) employ self-attention among observed tokens and cross-attention from unmasked to masked
tokens. This functionally mirrors the context-target attention pattern used in TNPs and PFNs, sug-
gesting a structural convergence in how masked diffusion models and TNPS/PFNs parameterize
their predictive conditional densities using attention.
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Figure 3: Wall-clock time (log scale) for (a) sampling, (b) density evaluation, and (c) a training
step, along with (d) peak memory usage versus context points N , with (e) normalized predictive
performance averaged across six tasks. Our method closely matches autoregressive baselines in
predictive performance while offering significant speedups and lower memory usage.

5 EXPERIMENTS

Our experiments validate our method across diverse tasks: regression on synthetic functions, inter-
polation of real-world EEG data, Bayesian model selection on a multisensory perception model, and
pre-training of a tabular foundation model. We first conduct wall-clock and memory benchmarks to
quantify efficiency gains, then assess predictive performance across these varied domains.

Baselines. We compare against models spanning the efficiency-expressivity tradeoff, all config-
ured with matched parameter counts, same input embeddings and output prediction heads unless
noted otherwise (details in Appendix B). TNP-D (Nguyen & Grover, 2022) assumes conditional
independence between targets; we evaluate it both with standard parallel decoding (TNP-D-Ind,
fast but limited) and with autoregressive deployment (TNP-D-AR, expressive but requires sequential
re-encoding). TNP-ND models target dependencies via a multivariate Gaussian, enabling one-pass
joint predictive density evaluation but limiting expressivity. TNP-A uses causal self-attention for
full autoregressive modeling but suffers from slow sequential sampling and high training cost. Ad-
ditional task-specific baselines are introduced as needed. TNP-ND aside, all models use a Gaussian
mixture model output head with 20 mixture components unless stated otherwise.

Computational efficiency. Our method trades exact set-based AR updates for efficiency. We aim
for substantial speedups over baselines while maintaining comparable accuracy. Success means
matching predictive performance of state-of-the-art AR approaches while being orders of magni-
tude faster. We benchmark wall-clock time for: (i) autoregressive sampling, (ii) joint predictive
density evaluation, and (iii) a full training step (forward and backward pass), as well as (iv) peak
memory usage. All measurements use a unified codebase and run on a single NVIDIA L40S GPU.
We optimized all baselines beyond their public versions with KV caching, FlashAttention-2 (Dao,
2023), and compilation, achieving 3 − 10× speedups over original implementations to ensure fair
comparison. For our method, we developed a custom Triton kernel to optimize memory access
during batched sampling (details in Appendix C). Benchmarks in Fig. 3 use model architectures
matching subsequent experiments with buffer size K = 16. For sampling and predictive density
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Table 1: Average predictive density (↑) results on synthetic functions and EEG example. Mean
and (SEM) over various functions and context sizes N , for M = 16 targets. See Appendix D.5 for
evaluation details and Table A2 for results with larger M . Deploying TNP w/ buffer with K = 1
tracks the best method, and for K = 16 (fast) in most cases performance only worsens slightly.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

GP 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018) 2.51 (0.019) 2.56 (0.019)
Sawtooth 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004) 1.00 (0.005) 1.09 (0.004)
EEG-Int 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014) 0.52 (0.013) 0.54 (0.014)

EEG-For 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003) 0.85 (0.004) 1.21 (0.003)

evaluation: M = 16 targets, batch size B = 256. For training: M = 256 targets, batch size
B = 128.

Our method achieves a superior efficiency profile compared to expressive baselines. For autoregres-
sive sampling (Fig. 3, top left), our method is 3 − 20× faster than the fully autoregressive TNP-A
and TNP-D-AR. While TNP-D-Ind and TNP-ND are faster, they cannot capture complex predictive
dependencies, as shown later in this section. For predictive density evaluation (Fig. 3, top center),
our method’s speed is on par with the highly parallel TNP-A and is a factor of K× faster than the
sequential TNP-D-AR. For training speed (Fig. 3, top right), the overhead of our method is minimal,
resulting in a training step time comparable to the fastest baselines (TNP-D, TNP-ND) and 4− 12×
faster than TNP-A, which incurs a significant computational cost due to its architecture. For memory
usage (Fig. 3, bottom left), our method requires 6 − 7× less VRAM than TNP-D-AR and TNP-A
at large context sizes (N = 1024), scaling efficiently due to only needing to cache a single context
independent of batch size. For predictive performance (Fig. 3, bottom center), we show normalized
scores5 averaged across the six tasks presented in Tables 1 and 2; our method closely matches the
expressive autoregressive baselines (TNP-D-AR, TNP-A) while substantially outperforming TNP-
D-Ind and TNP-ND. We provide additional results, including benchmarks across a wider range of
batch and target sizes and memory usage comparison, in Appendix C.

Synthetic functions. We consider two prediction tasks: (i) functions drawn from Gaussian pro-
cesses (GPs; Rasmussen & Williams, 2006) where the kernel type is sampled from a set, along
with its hyperparameters, and (ii) a non-Gaussian sawtooth process with discontinuous derivatives.
All models are trained and evaluated on distinct draws from these processes (see Appendix D.2).
Results: As shown in Table 1, TNP w/ buffer (K = 16)6 achieves performance comparable to TNP-
D-AR while providing substantial speedups (Fig. 3). To verify buffer training doesn’t degrade AR
capability, we deploy with K = 1, matching the performance of TNP-D-AR exactly.

Electroencephalogram (EEG) data. Following Markou et al. (2022) and Bruinsma et al. (2023),
we train TNPs on EEG time series data (Zhang et al., 1995). Each trial contains 256 regularly
sampled measurements across 7 correlated channels. See Appendix D.2 for dataset details. We train
on an interpolation setting and evaluate on both forecasting and interpolation tasks. Interpolation
uses random context/target splits; forecasting uses the first N points as context and the next M as
targets (Appendices D.2 and D.5). As shown in Table 1, our method with K=16 is comparable to
TNP-D-AR (slightly worse for forecasting), and substantially better than TNP-D (Ind) and TNP-ND.
Additional results (larger M ; permutation effects in forecasting) are in Appendices E.2 and E.3.

Multisensory causal inference model comparison and data prediction. We evaluate our
method on a popular computational neuroscience model that determines how the brain combines
sensory stimuli from different sources (Körding et al., 2007). Using publicly available data from an
audio-visual localization experiment (Liu et al., 2025), we consider two model variants, each with
7 free parameters, differing only in their auditory recalibration parameter ρ ∈ {1, 4/3}, and evaluate
two tasks: (1) Model selection. For each method, we train two models on simulators with ρ = 1 and

5We compute normalized scores for each task by linearly rescaling the average log predictive densities so
that the worst-performing method scores 0 and the best-performing method scores 1.

6See Appendix H.5 for ablations on different buffer sizes.
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Table 2: Multisensory causal inference model comparison and prediction results. For model
selection, we use two metrics: log marginal likelihood root mean-squared error (LML RMSE)
against ground-truth, and difference in LML between ρ = 4/3 and ρ = 1, reported as RMSE
(∆LML RMSE). For data prediction, we report average predictive density estimates (Average LL)
for M = 16 targets, computed using the model selected by the model-selection task. See Ap-
pendix D.5 for additional details and evaluations.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012) 3.56 (0.004) 3.47 (0.004)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019) 2.60 (0.010) 2.59 (0.011)

Average LL (↑) -2.76 (0.024) -2.77 (0.025) -3.12 (0.016) -2.76 (0.024) -2.76(0.024) -2.76 (0.024)

ρ = 4/3. We use the trained models for the challenging task of computing the log marginal likelihood
(LML) of real experimental data, which requires evaluating the joint likelihood (Murphy, 2012):

LML = log p(y1:N |x1:N ) =

N∑
i=1

log p(yi|xi, {(xj , yj)}j<i) (5)

which is inherently an autoregressive prediction task, as each prediction conditions on all pre-
vious data points, so it is perfectly suited for our models. For each dataset, we estimate the
ground-truth LML for both ρ = 1 and ρ = 4/3 using S-VBMC, a method proven effective on
similar problems (Acerbi et al., 2018; Silvestrin et al., 2025). We report LML RMSE and ∆LML
RMSE (the difference between model metrics, useful for model comparison) in Table 2. (2)
Data prediction. Using the model selected in (1), we predict outputs on the real dataset and
report average log-predictive densities (Table 2). See Appendix D.3 for experimental details and
Appendix D.5 for evaluation settings.
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Figure 4: Multisensory causal inference model
comparison versus ground-truth. (Left) Log
marginal likelihood (LML) comparison for both
ρ = 1 and ρ = 4/3. (Right) LML difference
(ρ = 4/3 − ρ = 1) comparison. Our method
closely aligns with the ground-truth.

Results. We evaluate our method using data
from the 15 participants of the original study,
extracting two non-overlapping subsets of 400
experimental trials each (400 data points), re-
sulting in a total of 30 datasets. The model
trained with ρ = 4/3 generally achieves bet-
ter (higher) LML than ρ = 1, aligning with
the original finding that participants are remap-
ping their auditory space to match the visual
range (Liu et al., 2025). Fig. 4 shows that
the LML and ∆LML approximations obtained
with our method are remarkably close to the
ground-truth. Furthermore, our method per-
forms on par with TNP-D-AR and outperforms
all other baselines on model comparison (Ta-
ble 2). All models except TNP-ND perform
similarly on the data prediction task. For additional results, see Appendix F.

Small-scale tabular foundation model. We integrate our autoregressive buffer into the TabICL
foundation model architecture (Jingang et al., 2025). While the original work focused on classifi-
cation, we pre-train our model from scratch for regression tasks. We reuse TabICL’s set encoder to
efficiently compute feature embeddings upfront and focus modifications on the final dataset-wise
in-context learning transformer. Our core methodological contribution is the buffer mechanism,
implemented by a structured attention mask. This allows the model to condition on its recent pre-
dictions by storing them in a dynamic buffer. We pre-train this architecture on synthetic data from
a structural causal model (SCM) prior (Hollmann et al., 2023; Jingang et al., 2025), where each
training instance is formed by partitioning datasets into distinct sets of context, buffer, and target
points. Our network size and training scale are comparable to the original TabPFN (Hollmann et al.,
2023); the model is pre-trained on 10.24 million synthetic datasets containing 1 to 10 features and 8
to 1024 context points, with a buffer size of K = 32. Full details are provided in Appendix D.4.
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Table 3: Average log-predictive density (↑) results on UCI datasets with TabICL. We evaluate
our AR buffer integrated into a TabICL foundation model against independent and standard AR
baselines. Performance is measured on interpolation (Int) and forecasting (For) tasks across six
real-world datasets. Results are reported as mean and standard error over 16 randomly sampled
mini-datasets (M = 32) in low context (N = 16) and high context (N = 1024) settings.

LOW CONTEXT REGIME (N = 16)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 0.38 (0.22) -2.87 (0.77) -0.65 (0.15) -1.46 (0.26) 0.84 (0.11) -0.04 (0.17) -0.59 (0.14) -4.71 (0.46) 0.10 (0.12) -4.53 (1.07) -1.31 (0.07)

Standard AR 0.88 (0.19) -0.97 (0.52) -0.48 (0.13) -1.00 (0.18) 1.43 (0.11) 1.02 (0.13) -0.09 (0.14) -2.39 (0.22) 0.64 (0.12) -2.15 (0.35) -1.17 (0.08)

AR w/ buffer 0.78 (0.19) -1.00 (0.51) -0.48 (0.13) -0.98 (0.17) 1.31 (0.10) 0.94 (0.13) -0.10 (0.15) -2.41 (0.23) 0.55 (0.12) -2.15 (0.34) -1.16 (0.09)

HIGH CONTEXT REGIME (N = 1024)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 1.78 (0.06) 1.64 (0.18) -0.01 (0.16) -0.60 (0.29) 2.54 (0.05) 2.32 (0.07) 0.36 (0.07) -1.12 (0.35) 2.01 (0.06) 1.56 (0.19) -0.44 (0.08)

Standard AR 1.78 (0.06) 1.70 (0.18) -0.01 (0.16) -0.47 (0.27) 2.54 (0.05) 2.40 (0.10) 0.36 (0.07) -0.08 (0.22) 2.01 (0.06) 1.80 (0.13) -0.44 (0.08)

AR w/ buffer 1.79 (0.06) 1.70 (0.18) -0.01 (0.16) -0.48 (0.27) 2.53 (0.05) 2.39 (0.06) 0.36 (0.06) -0.12 (0.23) 2.01 (0.06) 1.64 (0.16) -0.44 (0.08)

Results. We evaluate on six UCI and Kaggle datasets:7 Individual Household Electric Power Con-
sumption, Gas Turbine CO and NOx Emission, Bike Sharing, Jena Climate, Power Consumption of
Tetouan City, and California Housing Prices. We form 16 tasks per dataset for both N = 16 and
N = 1024 context sizes and M=32 targets under interpolation (Int) and forecasting (For) tasks;
the latter for time-series datasets only (all excluding California Housing Prices). We compare three
inference modes: “Ind” (independent predictions), “Standard AR” (conventional step-by-step au-
toregression, K=1 equivalent), and “AR w/ buffer” (ours, K=32). Results in Table 3 show that
standard AR and AR w/ buffer consistently outperform independent predictions in low context set-
tings and in high context forecasting. Crucially, AR w/ buffer matches standard AR within standard
errors, demonstrating that the buffer preserves dependencies while enabling efficient autoregressive
inference. In Appendix G, we provide additional results for the N = 256 setting.

6 DISCUSSION

We introduce a causal autoregressive buffer that decouples one-time context encoding from
lightweight sequential updates in transformer-based probabilistic models. By caching context
keys/values and routing target-to-target dependencies through a causal buffer, we reduce the at-
tention cost fromO(K(N+K)2) toO(N2+NK+K2). Across synthetic functions, EEG interpo-
lation, multisensory modeling, and tabular prediction, our method matches autoregressive baselines
while achieving up to 20× faster joint sampling with minimal additional training cost over standard
models and up to 10× lower training cost than autoregressive-specific baselines.

There are several limitations. The first is the increased cost when scalingK to larger values. Runtime
and memory still include an O(K2) term from causal self-attention in the buffer, and we currently
learn a fixed set of buffer positional embeddings. Scaling to longer horizons without growing train-
ing complexity may be possible via rotary position embeddings (RoPE; Su et al., 2024) or attention
biasing (ALiBi; Press et al., 2022). Second, for long buffers, quality can drift relative to exact AR
that re-encodes the context at each step. Exploring similarities with the draft-verify process from
speculative decoding (Leviathan et al., 2023; Chen et al., 2023) could enable adaptive inference
strategies using the buffer for improved performance.

A practical strength of our method is its plug-and-play applicability: the buffer is implemented via
attention masks and token roles. While we currently perform joint training of the base model and
buffer, our method could be directly applied to pretrained NPs/PFNs. Parameter-efficient fine-tuning
(Houlsby et al., 2019; Hu et al., 2022) could offer a direct path to enable buffered inference without
full retraining. We also leave to future work a deeper exploration of alternative attention backbones
(e.g., Jaegle et al., 2021; see Appendix H.4) and broader inference tasks (Chang et al., 2025).

7UCI: https://archive.ics.uci.edu/. Kaggle: https://www.kaggle.com/.
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ETHICS STATEMENT

This work uses only publicly available datasets and synthetic simulators, with no sensitive data
involved. The methods are for research purposes and pose no foreseeable ethical risks. We have
followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All experiments use public datasets or, when applicable, a simulator for synthetic data. Algorithmic
details are presented in Algorithms 1 and 2, and all hyperparameters and training schedules are spec-
ified in the configuration files and documented in the appendix. Ablation studies are also reported in
the appendix. We do not release pretrained weights, and no special data licenses or usage constraints
apply.
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A METHOD DETAILS

This appendix spells out the modules used in Eq. (3), the single block-sparse attention mask that
implements requirements (R1)–(R4), and the exact procedures for autoregressive sampling and one-
pass joint log-likelihood evaluation.

A.1 MODULES AND NOTATION

Our method uses three sets of tokens: context C, buffer B, and targets T , of sizes N,K,M , respec-
tively. Throughout this paper, let

Ex : X →Rd, Ey : Y→Rd, a : {1, . . . ,K}→Rd

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role
embeddings that indicate token type, denoted by erole

ctx , erole
buf , and erole

tgt for context, buffer, and target
tokens, respectively.

Context encoder rC . Given context pairs C = {(xn, yn)}Nn=1, construct context tokens: ectx
n =

Ex(xn) + Ey(yn) + erole
ctx , process them with bidirectional MHSA (no positional embeddings), and

cache per-layer keys/values:

{KVℓ
C}Lℓ=1 = rC(C) (computed once; immutable).

Buffer encoder rB. For a buffer prefix B1:k = {(x⋆
j , y

⋆
j )}kj=1, form tokens ebuf

j = Ex(x
⋆
j ) +

Ey(y
⋆
j )+a(j)+erole

buf , then apply strictly causal MHSA on {ebuf
j }j≤k so that each token is restricted to

attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to
the cached context {KVℓ

C}. This yields per-layer KVℓ
B1:k

that we update incrementally at inference:

{KVℓ
B1:k
}Lℓ=1 = rB (B1:k, rC(C)) .

Target decoder rtgt and prediction head. For a target input x⋆
m we create a query token

etgt
m = Ex(x

⋆
m) + erole

tgt . The target decoder rtgt performs a single cross-attention from etgt
m to the

concatenated keys/values of the context cache {KVℓ
C} and the visible buffer prefix {KVℓ

B1:vm
},

followed by normalization and an MLP:

hm = rtgt

(
etgt
m,

[
{KVℓ

C}, {KVℓ
B1:vm

}
])
, ϕm = ψ(hm),

where ψ is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 TRAINING MASK THAT IMPLEMENTS (R1)–(R4)

We concatenate tokens as [C,B, T ] with sizes N , K, and M , respectively, and use one block-sparse
attention mask consisting of the following five unmasked sections (everything else is masked):

(1) Self-attention within context. Context tokens attend bidirectionally to other context tokens.
Context never attends to buffer or targets (context is read-only outside this block).

(2) Buffer reads context (cross-attention). Each buffer token can read (attend to) all context tokens.
This lets the buffer incorporate task information from the cached context while keeping the context
cache immutable.

(3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a
buffer token at position j can only read earlier buffer positions <j (no future reads). This encodes
the autoregressive dependency among realized targets.

(4) Targets read context (cross-attention). Each target query can read the entire cached context.
There are no edges between targets.

(5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible
prefix of the buffer. The visible prefix length for target m is vm: training (teacher forcing): we
set vm=0 for 50% of targets and sample vm ∼ Uniform{1, . . . ,K} for the rest (the curriculum);

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Transformer diagonal prediction map training mask Transformer diagonal prediction map training mask w/ AR buffer

Context self-attn
Buffer self-attn

Buffer-context cross-attn
Target-context cross-attn

Target-buffer cross-attn

Figure A1: Block-sparse attention masks with and without an autoregressive buffer. Left: a
diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target
reads the entire context. Right: our buffered variant inserts an autoregressive memory B between
context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within
buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

Algorithm 1 Autoregressive sample generation for K targets

Require: Context C = {(xn, yn)}Nn=1, target inputs {x⋆k}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Initialize {KVℓ
B1:0
} ▷ empty buffer cache

3: for k = 1 to K do
4: hk ← rtgt

(
Ex(x

⋆
k)+e

role
tgt ,

[
{KVℓ

C}, {KVℓ
B1:k−1

}
])

5: Sample y⋆k ∼ pθ(·;ψ(hk))

6: Append (x⋆k, y
⋆
k); update {KVℓ

B1:k
} (strictly causal)

7: end for
8: return {y⋆k}Kk=1

sampling: at step k, the active query sees the realized prefix k−1; one-pass joint log-likelihood:
packed queries use vm=m−1 to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets;
and buffer never reads targets. This single pattern implements the four requirements from the main
text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access
to (context + visible buffer). See Fig. A1 for the diagram.

Complexity. Under this mask, a full prediction pass costsO(N2+NK+K2) attention operations
per layer: one-time O(N2) for C, O(NK) for reads from C, and O(K2) for causal buffer self-
attention. This replaces the O

(
K(N+K)2

)
cost of naive AR re-encoding. Packing B target orders

in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding
O
(
N2 +B(NK +K2)

)
.

A.3 ALGORITHMS FOR AUTOREGRESSIVE SAMPLING AND LOG-LIKELIHOOD EVALUATION

We include here the pseudocode for the main procedures used in our method. Algorithm 1 details
the autoregressive sampling procedure, and Algorithm 2 presents the joint likelihood evaluation.

18
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Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context C = {(xn, yn)}Nn=1, ordered targets {(x⋆k, y⋆k)}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Build all K buffer tokens; compute {KVℓ
B1:K
} under causal mask

3: Build target queries {Ex(x
⋆
k)+e

role
tgt }Kk=1

4: Mask: target k sees B1:k−1 and all of C
5: Compute {log pk}Kk=1;
6: return

∑K
k=1 log pk

B TRANSFORMER NEURAL PROCESS BASELINES DETAILS

We summarize the baseline transformer neural process (TNP) variants used in our comparisons,
following Nguyen & Grover (2022). Architectural hyperparameters appear in Appendix D.1.

B.1 TNP-D

This model takes as input a context set {(xn, yn)}Nn=1 and a target set {x⋆
m}Mm=1. Similar to Ap-

pendix A, the context embeddings ectx
n are processed with bidirectional MHSA with no positional

encodings. Each target is decoded by:

hm = rtgt

(
etgt
m, rC(C)

)
, ϕm = ψ(hm),

where ψ is the distribution head (Gaussian as in the original paper; we primarily use a mixture of
Gaussians). The left panel of Fig. A1 shows the training mask for TNP-D. This model is trained via
maximum likelihood estimation of independent targets given a fixed context set.

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-
D-AR methods. TNP-D-Ind decodes all targets independently in a single pass. It is fast (context and
targets encoded once), but cannot capture dependencies between targets.

TNP-D-AR decodes targets sequentially, appending each sampled (x⋆
m, y

⋆
m) to the context. This

captures joint structure but requires re-encoding the growing set at each step. TNP-D-Ind is invari-
ant to target order; TNP-D-AR is order-sensitive, so we approximate the predictive distribution by
averaging over multiple target orderings.

B.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a
joint multivariate Gaussian distribution over the outputs. The embedder and transformer backbone
are identical to those of TNP-D-Ind:

hm = rtgt

(
etgt
m, rC(C)

)
.

Then the joint distribution is obtained via

ϕ = ψND(h1, ... ,hM ),

where ψND is the multivariate Gaussian head that outputs both a mean vector and valid covariance
matrix. The mean is produced per target, and a lightweight self-attention head over the set of tar-
gets yields fixed-width embeddings that are transformed into a valid covariance factor. This design
supports a variable number of targets and is invariant to target order.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At inference,
the joint samples and log-likelihood are computed in a single pass. This model is invariant to the
order of target points.

B.3 TNP-A

The key difference between this model and TNP-D is the attention mechanism on the target set.
This model processes three sets: the context {(xn, yn)}Nn=1, the target {x⋆

m}Mm=1, and the observed
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target {(x⋆
m, y

⋆
m)}Mm=1. To differentiate, we denote the embeddings of {(x⋆

m, y
⋆
m)}Mm=1 by {ey,tgt

m }.
Similar to TNP-D, the context embeddings attend to each other. For the target set, each etgt

m attends
to the context and the previous observed target embeddings ey,tgt

j<m. Likewise, the observed target
embeddings attend to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022).

The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single
pass, assuming the observations are given (e.g., for training and test log-likelihood evaluations). For
prediction generation, however, each sampled target needs to be re-encoded and attended for the
generation of next targets, yielding a sequential re-encoding procedure. The causal mask on the
target set is sensitive to the target order, and thus the final likelihood is an average over multiple ran-
dom permutations. Note that this model processes duplicated target set–{x⋆

m}Mm=1 and an observed
sequence {(x⋆

m, y
⋆
m)}Mm=1; this creates significant computational overhead in both the training and

the inference, particularly when the target set is large (see e.g. Appendix C and Figs. A7 to A9).

Compared to our method, TNP-A can be viewed as TNP-D with a ‘frozen buffer’ {(x⋆
m, y

⋆
m)}Mm=1 of

size K =M containing the observed targets. For likelihood evaluation where all sets are processed
in one shot, the behavior of TNP-A and our approach are analogous, with the set {(x⋆

m, y
⋆
m)}Mm=1

serving a role similar to our buffer. However, for AR sampling, TNP-A repeatedly re-encodes the
full context and target sets after each sampled y⋆m, whereas our method dynamically adapts to new
samples. Moreover, since TNP-A does not afford a dynamic-size target set decoupled from the
‘in-context’ targets, training is much more expensive than our method (see Fig. 3 in the main text).

C COMPUTATIONAL EFFICIENCY DETAILS

This section provides additional empirical results to support the efficiency claims made in the main
paper. We present an analysis of performance scaling with batch size, an ablation study of our
custom kernel, a comparison against unoptimized open-source baselines, and further ablations on
training time. In all subsequent plots, the absence of a data point for a given method indicates that
the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

C.1 SCALING WITH BATCH SIZE

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and
joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock
time as a function of the number of context points N for various batch sizes. The results confirm
that our method’s performance advantage over autoregressive baselines like TNP-A is consistent and
often widens as the context and batch size increase.
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Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range
of batch sizes B.
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Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded
range of batch sizes B.

C.2 IMPACT OF CUSTOM TRITON KERNEL

To isolate the contribution of our custom attention kernel, we compare the sampling time of our
method with and without this optimization. The kernel is designed to accelerate a key computational
step: the cross-attention between the batched target embeddings (batch sizeB) and the concatenation
of a batched buffer cache with a shared context cache (batch size 1). A naive implementation would
explicitly expand the context cache tensorB times to match the batch dimension before the attention
operation. This “expand” operation is memory-bandwidth intensive and creates a large, redundant
intermediate tensor.

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations.
The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch,
calculating the attention on-the-fly without ever materializing the full expanded tensor in slower
global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial
speedup that grows with the batch size B.
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Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the
custom Triton kernel across different context and batch sizes.

C.3 COMPARISON TO OPEN-SOURCE BASELINES

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline
implementations against their standard, publicly available versions. The results for sampling and
likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently
3− 10× faster than their standard counterparts. This confirms that our method’s performance gains
are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.
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Figure A5: Comparison of our optimized baseline implementations against standard open-source
versions for autoregressive sampling.
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Figure A6: Comparison of our optimized baseline implementations against standard open-source
versions for joint log-likelihood evaluation.

C.4 TRAINING TIME SCALING

We further analyze the scaling of training step time with respect to the number of target points M
for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256,
respectively. The results show that as the context, target, or batch size increases, TNP-A becomes
increasingly expensive to train relative to all other methods.
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Figure A7: Training step time vs. number of target points M for batch size B = 64.
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Figure A8: Training step time vs. number of target points M for batch size B = 128.
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Figure A9: Training step time vs. number of target points M for batch size B = 256.

C.5 IMPACT OF ATTENTION PATTERNS ON TRAINING SPEED

A key difference between the baseline models is their compatibility with modern, efficient attention
implementations. The causal attention mask required by TNP-A during training is incompatible
with kernels like FlashAttention, forcing it to use PyTorch’s standard, but slower, “math” attention
backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

In Appendix B, we discussed the duplicated processing of TNP-A on the target set, which incurs
significant computational overhead. To determine if TNP-A’s slow training is fundamental to its
architecture or merely an artifact of this kernel incompatibility, we conduct a controlled ablation.
We disable FlashAttention for all methods, forcing a fair comparison on the same standard PyTorch
attention backend. The results, shown in Figs. A10 to A12, are unequivocal. Even on a level playing
field, TNP-A’s training time is orders of magnitude slower than all other methods. This confirms
that its high computational cost is an inherent consequence of its autoregressive design, not just an
implementation detail.
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Figure A10: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 64.
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Figure A11: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 128.
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Figure A12: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 256.

C.6 MEMORY USAGE

Figure A13 reports peak GPU memory consumption during autoregressive sampling as a function
of context size N across different batch sizes B. Our method maintains consistently low memory
usage across all configurations, requiring 6–7× less VRAM than TNP-D-AR and TNP-A at large
context sizes (N = 1024). This efficiency stems from our fixed-size buffer mechanism: while
autoregressive baselines must cache representations that grow with context size and batch size, our
method only caches buffer representations of size K, independent of the batch. TNP-D-Ind and
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TNP-ND show lower memory usage but, as demonstrated in the main text, cannot capture complex
predictive dependencies.
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Figure A13: Peak GPU memory usage during sampling as a function of context points N for differ-
ent batch sizes B. Our method scales efficiently due to its fixed buffer size, using substantially less
memory than expressive autoregressive baselines.

D EXPERIMENTAL DETAILS

D.1 MODEL CONFIGURATION

In our paper, we use MLP to map context pairs, buffer pairs, or target points to tokens. Then a trans-
former is applied to the sequence of tokens. We used mixture-of-Gaussian (GMM) head as our main
head distribution (more expressive than a single Gaussian head, as demonstrated in Appendix E).
In general, we train all models (except the tabular model; see Appendix D.4 for details) with the
following settings.

Training configurations.

• Optimizer: Adam with learning rate 1× 10−4 (unless stated otherwise), β = (0.9, 0.999),
no weight decay. For TNP w/ buffer, we use the same settings, but apply weight decay of
0.01 for stability.

• Scheduler: Cosine schedule with warmup; warmup ratio 0.1 for all experiments. for TNP
w/ buffer, we use a warmup ratio of 0.05.

• Training loop: 32 epochs.

Embedder. We use a 3-layer MLP with 256 hidden layer dimension and 128 output dimension.
There is a skip connection between the first linear layer and the MLP output.

Transformer backbone. This has 6 layers of transformer encoder modules, each with a multi-
head attention of 4 heads and dimension 128 followed by an MLP feedforward of 2 layers, dimension
128 → 256 → 128. This is the transformer attending context, buffer, and target set (Appendix A
and Appendix B).

Prediction head. Note first that different distribution heads involve individual parameterization
structures. Therefore, another layer of distribution-specific NNs is required to process the above
transformer outputs. This NN module is considered part of the distribution head (the ψ in Ap-
pendix A and Appendix B).

For our method, TNP-D, and TNP-A, the head consists of 2 layers of MLP with dimension 128→
256 → 3 ∗ Dy ∗ Ncomponents, where Dy is the output dimension of the problem and Ncomponents is
the number of Gaussian components. The MLP output is then chunked into weights, means, and
standard deviations (of the same shape) which parameterize the GMM, and the outputs are sampled
in parallel for Dy > 1. We set Ncomponents = 20 for all tasks except for EEG where Ncomponents = 8.
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For TNP-ND, we use the setting from Nguyen & Grover (2022), where the targets are mapped to
a mean and a Cholesky matrix, which parameterize the multivariate Gaussian. The mean of each
target is mapped by an MLP with dimension 128 → 256 → Dy . The Cholesky matrix requires
two steps: (i) the target tokens (conditioned on context via the above transformer backbone) are
first decoded into H ∈ RM×20 by another 3-layer transformer (no positional encoding, 4 heads,
each layer with dimension 128 and MLP 128 → 256 → 128, no mask) and then an MLP projector
(128→ 256→ 20); (ii) the Cholesky matrix is taken as L = lower(HHT ).

Trained model selection. We track the loss value in each epoch as we train the models. The
parameters with the best loss value on the validation set are selected for the evaluations on a separate
test set.

D.2 DATASETS

Gaussian Process (GP) Functions. As a first toy case, we test on GP functions (see Rasmussen
& Williams 2006 for details of GPs). In this example, a batch contains 128 functions of one di-
mensional inputs (D = 1) and one dimensional observations (Dy = 1). The inputs are sampled
from interval [−2, 2] using the Sobol sequence. For each batch, we first sample a kernel class from
squared-exponential (RBF), Matérn-3/2, Matérn-5/2 with probabilities 0.4, 0.3, and 0.3, respectively.
Conditional on the chosen class, each function receives its own kernel hyperparameters: the variance
σ2
f ∼ Uniform[0.5, 1.5] and the lengthscale ℓ ∼ Uniform[0.1, 1], broadly covering diverse classes

of functions of amplitude around 1. We then sample functions from GP (0,k), where k represents
the sampled kernels, and add i.i.d. Gaussian observation noise with variance 10−5. The resulting
values are randomly partitioned into context, buffer, and target sets. Note that within a batch the
kernel class is fixed, whereas the hyperparameters are sampled independently for each function.

During training, we sample the context set size N between 4 and 192 with a maximum buffer size
of 16.

Sawtooth Functions. The second example is the non-Gaussian sawtooth functions (Bruinsma
et al., 2023). In this example, a batch contains 128 functions of one dimensional inputs (D = 1)
and one dimensional observations (Dy = 1). The inputs are sampled from interval [−2, 2] using the
Sobol sequence. An input x and output y follows:

y(x) = ynonoise(x) + ϵ,

ynonoise(x) = (ω(⟨u,x⟩ − ϕ)) mod 1,

where u ∈ RD is a direction sampled uniformly from the unit sphere via u = g/∥g∥2 with g ∼
N (0, ID); ω, ϕ, and ϵ denote the frequency, phase offset, and additive noise, respectively; and the
parameters are drawn independently as ω ∼ Uniform[3, 5], ϕ ∼ Uniform[0, 1], and ϵ ∼ N (0, σ2)
with noise scale σ ∼ Uniform[0.05, 0.1].

During the training, we sample N between 8 and 128 and the maximum number of buffer is 16.

Electroencephalogram (EEG). The dataset contains 11, 520 trials of 122 subjects from 7 corre-
lated channels with 256 time points each. The output channels are individually standardized to zero
mean and unit variance. We randomly select 10 for the test set, reserve 10 for cross-validation, and
the remaining for the train set. This leaves 7802 trials for the training and 896 for testing.

During the training, the trials are replicated for 200 times and shuffled. Each batch contains 32
trials sampled from the shuffled set. We select between 4 and 192 of the 256 time points to be
context points, 32 buffer points, with the remaining being target points. Each batch has a fixed size
of context set.

We evaluate on both interpolation (random masking) and forecasting (temporal masking) tasks using
the test subjects. The test set splits the 256 time points into context and target. For interpolation, we
sample the specified number of context and target points from the full time sequence (Appendix E).
For forecasting, we take the first N points as context set and the consecutive M points as target set.
Forecasting with N = 192 context and M = 64 target sets involves the full sequence.
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Multisensory causal inference model dataset. In the last example, we adopt one of the multisen-
sory causal inference models described in Liu et al. (2025) to build a simulator, which we then use
to generate training data (full setup and generation procedure, as well as a description of the exper-
iment, are provided in Appendix D.3). The inputs x correspond to the experimentally manipulated
variables of the study, namely rtype, sA, sV and Vlevel, where rtype denotes the task type (auditory vs
visual localization), sA and sV are the true locations of auditory and visual cues presented to human
participants, and Vlevel the level of noise applied to visual cues. We first generate sets of input points
for the simulator to obtain the outputs y, which represent the predicted responses.

For training, we construct two datasets from the simulator with different values of ρ, a variable of the
model regulating the level of recalibration of the auditory perceptual range (with ρ = 1 representing
no recalibration and ρ = 4/3 representing a full recalibration to the visual range, see Appendix D.3
for more details), and train two separate models for each setting. We sample N between 0 and 400,
fix Nt = 256, and set the buffer size to a maximum of 16. For the zero-context case, we introduce
one “dummy point”, to indicate the absence of context to the model. During evaluation, we use
the publicly available dataset obtained from the experiment described in Liu et al. (2025). For each
of the 15 participants in the study, we extract two non-overlapping subsets of experimental data of
400 trials each. We do so by stratifying on the joint levels of Vlevel ∈ {0, 1, 2} and rtype ∈ {0, 1}
(more details on these variables below), and extracting the two sets such that (i) within each split the
six (3 × 2) strata are represented as evenly as possible, and (ii) the per-stratum counts are matched
between splits. This yields 30 datasets overall (2 per participant).

For details of the real experiments and the complete data generation setup in the simulator, see
Appendix D.3.

Tabular foundation model. We pretrain a task-agnostic tabular model on synthetic data and eval-
uate it on three UCI datasets. This larger model uses a dedicated training procedure; architectural
and training details are in Appendix D.4, and the evaluation protocol is in Appendix D.5.

D.3 MULTISENSORY CAUSAL INFERENCE MODEL AND EXPERIMENT DETAILS

To probe our method’s suitability for Bayesian model comparison, we consider a computational
neuroscience study investigating multisensory causal inference, described in Liu et al. (2025).

D.3.1 ORIGINAL NEUROSCIENCE EXPERIMENT

Stimuli and procedure. In this work, we take into account a subset of the experimental data
obtained from 15 human participants who, at each experimental trial, were asked to perform one of
two localization tasks, which the authors refer to as bisensory visual (BV) and bisensory auditory
(BA) localization. In both cases they were presented with an auditory cue, located at an angle
uniformly sampled among {−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦} from the participant, and a visual
one, either at the same location as the auditory one (≈ 1/2 of trials) or at an angle uniformly sampled
between −20◦ and 20◦. They were either asked to report the location of the visual (BV) or the
auditory (BA) stimulus on a screen. Here we call those locations sV and sA, respectively. The
level of noise Vlevel associated with the visual stimulus location was experimentally manipulated by
modifying the size of the stimulus itself. In practice, this meant presenting a small (Vlevel = 0; ≈ 1/3
of trials), medium (Vlevel = 1; ≈ 1/3 of trials) or large (Vlevel = 2; ≈ 1/3 of trials) visual stimulus.

Each participant completed a total of 1000 trials.

Cognitive models. Here we focus on two versions of the “vanilla” model described in the original
paper (Liu et al., 2025). On each trial, the participant is assumed to believe the two stimuli could
come from either a common (C = 1) or different (C = 2) source, assigning a fixed prior probability
p(C = 1) = psame to the former case. Regardless of this, the participant has Gaussian priors over
stimuli locations p(sA) = N (sA | 0, σ2

S) and p(sV ) = N (sV | 0, σ2
S).

A key assumption of the model is that participants do not have direct access to the true location of
the stimuli, but only to noisy auditory and visual percepts, a common feature in Bayesian models of
perception (Knill & Pouget, 2004). These percepts are modeled as xA = ρ(s+εA) and xV = s+εV
respectively in case of a common source, and xA = ρ(sA + εA) and xV = sV + εV in case
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of separate sources. Here s = sA = sV represents their common location when C = 1, while
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V ) represent the auditory and visual perceptual noise. While

σA is assumed to be fixed, σV can assume three separate values (σ(low)
V , σ(med)

V , σ(high)
V ) based on the

(experimentally manipulated) size of the visual stimulus Vlevel. Finally, ρ represents a “recalibration”
factor to account for the fact that the range of auditory stimuli (30◦) is different from that of visual
ones (40◦). In our experiment, this is the factor that differentiates the two models we set out to
compare: in the first, we set ρ = 1; in the second, we set ρ = 4/3 (thus re-mapping auditory percepts
to the same scale as visual ones).

Here we describe a BA trial, but the following is easily generalizable to BV ones. When asked about
the location of the auditory stimulus, participants are assumed to consider both scenarios (common
vs different sources) by evaluating

p(s | C = 1) = p(s | xA, xV , σA, σV , σS),
p(sA | C = 2) = p(sA | xA, σA, σS),

as well as

p(C | xA, xV , σA, σV , σS , psame).

The final estimate ŝA of the location is then inferred by weighting the two hypotheses (common vs
separate sources) by their posterior probability, so

ŝA =p(C = 1 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
s · p(s | C = 1)ds+

p(C = 2 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
sA · p(sA | C = 2)dsA.

(6)

Finally, the response of the participant is modeled as y ∼ N (ŝA, σ
2
M ) with a probability of 1−λ, and

y ∼ Uniform[−45, 45] with a probability of λ. Here λ represents the “lapse rate”, or the probability
of a participant being distracted/disengaged and giving a random answer (which we fix at 0.02),
while σM represents motor noise.

Both models thus have 7 free parameters, which we re-parametrize as logσ(low)
V , logσ(med)

V , logσ(high)
V ,

logσA, logσS , logσM and logitpsame for the purposes of simulation and model-fitting.

D.3.2 SIMULATION

For training all models, we produce∼1.5 millions synthetic datasets. In what follows we go through
the simulation of a single trial. As trials are independent from one another, generating more of them
simply involves repeating this process.

Stimuli. Following the setup used in Liu et al. (2025), we sample sA ∼
Uniform{−15,−10,−5, 0, 5, 10, 15} and C ∼ Uniform{1, 2}. Then we either sample
sV ∼ Uniform[−20, 20] as a continuous variable (if C = 2) or we set sV = sA (if C = 1). We
then sample Vlevel ∼ Uniform{0, 1, 2}, representing the perceptual noise associated with sV . This
regulates whether σV = σ

(low)
V , σV = σ

(med)
V or σV = σ

(high)
V .

Finally, we sample rtype ∼ Uniform{0, 1}, representing the task (BV if rtype = 0, BA if rtype = 1).

Parameters. For each synthetic dataset, the prior generative distributions for the 7 free param-
eters are Gaussians truncated at two standard deviations above and below the mean. We use
Ntruncated(µ, σ

2) to denote such distributions, with µ being the mean and σ the standard deviation.
Similarly to empirical Bayes approaches (Murphy, 2023), we use maximum-likelihood estimates of
the individual participants’ parameters from Liu et al. (2025) as a guide for setting these priors, so
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as to generate realistic parameter ranges. The parameter distributions we use in this work are:

logσ(low)
V ∼Ntruncated(0, 1.5

2);

logσ(med)
V ∼Ntruncated(logσ(low)

V + 1, 12);

logσ(high)
V ∼Ntruncated(logσ(med)

V + 0.75, 0.52);

logσA ∼Ntruncated(1.75, 0.5
2);

logσS ∼Ntruncated(2.5, 1
2);

logσM ∼Ntruncated(0, 0.5
2);

logitpsame ∼Ntruncated(1.5, 1.5
2).

Note that logσ(low)
V , logσ(med)

V , and logσ(high)
V are not independent from each other, but carry the

assumption that in most cases logσ(low)
V ≲ logσ(med)

V ≲ logσ(high)
V , which reflects the intent of the

experimental manipulation of Vlevel.

Responses. Here we describe a scenario in which rtype = 1 (BA trial), but the process is the same
for rtype = 0. In simulating the responses, we follow the hierarchical structure specified by the
model. First we computed the sensory percepts xA = ρ(sA + εA) and xV = sV + εV by sampling
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V ). We then evaluate ŝA (recall we are considering a BA trial) as

in Eq. (6), and sample the final response as either y ∼ N (ŝA, σ
2
M ) or y ∼ Uniform[−45, 45], with

a probability regulated by the lapse rate λ (which we set to 0.02, see above).

D.3.3 GROUND-TRUTH ACQUISITION

Here we describe how we obtained our log marginal likelihood (LML) estimates (in the form of
lower bounds, see below), which we then use as ground-truth to compare our approach to baselines.

Problem setting. Fitting the cognitive model to a dataset involves finding the posterior over model
parameters given empirical data and model

p(θ | y,X, ρ) = p(y | θ,X, ρ)p(θ)
p(y | X, ρ)

, (7)

where
θ = {logσ(low)

V , logσ(med)
V , logσ(high)

V , logσA, logσS , logσM , logitpsame},

X = {s(t)A , s
(t)
V , V

(t)
level, r

(t)
type}400t=1,

and
y = {y(t)}400t=1.

Here t represents the trial number within the dataset (recall we are using data splits of 400 trials each,
see Appendix D.2), and we set p(θ) to the truncated Gaussians we use for sampling the parameters
in our simulation (see Appendix D.3.2), with probability density of values beyond the truncation
boundaries set to a “floor value” of N (5 | 0, 1).
While the posterior over parameters is often instrumental in answering scientific questions, the cru-
cial quantity we are interested in estimating is the model evidence (also called marginal likelihood)
p(y | X, ρ) (i.e., the denominator in Eq. (7)), as it represents a straightforward metric for model
selection. In fact, assuming a flat prior over models p(ρ = 1) = p(ρ = 4/3) = 0.5, the model
evidence as a function of ρ represents the unnormalized posterior over models.

Stacking Variational Bayesian Monte Carlo. To compute a reliable estimate of the marginal
likelihood to use as our ground-truth, we use Stacking Variational Bayesian Monte Carlo (S-VBMC,
Silvestrin et al., 2025). This is a principled approach to merge (“stack”) approximate posteriors
generated by a set of independent runs of its parent algorithm, Variational Bayesian Monte Carlo
(VBMC, Acerbi, 2018; 2020). This is done in a simple post-processing step, which has been shown
to greatly improve the approximate posterior quality in a variety of challenging settings. In addition
to a posterior distribution, S-VBMC outputs an estimate of the evidence lower bound (ELBO),
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which, as the name suggests, is a lower bound on the (log) model evidence (Blei et al., 2017),
the quantity we are interested in for model comparison. As the approximation of the posterior
approaches the true one, this quantity gets closer to the true model evidence, with equality when
the approximation is perfect. As S-VBMC proved very effective in computational neuroscience
problems (Silvestrin et al., 2025), including one very similar to the one considered here (Acerbi
et al., 2018), we deem it a suitable method for estimating a lower bound on model evidence to use
as a ground-truth.

While an in-depth description of S-VBMC and VBMC is beyond the scope of this work (an inter-
ested reader should refer to the original papers cited above), in the following paragraphs we briefly
report details of our implementation of both.

VBMC implementation details. To obtain an approximate posterior, the Python implementation
of VBMC (Huggins et al., 2023) requires absolute and plausible upper and lower bounds for each
parameter. We use the sampling bounds defined in Appendix D.3.2 as absolute bounds, and replicate
the process considering 1.5 standard deviations (as opposed to 2) from the mean to establish the
plausible ones.

Another required input is a target density function (i.e., the unnormalized posterior), for which we
use the numerator of Eq. (7), p(y | θ,X, ρ)p(θ). We do this both with ρ = 1 and ρ = 4/3,
representing the two models we set out to compare.

Finally, VBMC requires a starting point in the parameter space, which we uniformly sample between
plausible bounds independently for each inference run.

S-VBMC implementation details. After obtaining 20 converging VBMC runs for each of our 30
datasets (2 for each of the 15 participants, see Appendix D.2) for both models, we stack the resulting
posteriors with S-VBMC. We maintain the default settings, therefore the only inputs required are the
VBMC runs themselves. With this, we obtain a total of 60 “stacked” ELBOs (two per each dataset,
corresponding to our two competing models) to use as ground-truth.

D.4 TABULAR MODEL DETAILS

This section describes the TabICL model and explains how the training dataset was generated. No-
tably, the base architecture used for this tabular data example is different from the one used in the
other experiments, highlighting the broad applicability of our method.

D.4.1 ARCHITECTURE

Set encoder. We reuse the first two stages of TabICL (Jingang et al., 2025) without modification:
the distribution-aware column processor (TFcol, implemented with induced self-attention blocks)
followed by the context-aware row-wise transformer (TFrow) with RoPE. Scalars are mapped by a
1 → 128 linear layer; each column is then processed across rows by an ISAB stack (Lee et al.,
2019) with three blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256.
The row-wise encoder has three layers with four heads, feed-forward hidden dimension of 256, and
RoPE base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding
a 256-dimensional row embedding (2× 128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample
for context, buffer, and target rows (dimension 128; only selects the subset of the vector correspond-
ing to the [CLS] token dimensions). Context and buffer tokens receive the target value additively
via a small target encoder (linear 1→128. Buffer tokens also receive a learned positional embedding
indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute
the set encoder once, and makes the buffer explicit at the token level.

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise trans-
former with twelve layers and four heads, model width 128, and feed-forward size 256. The atten-
tion mask is the only architectural change relative to TabICL: context attends bidirectionally and
is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the
cached context and to the causal prefix of the buffer; there are no edges into context from buffer or
targets. The maximum buffer size is 32 tokens and we query 512 targets per task.
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Prediction head. Predictions use a GMM head with 20 components and a minimum standard
deviation of 10−3.

Caching. The column and row set encoder is computed once for all rows. During autoregressive
decoding we cache keys/values for the context once and update only the buffer cache, so the same
context cache is reused across parallel generations.

D.4.2 DATA GENERATION AND PREPROCESSING

SCM prior and task family. We generate datasets with the MLP-based structured causal model
(SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime
of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style)
connectivity and then define each variable c as c = f(Pa(c)) + ε, where Pa(c) are its parents, f
is a small MLP with nonlinearity, and ε is independent noise. Unless stated otherwise, we sample
the feature dimension d ∈ [1, 10], and per-task context sizes N ∈ [8, 1024]; targets are continuous
responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including
mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source,
which we handle with the TabICL preprocessing described below.

Sampling of task partitions. For each generated dataset we draw a random partition (C,B, T )
with N ∼ Uniform{8, ... , 1024}, buffer capacity fixed at K = 32, and target count M = 512. Per
batch, we fix (d,N,K,M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL PreprocessingPipeline and fit it on context features only.
The fitted transform is then applied to context, buffer, and target features. Regression targets are
standardized using context statistics, i.e., ỹ = (y − µy,C)/σy,C , and the same (µ, σ) are used for
buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang
et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo–Johnson); and (iii) outlier
handling via a z-score threshold τ = 4.0. At transform time, values outside the fitted range are
clipped to the training (context) min/max before normalization, mirroring TabICL’s behavior.

D.4.3 TRAINING PROCEDURE

We train with AdamW (learning rate 1 × 10−4, β=(0.9, 0.95), weight decay 0.0), batch
size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone.
Mixed-precision training uses AMP with bfloat16. All runs use float32 tensors at the data
interface. A cosine schedule with warmup is used (cosine with warmup); warmup steps=
2000 takes precedence over the nominal warmup ratio= 0.20; num cycles= 1. Automatic
mixed precision is enabled with amp dtype=bfloat16. Each training step draws a batch of 64
independent tasks (datasets) with feature dimension d sampled from {1, ... , 10} and context size N
from {8, ... , 1024}; buffer size and target count are fixed at K=32 and M=512. Training is capped
at max steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately
64× 160,000 = 10.24 million synthetic tasks seen during pretraining. The global data seed is 123.
We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

D.5 EVALUATION DETAILS

In this paper log-likelihood values are always averaged (LL divided by the number of target points
M ).

GP & Sawtooth functions. We evaluate likelihood values over 1024 functions, each repeated 4
times with models trained on different seeds and context sizes N = 8, 16, 32, 64, 128 (statistics
of 1024 × 4 × 5 evaluations). Each likelihood evaluation is an average of 128 permutations (log
averaged likelihood). In other words, we have 1024×4×5 averaged likelihoods, and each averaged
value merges 128 orders of the target set.
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Table A1: Head comparison on synthetic function. We compare average log-likelihood (↑) results
on our main GMM head and on standard Gaussian distribution head.

TNP-D TNP w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)
Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

TNP-D-Gaussian TNP Gaussian w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.50 (0.019) 2.13 (0.023) 2.48 (0.019) 2.53 (0.019) 2.53 (0.019)
GP (M = 128) 3.23 (0.013) 2.06 (0.023) 3.25 (0.013) 3.27 (0.013) 3.27 (0.013)
Sawtooth (M = 16) 0.96 (0.004) 0.82 (0.006) 0.85 (0.006) 0.98 (0.004) 0.99 (0.004)
Sawtooth (M = 128) 1.10 (0.003) 0.82 (0.005) 1.10 (0003) 1.11 (0.003) 1.11 (0.003)

EEG data. We train each model once with a fixed seed; the evaluations are over 896 trials from
20 subjects held out during training, each repeated with N = 8, 16, 32, 64, 128, 192. For the EEG
forecasting, the target set consists of time points immediately after context points, and, in the main
results (Table 1), the target set permutations are applied, as done in Bruinsma et al. (2023). We
additionally demonstrate in appendix Table A3 that forecasting with permuted target set outperforms
fixed sorted target. The number of permutations we apply is 128.

Multisensory causal inference model. We train one model for each setting of ρ (ρ = 1 and
ρ = 4/3). In the model selection scenario, the full 400-point dataset from each of the 30 batches is
used as the target, and we evaluate the LML across all cases. This procedure is repeated 5 times,
with 128 different sequence permutations per run. In the data prediction scenario, we first select
the winning model from the model selection stage, and then compute log-likelihoods on the same
30 batches, each repeated with N = 8, 16, 32, 64, 128, 256. The results of both experiments are
summarized in Table 2. Here we also use 128 permutation for all batches.

Tabular foundation model. We pretrain a task-agnostic tabular model on synthetic data (Ap-
pendix D.4) and evaluate it on three UCI datasets: Individual Household Electric Power Consump-
tion8, Gas Turbine CO and NOx Emission DataSet9, Bike Sharing10, Jena climate dataset11, Power
Consumption of Tetouan City12, and California Housing Price13.

For each dataset, we evaluate likelihood values over 16 randomly sampled subsets. The context
and target sets are set to N = 128,M = 32. Each likelihood evaluation is an average of 128
permutations.
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Table A2: Average Log-likelihood (↑) results on synthetic functions and EEG example. Supple-
mentary results of Table 1 on larger target set and various deployed K. When M > K, we evaluate
every K targets once and perform AR for M/K steps.

TNP-D TNP-ND TNP-A
AR Ind

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 2.27 (0.023) 3.10 (0.012)

Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004)
Sawtooth (M = 128) 1.14 (0.003) 0.94 (0.005) 0.39 (0.005) 1.12 (0.003)

EEG-Int (M = 16) 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014)
EEG-Int (M = 64) 0.88 (0.011) 0.35 (0.014) 0.50 (0.010) 0.95 (0.012)

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)

TNP w/ buffer
K=16 K=4 K=1

GP (M = 16) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)

Sawtooth (M = 16) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

EEG-Int (M = 16) 0.52 (0.013) 0.54 (0.014) 0.54 (0.014)
EEG-Int (M = 64) 0.90 (0.011) 0.91 (0.011) 0.91 (0.011)

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)

E ADDITIONAL LOG-PREDICTIVE DENSIITY RESULTS ON SYNTHETIC AND
EEG TASKS

E.1 PREDICTIVE POWER OF DIFFERENT HEADS

In this paper, we use GMM as our prediction head. We compare the predictive performance of
GMM to standard Gaussian distribution head. In Table A1, GMM is able to achieve better predictive
performance, particularly on the non-Gaussian Sawtooth functions.

E.2 RESULTS OF LARGER M

As a supplementary results of Table 1, we evaluate log-likelihood values on a larger target set. For
TNP w/ buffer, we evaluate K points per Algorithm 2 and proceed to the next target subsets by
conditioning on the context and evaluated points. This requires M/K steps of evaluations. The
results are reported in Table A2. As we decrease the number of buffer targets K 14, the performance
of our TNP w/ buffer becomes stronger, while more iterations (and thus computational time) are
required.

8https://archive.ics.uci.edu/dataset/235/individual+household+electric+
power+consumption

9https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+
emission+data+set

10https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
11https://www.kaggle.com/datasets/mnassrib/jena-climate
12https://archive.ics.uci.edu/dataset/849/power+consumption+of+tetouan+

city
13https://www.kaggle.com/datasets/camnugent/california-housing-prices
14Note that when K = 1, our method is equivalent to standard TNP-D AR, as the actual number of points in

the buffer is zero.
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Table A3: EEG forecasting w/ and w/o target set permutation. The target set of EEG forecasting
is the points immediately after the context set. Our main paper applies permutation to the target set
while this table compares against forecasting of fixed temporal order (sorted).

TNP-D TNP-ND TNP-A
AR Ind

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 16, sorted) 0.85 (0.005) -0.74 (0.008) -0.004 (0.005) 1.14 (0.004)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)
EEG-For (M = 64, sorted) 0.89 (0.005) -1.08 (0.007) -0.23 (0.004) 1.16 (0.003)

TNP w/ buffer
K=16 K=4 K=1

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 16, sorted) 0.76 (0.006) 0.87 (0.005) 1.09 (0.004)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)
EEG-For (M = 64, sorted) 0.78 (0.005) 0.89 (0.004) 1.11 (0.004)

Table A4: Multisensory causal inference model selection extra results. Supplement forTable 2
on model comparison case with extra evaluation on K = 4 and R2 metrics for LML and ∆LML.

TNP-D TNP-ND TNP-A
AR Ind

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019)
LML R2 (↑) 1.00 (0.000) -0.43 (0.000) -7.22 (0.003) 1.00 (0.000)
∆LML R2 (↑) 0.93 (0.001) -14.47 (0.000) -6.74 (0.014) 0.87 (0.002)

TNP w/ buffer
K=16 K=4 K=1

LML RMSE (↓) 3.56 (0.004) 3.48 (0.002) 3.47 (0.004)
∆LML RMSE (↓) 2.60 (0.010) 2.59 (0.009) 2.59 (0.011)
LML R2 (↑) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
∆LML R2 (↑) 0.92 (0.001) 0.92 (0.001) 0.92 (0.001)

E.3 EEG FORECASTING W/ AND W/O TARGET PERMUTATION

In our main paper, the EEG forecasting task is evaluated with the permuted target set, following the
procedure of Bruinsma et al. (2023). We repeat the experiment by forecasting the target of a fixed
temporal order. In Table A3, we show that averaging over random target order as done in the paper,
provide better overall performance.

F ADDITIONAL MULTISENSORY CAUSAL INFERENCE MODEL RESULTS

As supplementary results to Table 2, we include additional metrics and evaluation settings. Specif-
ically, for the model comparison task, we report the coefficient of determination (R2) for both the
LML and ∆LML with respect to the ground-truth (see Table A4). For the data prediction task, we
present results with a larger target size of M = 128 (see Table A5). In addition, for completeness,
we evaluate both the model comparison and data prediction tasks with K = 4. With varying K, we
observe little to almost no performance degradation compared to TNP-D AR, especially for the data
prediction case.

G ADDITIONAL TABULAR FOUNDATION MODEL RESULTS

We report results for an intermediate context size (N = 256) in Table A6. Consistent with our
main findings, AR w/ buffer matches standard AR within standard errors across all tasks, while both
autoregressive methods outperform independent predictions on forecasting tasks.
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Table A5: Multisensory causal inference model data prediction task normalized log-likelihood
(↑) results. Supplementary results of Table 2, with extra evaluation on K = 4 and on larger target
set M = 128.

TNP-D TNP-ND TNP-A
AR Ind

Pred LL (M = 16) -2.76 (0.021) -2.77 (0.025) -3.12 (0.019) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.74 (0.016) -3.17 (0.012) -2.71 (0.015)

TNP w/ buffer
K=16 K=4 K=1

Pred LL (M = 16) -2.76 (0.024) -2.76 (0.024) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.71 (0.015) -2.71 (0.015)

Table A6: Average log-predictive density (↑) results on UCI datasets with TabICL (N = 256).
Results are reported as mean and standard error over 16 randomly sampled mini-datasets (M = 32)
for interpolation (Int) and forecasting (For) tasks.

INTERMEDIATE CONTEXT REGIME (N = 256)

Electric Cons. Gas Turbine Bike Sharing Tetouan Jena Cali.
Int For Int For Int For Int For Int For Int

Independent 1.65 (0.15) 1.21 (0.30) -0.44 (0.16) -1.06 (0.32) 2.38 (0.05) 1.98 (0.11) 0.56 (0.08) -1.45 (0.44) 2.03 (0.06) 0.59 (0.18) -0.55 (0.12)

Standard AR 1.67 (0.14) 1.57 (0.22) -0.44 (0.16) -0.73 (0.23) 2.39 (0.05) 2.24 (0.09) 0.57 (0.08) 0.39 (0.18) 2.03 (0.06) 1.45 (0.15) -0.54 (0.12)

AR w/ buffer 1.67 (0.14) 1.56 (0.21) -0.44 (0.16) -0.76 (0.23) 2.38 (0.05) 2.23 (0.08) 0.57 (0.08) 0.28 (0.20) 2.03 (0.06) 1.30 (0.17) -0.54 (0.12)

H ABLATIONS AND EXTRA EXPERIMENTS

H.1 COMPARISON TO NON-PERMUTATION-INVARIANT TRANSFORMERS

To isolate the effect of permutation invariance in the context set, we replace our model with a plain
autoregressive decoder Transformer that treats the context as a fixed input sequence. This sequential
baseline performs substantially worse than our method in the GP task and across context sizes (see
Fig. A14), indicating that explicitly maintaining permutation invariance over the context set – or at
least part of it – is critical for performance.

H.2 POSITIONAL EMBEDDINGS ABLATION

We also trained our method without positional embeddings in the buffer and performed evaluations
with M = K = 16, as shown in Table A7, and observed no statistically significant difference in
predictive performance. This aligns with findings in causal-transformer work showing that models
can infer positional structure without explicit encodings (Haviv et al., 2022; Irie, 2024; Zuo et al.,
2025). While not strictly required, positional embeddings may still support future extensions, such
as scaling to larger buffer sizes via ALiBi (Press et al., 2022) or RoPE (Su et al., 2024).

Table A7: Average joint predictive log-density (↑) for positional embedding ablation on the GP task;
reported as mean (SEM).

TNP-D-AR TNP-D-Ind TNP-ND TNP-A Ours w/ pos. emb Ours w/o pos. emb

2.57 (0.02) 2.22 (0.02) 0.80 (0.08) 2.24 (0.02) 2.51 (0.02) 2.51 (0.02)

H.3 NUMBER OF SAMPLES ORDER AVERAGING ABLATION

We study the effect of the number of sequence samples (permutations) used for order averaging.
We report results on the multisensory causal inference task, where our method (with buffer size
K = 16) is used to compute the LML of a dataset by averaging over multiple permutations. As
shown in Fig. A15, increasing the number of permutations reduces the RMSE of the estimated joint
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Figure A14: Average joint predictive log-density (↑) on the GP regression task comparing the De-
coder Transformer models with ours and gold standard TNP-D-AR on varying number of context
points N and number of targets M = 1, 4, 16.
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Figure A15: Average RMSE (↓) on the LML (left) and ∆LML (right) estimation in the multisensory
causal inference task for different numbers of sample permutations.

density relative to the true joint at a rate comparable to existing autoregressive baselines, while our
method remains significantly faster. This indicates that for our proposed method, order averaging
does not introduce additional performance degradation relative to the gold standard baselines for a
given number of permutations.

H.4 EXTENSION TO LATENT BOTTLENECKED ATTENTIVE NEURAL PROCESSES MODEL

To assess the generality of the proposed autoregressive buffer, we integrate it into a perceiver-style
Latent Bottlenecked Attentive Neural Processes (LBANP) architecture (Jaegle et al., 2021; Feng
et al., 2023). The context set is first encoded into a fixed-size latent array, and the autoregres-
sive buffer operates over targets on top of this latent array bottleneck. We evaluate this BNP with
buffer model on the GP regression task with 4 and 16 targets. As shown in Fig. A16, the LBANP
equipped with our autoregressive buffer matches or slightly outperforms a standard autoregressive
deployment of the Perceiver architecture (when K = 1). This result is likely due to the fact that the
buffer allows the model to explicitly represent the recent history of targets, bypassing the compressed
representation of the context for immediate short-term dependencies, thus slightly enhancing pre-
dictive performance. These results demonstrate that our method extends naturally to bottlenecked /
perceiver-style architectures, supporting its generality beyond full-attention models.
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Figure A16: Autoregressive buffer extension on Latent Bottlenecked Attentive Neural Processes
(LBANP) model. Average joint predictive log-density (↑) on GP with varying number of context N
and number of targets M = 4, 16.
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Figure A17: Average joint predictive log-density (↑) on the GP task across number of targets M up
to 64, with buffer size K set equal to M , for varying numbers of context points N from 4 to 128.

H.5 BUFFER SIZE ABLATION

We evaluate the effect of the buffer size K on the GP regression task, training a model with a
maximum buffer size K = 64. As shown in Fig. A17, the performance of our method remains
stable across this range and does not degrade relative to the autoregressive baseline, indicating that
increasing K up to 64 does not harm predictive quality.

I USE OF LARGE LANGUAGE MODELS

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of
this work to support idea generation, brainstorming, and the exploration of possible methodological
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directions. LLMs were also employed for tasks such as identifying related work through web search
and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate
components of the codebase, visualization scripts, and test codes. They were also used for drafting
parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully
reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining
clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of
text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity
of the content.
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