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ABSTRACT

Transformer-based models for amortized probabilistic inference, such as neural
processes, prior-fitted networks, and tabular foundation models, excel at single-
pass marginal prediction. However, many real-world applications – from signal
interpolation to multi-column tabular predictions – require coherent joint distribu-
tions that capture dependencies between predictions. While purely autoregressive
architectures efficiently generate such distributions, they sacrifice the flexible set-
conditioning that makes these models powerful for meta-learning. Conversely, the
standard approach to obtain joint distributions from set-based models requires ex-
pensive re-encoding of the entire augmented conditioning set at each autoregres-
sive step. We introduce a causal autoregressive buffer that preserves the advan-
tages of both paradigms. Our approach decouples context encoding from updating
the conditioning set. The model processes the context once and caches it. A dy-
namic buffer then captures target dependencies: as targets are incorporated, they
enter the buffer and attend to both the cached context and previously buffered tar-
gets. This enables efficient batched autoregressive generation and one-pass joint
log-likelihood evaluation. A unified training strategy allows seamless integration
of set-based and autoregressive modes at minimal additional cost. Across syn-
thetic functions, EEG signals, cognitive models, and tabular data, our method
matches predictive accuracy of strong baselines while delivering up to 20× faster
joint sampling. Our approach combines the efficiency of autoregressive gener-
ative models with the representational power of set-based conditioning, making
joint prediction practical for transformer-based probabilistic models.

1 INTRODUCTION

Generating predictions conditioned on available data is a central challenge in machine learning.
Recent advances in amortized probabilistic inference and meta-learning have produced a powerful
class of set-based conditioning models capable of rapidly adapting to new tasks without retraining.
Methods such as neural processes (NPs; Garnelo et al. 2018a; Foong et al. 2020), their transformer-
based extensions (Nguyen & Grover, 2022; Chang et al., 2025), prior-fitted networks (PFNs; Müller
et al. 2022), and recent tabular foundation models (Hollmann et al., 2023; 2025; Jingang et al., 2025)
share a crucial architectural principle: they process variable-sized context sets through permutation-
invariant encoders that respect the exchangeability of observed data. This set-based design enables
these models to condition on arbitrary subsets of observations and produce accurate marginal pre-
dictive distributions over new target variables in a single forward pass.

While these models are highly efficient for marginal predictions, many real-world applications re-
quire coherent joint distributions over multiple targets. Tasks such as signal interpolation, behavioral
data modeling, and multi-column tabular prediction demand that we capture dependencies between
random variables. The standard solution deploys these models autoregressively (Bruinsma et al.,
2023). However, this breaks the set-based structure: each new prediction must be added back to the
conditioning set, introducing a computational bottleneck.

Specifically, autoregressive (AR) deployment requires iteratively expanding the conditioning set. To
generate K predictions, the k-th step conditions on the initial context C plus all k − 1 previous
predictions (Fig. 1, Top Left). Since set-based models process their inputs through self-attention
mechanisms to maintain permutation invariance, each new element triggers a complete re-encoding
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Figure 1: The autoregressive buffer enables fast joint inference by eliminating redundant con-
text re-computation. Left: Comparison of autoregressive inference strategies. Traditional autore-
gressive approach (top) requires re-encoding the entire augmented context set at each step—when
generating predictions for targets, leading to O(K(N + K)2) complexity. Our buffered approach
(bottom) encodes the context C once and caches it. New predictions enter a causal autoregressive
buffer that attends to both the static cache and previous buffer entries without re-encoding. Right:
Empirical validation. We compare transformer probabilistic models with and without the buffer
mechanism. Both strategies achieve comparable predictive accuracy, confirming the buffer pre-
serves model quality while delivering up to 20× faster sample generation at larger context sizes.

of the entire augmented set. This leads to prohibitiveO(K(N +K)2) complexity, severely limiting
applications with large contexts (N ), long target sequences (K), or frequent sampling requirements.
Advances in efficient attention (Jaegle et al., 2021; Feng et al., 2023a) can reduce costs for large
static contexts but do not address the core problem of repeated recomputation inherent in autore-
gressive prediction: each incremental update requires a reprocessing of the conditioning set.

To address this limitation, we introduce the causal autoregressive buffer, an architectural mechanism
that decouples the expensive encoding of the static context from lightweight sequential prediction.
Inspired by the efficiency and scalability of purely autoregressive architectures in language modeling
(Brown et al., 2020) and image generation (Chen et al., 2020; Li et al., 2024), our buffer implements
a causal attention pattern for managing dependencies among generated targets – but crucially, it op-
erates alongside the set-based context rather than replacing it. Our approach first encodes the initial
context C and caches its representation. Targets added to the buffer can rapidly attend to both the
static context cache and previously buffered targets through causal masking, managing dependencies
among newly generated samples without requiring context re-encoding (Fig. 1, Bottom Left). This
eliminates the need for full context re-encoding at each step, drastically reducing computation. Cru-
cially, when the buffer is empty, our model’s behavior is identical to a standard model, preserving
marginal prediction quality. We show that a unified training strategy using masked attention and a
buffer-size curriculum allows a single model to handle both efficient marginal predictions and accel-
erated autoregressive sampling and likelihood evaluation with substantial speedups, while achieving
comparable predictive accuracy to standard AR approaches (Fig. 1, Right).

Our main contributions are:

1. We introduce the causal autoregressive buffer, a mechanism that decouples set-based con-
text encoding from sequential prediction, enabling efficient joint sampling and likelihood
evaluation from transformer-based amortized probabilistic models.
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2. We propose a unified training strategy using masked attention and buffer-size curriculum
that allows a single model to learn both modes of operation at minimal additional cost.

3. We demonstrate that our approach is broadly applicable to transformer-based probabilistic
models including TNPs/PFNs (Nguyen & Grover, 2022; Müller et al., 2022) and tabular
foundation models (TabICL; Jingang et al., 2025), achieving up to 20× speedup in joint
sampling while maintaining comparable predictive accuracy across diverse tasks.

2 PRELIMINARIES

We consider meta-learning problems where a model must adapt to new prediction tasks using ob-
served data, without task-specific retraining. Given a context set C = {(xn, yn)}Nn=1 with N
input-output pairs, and an analogous target set T = {(x⋆

m, y
⋆
m)}Mm=1, we aim to predict target

output values y⋆1:M at new target inputs x⋆
1:M . This is framed as learning a predictive distribu-

tion pθ(y⋆1:M |x⋆
1:M ; C) where θ are the model’s learnable parameters (Foong et al., 2020). Note:

Throughout the paper, we use index k instead of m when targets are processed autoregressively.

Transformer diagonal prediction maps. Transformer architectures (Vaswani et al., 2017) are a
natural fit for this set-based task. Methods such as (diagonal) transformer neural processes (TNPs;
Nguyen & Grover, 2022) and prior-fitted networks (PFNs; Müller et al., 2022) use two core attention
mechanisms. First, the model processes C using multi-head self-attention (MHSA). Then, each
target input x⋆

m queries this summary using multi-head cross-attention (MHCA). This structure leads
to an efficient diagonal predictive model where predictions are conditionally independent:

pθ(y
⋆
1:M | x⋆

1:M ; C) =

M∏
m=1

pθ(y
⋆
m | rtgt(x

⋆
m, rC(C))) . (1)

Here, rC(C) is the permutation-invariant summary of the context produced by the MHSA layers,
and rtgt(·, ·) is the final decoding function that produces a parametric prediction for y⋆m via MHCA.
This may consist of a single Gaussian, but more expressive parameterizations include Riemannian
distributions (Müller et al., 2022) and mixtures of Gaussians (Uria et al., 2016; Chang et al., 2025).
These models are efficiently trained via maximum-likelihood on random context-targets data splits.

Autoregressive sampling and likelihood evaluation. Many applications require capturing de-
pendencies across targets, which requires joint distributions. This need arises in two forms: (i)
generating coherent samples where targets exhibit dependencies, and (ii) evaluating joint likeli-
hoods. While Eq. (1) can be extended to handle dependent predictions using multivariate parametric
densities such as a multivariate Gaussian (Markou et al., 2022; Nguyen & Grover, 2022), a more
powerful solution employs an autoregressive factorization (Bruinsma et al., 2023):

pθ(y
⋆
1:K | x⋆

1:K ; C) =
K∏

k=1

pθ
(
y⋆k | x⋆

k; C ∪ {(x⋆
j , y

⋆
j )}k−1

j=1

)
. (2)

Crucially, this is not a new model, but a mode of deployment for models described by Eq. (1). This
captures dependencies by conditioning each prediction on previous targets.1 However, this creates
a computational bottleneck: the conditioning set changes at each step, requiring recomputation of
the context summary rC(·). Whether generating samples sequentially or evaluating likelihoods, this
leads to O(K(N+K)2) complexity. Moreover, parallel autoregressive sampling or evaluation is
cumbersome, as generating B parallel sequences requires B copies of the model.

Our goal is to improve efficiency for both sequential and parallel sampling and likelihood evalua-
tion by encoding the context once and reusing it throughout. Existing autoregressive update schemes
break this caching: when targets join the conditioning set, the context representation must be recom-
puted. Our key insight is to separate the roles of initial context C and predicted targets {(x⋆

j , y
⋆
j )}j<k.

We preserve permutation invariance for the initial context (encoded once and cached) while handling
target dependencies through a separate causal mechanism. When needed, the buffer can be merged
back into the context to restore full permutation invariance. This selective relaxation – in-between
fully set-based and purely autoregressive models – enables efficient sequential and parallel opera-
tions while maintaining the strengths of set-based conditioning.

1In practice, Eq. (2) is not exact for likelihood evaluation as it breaks permutation invariance of the model.
However, an approximation can be obtained via Monte Carlo by averaging over multiple target orderings.
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3 EFFICIENT AUTOREGRESSIVE INFERENCE

Core contribution. Our method conditions predictions on a static, task-defining context C and a
dynamic autoregressive buffer B. We parameterize the predictive distribution as

pθ(y
⋆
1:K | x⋆

1:K ; C) =

K∏
k=1

pθ(y
⋆
k | rtgt(x

⋆
k,b1:k−1, rC(C))) , bk = rB((x

⋆
k, y

⋆
k),b1:k−1, rC(C)),

(3)

where rB is the buffer encoder implemented with MHSA with causal masking, b1:k the first k
encoded data points in the buffer, and b1:0 = ∅. Crucially, rC(C) is computed once and cached. The
target decoder rtgt performs a single cross-attention over the concatenated keys/values from both the
cached context and the visible buffer prefix, then passes the result through a distribution head (e.g.,
an MLP parameterizing a mixture of Gaussians) to generate predictions.

To couple one-time set-based encoding with sequential dependence, the attention must satisfy four
requirements: (R1) the context is immutable: encoded once with self-attention and cached as
read-only; (R2) the buffer is strictly causal: token j may attend only to < j; (R3) information
flows out of the context but never back: no edges write into C; and (R4) each target attends to the
cached context and the visible buffer prefix to capture dependencies among previous predictions.

During training, we enforce (R1) – (R4) in a forward pass using a structured attention mask.
We implement this using a single transformer backbone that processes context, buffer, and target
tokens with distinct role embeddings; buffer tokens additionally carry learned positional embed-
dings indicating their autoregressive order. This allows us to compute all losses in parallel by
conditioning each target’s prediction on the context and a variable-sized, ground-truth buffer set.

Figure 2: Example training mask.

At inference, we use a two-stage process: a one-time
context encoding followed by prediction in the form
of either sampling or likelihood evaluation. Prediction
carries an attention cost of O(N2 +KN +K2), com-
posed of a one-time O(N2) for context self-attention,
O(KN) for all cross-attention reads from the cache,
and a total of O(K2) for causal self-attention within
the buffer. This provides a speedup over naive autore-
gressive methods, which cost O(K(N + K)2) due to
repeated context recomputation. When the buffer is
empty, our model’s behavior is identical to a standard
diagonal prediction map as Eq. (3) reduces to Eq. (1).
Architectural details appear in Appendix A.

Training details. The model is trained by minimizing
the expected negative log-likelihood over a prior distri-
bution of datasets P . Each training task is generated
by sampling a dataset D = {(xi, yi)}Ntot

i=1 ∼ P . A random partition distribution π is then used to
split the dataset into three disjoint sets: (1) the context set C = {(xn, yn)}Nn=1; (2) the buffer set
B = {(xk, yk)}Kk=1; and (3) the target set T = {(xm, ym)}Mm=1, with Ntot = N + K +M . For
each task, we impose a random order on the buffer set B and compute all predictions for the target
set T in a single forward pass. A structured attention mask controls whether each target can attend
to the buffer, and if so, how many elements: 50% of the targets only attend to the context C, 50%
attend to the context plus a prefix of the buffer B1:vm , where vm ∼ Uniform(1,K) for each target
(see Fig. 2). The training objective is:

L(θ) = ED∼P

[
E(C,B,T )∼π(·|D)

[
−

M∑
m=1

log pθ(ym | xm, C,B1:vm)

]]
, (4)

where B1:vm is the visible portion of the buffer for target m (vm = 0 for context-only targets). This
training curriculum ensures the model performs well regardless of the buffer’s state. The frequent
buffer-free predictions force the model to make high-quality marginal predictions from the initial
context alone. Simultaneously, training with exposure to a variable-sized buffer teaches the model
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to flexibly incorporate additional in-context information. Minimizing this objective is equivalent
to minimizing the KL divergence between the model and the true posterior predictive distribution
under varying conditioning sets (Müller et al., 2022; Elsemüller et al., 2024).

During training, the buffer contains its own set of training data points, as described above. At
inference, we have two modes: (i) autoregressive sampling, where the buffer grows incrementally by
incorporating the model’s own generated samples; and (ii) parallel joint log-likelihood evaluation,
where we pack two sets of K target data points to evaluate all K conditionals in one pass (see
below). The sparsity pattern is identical in both regimes; only execution differs (single masked pass
for evaluation, prefill followed by sequential updates for sampling).

Autoregressive sampling. Given a context C and a sequence of target inputs x⋆
1, ... ,x

⋆
K , we gen-

erate samples by first performing a one-time prefill of C, caching its keys and values in an O(N2)
operation. We then decode sequentially following Eq. (3): for each step k = 1, . . . ,K, we form
a target query for input x⋆

k, attend to the cached context and causal buffer Bk−1, sample y⋆k from
the predictive distribution, and append (x⋆

k, y
⋆
k) to the buffer with its positional embedding. Only

the buffer’s key/value cache is incrementally updated, avoiding context recomputation and yielding
O(N2 +NK +K2) total complexity (detailed in Algorithm 1 in Appendix A.3).

Joint likelihood evaluation. Our framework can also evaluate the joint likelihood of a set of
K = M targets, {(x⋆

m, y
⋆
m)}Km=1, in a single forward pass. To achieve this, similar to the TNP-

A variant of Nguyen & Grover (2022), we pack two sets of tokens into the model: (i) buffer tokens
for the targets {(x⋆

k, y
⋆
k)}Kk=1, and (ii) separate query tokens for the same target inputs {x⋆

m}Km=1. A
causal attention mask ensures that each query for x⋆

m attends to the context C and only the preceding
buffer tokens B1:m−1 = {(x⋆

k, y
⋆
k)}k<m. This allows all conditional probabilities to be computed in

one pass: log pθ(y⋆1:K | x⋆
1:K , C) =

∑K
m=1 log pθ

(
y⋆m | x⋆

m, C,B1:m−1

)
. This is algebraically iden-

tical to sequential autoregressive evaluation but executes in a single forward pass with total attention
cost O(N2+KN+K2). The procedure is formalized in Algorithm 2 (Appendix A.4). Notably,
autoregressive likelihood estimates are order-dependent; to recover approximate permutation invari-
ance, we average the likelihood over multiple buffer orderings (Murphy et al., 2019).

Batched autoregressive sampling. Our method is particularly efficient for autoregressively gener-
ating multiple samples in a batch, conditional on the same context C (e.g., multiple joint predictions
for the same observed function values – see Fig. 1). A naive batched autoregressive approach must
re-encode a growing context set at every generation step for each of the B samples. To generate B
samples of length K, this results in a prohibitive total cost of O(BK(N + K)2). In contrast, our
approach performs the expensive context prefill (O(N2)) only once. This single context cache is
then efficiently reused across all B batched generation streams, with only the small, dynamic buffer
maintaining a separate state for each sample. This reduces the total cost toO(N2+B(NK+K2)),
making batched sampling practical even for large contexts and batches.

Architectural generality. Our buffer is a general mechanism applicable to other transformer vari-
ants. For instance, a Perceiver-style encoder (Jaegle et al., 2021) summarizes the context C into a
fixed set of P ≪ N latent tokens, also known as pseudo-tokens (Lee et al., 2019; Feng et al., 2023a;
Lara-Rangel et al., 2025). We can precompute the latent key/value representations once – autore-
gressive decoding then requires attending only to these P latents and the growing causal buffer. The
per-layer attention cost isO(NP+P 2) for the prefill andO(PK+K2) for decoding K samples. In
contrast, the approach without our buffer would incur a larger cost of O(NPK+P 2K+PK2).

4 RELATED WORK

Neural processes and prior-fitted networks. Our method can serve as a module component with
neural processes (NPs; Garnelo et al., 2018b;a; Bruinsma et al., 2021; Nguyen & Grover, 2022; Du-
tordoir et al., 2023; Chang et al., 2025) or prior-fitted networks (Müller et al., 2022; 2023; Hollmann
et al., 2023). Prior work on efficient NP methods has primarily focused on improving scalability with
respect to the context set size (Feng et al., 2022; 2023a), while also reducing memory usage (Feng
et al., 2023b) for independent prediction tasks. Instead, our method targets efficiency in autoregres-
sive joint sampling and evaluations, an area that has received limited attention in the NP literature.
Our contributions are complementary and can be combined with other architectural improvements.
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Transformer probabilistic models. Recent advancements have increasingly leveraged trans-
former architectures for probabilistic modeling, framing Bayesian inference as an in-context learn-
ing task. These methods perform tasks such as approximating posterior distributions, modeling con-
ditional relationships, and estimating posterior predictive distributions, by conditioning on context
observations and possibly additional prior information (Mittal et al., 2023; Gloeckler et al., 2024;
Reuter et al., 2025; Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025). Our work builds on
this direction by leveraging transformer-based variants of neural processes.

Autoregressive joint density estimation. Autoregressive approaches are widely used for joint
density estimation, from neural autoregressive density estimators (Larochelle & Murray, 2011; Uria
et al., 2016; Germain et al., 2015) to normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; De Cao et al., 2020; Patacchiola et al., 2024), and order-agnostic au-
toregressive models (Uria et al., 2014; Hoogeboom et al., 2022; Liu et al., 2024). Within the NP
literature, our method is related to the Autoregressive Transformer NP (TNP-A; Nguyen & Grover,
2022) which duplicates targets into queries and observed values. While TNP-A uses this duplication
for both training and inference, we recognize it’s only needed for likelihood evaluation. Bruinsma
et al. (2023) showed that deploying standard NPs autoregressively improves joint predictions but
requires expensive context re-encoding at each step. Our buffer mechanism combines insights from
both approaches: like TNP-A, we enable parallel likelihood evaluation, and like Bruinsma et al.
(2023), we model autoregressive dependencies while training on independent targets – our separate
buffer architecture avoids both TNP-A’s training overhead and the re-encoding bottleneck.

Connection to other generative modeling techniques. Modern generative models for joint dis-
tributions follow two main paradigms: diffusion and flow-matching models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021; Lipman et al., 2023) that generate samples through
continuous-time dynamics, and autoregressive transformers (GPTs; Radford et al., 2018; Brown
et al., 2020) that generate sequences token-by-token with cached key-value states. While diffu-
sion dominates in continuous domains like images and video, autoregressive transformers excel
in discrete sequences and show excellent performance and scalability in multiple domains. Our
buffer mechanism brings the efficiency of autoregressive transformers to NPs and PFNs. Standard
NPs/PFNs struggle with joint prediction because they must re-encode the entire context at each
autoregressive step. Our approach instead mirrors language models: encode the set-based con-
text once (like a prompt) and generate efficiently through cached representations. Recent work has
shown these paradigms can be combined (Tang et al., 2025; Arriola et al., 2025; Wu et al., 2025),
suggesting future extensions.

5 EXPERIMENTS

Our experiments validate our method across diverse tasks: regression on synthetic functions, inter-
polation of real-world EEG data, Bayesian model selection on a multi-sensory perception model,
and pre-training of a tabular foundation model. We first conduct wall-clock benchmarks to quantify
efficiency gains, then assess predictive performance across these varied domains.

Baselines. We compare against models spanning the efficiency-expressivity tradeoff, all config-
ured with matched parameter counts, same input embeddings and output prediction heads unless
noted otherwise (details in Appendix B). TNP-D (Nguyen & Grover, 2022) assumes conditional
independence between targets; we evaluate it both with standard parallel decoding (TNP-D-Ind,
fast but limited) and with autoregressive deployment (TNP-D-AR, expressive but requires sequential
re-encoding). TNP-ND models target dependencies via a multivariate Gaussian, enabling one-pass
joint likelihood but limiting expressivity. TNP-A uses causal self-attention for full autoregressive
modeling but suffers from slow sequential sampling and high training cost. Additional task-specific
baselines are introduced as needed. TNP-ND aside, all models use a Gaussian mixture model output
head with 20 mixture components unless stated otherwise.

Evaluation focus. Our method trades exact set-based AR updates for efficiency. Our goal is to
demonstrate substantial speedups over baselines while maintaining comparable accuracy. Success
means matching predictive performance of state-of-the-art AR approaches (TNP-D-AR, TNP-A)
while being orders of magnitude faster.
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Figure 3: Wall-clock time (log scale) for (left) sampling, (center) joint log-likelihood evaluation,
and (right) a full training step, plotted as a function of the number of context points N . Our method
demonstrates significant speedups over expressive autoregressive baselines.

Table 1: Average log-likelihood (↑) results on synthetic functions and EEG example. Mean and
(SEM) over various functions and context sizes N , for M = 16 targets. See Appendix D.4 for
evaluation details and Table A2 for results with larger M . Deploying TNP w/ buffer with K = 1
tracks the best method, and for K = 16 (fast) in most cases performance only worsens slightly.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

GP 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018) 2.51 (0.019) 2.56 (0.019)
Sawtooth 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004) 1.00 (0.005) 1.09 (0.004)
EEG-Int 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014) 0.52 (0.013) 0.54 (0.014)

EEG-For 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003) 0.85 (0.004) 1.21 (0.003)

Computational efficiency. We benchmark wall-clock time for three key operations: autoregres-
sive sampling, joint log-likelihood evaluation, and a full training step (forward and backward pass).
All measurements are conducted on a unified codebase running on a single NVIDIA L40S GPU.
We optimized all baselines beyond their public versions with KV caching, FlashAttention-2 (Dao,
2023), and compilation, achieving 3− 10× speedups over the original implementations to ensure a
fair comparison. For our method, we developed a custom Triton kernel to optimize memory access
during batched sampling (details in Appendix C). Benchmarks in Fig. 3 use model architectures
matching subsequent experiments with buffer sizeK = 16. For sampling and likelihood evaluation:
M = 16 targets, batch size B = 256. For training: M = 256 targets, batch size B = 128.

As shown in Fig. 3, our method achieves a superior efficiency profile compared to expressive base-
lines. For autoregressive sampling (left), our method is 3− 20× faster than the fully autoregressive
TNP-A and TNP-D-AR. While TNP-D-Ind and TNP-ND are faster, they cannot capture complex
predictive dependencies, as shown later in this section. For log-likelihood evaluation (center), our
method’s speed is on par with the highly parallel TNP-A and is a factor of K× faster than the se-
quential TNP-D-AR. For training speed (right), the overhead of our method is minimal, resulting in
a training step time comparable to the fastest baselines (TNP-D, TNP-ND) and 4− 12× faster than
TNP-A, which incurs a significant computational cost due to its architecture. We provide additional
results, including benchmarks across a wider range of batch and target sizes, in Appendix C.

Synthetic functions. We consider two prediction tasks: (i) functions drawn from Gaussian pro-
cesses (GPs; Rasmussen & Williams, 2006) where the kernel type is sampled from a predefined
set, along with its hyperparameters, and (ii) a non-Gaussian sawtooth process with discontinuous
derivatives. All models are trained on data from these processes and evaluated on new draws (see
Appendix D.2). Results: As shown in Table 1, TNP w/ buffer (K = 16) achieves log-likelihoods
comparable to TNP-D-AR while providing substantial speedups (Fig. 3). To verify that our buffer
training doesn’t degrade standard AR capability, we deploy the same model withK = 1 (effectively
disabling the buffer by processing one point at a time). This matches TNP-D-AR performance ex-
actly, confirming that our approach preserves full AR quality when buffer acceleration isn’t used.
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Table 2: Multi sensory causal inference model comparison and prediction results. For model se-
lection, we use two metrics: log marginal likelihood root mean-squared error (LML RMSE) against
ground-truth, and difference in LML between ρ = 4/3 and ρ = 1, reported as RMSE (∆LML
RMSE). See Table A4 for K = 4 and R2 metric. For data prediction, we report average log-
likelihood (Average LL) for M = 16 targets, computed using the model selected by the model-
selection task. See Table A5 for more results on larger M and K = 4. Mean and (SEM); see
Appendix D.4 for details.

TNP-D TNP-ND TNP-A TNP w/ buffer (ours)
AR Ind K=16 (fast) K=1 (slow)

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012) 3.56 (0.004) 3.47 (0.004)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019) 2.60 (0.010) 2.59 (0.011)

Average LL (↑) -2.76 (0.024) -2.77 (0.025) -3.12 (0.016) -2.76 (0.024) -2.76(0.024) -2.76 (0.024)

Electroencephalogram (EEG) data. Following Markou et al. (2022) and Bruinsma et al. (2023),
we train TNPs on EEG time series data (Zhang et al., 1995). Each trial contains 256 regularly
sampled measurements across 7 correlated channels. Details of dataset construction are provided
in Appendix D.2. We train on an interpolation setting as in Bruinsma et al. (2023) and evaluate
on both forecasting and interpolation tasks. Interpolation uses random splits into context/targets;
forecasting uses the first N points as context and the next M as targets (Appendices D.2 and D.4).
As in Table 1, our method with K=16 is comparable to TNP-D-AR (slightly worse for forecasting),
and substantially better than TNP-D (Ind) and TNP-ND. Additional results (larger M ; permutation
effects in forecasting) are in Appendices E.2 and E.3.
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Figure 4: Multisensory causal inference model
comparison versus ground-truth. (Left) Log
marginal likelihood (LML) comparison for both
ρ = 1 and ρ = 4/3. (Right) LML difference
(ρ = 4/3 − ρ = 1) comparison. Our method
closely aligns with the ground-truth.

Multisensory causal inference model com-
parison and data prediction. We evaluate
our method on a popular computational neu-
roscience model that determines how the
brain combines sensory stimuli from different
sources (Körding et al., 2007). Using publicly
available data from an audio-visual localization
experiment (Liu et al., 2025), we consider
two model variants differing in their auditory
recalibration parameter ρ ∈ {1, 4/3} and
evaluate two tasks: (1) Model selection. For
each method, we train two TNP models on two
simulators, one with ρ = 1 and the other with
ρ = 4/3. We then use the trained models for the
challenging task of computing the log marginal
likelihood (LML) of real experimental data.
Computing the LML requires evaluating the joint likelihood (Murphy, 2012):

LML = log p(y1:N |x1:N ) =

N∑
i=1

log p(yi|xi, {(xj , yj)}j<i) (5)

which is inherently an autoregressive prediction task, as each prediction conditions on all previous
data points, so perfectly suited for our models. For each dataset, we estimate the ground-truth LML
for both ρ = 1 and ρ = 4/3 using S-VBMC, a method proven effective on similar problems (Acerbi
et al., 2018; Silvestrin et al., 2025). We report LML RMSE and ∆LML RMSE (the difference
between model metrics, useful for model comparison) in Table 2. (2) Data prediction. Using
the model selected in (1), we predict outputs on the real dataset and report average log-likelihood
(Table 2). See Appendix D.3 for experimental details and Appendix D.4 for evaluation settings.

Results. We evaluate our method using data from the 15 participants of the original study, extracting
two non-overlapping subsets of 400 experimental trials each (400 data points), resulting in a total
of 30 datasets. The model trained with ρ = 4/3 generally achieves better (higher) LML than ρ = 1,
aligning with the original finding that participants are remapping their auditory space to match the
visual range (Liu et al., 2025). Fig. 4 shows that the LML and ∆LML approximations obtained with
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Table 3: Average Log-likelihood (↑) results on UCI datasets with TabICL. We evaluate our
proposed AR-Buffer mechanism integrated into a TabICL foundation model against independent
and standard AR baselines. Performance is measured on both interpolation (Int) and forecasting
(For) tasks across three real-world datasets. Results are reported as mean and standard error over 16
randomly sampled mini-datasets (N = 128, M = 32).

Electric Consumption Gas Turbine Bike Sharing
Int For Int For Int For

Independent 1.60 (0.10) 1.02 (0.29) -0.39 (0.14) -1.16 (0.60) 1.54 (0.06) 0.97 (0.11)
Standard AR 1.63 (0.10) 1.38 (0.27) -0.38 (0.14) -0.75 (0.33) 1.57 (0.06) 1.21 (0.10)

AR w/ buffer (K = 32) 1.61 (0.10) 1.35 (0.27) -0.38 (0.14) -0.76 (0.33) 1.57 (0.06) 1.18 (0.10)

our method are remarkably close to the ground-truth. Furthermore, our method performs on par with
TNP-D-AR and outperforms all other baselines on model comparison (Table 2). All models except
TNP-ND perform similarly on the data prediction task. For additional results, see Appendix F.

Small-scale tabular foundation model. We integrate our autoregressive buffer into the TabICL
foundation model architecture (Jingang et al., 2025). While the original work focused on classifi-
cation, we pre-train our model from scratch for regression tasks. We reuse TabICL’s set encoder to
efficiently compute feature embeddings upfront and focus modifications on the final dataset-wise
in-context learning transformer. Our core methodological contribution is the buffer mechanism, im-
plemented by a structured attention mask. This allows the model to condition on its recent predic-
tions by storing them in a dynamic buffer, while keeping the context cache static and avoiding costly
recomputation during autoregressive inference. We pre-train this architecture on synthetic data from
a structural causal model (SCM) prior (Hollmann et al., 2023; Jingang et al., 2025), where each
training instance is formed by partitioning datasets into distinct sets of context, buffer, and target
points. Our network size and training scale are comparable to the original TabPFN (Hollmann et al.,
2023); the model is pre-trained on 10.24 million synthetic datasets containing 1 to 10 features and 8
to 1024 context points, with a buffer size of K = 32. Full details are provided in Appendix D.5.

Results. We evaluate on three UCI2 time-series datasets: Individual Household Electric Power Con-
sumption, Gas Turbine CO and NOx Emission, and Bike Sharing, of input dimensionality 6, 9, and
10, respectively. We form 16 tasks per dataset with N=128 context and M=32 targets under inter-
polation (Int) and forecasting (For). We compare three inference modes with the same backbone:
“Ind” (independent predictions), “Standard AR” (conventional step-by-step autoregression, K=1
equivalent), and “AR w/ buffer” (ours, K=32). Results in Table 3 show that standard AR and AR
w/ buffer consistently outperform independent predictions, and AR w/ buffer matches standard AR
within standard errors, indicating that using a buffer of sizeK=32 preserves AR dependencies while
enabling efficient autoregressive inference.

6 DISCUSSION & CONCLUSION

We introduce a causal autoregressive buffer that decouples one-time context encoding from
lightweight sequential updates in transformer-based probabilistic models. By caching context
keys/values and routing target-to-target dependencies through a causal buffer, we reduce attention
cost from O(K(N+K)2) to O(N2 + NK + K2). Across synthetic functions, EEG interpola-
tion, multisensory modeling, and tabular prediction, our method matches autoregressive baselines
while achieving up to 20× faster joint sampling with minimal additional training cost over standard
models, and up to 10× lower training cost than autoregressive-specific baselines. These gains are
strongest when joint samples are needed repeatedly from the same large context with moderate target
count. The primary limitation is degraded performance when target count exceeds training bounds
of the buffer. Future work should prioritize handling larger buffer sizes through advanced positional
encodings, variable-length buffers, and adaptive merge policies. The autoregressive buffer makes
joint prediction practical where full autoregression was previously prohibitive.

2https://archive.ics.uci.edu/
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ETHICS STATEMENT

This work uses only publicly available datasets and synthetic simulators, with no sensitive data
involved. The methods are for research purposes and pose no foreseeable ethical risks. We have
followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide an anonymized code archive in the supplementary materials containing the training
and evaluation pipelines along with configuration files. All experiments use public datasets or,
when applicable, a simulator for synthetic data. Algorithmic details are presented in Algorithms 1
and 2, and all hyperparameters and training schedules are specified in the configuration files and
documented in the appendix. Ablation studies are also reported in the appendix. We do not release
pretrained weights, and no special data licenses or usage constraints apply.
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A METHOD DETAILS

This appendix spells out the modules used in Eq. equation 3, the single block-sparse attention mask
that implements requirements (R1)–(R4), and the exact procedures for autoregressive sampling and
one-pass joint log-likelihood evaluation.

A.1 MODULES AND NOTATION

We work with three token sets ordered as [C | B | T ], of sizes N,K,M , respectively. Throughout
this paper, let

Ex : X →Rd, Ey : Y→Rd, a : {1, . . . ,K}→Rd

denote learned embeddings for inputs, outputs, and buffer positions. In addition, we introduce role
embeddings that indicate token type, denoted by erole

ctx , erole
buf , and erole

tgt for context, buffer, and target
tokens, respectively.

Context encoder rC . Given context pairs C = {(xn, yn)}Nn=1, construct context tokens: ectx
n =

Ex(xn) + Ey(yn) + erole
ctx , process them with bidirectional MHSA (no positional embeddings), and

cache per-layer keys/values:

{KVℓ
C}Lℓ=1 = rC(C) (computed once; immutable).

Buffer encoder rB. For a buffer prefix B1:k = {(x⋆
j , y

⋆
j )}kj=1, form tokens ebuf

j = Ex(x
⋆
j ) +

Ey(y
⋆
j )+a(j)+erole

buf , then apply strictly causal MHSA on {ebuf
j }j≤k so that each token is restricted to

attend only to earlier tokens in the sequence, and in addition, each token performs cross-attention to
the cached context {KVℓ

C}. This yields per-layer KVℓ
B1:k

that we update incrementally at inference:

{KVℓ
B1:k
}Lℓ=1 = rB (B1:k, rC(C)) .

Target decoder rtgt and prediction head. For a target input x⋆
m we create a query token

etgt
m = Ex(x

⋆
m) + erole

tgt . The target decoder rtgt performs a single cross-attention from etgt
m to the

concatenated keys/values of the context cache {KVℓ
C} and the visible buffer prefix {KVℓ

B1:vm
},

followed by normalization and an MLP:

hm = rtgt

(
etgt
m,

[
{KVℓ

C}, {KVℓ
B1:vm

}
])
, ϕm = ψ(hm),

where ψ is the distribution head (e.g., the mixture-of-Gaussian head).

A.2 TRAINING MASK THAT IMPLEMENTS (R1)–(R4)

We concatenate tokens as [C | B | T ] with sizesN ,K, andM , respectively, and use one block-sparse
attention mask consisting of the following five unmasked sections (everything else is masked):

(1) Self-attention within context. Context tokens attend bidirectionally to other context tokens.
Context never attends to buffer or targets (context is read-only outside this block).

(2) Buffer reads context (cross-attention). Each buffer token can read (attend to) all context tokens.
This lets the buffer incorporate task information from the cached context while keeping the context
cache immutable.

(3) Causal self-attention within the buffer. Within the buffer itself, attention is strictly causal: a
buffer token at position j can only read earlier buffer positions <j (no future reads). This encodes
the autoregressive dependency among realized targets.

(4) Targets read context (cross-attention). Each target query can read the entire cached context.
There are no edges between targets.

(5) Targets read buffer (prefix only, cross-attention). Each target query can read only a visible
prefix of the buffer. The visible prefix length for target m is vm: training (teacher forcing): we
set vm=0 for 50% of targets and sample vm ∼ Uniform{1, . . . ,K} for the rest (the curriculum);
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Transformer diagonal prediction map training mask Transformer diagonal prediction map training mask w/ AR buffer

Context self-attn
Buffer self-attn

Buffer-context cross-attn
Target-context cross-attn

Target-buffer cross-attn

Figure A1: Block-sparse attention masks with and without an autoregressive buffer. Left: a
diagonal prediction-map transformer (e.g., TNP/PFN): the context attends to itself and each target
reads the entire context. Right: our buffered variant inserts an autoregressive memory B between
context and targets, adding three blocks: (i) buffer reads context (ii) causal self-attention within
buffer (iii) target reads varying number of elements from start of buffer, depending on curriculum.

sampling: at step k, the active query sees the realized prefix k−1; one-pass joint log-likelihood:
packed queries use vm=m−1 to recover the autoregressive chain in a single forward pass.

All other connections are masked: context never reads buffer or targets; targets never read targets;
and buffer never reads targets. This single pattern implements the four requirements from the main
text—immutable context, strictly causal buffer, unidirectional flow out of context, and target access
to (context + visible buffer). See Fig. A1 for the diagram.

Complexity. Under this mask, a full prediction pass costsO(N2+NK+K2) attention operations
per layer: one-time O(N2) for C, O(NK) for reads from C, and O(K2) for causal buffer self-
attention. This replaces the O

(
K(N+K)2

)
cost of naive AR re-encoding. Packing B target orders

in parallel (for order averaging) isolates the B buffer sets while sharing the context cache, yielding
O
(
N2 +B(NK +K2)

)
.

A.3 ALGORITHM FOR AUTOREGRESSIVE SAMPLING

Algorithm 1 Autoregressive sample generation for K targets

Require: Context C = {(xn, yn)}Nn=1, target inputs {x⋆k}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Initialize {KVℓ
B1:0
} ▷ empty buffer cache

3: for k = 1 to K do
4: hk ← rtgt

(
Ex(x

⋆
k)+e

role
tgt ,

[
{KVℓ

C}, {KVℓ
B1:k−1

}
])

5: Sample y⋆k ∼ pθ(·;ψ(hk))

6: Append (x⋆k, y
⋆
k); update {KVℓ

B1:k
} (strictly causal)

7: end for
8: return {y⋆k}Kk=1
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A.4 ALGORITHM FOR JOINT LOG-LIKELIHOOD

Algorithm 2 Joint log-likelihood evaluation for K targets

Require: Context C = {(xn, yn)}Nn=1, ordered targets {(x⋆k, y⋆k)}Kk=1

1: {KVℓ
C} ← rC(C) ▷ O(N2); cached

2: Build all K buffer tokens; compute {KVℓ
B1:K
} under causal mask

3: Build target queries {Ex(x
⋆
k)+e

role
tgt }Kk=1

4: Mask: target k sees B1:k−1 and all of C
5: Compute {log pk}Kk=1;
6: return

∑K
k=1 log pk

B TRANSFORMER NEURAL PROCESS BASELINES DETAILS

In this section, we outline the baseline TNPs. Further details can be seen in Nguyen & Grover
(2022). The numerical settings, including the exact dimension and number of layers of each module,
is given in Appendix D.1.

B.1 TNP-D

This model takes as input a context set {(xn, yn)}Nn=1 and a target set {x⋆
m}Mm=1. Similar to Ap-

pendix A, the context embeddings ectx
n is processed with bidirectional MHSA (no positional encod-

ings). The target is then naively decoded by

hm = rtgt

(
etgt
m, rC(C)

)
, ϕm = ψ(hm),

ψ is the distribution head (e.g., Gaussian as in the original paper, or mixture-of-Gaussians as we
mainly use). The mask of this approach is shown in Fig. A1 left. The training of this model maxi-
mizes the log likelihood

∑
m log p(y⋆m;ϕm) (maximum likelihood of independent targets).

At deployment, the decoding can be independent or autoregressive, yielding TNP-D-Ind and TNP-
D-AR methods.

TNP-D-Ind simultaneously produces independent distributions of the targets. This approach is fast
because the context and target points are processed only once, but it cannot capture the dependency
of different targets.

TNP-D-AR decodes the distribution sequentially. The context set grows as sampled targets are
appended. Each target conditions on the context set and all previous targets. This method model
targets jointly, but incurs repeated encoding and decoding.

Note in particular that TNP-D-Ind is invariant to the order of target, while TNP-D-AR is order-
sensitive and we approximate the preditive distribution by averaging over multiple target orderings.

B.2 TNP-ND

This model encodes the context set once and decodes all targets simultaneously by parameterizing a
joint multivariate Gaussian distribution over the outputs (the embedder and transformer operations
identical to TNP-D-Ind). In particular,

hm = rtgt

(
etgt
m, rC(C)

)
, ϕ = ψND(h1, ...,hM ),

where ψND is the multivariate Gaussian head.

The training optimizes the joint multivariate Gaussian likelihood of the target points. At deployment,
the joint samples and log-likelihood can be computed in a single pass. This model is invariant to the
order of target points.
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B.3 TNP-A

The key difference between this model and TNP-D is the transformer operation. This model
process three sets: the context {(xn, yn)}Nn=1, the target {x⋆

m}Mm=1, and the observed target
{(x⋆

m, y
⋆
m)}Mm=1. To differentiate, we denote the embeddings of {(x⋆

m, y
⋆
m)}Mm=1 by {ey,tgt

m }. Sim-
ilar to TNP-D, the context embeddings attend to each other. For the target set, each etgt

m attends
to the context and the previous observed target embeddings ey,tgt

j<m. Likewise, the observed target
embeddings attends to context and previous target embeddings (Fig. 2 of Nguyen & Grover 2022).
The target causal mask allows TNP-A to model the joint likelihood simultaneously in one single
pass, assuming the observations are given (e.g., for training and test log likelihood evaluations). For
prediction generation, however, each sampled target needs to be re-encoded and attended for the
generation of next targets, requiring a sequential re-encoding process. The causal mask on the target
set is sensitive to the target order, and thus the final likelihood is an average over multiple random
permutations. Note that this model processes duplicated target set–{x⋆

m}Mm=1 and an observed se-
quence {(x⋆

m, y
⋆
m)}Mm=1; this creates significant computational overhead in both the training and the

inference, particularly when the target set is large (see e.g. Appendix C and Figs. A7 to A9).

C COMPUTATIONAL EFFICIENCY DETAILS

This section provides additional empirical results to support the efficiency claims made in the main
paper. We present an analysis of performance scaling with batch size, an ablation study of our
custom kernel, a comparison against unoptimized open-source baselines, and further ablations on
training time. In all subsequent plots, the absence of a data point for a given method indicates that
the experiment failed due to an out-of-memory (OOM) error for that specific configuration.

C.1 SCALING WITH BATCH SIZE

To analyze the effect of batch size B, we provide expanded results for autoregressive sampling and
joint log-likelihood evaluation in Fig. A2 and Fig. A3, respectively. These plots show the wall-clock
time as a function of the number of context points N for various batch sizes. The results confirm
that our method’s performance advantage over autoregressive baselines like TNP-A is consistent and
often widens as the context and batch size increases.
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100

Ti
m

e (
s)
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32 64 128 256 512 1024
N
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32 64 128 256 512 1024
N

B=512

32 64 128 256 512 1024
N

B=1024

Sample generation time (M=16)

Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A2: Autoregressive sampling time (log scale) versus context size N for an expanded range
of batch sizes B.
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Ours TNP-D-Ind TNP-D-AR TNP-A TNP-ND

Figure A3: Joint log-likelihood evaluation time (log scale) versus context size N for an expanded
range of batch sizes B.

C.2 IMPACT OF CUSTOM TRITON KERNEL

To isolate the contribution of our custom attention kernel, we compare the sampling time of our
method with and without this optimization. The kernel is designed to accelerate a key computational
step: the cross-attention between the batched target embeddings (batch sizeB) and the concatenation
of a batched buffer cache with a shared context cache (batch size 1). A naive implementation would
explicitly expand the context cache tensorB times to match the batch dimension before the attention
operation. This “expand” operation is memory-bandwidth intensive and creates a large, redundant
intermediate tensor.

Our custom Triton kernel avoids this bottleneck by fusing the expansion and attention computations.
The kernel loads the single context cache into fast SRAM and reuses it for each item in the batch,
calculating the attention on-the-fly without ever materializing the full expanded tensor in slower
global memory. As shown in Fig. A4, this memory-centric optimization provides a substantial
speedup that grows with the batch size B.
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B=256
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B=512

32 64 128 256 512 1024
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B=1024

Sample generation time (M=16)

Ours (w/ Triton) Ours (w/o Triton)

Figure A4: Ablation study for autoregressive sampling, comparing our method with and without the
custom Triton kernel across different context and batch sizes.

C.3 COMPARISON TO OPEN-SOURCE BASELINES

To demonstrate the fairness of our primary comparisons, we benchmark our optimized baseline
implementations against their standard, publicly available versions. The results for sampling and
likelihood evaluation are shown in Fig. A5 and Fig. A6. Our optimized baselines are consistently
3− 10× faster than their standard counterparts. This confirms that our method’s performance gains
are due to fundamental algorithmic advantages, not an unfair comparison against unoptimized code.
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Figure A5: Comparison of our optimized baseline implementations against standard open-source
versions for autoregressive sampling.
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Figure A6: Comparison of our optimized baseline implementations against standard open-source
versions for joint log-likelihood evaluation.

C.4 TRAINING TIME SCALING

We further analyze the scaling of training step time with respect to the number of target points M
for different batch sizes. Figs. A7 to A9 show this relationship for batch sizes of 64, 128, and 256,
respectively. The results show that as the context, target, or batch size increases, TNP-A becomes
increasingly exppensive to train relative to all other methods.
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Figure A7: Training step time vs. number of target points M for batch size B = 64.
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Figure A8: Training step time vs. number of target points M for batch size B = 128.
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Figure A9: Training step time vs. number of target points M for batch size B = 256.

C.5 IMPACT OF ATTENTION PATTERNS ON TRAINING SPEED

A key difference between the baseline models is their compatibility with modern, efficient attention
implementations. The causal attention mask required by TNP-A during training is incompatible
with kernels like FlashAttention, forcing it to use PyTorch’s standard, but slower, “math” attention
backend. In contrast, models like TNP-D and ours can leverage these faster kernels.

To determine if TNP-A’s slow training is fundamental to its architecture or merely an artifact of this
kernel incompatibility, we conduct a controlled ablation. We disable FlashAttention for all methods,
forcing a fair comparison on the same standard PyTorch attention backend. The results, shown in
Figs. A10 to A12, are unequivocal. Even on a level playing field, TNP-A’s training time is orders
of magnitude slower than all other methods. This confirms that its high computational cost is an
inherent consequence of its autoregressive design, not just an implementation detail.
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Figure A10: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 64.
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Figure A11: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 128.
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Figure A12: Training step time vs. number of target points M using the standard PyTorch attention
backend (FlashAttention disabled). Batch size B = 256.

D EXPERIMENTAL DETAILS

D.1 MODEL CONFIGURATION

In our paper, we use MLP to map context pairs, buffer pairs, or target points into tokens. Then
a transformer is applied to the sequence of tokens. We use mixture-of-Gaussian (GMM) head as
our main head distribution (more expressive than single Gaussian head, as demonstrated in Ap-
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pendix E). In general, we train all models (bar the tabular model; see Appendix D.5 for details) with
the following settings.

Training configurations.

• Optimizer: Adam with learning rate 1× 10−4 (unless stated otherwise), β = (0.9, 0.999),
no weight decay. For TNP w/ buffer, we use the same settings but apply weight decay of
0.01 for stability.

• Scheduler: Cosine schedule with warmup; warmup ratio 0.1 for all experiments. for TNP
w/ buffer, we use a warmup ratio of 0.05.

• Training loop: 32 epochs.

Embedder. We use a 3-layer MLP with 256 hidden layer dimension and 128 output dimension.
There is a skip connection between the input and the first hidden layer.

Transformer backbone. This has 6 layers of transformer encoder modules, each with a multi-
head attention of 4 heads and dimension 128 followed by an MLP feedforward of 2 layers, dimension
128 → 256 → 128. This is the transformer attending context, buffer, and target set (Appendix A
and Appendix B).

Prediction head. Note first that different distribution heads involve individual parameterization
structures. Therefore, another layer of distribution-specific NNs is required to process the above
transformer outputs. This NN module is considered part of the distribution head (the ψ in Ap-
pendix A and Appendix B).

For our method, TNP-D, and TNP-A, the head consists of 2 layers of MLP with dimension 128→
256 → 3 ∗ Dy ∗ Ncomponents, where Dy is the output dimension of the problem and Ncomponents is
the number of Gaussian components. The MLP output is then chunked into weights, means, and
standard deviations (of the same shape) which parameterize the GMM, and the outputs are sampled
in parallel for Dy > 1. We set Ncomponents = 20 for all tasks except for EEG where Ncomponents = 8.

For TNP-ND, we use the setting from Nguyen & Grover (2022), where the targets are mapped to
a mean and a Cholesky matrix, which parameterize the multivariate Gaussian. The mean of each
target is mapped by an MLP with dimension 128 → 256 → Dy . The Cholesky matrix requires
two steps: (i) the target tokens (conditioned on context via the above transformer backbone) are
first decoded into H ∈ RM×20 by another 3-layer transformer (no positional encoding, 4 heads,
each layer with dimension 128 and MLP 128 → 256 → 128, no mask) and then an MLP projector
(128→ 256→ 20); (ii) the Cholesky matrix is taken as L = lower(HHT ).

Trained model selection. We track the loss value in each epoch as we train the models. The
parameters with the best loss value are selected for the evaluations.

D.2 DATASETS

Gaussian Process (GP) Functions. As a first toy case, we test on GP functions (see Rasmussen
& Williams 2006 for details of GPs). In this example, a batch contains 128 functions of one di-
mensional inputs (D = 1) and one dimensional observations (Dy = 1). The inputs are sampled
from interval [−2, 2] using the Sobol sequence. For each batch, we first sample a kernel class from
squared-exponential (RBF), Matérn-3/2, Matérn-5/2 with probabilities 0.4, 0.3, and 0.3, respectively.
Conditional on the chosen class, each function receives its own kernel hyperparameters: the variance
σ2
f ∼ Uniform[0.5, 1.5] and the lengthscale ℓ ∼ Uniform[0.1, 1], broadly covering diverse classes

of functions of amplitude around 1. We then sample functions from GP (0,k), where k represents
the sampled kernels, and add i.i.d. Gaussian observation noise with variance 10−5. The resulting
values are randomly partitioned into context, buffer, and target sets. Note that within a batch the
kernel class is fixed, whereas the hyperparameters are sampled independently for each function.

During the training, we sample N between 4 and 192 and the maximum number of buffer is 16.
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Sawtooth Functions. The second example is the non-Gaussian sawtooth functions (Bruinsma
et al., 2023). In this example, a batch contains 128 functions of one dimensional inputs (D = 1)
and one dimensional observations (Dy = 1). The inputs are sampled from interval [−2, 2] using the
Sobol sequence. An input x and output y follows:

y(x) = ynonoise(x) + ϵ,

ynonoise(x) = (ω(⟨u,x⟩ − ϕ)) mod 1,

where u ∈ RD is a direction sampled uniformly from the unit sphere via u = g/∥g∥2 with g ∼
N (0, ID); ω, ϕ, and ϵ denote the frequency, phase offset, and additive noise, respectively; and the
parameters are drawn independently as ω ∼ Uniform[3, 5], ϕ ∼ Uniform[0, 1], and ϵ ∼ N (0, σ2)
with noise scale σ ∼ Uniform[0.05, 0.1].

During the training, we sample N between 8 and 128 and the maximum number of buffer is 16.

Electroencephalogram (EEG). The dataset contains 11, 520 trials of 122 subjects from 7 corre-
lated channels with 256 time points each. The output channels are individually standardized to zero
mean and unit variance. We randomly select 10 for the test set, reserve 10 for cross-validation, and
the remaining for the train set. This leaves 7802 trials for the training and 896 for testing.

During the training, the trials are replicated for 200 times and shuffled. Each batch contains 32
trials sampled from the shuffled set. We select between 4 and 192 of the 256 time points to be
context points, 32 buffer points, with the remaining being target points. Each batch has a fixed size
of context set.

We evaluate on both interpolation (random masking) and forecasting (temporal masking) tasks using
the test subjects. The test set splits the 256 time points into context and target. For interpolation, we
sample the specified number of context and target points from the full time sequence (Appendix E).
For forecasting, we take the first N points as context set and the consecutive M points as target set.
Forecasting with N = 192 context and M = 64 target sets involves the full sequence.

Multisensory causal inference model dataset. In the last example, we adopt one of the multisen-
sory causal inference models described in Liu et al. (2025) to build a simulator, which we then use
to generate training data (full setup and generation procedure, as well as a description of the exper-
iment, are provided in Appendix D.3). The inputs x correspond to the experimentally manipulated
variables of the study, namely rtype, sA, sV and Vlevel, where rtype denotes the task type (auditory vs
visual localization), sA and sV are the true locations of auditory and visual cues presented to human
participants, and Vlevel the level of noise applied to visual cues. We first generate sets of input points
for the simulator to obtain the outputs y, which represent the predicted responses.

For training, we construct two datasets from the simulator with different values of ρ, a variable of the
model regulating the level of recalibration of the auditory perceptual range (with ρ = 1 representing
no recalibration and ρ = 4/3 representing a full recalibration to the visual range, see Appendix D.3
for more details), and train two separate models for each setting. We sample N between 0 and 400,
fix Nt = 256, and set the buffer size to a maximum of 16. For the zero-context case, we introduce
“dummy point”, to indicate the absence of context to the model. During evaluation, we use the
publicly available dataset obtained from the experiment described in Liu et al. (2025)3. For each
of the 15 participants in the study, we extract two non-overlapping subsets of experimental data of
400 trials each. We do so by stratifying on the joint levels of Vlevel ∈ {0, 1, 2} and rtype ∈ {0, 1}
(more details on these variables below), and extracting the two sets such that (i) within each split the
six (3 × 2) strata are represented as evenly as possible, and (ii) the per-stratum counts are matched
between splits. This yields 30 batches overall (2 per participant).

For details of the real experiments and the complete data generation setup in the simulator, see
Appendix D.3.

D.3 MULTISENSORY CAUSAL INFERENCE MODEL AND EXPERIMENT DETAILS

To probe our method’s suitability for Bayesian model comparison, we consider a computational
neuroscience study investigating multisensory causal inference, described in Liu et al. (2025).

3https://github.com/LSZ2001/Audiovisual-causal-inference
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D.3.1 ORIGINAL NEUROSCIENCE EXPERIMENT

Stimuli and procedure. In this work, we take into account a subset of the experimental data
obtained from 15 human participants who, at each experimental trial, were asked to perform one of
two localization tasks, which the authors refer to as bisensory visual (BV) and bisensory auditory
(BA) localization. In both cases they were presented with an auditory cue, located at an angle
uniformly sampled among {−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦} from the participant, and a visual
one, either at the same location as the auditory one (≈ 1/2 of trials) or at an angle uniformly sampled
between −20◦ and 20◦. They were either asked to report the location of the visual (BV) or the
auditory (BA) stimulus on a screen. Here we call those locations sV and sA, respectively. The
level of noise Vlevel associated with the visual stimulus location was experimentally manipulated by
modifying the size of the stimulus itself. In practice, this meant presenting a small (Vlevel = 0; ≈ 1/3
of trials), medium (Vlevel = 1; ≈ 1/3 of trials) or big (Vlevel = 2; ≈ 1/3 of trials) visual stimulus.

Each participant completed a total of 1000 trials.

Cognitive models. Here we focus on two versions of the “vanilla” model described in the original
paper. On each trial, the participant is assumed to believe the two stimuli could come from either a
common (C = 1) or different (C = 2) source, assigning a fixed prior probability p(C = 1) = psame
to the former case. Regardless of this, the participant has Gaussian priors over stimuli locations
p(sA) = N (sA | 0, σ2

S) and p(sV ) = N (sV | 0, σ2
S).

A key assumption of the model is that participants do not have direct access to the true location of
the stimuli, but only to noisy auditory and visual percepts, a common feature in Bayesian models of
perception (Knill & Pouget, 2004). These percepts are modeled as xA = ρ(s+εA) and xV = s+εV
respectively in case of a common source, and xA = ρ(sA + εA) and xV = sV + εV in case
of separate sources. Here s = sA = sV represents their common location when C = 1, while
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V ) represent the auditory and visual perceptual noise. While

σA is assumed to be fixed, σV can assume three separate values (σ(low)
V , σ(med)

V , σ(high)
V ) based on the

(experimentally manipulated) size of the visual stimulus Vlevel. Finally, ρ represents a “recalibration”
factor to account for the fact that the range of auditory stimuli (30◦) is different from that of visual
ones (40◦). In our experiment, this is the factor that differentiates the two models we set out to
compare: in the first, we set ρ = 1; in the second, we set ρ = 4/3 (thus re-mapping auditory percepts
to the same scale as visual ones).

Here we describe a BA trial, but the following is easily generalizable to BV ones. When asked about
the location of the auditory stimulus, participants are assumed to consider both scenarios (common
vs different sources) by evaluating

p(s | C = 1) = p(s | xA, xV , σA, σV , σS),
p(sA | C = 2) = p(sA | xA, σA, σS),

as well as

p(C | xA, xV , σA, σV , σS , psame).

The final estimate ŝA of the location is then inferred by weighting the two hypotheses (common vs
separate sources) by their posterior probability, so

ŝA =p(C = 1 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
s · p(s | C = 1)ds+

p(C = 2 | xA, xV , σA, σV , σS , psame)

∫ ∞

−∞
sA · p(sA | C = 2)dsA.

(6)

Finally, the response of the participant is modeled as y ∼ N (ŝA, σ
2
M ) with a probability of 1−λ, and

y ∼ Uniform[−45, 45] with a probability of λ. Here λ represents the “lapse rate”, or the probability
of a participant being distracted/disengaged and giving a random answer (which we fix at 0.02),
while σM represents motor noise.

Both models thus have 7 free parameters, which we re-parametrize as logσ(low)
V , logσ(med)

V , logσ(high)
V ,

logσA, logσS , logσM and logitpsame for the purposes of simulation and model-fitting.
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D.3.2 SIMULATION

For training all models, we produce∼1.5 millions synthetic datasets. In what follows we go through
the simulation of a single trial. As trials are independent from one another, generating more of them
simply involves repeating this process.

Stimuli. Following the setup used in Liu et al. (2025), we sample sA ∼
Uniform{−15,−10,−5, 0, 5, 10, 15} and C ∼ Uniform{1, 2}. Then we either sample
sV ∼ Uniform[−20, 20] as a continuous variable (if C = 2) or we set sV = sA (if C = 1). We
then sample Vlevel ∼ Uniform{0, 1, 2}, representing the perceptual noise associated with sV . This
regulates whether σV = σ

(low)
V , σV = σ

(med)
V or σV = σ

(high)
V .

Finally, we sample rtype ∼ Uniform{0, 1}, representing the task (BV if rtype = 0, BA if rtype = 1).

Parameters. For each synthetic dataset, we sample the 7 free parameters from Gaussians truncated
at two standard deviations above and below the mean. Here we use the notation Ntruncated(µ, σ

2) to
denote such distributions, with µ being the mean and σ the standard deviation. What follows are the
distributions from which each parameter was sampled.

logσ(low)
V ∼Ntruncated(0, 1.5

2);

logσ(med)
V ∼Ntruncated(logσ(low)

V + 1, 12);

logσ(high)
V ∼Ntruncated(logσ(med)

V + 0.75, 0.52);

logσA ∼Ntruncated(1.75, 0.5
2);

logσS ∼Ntruncated(2.5, 1
2);

logσM ∼Ntruncated(1.5, 1.5
2);

logitpsame ∼Ntruncated(1.5, 1.5
2).

Note that logσ(low)
V , logσ(med)

V , and logσ(high)
V are not independent from each other, but carry the

assumption that in most cases logσ(low)
V < logσ(med)

V < logσ(high)
V , which reflects the intent of the

experimental manipulation of Vlevel.

Responses. Here we describe a scenario in which rtype = 1 (BA trial), but the process is the same
for rtype = 0. In simulating the responses, we follow the hierarchical structure specified by the
model. First we computed the sensory percepts xA = ρ(sA + εA) and xV = sV + εV by sampling
εA ∼ N (0, σ2

A) and εV ∼ N (0, σ2
V ). We then evaluate ŝA (recall we are considering a BA trial) as

in Eq. (6), and sample the final response as either y ∼ N (ŝA, σ
2
M ) or y ∼ Uniform[−45, 45], with

a probability regulated by the lapse rate λ (which we set to 0.02, see above).

D.3.3 GROUND-TRUTH ACQUISITION

Here we describe how we obtained our log marginal likelihood (LML) estimates (in the form of
lower bounds, see below), which we then use as ground-truth to compare our approach to baselines.

Problem setting. Fitting the cognitive model to a dataset involves finding the posterior over model
parameters given empirical data and model

p(θ | y,X, ρ) = p(y | θ,X, ρ)p(θ)
p(y | X, ρ)

, (7)

where
θ = {logσ(low)

V , logσ(med)
V , logσ(high)

V , logσA, logσS , logσM , logitpsame},

X = {s(t)A , s
(t)
V , V

(t)
level, r

(t)
type}400t=1,

and
y = {y(t)}400t=1.

Here t represents the trial number within the dataset (recall we are using data splits of 400 trials each,
see Appendix D.2), and we set p(θ) to the truncated Gaussians we use for sampling the parameters
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in our simulation (see Appendix D.3.2), with probability density of values beyond the truncation
boundaries set to a “floor value” of N (5 | 0, 1).
While the posterior over parameters is often instrumental in answering scientific questions, the cru-
cial quantity we are interested in estimating is the model evidence (also called marginal likelihood)
p(y | X, ρ) (i.e., the denominator in Eq. (7)), as it represents a straightforward metric for model
selection. In fact, assuming a flat prior over models p(ρ = 1) = p(ρ = 4/3) = 0.5, the model
evidence as a function of ρ represents the unnormalized posterior over models.

Stacking Variational Bayesian Monte Carlo. To compute a reliable estimate of the marginal
likelihood to use as our ground-truth, we use Stacking Variational Bayesian Monte Carlo (S-VBMC,
Silvestrin et al., 2025). This is a principled approach to merge (“stack”) approximate posteriors
generated by a set of independent runs of its parent algorithm, Variational Bayesian Monte Carlo
(VBMC, Acerbi, 2018; 2020). This is done in a simple post-processing step, which has been shown
to greatly improve the approximate posterior quality in a variety of challenging settings. In addition
to a posterior distribution, S-VBMC outputs an estimate of the evidence lower bound (ELBO),
which, as the name suggests, is a lower bound on the (log) model evidence (Blei et al., 2017),
the quantity we are interested in for model comparison. As the approximation of the posterior
approaches the true one, this quantity gets closer to the true model evidence, with equality when
the approximation is perfect. As S-VBMC proved very effective in computational neuroscience
problems (Silvestrin et al., 2025), including one very similar to the one considered here (Acerbi
et al., 2018), we deem it a suitable method for estimating a lower bound on model evidence to use
as a ground-truth.

While an in-depth description of S-VBMC and VBMC is beyond the scope of this work (an inter-
ested reader should refer to the original papers cited above), in the following paragraphs we briefly
report details of our implementation of both.

VBMC implementation details. To obtain an approximate posterior, the Python implementation
of VBMC (Huggins et al., 2023) requires absolute and plausible upper and lower bounds for each
parameter. We use the sampling bounds defined in Appendix D.3.2 as absolute bounds, and replicate
the process considering 1.5 standard deviations (as opposed to 2) from the mean to establish the
plausible ones.

Another required input is a target density function (i.e., the unnormalized posterior), for which we
use the numerator of Eq. (7), p(y | θ,X, ρ)p(θ). We do this both with ρ = 1 and ρ = 4/3,
representing the two models we set out to compare.

Finally, VBMC requires a starting point in the parameter space, which we uniformly sample between
plausible bounds independently for each inference run.

S-VBMC implementation details. After obtaining 20 converging VBMC runs for each of our 30
datasets (2 for each of the 15 participants, see Appendix D.2) for both models, we stack the resulting
posteriors with S-VBMC. We maintain the default settings, therefore the only inputs required are the
VBMC runs themselves. With this, we obtain a total of 60 “stacked” ELBOs (two per each dataset,
corresponding to our two competing models) to use as ground-truth.

D.4 EVALUATION DETAILS

In this paper log likelihood values are always averaged (LL divided by the number of target points
M ).

GP & Sawtooth functions. We evaluate likelihood values over 1024 functions, each repeated 4
times with models trained on different seeds and context sizes N = 8, 16, 32, 64, 128 (statistics
of 1024 ∗ 4 ∗ 5 evaluations). Each likelihood evaluation is an average of 128 permutations (log
averaged likelihood). In other words, we have 1024 ∗ 4 ∗ 5 averaged likelihoods, and each averaged
value merges 128 orders of the target set.

EEG data. We train each model once with a fixed seed; the evaluations are over 896 trials from
20 subjects held out during training, each repeated with N = 8, 16, 32, 64, 128, 192. For the EEG
forecasting, the target set consists of time points immediately after context points, and, in the main
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results (Table 1), the target set permutations are applied, as done in Bruinsma et al. (2023). We
additionally demonstrate in appendix Table A3 that forecasting with permuted target set outperforms
fixed sorted target. The number of permutations we apply is 128.

Multisensory causal inference model. We train one model for each setting of ρ (ρ = 1 and
ρ = 4/3). In the model selection scenario, the full 400-point dataset from each of the 30 batches is
used as the target, and we evaluate the LML across all cases. This procedure is repeated 5 times,
with 128 different sequence permutations per run. In the data prediction scenario, we first select
the winning model from the model selection stage, and then compute log likelihoods on the same
30 batches, each repeated with N = 8, 16, 32, 64, 128, 256. The results of both experiments are
summarized in Table 2. Here we also use 128 permutation for all batches.

D.5 TABULAR MODEL DETAILS

D.5.1 ARCHITECTURE

Set encoder. We reuse the first two stages of TabICL without modification: the distribution-aware
column processor (TFcol, implemented with induced self-attention blocks) followed by the
context-aware row-wise transformer (TFrow) with RoPE. Scalars are mapped by a 1→ 128 linear
layer; each column is then processed across rows by an ISAB stack (Lee et al., 2019) with three
blocks, four heads, 128 inducing points, feed-forward hidden dimension of 256. The row-wise
encoder has three layers with four heads, feed-forward hidden dimension of 256, and RoPE
base 100,000. We prepend two [CLS] tokens per row and concatenate their outputs, yielding a
256-dimensional row embedding (2× 128). We use at most ten features per table.

Tokenization and additive target encoding. The set encoder produces one row token per sample
for context, buffer, and target rows (dimension 128; only selects the subset of the vector correspond-
ing to the [CLS] token dimensions). Context and buffer tokens receive the target value additively
via a small target encoder (linear 1→128. Buffer tokens also receive a learned positional embedding
indicating their autoregressive index (up to 32 positions). This keeps labels additive, lets us compute
the set encoder once, and makes the buffer explicit at the token level.

Dataset-wise ICL with a buffered mask. On top of these tokens we run a dataset-wise trans-
former with twelve layers and four heads, model width 128, and feed-forward size 256. The atten-
tion mask is the only architectural change relative to TabICL: context attends bidirectionally and
is read-only at inference; the buffer uses strictly causal self-attention; target queries attend to the
cached context and to the causal prefix of the buffer; there are no edges into context from buffer or
targets. The maximum buffer size is 32 tokens and we query 512 targets per task.

Prediction head. Predictions use a GMM head with 20 components and a minimum standard
deviation of 10−3.

Caching. The column and row set encoder is computed once for all rows. During autoregressive
decoding we cache keys/values for the context once and update only the buffer cache, so the same
context cache is reused across parallel generations.

D.5.2 DATA GENERATION AND PREPROCESSING

SCM prior and task family. We generate datasets with the MLP-based structured causal model
(SCM) prior in the style of Hollmann et al. (2023), following the dataset-wise, set-encoded regime
of TabICL (Jingang et al., 2025). Concretely, we first sample a DAG with layered (MLP-style)
connectivity and then define each variable c as c = f(Pa(c)) + ε, where Pa(c) are its parents, f
is a small MLP with nonlinearity, and ε is independent noise. Unless stated otherwise, we sample
the feature dimension d ∈ [1, 10], and per-task context sizes N ∈ [8, 1024]; targets are continuous
responses with dataset-specific noise levels. The cause sampler follows the TabPFN prior (including
mixed marginals); the SCM therefore yields columns that may be non-Gaussian or discrete at source,
which we handle with the TabICL preprocessing described below.
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Table A1: Head comparison on synthetic function. We compare average log-likelihood (↑) results
on our main GMM head and on standard Gaussian distribution head.

TNP-D TNP w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)
Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

TNP-D-Gaussian TNP Gaussian w/ buffer
AR Ind K=16 K=4 K=1

GP (M = 16) 2.50 (0.019) 2.13 (0.023) 2.48 (0.019) 2.53 (0.019) 2.53 (0.019)
GP (M = 128) 3.23 (0.013) 2.06 (0.023) 3.25 (0.013) 3.27 (0.013) 3.27 (0.013)
Sawtooth (M = 16) 0.96 (0.004) 0.82 (0.006) 0.85 (0.006) 0.98 (0.004) 0.99 (0.004)
Sawtooth (M = 128) 1.10 (0.003) 0.82 (0.005) 1.10 (0003) 1.11 (0.003) 1.11 (0.003)

Sampling of task partitions. For each generated dataset we draw a random partition (C,B, T )
with N ∼ Uniform{8, ... , 1024}, buffer capacity fixed at K = 32, and target count M = 512. Per
batch, we fix (d,N,K,M) across tasks to avoid padding and stack samples directly.

Preprocessing. We adopt the TabICL PreprocessingPipeline and fit it on context features only.
The fitted transform is then applied to context, buffer, and target features. Regression targets are
standardized using context statistics, i.e., ỹ = (y − µy,C)/σy,C , and the same (µ, σ) are used for
buffer and targets. No missing values are synthesized by the SCM generator.

Summary of preprocessing pipeline. We use a three-stage, per-column pipeline following Jingang
et al. (2025): (i) standard scaling; (ii) normalization (power, i.e., Yeo–Johnson); and (iii) outlier
handling via a z-score threshold τ = 4.0. At transform time, values outside the fitted range are
clipped to the training (context) min/max before normalization, mirroring TabICL’s behavior.

D.5.3 TRAINING PROCEDURE

We train with AdamW (learning rate 1 × 10−4, β=(0.9, 0.95), weight decay 0.0), batch
size 64 datasets per step, gradient clipping at 0.5, and dropout 0.0 throughout the backbone.
Mixed-precision training uses AMP with bfloat16. All runs use float32 tensors at the data
interface. A cosine schedule with warmup is used (cosine with warmup); warmup steps=
2000 takes precedence over the nominal warmup ratio= 0.20; num cycles= 1. Automatic
mixed precision is enabled with amp dtype=bfloat16. Each training step draws a batch of 64
independent tasks (datasets) with feature dimension d sampled from {1, ... , 10} and context size N
from {8, ... , 1024}; buffer size and target count are fixed at K=32 and M=512. Training is capped
at max steps = 160,000, i.e., one epoch effective duration. This corresponds to approximately
64× 160,000 = 10.24 million synthetic tasks seen during pretraining. The global data seed is 123.
We trained the model on a single NVIDIA A100 80 GB GPU for approximately 3 days.

E ADDITIONAL LOG LIKELIHOOD RESULTS ON SYNTHETIC AND EEG
TASKS

E.1 PREDICTIVE POWER OF DIFFERENT HEADS

In this paper, we use GMM as our prediction head. We compare the predictive performance of
GMM to standard Gaussian distribution head. In Table A1, GMM is able to achieve better predictive
performance, particularly on the non-Gaussian Sawtooth functions.

E.2 RESULTS OF LARGER M

As a supplementary results of Table 1, we evaluate log likelihood values on larger target set. For
TNP w/ buffer, we evaluate K points per Algorithm 2 and proceed to the next target subsets by
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Table A2: Average Log-likelihood (↑) results on synthetic functions and EEG example. Supple-
mentary results of Table 1 on larger target set and various deployed K. When M > K, we evaluate
every K targets once and perform AR for M/K steps.

TNP-D TNP-ND TNP-A
AR Ind

GP (M = 16) 2.57 (0.020) 2.22 (0.022) 0.80 (0.082) 2.24 (0.018)
GP (M = 128) 3.29 (0.013) 2.15 (0.022) 2.27 (0.023) 3.10 (0.012)

Sawtooth (M = 16) 1.05 (0.004) 0.94 (0.005) -0.43 (0.008) 0.98 (0.004)
Sawtooth (M = 128) 1.14 (0.003) 0.94 (0.005) 0.39 (0.005) 1.12 (0.003)

EEG-Int (M = 16) 0.51 (0.013) 0.36 (0.014) 0.46 (0.011) 0.58 (0.014)
EEG-Int (M = 64) 0.88 (0.011) 0.35 (0.014) 0.50 (0.010) 0.95 (0.012)

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)

TNP w/ buffer
K=16 K=4 K=1

GP (M = 16) 2.51 (0.019) 2.55 (0.019) 2.56 (0.019)
GP (M = 128) 3.27 (0.013) 3.28 (0.013) 3.29 (0.013)

Sawtooth (M = 16) 1.00 (0.005) 1.08 (0.004) 1.09 (0.004)
Sawtooth (M = 128) 1.15 (0.003) 1.16 (0.003) 1.16 (0.003)

EEG-Int (M = 16) 0.52 (0.013) 0.54 (0.014) 0.54 (0.014)
EEG-Int (M = 64) 0.90 (0.011) 0.91 (0.011) 0.91 (0.011)

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)

Table A3: EEG forecasting w/ and w/o target set permutation. The target set of EEG forecasting
is the points immediate after the context set. Our main paper applies permutation to the target set
while this table compares against forecasting of fixed temporal order (sorted).

TNP-D TNP-ND TNP-A
AR Ind

EEG-For (M = 16) 1.07 (0.004) -0.74 (0.008) -0.04 (0.005) 1.23 (0.003)
EEG-For (M = 16, sorted) 0.85 (0.005) -0.74 (0.008) -0.004 (0.005) 1.14 (0.004)
EEG-For (M = 64) 1.12 (0.003) -1.08 (0.007) -0.23 (0.004) 1.20 (0.003)
EEG-For (M = 64, sorted) 0.89 (0.005) -1.08 (0.007) -0.23 (0.004) 1.16 (0.003)

TNP w/ buffer
K=16 K=4 K=1

EEG-For (M = 16) 0.85 (0.004) 1.17 (0.003) 1.21 (0.003)
EEG-For (M = 16, sorted) 0.76 (0.006) 0.87 (0.005) 1.09 (0.004)
EEG-For (M = 64) 1.12 (0.003) 1.18 (0.003) 1.19 (0.003)
EEG-For (M = 64, sorted) 0.78 (0.005) 0.89 (0.004) 1.11 (0.004)

conditioning on the context and evaluated points. This requires M/K steps of evaluations. The
results are reported in Table A2. As we decrese the deployment K, the performance of our TNP w/
buffer becomes stronger, while more iterations (and thus computational time) are required.

E.3 EEG FORECASTING W/ AND W/O TARGET PERMUTATION

In our main paper, the EEG forecasting task is evaluated with the permuted target set, as done
in Bruinsma et al. (2023). We repeat the experiment by forecasting the target of a fixed temporal
order. In Table A3, we show that averaging over random target order provide better performance.
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Table A4: Multisensory causal inference model selection extra results. Supplement for table
Table 2 on model comparison case with extra evaluation on K = 4 and R2 metrics for LML and
∆LML.

TNP-D TNP-ND TNP-A
AR Ind

LML RMSE (↓) 3.10 (0.005) 86.96 (0.000) 208.51 (0.041) 4.75 (0.012)
∆LML RMSE (↓) 2.44 (0.008) 36.18 (0.000) 25.60 (0.023) 3.29 (0.019)
LML R2 (↑) 1.00 (0.000) -0.43 (0.000) -7.22 (0.003) 1.00 (0.000)
∆LML R2 (↑) 0.93 (0.001) -14.47 (0.000) -6.74 (0.014) 0.87 (0.002)

TNP w/ buffer
K=16 K=4 K=1

LML RMSE (↓) 3.56 (0.004) 3.48 (0.002) 3.47 (0.004)
∆LML RMSE (↓) 2.60 (0.010) 2.59 (0.009) 2.59 (0.011)
LML R2 (↑) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000)
∆LML R2 (↑) 0.92 (0.001) 0.92 (0.001) 0.92 (0.001)

Table A5: Multisensory causal inference model data prediction task normalized log-likelihood
(↑) results. Supplementary results of Table 2, with extra evaluation on K = 4 and on larger target
set M = 128.

TNP-D TNP-ND TNP-A
AR Ind

Pred LL (M = 16) -2.76 (0.021) -2.77 (0.025) -3.12 (0.019) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.74 (0.016) -3.17 (0.012) -2.71 (0.015)

TNP w/ buffer
K=16 K=4 K=1

Pred LL (M = 16) -2.76 (0.024) -2.76 (0.024) -2.76 (0.024)
Pred LL (M = 128) -2.71 (0.015) -2.71 (0.015) -2.71 (0.015)

F ADDITIONAL MULTISENSORY CAUSAL INFERENCE MODEL RESULTS

As supplementary results to Table 2, we include additional metrics and evaluation settings. Specif-
ically, for the model comparison task, we report the coefficient of determination (R2) for both the
LML and ∆LML with respect to the ground-truth (see Table A4). For the data prediction task, we
present results with a larger target size of M = 128 (see Table A5). In addition, for completeness,
we evaluate both the model comparison and data prediction tasks with K = 4. With varying K, we
observe little to almost no performance degradation compared to TNP-D AR, especially for the data
prediction case.

G USE OF LARGE LANGUAGE MODELS

Idea generation and exploration. We used Large Language Models (LLMs) in the early stages of
this work to support idea generation, brainstorming, and the exploration of possible methodological
directions. LLMs were also employed for tasks such as identifying related work through web search
and summarization, which helped us gain an initial overview of relevant literature.

Coding assistant. LLMs provided assistance with coding, primarily by generating boilerplate
components of the codebase, visualization scripts, and test codes. They were also used for drafting
parts of the implementation in PyTorch. All code produced or suggested by LLMs was carefully
reviewed, verified, and modified where necessary to ensure correctness and reliability.

Writing assistant. Finally, LLMs were used in preparing the manuscript, particularly for refining
clarity, conciseness, and grammatical correctness. They supported rephrasing and restructuring of
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text, helping us to communicate ideas more effectively while maintaining the accuracy and integrity
of the content.
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