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ABSTRACT

State-Space Models (SSMs) have recently been shown to achieve strong empirical
performance on a variety of long-range sequence modeling tasks while remaining
efficient and highly-parallelizable. However, the theoretical understanding of their
expressive power remains limited. In this work, we study the expressivity of input-
Dependent Complex-valued Diagonal (DCD) SSMs on sequential state-tracking
tasks. We show that single-layer DCD SSMs cannot express state-tracking of any
non-Abelian group at finite precision. More generally, we show that k-layer DCD
SSMs can express state-tracking of a group if and only if that group has a subnor-
mal series of length at most k, with Abelian factor groups. That is, we identify
the precise expressivity range of k-layer DCD SSMs within the solvable groups.
Empirically, we find that multi-layer models often fail to learn state-tracking for
non-Abelian groups, highlighting a gap between expressivity and learnability.

1 INTRODUCTION

Alternative architectures to Transformers are often motivated by efficiency and computational cost.
Equally important, however, is the need to understand their failure modes. Addressing these failures
is key to designing better models and requires analyzing three aspects: (1) the model’s intrinsic
expressive capacity, (2) whether standard learning algorithms (e.g., gradient descent on finite data)
can reliably realize solutions within that capacity, and (3) the extent to which these limitations
actually transfer to or predict performance on real-world tasks. In this work, we focus on the first
aspect, architectural expressivity.

A particularly illustrative class of tasks where Transformers are known to fail is state-tracking (Dele-
tang et al., 2023; Liu et al., 2023; Hahn & Rofin, 2024b; Bhattamishra et al., 2022), a subset of regu-
lar languages in formal language theory that includes simple tasks like parity and modular addition.
State-tracking tasks are considered representative of a model’s performance on real-world problems,
such as code execution and program analysis. Examples of Transformers failing to generalize to out-
of-distribution (OOD) inputs highlight how limited expressivity can lead models to rely on shortcut
solutions that do not generalize beyond the training distribution (Liu et al., 2023). An example of a
sequence modeling task that requires keeping track of a state that is being manipulated is program
state analysis from big-bench GoogleResearch (2021). For example, given the following code,

x, y, z = 0, 1, 2; x, y = y, x; y, z = z, y; x, y = y, x

what is the value of x after the fourth command? This specific example requires the ability to model
permutations of three objects, i.e., the group S3.

State-Space Models (SSMs) have emerged as efficient alternatives to Transformers, promising
linear-time sequence modeling with recurrent state representations (Gu et al., 2022b). Initially, they
were expected to outperform Transformers on state-tracking tasks, because their recurrent state-
fulness resembles that of traditional RNNs. However, Merrill et al. (2024) showed that, despite
having explicit state representations, SSMs still perform poorly on these tasks, much like Trans-
formers. They highlight this issue in the context of tracking states over sequences of non-solvable
group operations with SSMs that are either time-invariant or diagonal. Later work by Sarrof et al.
(2024); Grazzi et al. (2025) reveals that these models are unable to track even solvable groups such
as parity and modular counting, due to design limitations in their state transition matrices; that is,
these matrices either lack input dependence or have no negative (or complex) eigenvalues, both of
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which are essential for solving state-tracking tasks. We defer a detailed discussion of these findings
to Section 3.

Prior work shows that solving state-tracking tasks requires input-dependent, complex, and often non-
diagonal transitions. In contrast, much of the SSM literature assumes diagonal or nearly diagonal
transition matrices for efficiency and stability. In particular, the diagonal parameterization is often
justified by the argument that allowing complex entries in the transition matrix can compensate for
its diagonality on most tasks (Orvieto et al., 2023).

In this work, we show that a single-layer diagonal SSM, even with complex transitions, cannot track
any non-Abelian group. We then show that stacking additional diagonal layers allows the model to
track a group if and only if that group has a subnormal series, with Abelian factor groups, of length
at most equal to the depth of the SSM. Such groups are a subset of the so-called solvable groups.

Overall, our theoretical analysis (1) establishes a provable expressivity gap between diagonal and
non-diagonal SSMs in complex space, and (2) demonstrates the strict benefit of depth for modeling
non-Abelian groups with diagonal SSMs.

Finally, we empirically evaluate complex diagonal SSMs, both single- and multi-layer, on a range
of group state-tracking tasks, including Abelian groups, such as parity (C2) and mod-60 addition
(C60), as well as non-Abelian groups, such as permutations of 3 elements. In practice, we observe
a clear gap in generalization between Abelian and non-Abelian solvable tasks, even for multi-layer
models. This suggests that, although some of these models are theoretically expressive enough, they
encounter training challenges with standard gradient-based optimization.

2 BACKGROUND

2.1 SSMS

We review SSMs and provide background on some of the variants that we will refer to in this paper.
We begin by defining an SSM layer using notation inspired by previous works (Sarrof et al., 2024;
Grazzi et al., 2025).

Definition 1 (SSM Layer). A d-dimensional SSM layer is a parametrized function that takes as
input a sequence of xt ∈ Fn and outputs a sequence of yt ∈ Fm via an affine recurrence:

ht = A(xt)ht−1 + b(xt), (1)
yt = dec(ht, xt), (2)

where ht ∈ Fd is the state, A(xt) ∈ Fd×d is the transition matrix, b(xt) ∈ Fd is the input vector,
and dec : Fd × Fn → Fm is the decoder. The learnable components of the SSM layer are A, b,
dec, and possibly the initial state h0. If A(x) is diagonal for all x ∈ Fn, we say the SSM layer is
diagonal. If F = R and A(x) has only real eigenvalues, we say the SSM layer is real. Otherwise,
we say the SSM layer is complex.

Computation The state’s affine recurrence can be efficiently parallelized with the parallel scan
(a.k.a., prefix sum) algorithm (Blelloch, 1990) to run in depth O(log T ), as opposed to the naive
O(T ), where T is the sequence length. The parallel scan algorithm leverages the fact that the
composition of affine maps simplifies into another affine map to compute the states in parallel. This
is particularly efficient when A(x) is diagonal, as matrix-matrix and matrix-vector multiplications
reduce to element-wise multiplications.

Most variants of SSMs are captured by Definition 1. We review some of the most relevant ones.

S4 The Structured State Space Sequential model (S4) (Gu et al., 2022b) is based on continuous-
time linear time-invariant (LTI) state-space models from control theory. It is obtained from Def-
inition 1 by setting F = C, A(x) = Λ, b(x) = Bx, and dec(h, x) = σ(ℜ(Ch) + Dx), where
Λ ∈ Cd×d, B ∈ Cd×n, C ∈ Cm×d, and D ∈ Rm×n are learnable parameters, and σ is a nonlinear-
ity.
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Model A(x) B(x) dec(h, x)

S4 Λ Bx σ(ℜ(Ch) +Dx)
S4D Λ (diagonal) Bx σ(ℜ(Ch) +Dx)
Mamba exp(∆(x)⊙ Λ) Λ−1

(
exp(∆(x)⊙ Λ)− I

)
Bx σ(C(x)h+D(x))

Negative Mamba 2 exp(∆(x)⊙ Λ)− I Λ−1
(
exp(∆(x)⊙ Λ)− I

)
Bx σ(C(x)h+D(x))

AUSSM exp(i∆(x)⊙ Λ(x)) ∆(x)Bx σ(C(x)h+D(x))

Table 1: Summary of SSM variants in terms of their transition matrix A(x), input vector B(x), and
decoder dec(h, x).

Careful initialization of the parameters, especially the transition matrix Λ, e.g., via HiPPO (Gu et al.,
2020), allows these models to mitigate the vanishing gradient problem that affects classical RNNs.
Moreover, the structure imposed on the A matrix (normal plus low-rank) makes learning efficient.
S4 achieved state-of-the-art results on a set of long-range sequence modeling tasks (Tay et al., 2021),
where transformers had previously struggled. As a result, it was seen as a promising alternative or
complement to attention-based models.

S4 inspired several follow-up models. On the one hand, simpler variants such as DSS (Gupta et al.,
2022), S4D (Gu et al., 2022a), and S5 (Smith et al., 2023) simplified S4’s architecture while retaining
strong performance. On the other hand, more sophisticated models such as H3 (Fu et al., 2023)
and Mamba (Gu & Dao, 2024) extended SSMs to handle a more diverse set of tasks, particularly
language modeling.

S4D S4D is a simplified version of S4 in which the complex transition matrix A is constrained to
be diagonal. This reduces the cost of matrix multiplication in the recurrence equations and hence
leads to more efficient computation.

Mamba Designed specifically for language modeling tasks, Mamba introduces input dependence
(also called selectivity) in the transition matrix while maintaining the diagonal structure of S4D. It
is obtained from Definition 1 by setting F = R, A(x) = exp(∆(x)⊙Λ), b(x) = Λ−1(exp(∆(x)⊙
Λ) − I)Bx, and dec(h, x) = σ(C(x)h + D(x)), where Λ ∈ Rd

≤0, ∆(x) ∈ Rd
≥0, B ∈ Rd×n,

C(x) ∈ Rm×d, and D(x) ∈ Rm are learnable functions of the input x, and σ is a nonlinearity.
Note that Mamba’s transition matrix A(x) is real-valued and in (0, 1] due to the constraints on Λ
and ∆(x). Another variant, due to Grazzi et al. (2025), is negative Mamba which simply replaces
A(x) with 2A(x)− I to bring the eigenvalue range to (−1, 1].

AUSSM The Adaptive Unitary SSM (AUSSM) (Karuvally et al., 2025) is an input-dependent
complex diagonal SSM with unit-modulus transitions. It is obtained from Definition 1 by setting
F = C, A(x) = exp(i∆(x) ⊙ Λ(x)), b(x) = ∆(x)B(x), and dec(h, x) = σ(C(x)h + D(x)),
where ∆(x) ∈ Rd

≥0, Λ(x) ∈ Cd, B(x) ∈ Cd, C(x) ∈ Cm×d, and D(x) ∈ Cm are learnable
functions of the input x, and σ is a nonlinearity.

These models have been summarized in Table 1.

2.2 GROUPS, AUTOMATA, AND STATE-TRACKING

A semigroup is a set G equipped with an associative binary operation ·, where the set is closed under
the binary operation. If the operation has an identity element e such that e·g = g·e = g for all g ∈ G,
then G is a monoid. If every element g ∈ G has an inverse g−1 such that g·g−1 = g−1 ·g = e, then G
is a group. A group is Abelian if its operation is commutative, i.e., g1 ·g2 = g2 ·g1 for all g1, g2 ∈ G.
A subgroup H ≤ G is a subset closed under · and inverses (equivalently, a group under the restricted
operation). A subgroup N ◁ G is normal if gNg−1 = N for all g ∈ G. Note that, by convention,
juxtaposition such as gN or gNg−1 denotes the set obtained by multiplying each element of N by
g (and by g−1 on the right, respectively). When N ◁ G, the set G/N := {gN : g ∈ G} forms the
quotient group, with operation (gN) · (hN) = (g · h)N . A subnormal series is a chain

(G = Gk) ▷ Gk−1 ▷ ... ▷ G1 ▷ (G0 = {e}), (3)
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where Gi ◁ Gi+1 for all i. Its factors are the quotients Gi+1/Gi. A group is solvable if it admits
a subnormal series whose factors are all Abelian. A group is simple if it has no non-trivial normal
subgroups. See Rotman (2012) for more details.

Example 1. The group of all permutations of 3 items is denoted S3 and consists of the elements
{e, (12), (23), (13), (123), (132)}. It admits the subnormal series

{e} ◁ C3 ◁ S3, (4)

where C3 =
{
e, (123), (123)2

}
is the cyclic group of order 3. The factors C3/{e} ∼= C3 and

S3/C3
∼= C2 are both Abelian, so S3 is solvable.

The set of state-transition functions of a finite automaton when receiving a (possibly empty) se-
quence of inputs, equipped with composition, forms a monoid. If the automaton is reversible, this
monoid is in fact a group. The Krohn–Rhodes theorem (Krohn & Rhodes, 1965) states that any
finite automaton can be decomposed into a cascade product of simple groups and reset automata
(i.e., flip-flops). An automaton is called solvable if all the simple groups in its decomposition are
solvable. In a cascade product of two automata, the state and input of the first automaton provide
the input to the second, loosely resembling stacked neural network layers with skip-connections.
The Krohn–Rhodes theorem thus reduces the simulation of complex automata to the simulation of
simple groups, flip-flops, and their interactions. Since the latter two are relatively easy, the essential
challenge lies in the system’s ability to simulate groups, which is the focus of this work.

Sequential state-tracking tasks are meant to capture the ability to simulate semigroups. Given a
semigroup G its state-tracking task is, given a sequence of elements x1, x2, ..., xT ∈ G, to output
a sequence y1, y2, ..., yT ∈ G such that yt = x1 · x2 · ... · xt. Some specific tasks of interest are
parity, which corresponds to the cyclic group C2, and mod-n counting, which corresponds to the
cyclic group Cn.

3 RELATED WORK

Merrill et al. (2024) study the state-tracking capability of SSMs through the lens of circuit complex-
ity. They show that both input-independent non-diagonal and input-dependent diagonal SSMs with
real-valued transition matrices belong to the complexity class TC0, the class of problems solvable
by constant-depth, polynomial-size circuits of AND, OR, and threshold gates with unbounded fan-in.
This class is widely conjectured to be incapable of expressing non-solvable state-tracking tasks such
as S5. To address this, they propose either adding nonlinearities to the recurrence, which renders the
model non-parallelizable, or making the recurrence non-diagonal and input-dependent. They thus
propose an Input-Dependent S4 (IDS4) and empirically show that it performs better on non-solvable
state-tracking tasks of relatively longer length. However, the drawbacks of the circuit-complexity
approach are that it does not tell us which problems within TC0 can be solved by these SSMs, and it
relies on a conjecture in circuit complexity. In this work, we precisely describe the groups that can
be tracked with a k-layer diagonal SSM (unconditional to any conjecture). In the limit of k → ∞
all solvable groups can be tracked.

While Merrill et al. (2024) focus on the limitations of SSMs compared to RNNs on non-solvable
state-tracking tasks, Sarrof et al. (2024) highlight a significant gap between linear and nonlinear
RNNs on parity, which is the simplest solvable state-tracking task. They prove that input-dependent
non-negative diagonal SSMs (e.g., Mamba) cannot solve parity in finite precision for arbitrary se-
quence lengths. They also show that time-invariant complex-valued diagonal SSMs (e.g., S4D) fail
on parity. Connecting with the result of Merrill et al. (2024), this means that common SSM mod-
els only cover a very small subset of TC0. On the positive side, Sarrof et al. (2024) show that a
Mamba layer can simulate a flip-flop, and as a result, multi-layer Mamba can simulate counter-free
automata.

Extending these results to non-diagonal models, Grazzi et al. (2025) prove that a multilayer SSM
can solve parity in finite precision for arbitrary sequence lengths only if at least one layer has a
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negative eigenvalue. This implies that even DeltaNet1 fails to solve parity in its standard form.
They argue that existing SSMs typically lack either input dependence or negative (resp. complex)
eigenvalues. Both of these are essential for solving parity (resp. modular counting). To address this,
they modify Mamba and DeltaNet to allow eigenvalues in the range [−1, 1] instead of [0, 1]. This
leads to empirical improvements on both parity and real-world tasks.

While negative eigenvalues are sufficient for solving parity, Grazzi et al. (2025) show that com-
plex eigenvalues are necessary for harder tasks such as modular counting. Thus, although modify-
ing Mamba to include negative eigenvalues enables it to solve parity, solving more complex tasks
demands transition matrices with complex eigenvalues. They note that such matrices can be con-
structed by multiplying several real-eigenvalued matrices, provided the product is non-triangular.2

Building on this idea, Siems et al. (2025) proposes DeltaProduct, an adaptive extension of DeltaNet
that generalizes the transition matrix from diagonal-plus-rank-1 to a structured rank-n matrix. Here
n is tunable to trade off between expressivity and efficiency. Their construction is based on products
of n generalized Householder matrices. A limitation of this approach is the computational cost of
multiplying non-diagonal matrices.

Karuvally et al. (2025) propose the Adaptive Unitary SSM (AUSSM), which is a complex-valued
input-dependent diagonal SSM with unit-modulus eigenvalues. They show that a single-layer
AUSSM can simulate any Abelian group but it cannot simulate flip-flops. Since Mamba is able
to simulate flip-flops, they propose interleaving Mamba and AUSSM layers to handle solvable au-
tomata (according to Krohn–Rhodes theory). However, it is currently unknown (1) if a single-layer
AUSSM can simulate non-Abelian groups, (2) what the expressive capacity of k-layer AUSSM is,
and (3) if it is unconditionally true3 that multi-layer AUSSMs cannot simulate non-solvable groups.
These are questions that we aim to address.

4 THEORETICAL RESULTS

4.1 SINGLE-LAYER DCD SSM

We begin by analyzing the limitations of a single-layer input-Dependent Complex-valued Diagonal
(DCD) SSM (recall Definition 1) on sequential state-tracking tasks for groups. We assume that A,
b, and dec are universal function approximators. In this section, we will build up to the following
theorem.

Theorem 1. There is a single-layer DCD SSM that tracks G at finite precision iff G is Abelian.

Having b in the state recurrence makes the problem non-trivial. Without b, the state recurrence is
given by ht = A(xt)ht−1 and since A(xt) is assumed to be diagonal and since diagonal matrices
commute, the expressed group operation has to be commutative, i.e., the group is Abelian. However,
with b, the SSM can perform non-commutative state updates. We show that even with b, a single-
layer DCD SSM cannot express non-Abelian groups at finite precision. In other words, our result
implies that having b does not increase expressivity for tracking groups at finite precision.

Another point that makes the problem difficult is the existence of a decoder (especially a powerful
one), as it can implement complex decision boundaries in the state space. For example, we cannot
assume that feeding the sequence (g, g−1) to the SSM layer results in the identity map on the state.
As long as the initial state h0 and the final state h2 decode to the same group element, i.e., dec(h0) =
dec(h2), the SSM is treating the input sequence correctly.

An important property of SSMs (and linear RNNs in general) is that the state update corresponding
to a finite sequence of inputs simplifies into an affine map. More specifically, given an input sequence
x̄ = (x1, x2, ..., xT ), the state update from t = 0 to t = T of a diagonal SSM is given by

hT = λ(x̄)⊙ h0 + b(x̄), (5)
1DeltaNet is a linear attention model that can also be interpreted as an SSM, with a diagonal plus low-rank

transition matrix. More specifically, a generalized Householder matrix.
2Because the eigenvalues of a triangular matrix are the diagonal elements, and the product of two triangular

matrices remains triangular.
3Unconditionally true means that the argument does not depend on any conjecture.
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where

λ(x̄) :=

T∏
i=1

λ(xi), (6)

b(x̄) :=

T∑
i=1

 T∏
j=i+1

λ(xj)

 b(xi). (7)

This is a key property that we will use in our proofs. Importantly, note that we have now overloaded
λ and b to also accept a sequence of inputs.

First, we show that if some input x causes some coordinate j of the state to contract (|λ(x)j | < 1),
expand (|λ(x)j | > 1), or drift (|λ(x)j | = 1 ∧ b(x) ̸= 0), then we can construct another SSM that
still solves the task while keeping state-coordinate j fixed. As a result, such state-coordinates are
useless for state-tracking groups and can be effectively ignored by the decoder.

Notation. We will sometimes use multiplicative notation for groups. For example, g3 means g · g · g
and gh means g ·h. Sometimes we may want to concatenate group elements to form a sequence. We
will use parentheses to denote sequences and write ⟨g⟩ for a sequence of length one consisting only
of g. We will use multiplicative notation for the concatenation of sequences as well. For example,
⟨g⟩⟨h⟩5 is a sequence of length six consisting of a single g followed by five h elements.

Lemma 1. Let M be a single-layer DCD SSM that tracks group G at finite precision with
|λ(x)j | ≠ 1 or |λ(x)j | = 1 ∧ b(x)j ̸= 0 for some x ∈ G and j ∈ [d], then there exists an-
other single-layer DCD SSM M̃ that also tracks group G at finite precision with λ̃(g)j = 0 and
b̃(g)j = c (for some constant c) for all g ∈ G.

A proof is provided in Appendix C.1.

Repeating the lemma above for all coordinates j ∈ [d] lets us construct another SSM that tracks the
same group but has no contracting coordinates. Therefore, we can now assume that all coordinates
of the state have neutral rotation dynamics (case 2 in Appendix A) for all inputs. Next, we show
that if two inputs have neutral rotation dynamics with distinct centers of rotation, then the SSM can
diverge. The following lemma is useful.

Lemma 2. The composition of neutral rotations h 7→ λ(h− c1) + c1 and h 7→ λ∗(h− c2) + c2,
where λ∗ is the conjugate of λ, with distinct centers of rotation c1 ̸= c2 is a non-zero translation.

A proof is provided in Appendix C.2.

The above lemma gives us a strategy to make certain SSM configurations diverge.

Lemma 3. If a single-layer DCD SSM tracks group G at finite precision and there exist two
inputs g, h ∈ G that induce neutral rotation about distinct centers in some coordinate j ∈ [d] of
the state, then the SSM diverges on some input sequence.

A proof is provided in Appendix C.3.

By putting the lemmas together, we can prove Theorem 1. A proof is provided in Appendix C.4.

4.2 MULTI-LAYER DCD SSM

In this section, we extend our results to the multi-layer setting, where the input to the rth layer is the
input token x and the states of the previous r − 1 layers, denoted h(1), ..., h(r−1). We aim to prove
the following theorem.

Theorem 2. There is a k-layer DCD SSM that tracks G at finite precision iff one can write

(G = Gk) ▷ Gk−1 ▷ ... ▷ G1 ▷ (G0 = {e}) (8)

6
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where Gi+1/Gi is Abelian for all i ∈ [k].

We begin by applying the same approach as the single-layer case to construct another SSM with
simpler states and state transitions that tracks the same group.

Lemma 4. If a k-layer DCD SSM tracks group G at finite precision, then there exists another
k-layer DCD SSM that also tracks group G at finite precision, where, for all layers r ∈ [k] and
all state-coordinates j ∈ [d], the transition dynamics is fixed or a neutral rotation about a center
that is a function of the states of previous layers (h(1), ..., h(r−1)).

A proof is provided in Appendix C.5. We then use it to prove the theorem in Appendix C.6.

5 A DIAGONAL SSM FOR S3

In this section, we present an example of a two-layer diagonal SSM that can track the non-
commutative yet solvable group S3 for arbitrary sequence lengths. This section has two purposes.
First, it provides a concrete illustration of the theory introduced in the previous section. We begin
by showing how two relatively simple automata can be combined to form a non-Abelian solvable
automaton, and then demonstrate how this construction can be encoded in stacked diagonal SSM
layers. Secondly, it highlights the gap between expressivity and learnability. While the theory sug-
gests that a two-layer diagonal SSM can track the non-Abelian group S3, our experiments in the next
section show that, in practice, the model often struggles to learn solutions that generalize to longer
sequences. This implies that while generalizable solutions would lie within the expressive power of
the diagonal SSMs we study, they may be difficult for the learning algorithm to find.

5.1 THE S3 GROUP

The symmetric group S3 is the group of all permutations of three elements. It has six elements
in total and provides the smallest non-Abelian example of a finite group. The elements can be
written in cycle notation as S3 = { e, (12), (13), (23), (123), (132) }, where e denotes the identity
permutation, the transpositions (12), (13), (23) swap two elements, and the 3-cycles (123) and (132)
permute all three elements cyclically in opposite directions. S3 can be decomposed as the semi-
direct product of two Abelian groups, C2 and C3. It, can also be presented by two generators, for
example S3 = ⟨ (12), (123) ⟩, with cycles 2 and 3, i.e., (12)2 = e, (123)3 = e. The Cayley table of
group multiplications for S3 is given in Appendix B.1.

5.2 DECOMPOSING THE S3 AUTOMATON

Now, we show that there exists a finite state automaton, built as a cascade product of two simpler
automata, that can track S3. Figure 1 illustrates one such composition of automata capable of track-
ing S3. To illustrate how this solution works, we encode each g ∈ S3 as sαrβ , with s = (12),
r = (123) denoting swap and rotation generators, and multiplication applied left to right. Under
this encoding, S3 can be rewritten as S3 = {e, s, sr2, sr, r, r2}. The combined automaton oper-
ates as follows: sαrβ first applies α swaps on the two-state automaton with state Q(1) ∈ {−1, 1},
yielding Q(1) = Q

(1)
0 (−1)α, with Q

(1)
0 being the initial state. The second automaton then takes

as input both the input group element and the state of the first automaton and transitions its state
Q(2) ∈ {Q1, Q2, Q3} according to the transition rule illustrated in Figure 1; that is, if the state of
the first automaton is Q(1) = 1, upon seeing a group element with β = 1, it rotates its states accord-
ing to the cyclic permutation (123), and if β = 2, the cyclic permutation (132) is applied; however,
if Q(1) = −1, the cyclic permutations are applied in the other direction, i.e., for β = 1, the state
transitions according to (132) and for β = 2, it transitions according to (123). In Appendix B.2,
we give concrete examples showing how this encoding, together with the transition rule of the two
automata, correctly reproduces group multiplication and thus tracks S3 with the compounded au-
tomaton. In what follows, we use the result of Example 2 in Appendix B.2 based on this specific
encoding, summarized in Table 4, to parameterize a two-layer AUSSM that tracks S3 consistently.
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Figure 1: Compound automaton combining (left) two-state parity and (right) three-state cyclic
group. The dashed curved line represents the connection between the two cyclic automata, equiv-
alent to the semi-direct product of their groups. It shows that the automaton on the right considers
the state of the first automaton, besides the original input. Commas separate inputs that produce the
same state transition. States labelled start are the initial states of the automata.

5.3 SIMULATING THE 2-AUTOMATON FOR S3 WITH DIAGONAL SSMS

From Theorem 1, each diagonal SSM layer can model one Abelian automaton; it remains to show
that we can stack them in a way that simulates the cascade product of the two Abelian automata.

With the encoding (α, β) for the input sαrβ , for the first AUSSM, with the state equation ht =
e−i∆(x)Λ(x)ht−1 +B(xt), we set B(x) = 0, ∆(x) = 1, and Λ((0, β)) = 0, Λ((1, β)) = π.
The second layer gets the input (h(1), α, β), with h(1) being the state of the first AUSSM layer,
fed to the second layer with a skip connection. Here we set B(2)(x) = 0, ∆(2)(x) = 1,
and Λ(2)((1, α, β)) = 2π

3 β, Λ(2)((−1, α, β)) = − 2π
3 β. The full state of the SSM will be

(h
(1)
0 e−iαπ, h

(2)
0 e−

2πi
3 βh

(1)
0 e−iαπ

). This results in a finite number of states, and with a correct de-
coding, we can map the states to the elements of the group.

6 EXPERIMENTS

We evaluate single- and two-layer diagonal SSMs on a set of solvable group state-tracking tasks. Our
goal is to measure what these models learn with standard training, not just what they can represent
in theory. Our models include Mamba (Gu & Dao, 2024), negative Mamba (Grazzi et al., 2025),
AUSSM (Karuvally et al., 2025), RNN, and simplified AUSSM where ∆ and B have been removed
since they are theoretically not needed for expressing groups.

Datasets. Our set of tasks consists of different kinds of solvable groups that we are interested
in: parity, which is C2, a small, a medium and a large cyclic Abelian group, C6, C24 and C60

respectively, two products of cyclic groups, C2 × C4 and C3 × C6, and two small solvable non-
Abelian groups with subnormal chains of length 2, S3 and A4. We also include the non-solvable
group A5 which we expect no model can learn.

For a cyclic group CN with N ∈ N, the task is essentially addition mod N with the input tokens
being chosen uniformly at random from the group. An example input for the task C60 is the sequence
[51, 20, 4, 49] and the correct output is [51, 11, 15, 4].

The group S3 was introduced in detail in Example 1. The alternating group A4 consists of the 12
even permutations of four elements. Like S3, it admits a subnormal chain of length two with Abelian
factors, and is therefore solvable.

The alternating group A5 consists of the 60 even permutations of five items. In contrast to S3 and A4,
its shortest subnormal series is {e} ◁ A5, with the non-Abelian factor A5/{e} ∼= A5. Consequently,
A5 is not solvable.

8
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Experimental Details. Models were trained on sequences of up to length 60 and tested on se-
quences up to length 1000 to assess their length generalization performance. We applied curriculum
learning by gradually increasing the length of training sequences, starting from length 2. We report
the sequence length ≥ 100 at which the trained model can obtain above 90% accuracy. If the model
was unable to extrapolate we report ✘. The results can be seen in Table 2.

All experiments were conducted with standard FP32 precision. We performed a grid search over
three state dimensions {32, 64, 128}, three learning rates {1e−4, 5e−4, 1e−3}, and three learning-
rate schedulers {fixed, reduce on plateau, cosine}. The AdamW optimizer was used with these
learning rates and a weight decay of 0.01. Each experiment was run with three random seeds,
and we reported the best result across seeds. The embedding and model dimensions were fixed at
m = n = 698 across all experiments. The choice of a relatively large embedding dimension was
motivated by stabilizing optimization across both real- and complex-valued kernels. Unless other-
wise noted, models were trained with a batch size of 256, We used gelu nonlinearity between SSM
layers and residual connections within each SSM layer. The initial state h0 of the SSMs were set to
1 and normalized to unit norm.

Task Mamba Negative Mamba Simple AUSSM AUSSM RNN

C2 ✘ 1000 160 1000 1000
C6 ✘ ✘ 240 940 1000
C24 ✘ ✘ 240 260 1000
C60 ✘ ✘ 300 240 ✘

C2 × C4 ✘ ✘ 140 200 1000
C3 × C6 ✘ ✘ 500 200 ✘

S3 ✘ ✘ ✘ ✘ 1000
A4 ✘ ✘ ✘ ✘ 1000
A5 ✘ ✘ ✘ ✘ ✘

(a) Single-layer models.

Task Mamba Negative Mamba Simple AUSSM AUSSM RNN

C2 ✘ 1000 1000 200 1000
C6 ✘ ✘ 240 100 1000
C24 ✘ ✘ 300 160 1000
C60 ✘ ✘ 260 ✘ ✘

C2 × C4 ✘ 360 160 ✘ 1000
C3 × C6 ✘ ✘ 260 200 ✘

S3 ✘ ✘ ✘ ✘ 1000
A4 ✘ ✘ ✘ ✘ 1000
A5 ✘ ✘ ✘ ✘ ✘

(b) Two-layer models.

Table 2: Performance of various models on state-tracking tasks. Each table reports the longest
sequence length ≥ 100 where a model is able to achieve accuracy greater than 90%. The maximum
training length was 60 for all models over all state-tracking tasks. ✘ indicates that the model failed
to extrapolate to long sequences.

Results. For RNNs, there is no theoretical expressivity barrier that would stop them from success-
fully learning all tasks. However, in our experiments, the single-layer RNN struggles on C60, likely
due to the large size of the group, and the two-layer variant struggles on both C60 and A4. It is
possible that with different architectural hyperparameters or longer training the RNN would have
succeeded.

For Mamba, since it does not have negative eigenvalues, in accordance to previous theoretical re-
sults (Sarrof et al., 2024), we expect it to not be able to track any group. This is indeed observed
in our experiments. Negative Mamba is a modified version of Mamba which allows for negative
eigenvalues and with a single layer, is expected to only be able to solve parity (Grazzi et al., 2025).
This is also observed in our experiments. On the other hand, according to our theory, stacking two
layers, each of which is capable of solving C2, e.g., Negative Mamba, can do state-tracking for C4. 4

This is because the group C4 can be written as the subnormal chain C4 ▷C2 ▷ {e}, where the factors
are all C2, i.e., Abelian. We see in practice that 2-layer Negative Mamba is able to do state-tracking
for C2 × C4. Interestingly, this is a case where the increased expressivity from stacking layers is
usable through gradient-based learning.

For AUSSM and simple AUSSM, their single-layer variants are theoretically able to express Abelian
groups, which in our case are the four cyclic groups C2, C6, C24, C60, C2 × C4 and C3 × C6.
Gradient-based optimization has successfully been able to find solutions that extrapolate in this case
as well. However, their two-layer variants have not been able to match the expressive capacity that
is expected from them as they fail on S3 and A4.

Overall, these experiments point to a learnability gap. The main bottleneck for non-Abelian tracking
is not expressivity but optimization and the models built-in bias: the solutions exist in the hypothesis
class, yet standard training does not reliably reach them.

4This has also been stated in Theorem 2 of (Grazzi et al., 2025).
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To gain insight into the potential causes of this learnability issue, we initialized AUSSM near the
analytical solution for S3 from Section 5.3. We observed that sufficiently close initialization (with
closeness measured relative to sequence length) improves training: the model successfully learns
and extrapolates to sequences at least four times longer. This suggests that solutions lie within a
basin of attraction in the loss landscape. However, the broader structure of the loss landscape is still
not well understood. A study analogous to (Hahn & Rofin, 2024a), which investigates transformers,
would be a valuable future direction for SSMs. Notably, since initialization near the solution aids
optimization in SSMs, the challenges they face may differ substantially from those of transform-
ers, where solutions have been shown by Hahn & Rofin (2024a) to correspond to isolated points in
weight space.

7 DISCUSSION

Our results reveal a sharp distinction between what diagonal SSMs can represent in principle and
what they can learn in practice. Theoretically, a single diagonal layer suffices for all Abelian
groups, and stacking layers expands expressivity exactly to solvable groups with a subnormal series
of matching length. This characterization places diagonal SSMs within a precise group-theoretic
boundary: they are strictly weaker than non-diagonal recurrent models, yet depth provides a disci-
plined pathway to handle increasingly complex dynamics.

Empirically, however, our experiments show that diagonal SSMs often fail to realize their expressive
potential. Even two-layer models, which can provably represent S3, rarely discover solutions that
generalize beyond training lengths. This gap points to difficulties of gradient-based optimization
when searching for encodings of non-Abelian structure within the restricted hypothesis class. It also
suggests that diagonality, while efficient, imposes inductive biases that may actively hinder training
on harder tasks.

From a broader perspective, our findings connect to other architectural choices in sequence mod-
els. Allowing block-diagonal structure, even in 2 × 2 form, would in principle lift the expressivity
of SSMs into NC1, enabling simulation of non-solvable groups. Similarly, introducing complex-
valued attention weights in Transformers may bring them closer to the expressivity frontier we
identify here for SSMs. Finally, it is worth noting that many practical applications do not demand
arbitrary-length state-tracking; being able to stably handle moderately long sequences may be suffi-
cient, though our results clarify what is lost at the limit.

Finally, although we state the main results for groups, the framework extends naturally to semigroups
and monoids. Allowing inputs that reset a layer (i.e., map a coordinate to a fixed center under finite
precision) lets a diagonal SSM simulate reset automata in addition to group components. Conse-
quently, the same depth-based view applies to cascade products comprising Abelian group factors
and resets, bringing the analysis in line with the Krohn–Rhodes perspective on solvable automata.

8 CONCLUSION

We have given a complete characterization of the expressive power of diagonal SSMs on group
state-tracking tasks. A single diagonal layer cannot track non-Abelian groups, while a k-layer SSM
can track precisely those groups admitting a subnormal series of Abelian factors of length at most
k. This establishes a provable expressivity gap between single- and multi-layer diagonal SSMs.

Our experiments further demonstrate a learnability gap: despite their theoretical capacity, multi-
layer diagonal SSMs struggle to learn even simple non-Abelian solvable groups such as S3 and
A4. Together, these results highlight the importance of separating expressivity from trainability
when evaluating new sequence architectures. Future progress will require not only expanding the
expressive frontier – through, for example, block-diagonal transitions or hybrid models – but also
developing training methods that can reliably reach the solutions guaranteed to exist in principle.
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A BACKGROUND: ONE-DIMENSIONAL COMPLEX AFFINE DYNAMICS

We consider the affine recurrence

xt+1 = λxt + b, λ, b ∈ C, t = 0, 1, 2, . . . (9)

with initial condition x0 ∈ C. This section records a complete, self-contained classification of the
dynamics and then isolates the bounded regimes relevant for our work.

Closed form and fixed points. Iterating (9) yields

xt = λtx0 + b

t−1∑
k=0

λk =

{
λt
(
x0 − c

)
+ c, λ ̸= 1,

x0 + t b, λ = 1,
c :=

b

1− λ
(λ ̸= 1). (10)

A fixed point exists iff either λ ̸= 1 (unique fixed point c) or (λ = 1 and b = 0) (every point is
fixed). When λ = 1 and b ̸= 0 there is no fixed point.

Shift-of-origin reduction. When λ ̸= 1, define the shift yt := xt − c with c =
b

1− λ
. Then

yt+1 = λyt, (11)

so the inhomogeneous recurrence (9) is conjugate to the homogeneous linear map y 7→ λy. All
asymptotics therefore reduce to the magnitude and argument of λ:

Complete case split. Let λ = reiθ with r = |λ|.

1. Strict contraction (|λ| < 1): xt → c exponentially at rate rt (independent of x0). If
λ ∈ R>0 there is no rotation; otherwise each step rotates by θ while contracting.

2. Neutral rotation (|λ| = 1, λ ̸= 1): |xt − c| = |x0 − c|; the orbit is periodic iff θ/2π ∈ Q
and is dense on the circle centered at c otherwise.

3. Neutral translation (λ = 1):

• b = 0: xt = x0 (every point is fixed).
• b ̸= 0: xt = x0 + t b (unbounded linear drift).

4. Expansive (|λ| > 1): generically |xt| → ∞ exponentially; the unique nongeneric exception
is x0 = c (then xt = c).

ℜ(λ)

ℑ(λ)

Figure 2: We distinguish 4 cases for λ: (teal) ∥λ∥ < 1, (purple) ∥λ∥ = 1, λ ̸= 1, (pink) λ = 1,
(gray) ∥λ∥ > 1.

Boundedness. The trajectory (xt) is bounded if either |λ| < 1 or |λ| = 1 with (λ ̸= 1) or
(λ = 1 and b = 0). It is unbounded if |λ| > 1 (unless x0 = c) or (λ = 1 and b ̸= 0).

Higher Dimensions. If Λ ∈ Cd×d is diagonal and b ∈ Cd, the dynamics decouple coordinate-wise
and the above 1D classification applies to each coordinate independently.
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· e (12) (13) (23) (123) (132)

e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (13) (23)

(13) (13) (123) e (132) (23) (12)

(23) (23) (132) (123) e (12) (13)

(123) (123) (13) (23) (12) (132) e

(132) (132) (23) (12) (13) e (123)

Table 3: Cayley table of the symmetric group S3.

B THE EXAMPLE OF THE GROUP S3

B.1 CAYLEY TABLE FOR S3

B.2 TWO-AUTOMATON CORRECTLY SIMULATES S3

Example 2. Consider the sαrβ encoding for S3 elements, with s = (12), r = (123), α ∈
{0, 1} and β ∈ {0, 1, 2}, and the transition rules described above. We represent the three states

Q1, Q2, Q3 of the second automaton by the cube roots of unity e−i0 = 1, e−
2iπ
3 , and e−

4iπ
3 . This

representation does not change the fact that the automaton has discrete states; rather, it provides
a convenient way to describe transitions as rotations, and later to connect the automaton to SSMs
with continuous states. In this view, a rotation between states corresponds to multiplying by a

discrete power of e−
2iπ
3 . Starting from the initial state (1, e−i0), we apply each group element to

obtain the automaton states and derive a decoding rule that maps any automaton state back to its
associated group element.

For the identity e, the automaton remains (1, 1). The swap s = s1r0 flips Q(1) to −1 while leaving
the second automaton unchanged, giving (−1, 1), decoded as s. For sr2, Q(1) flips to −1, and the
second automaton rotates according to Q(1) = −1 and β = 2, resulting in (−1, e2i

2π
3 ), decoded as

sr2. Similarly for sr, Q(1) flips to −1 and the second automaton rotates to (−1, ei
2π
3 ), decoded as

sr. Finally, for r and r2, with no swap, the second layer rotates positively by 2π
3 and 4π

3 , giving
(1, e−i 2π

3 ) and (1, e−i 4π
3 ), decoded as r and r2.

Table 4 summarizes this decoding rule by providing a map between the states of the two-automaton
and the elements of S3.

Automaton State Group Element in S3

(1, 1) e
(−1, 1) s

(−1, ei
4π
3 ) sr2

(−1, ei
2π
3 ) sr

(1, e−i 2π
3 ) r

(1, e−i 4π
3 ) r2

Table 4: Mapping between automaton states and group elements of S3.

Example 3. Using the encoding, decoding, and transition rules above, one can in principle re-
produce the full Cayley table of S3 with the two-automaton. Here, we verify several nontrivial
products to illustrate this behavior.

Trivial products such as s ·s or r ·r follow immediately. For less obvious cases, consider sr2 ·sr2.
The first sr2 maps the automaton to (−1, ei

4π
3 ); the second flips Q(1) back to 1 and rotates the
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second automaton by 4π/3 in the positive direction, returning the system to (1, 1), which is the
correct result for two consecutive applications of the same swap. Similarly, sr · sr returns the au-
tomaton to (1, 1). Next, s · sr maps to (−1, 0) after s, then sr flips Q(1) back to 1 and rotates the
second automaton by 2π/3, yielding (1, e−i2π/3) ≡ r, with ≡ denoting the equivalence. Revers-
ing the order, sr ·s gives (−1, ei2π/3) after sr, then s flips Q(1) back to 1, giving (1, ei2π/3) ≡ r2.
Finally, for sr · sr2, the first sr gives (−1, ei2π/3), and sr2 flips Q(1) to 1 and rotates the second
automaton by 4π/3, yielding (1, e−i2π/3) ≡ r. Conversely, sr2 · sr maps first to (−1, ei4π/3)
and then to (1, ei2π/3) ≡ r2. These checks confirm that the two-automaton correctly reproduces
the nontrivial entries of the Cayley table.

C PROOFS

C.1

C.1 PROOF OF LEMMA 1

Proof. We split the proof into two cases:

(Case |λ(x)j | < 1) In M , for all g ∈ G, we have λ(⟨g⟩⟨x⟩n)j = λ(g)jλ(x)
n
j ≈ 0 for sufficiently

large n, where ≈ means equality at finite precision. We pick a sufficiently large n such that xn = e
as well. Note that this is always possible for all groups elements x. For this n, the input sequence
⟨g⟩⟨x⟩n transitions hj into x’s center of rotation (i.e., fixed point) in coordinate j. Let c be this
center of rotation. We thus construct a new SSM M̃ with λ̃(g) = λ̃(gxn) := λ(⟨g⟩⟨x⟩n) ≈j 0 and
b̃(g) = b̃(gxn) := b(⟨g⟩⟨x⟩n) ≈j c for all g ∈ G, where ≈j means that we are referring to the jth
coordinate. In this new SSM, all inputs transition state-coordinate j into the fixed point c of input x.
Note that M̃ has been constructed in such a way that it respects the group law of G. Intuitively, this
new SSM acts the way the old SSM would if we were to input x for n times after every g seen in the
input sequence and ignore the first n outputs, and since xn = e, the output of the new SSM should
be the same.

(Case |λ(x)j | > 1 or |λ(x)j | = 1 ∧ b(x)j ̸= 0) With a similar argument to the previous case
one can construct a new SSM where all inputs transition state-coordinate j into inf, that is, the
constant c will be equal to inf. We are assuming here that in our finite-precision model, whenever
the magnitude of a variable grows beyond some threshold, the variable gets fixed to a value, denoted
by inf, that represents infinity.

C.2 PROOF OF LEMMA 2

Proof. With some simple algebra we get

λ∗(λ(h− c1) + c1 − c2
)
+ c2 = (λλ∗)h− (λλ∗)c1 + λ∗(c1 − c2) + c2 (12)

= h+ (λ∗ − 1)c1 + (1− λ∗)c2 (λλ∗ = 1) (13)
= h+ (1− λ∗)(c2 − c1). (14)

Thus, the composition simplifies to h 7→ h+(1−λ∗)(c2−c1), which is a non-zero translation since
λ∗ ̸= 1 and c1 ̸= c2.

C.3 PROOF OF LEMMA 3

Proof. We can find α1, α2 ∈ N such that λ(g1)α1
j λ(g2)

α2
j ≈ 1 at finite precision, λ(g1)α1

j ̸= 1, and
λ(g2)

α2
j ̸= 1. If the rotations are rational, this can be done exactly; if not, it can be done to arbitrary

precision. Note that ⟨g1⟩α1 and ⟨g2⟩α2 induce neutral rotations about distinct centers in coordinate
j. Thus, according to Lemma 2, the input sequence ⟨g1⟩α1⟨g2⟩α2 induces a non-zero translation in
coordinate j. Similar to Lemma 1, repeating this sequence causes the SSM to diverge to inf.
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C.4 PROOF OF THEOREM 1

Proof of Theorem 1. (⇒) We assume there is a single-layer DCD SSM that tracks group G and we
show that G is Abelian. Applying Lemma 1 to all coordinates implies that there exists a DCD
SSM layer M̃ that tracks G at finite precision, where no input and no coordinate has contraction
or expansion or translation dynamics. In other words, all inputs and all coordinates have neutral
rotation dynamics. Lemma 3 then implies that all inputs must induce neutral rotations about the
same center in each coordinate. As a result, the effect of any input sequence is independent of the
order of the inputs, and hence the group G must be Abelian.

(⇐) We assume G is Abelian and we show there is a single-layer DCD SSM that tracks G. We
construct a single-layer DCD SSM that tracks G. By the fundamental theorem of finite Abelian
groups (Rotman, 2012), G is isomorphic to a product of n cyclic groups Ck1 × ... × Ckn for some
n and k1, ..., kn. Every group element g can be represented as (m1, ...,mn) ∈ [k1] × ... × [kn].
The group’s diagonal complex matrix representation g ∈ G 7→ Λ(g) ∈ Cn×n, where Λ(g)j,j =
exp(2πi

mj

kj
), can be used as the SSM transition matrix. With enough precision bits, kj roots of

unity can be distinguished for all j. Let h0 = 1 and b(x) = 0. The decoder simply maps each state
to the corresponding group element. This SSM tracks G at finite precision.

C.5 PROOF OF LEMMA 4

Proof. We do a proof by induction. The base case is the single-layer case (k = 1), which says that
there exists another single-layer DCD SSM that also tracks group G at finite precision, where, for all
state-coordinates j ∈ [d], the transition dynamics is fixed or a neutral rotation about a fixed center.
We have already proved this in Theorem 1.

Let’s assume the claim is true for k ≤ r − 1 layers, and the goal will be to prove it for k = r.
Let M̃ (r−1) be the SSM with the first r − 1 layers simplified. We apply the same strategy as the
single-layer case in Lemma 1. Arbitrarily fix a coordinate j ∈ [d] for the rth layer and the states
of the first r − 1 layers of M̃ (r−1) to h(1:r−1). If some input sequence x̄ keeps h(1:r−1) fixed and
induces a contraction or expansion or translation in the jth component of the rth layer, with similar
arguments as the single-layer case, we can construct another SSM where λ̃(r)(h(1:r−1), g)j ≈ 0 for
all g ∈ G. Otherwise, we skip this j, h(1:r−1) pair as it already satisfies the claim. Intuitively, this
new SSM acts the way the old SSM would if every time the state of the first r−1 layers was h(1:r−1)

we would input x̄ for n times, where n is sufficiently large and such that the sequence x̄ evaluates to
identity, and ignore the first n outputs. We repeat this procedure for all j, h(1:r−1) pairs, which are
finite due to the finite precision assumption. Call the final SSM M̃ (r).

C.6 PROOF OF THEOREM 2

Proof of Theorem 2. (⇒) Let M be a k-layer DCD SSM that tracks G at finite precision. Apply
the layerwise simplification lemma above to obtain an equivalent model (which we keep denot-
ing by M ) such that, for every layer r ∈ [k] and every fixed configuration of the previous states
(h(1), ..., h(r−1)), each coordinate of layer r either is fixed or undergoes a neutral rotation about
a center that depends only on (h(1), ..., h(r−1)). By Lemma 3, for any fixed (h(1), ..., h(r−1)), all
inputs must induce rotations about the same center in each coordinate of layer r; consequently, the
family of updates realizable at layer r with (h(1), ..., h(r−1)) frozen commute.

Write Γ for the group of state-update functions realized by M (modulo the decoder), which is
isomorphic to G because M tracks G exactly. For r = 0, 1, ..., k define the subgroup

Γ(r) := {ϕ ∈ Γ : ϕ acts trivially on layers r+1, ..., k }. (15)

Then
({e} = Γ(0)) ◁ Γ(1) ◁ ... ◁ (Γ(k) = Γ), (16)

where normality is immediate from the triangular (cascade) dependence: conjugating an update that
only touches layers ≤ r by any global update cannot introduce action on layers > r. Moreover,
the quotient Γ(r)/Γ(r−1) identifies with the family of updates that act only at layer r while keeping
layers < r fixed at an arbitrary configuration; by the previous paragraph, each such fiber is Abelian,
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and changing the fixed lower-layer configuration merely conjugates within the same Abelian class,
so the quotient is Abelian.

Transport this chain to G via the isomorphism induced by decoding: there exist subgroups

(G = Gk) ▷ Gk−1 ▷ ... ▷ G1 ▷ (G0 = {e}) (17)

with Gi+1/Gi Abelian for all i. This is exactly the stated condition.

(⇐) We assume there is a subnormal series (G = Gk) ▷ Gk−1 ▷ ... ▷ G1 ▷ (G0 = {e}) where
Gi+1/Gi is Abelian for all i ∈ [k] and we show that there exists a k-layer DCD SSM that tracks G.
We do a proof by induction on k. The base case k = 1 which we have proved in the single-layer
case (Theorem 1).

We now assume that we have a k − 1 layer DCD SSM that tracks the group N := Gk−1 which
is a normal subgroup of G. We show that we can add an initial layer to get a k-layer DCD SSM
that tracks G. The first layer is constructed following Theorem 1 to track the Abelian group H :=
Gk/Gk−1.

We now need to describe how this first layer interacts with the top k − 1 layers. Any input token
g ∈ G can be written as g = h · n where h ∈ H and n ∈ N . The first layer of the SSM extracts and
applies h. Let h′ ∈ H be the group element corresponding to the updated state of the first layer and
let n′ ∈ N be the state of the top k− 1 layers (not yet updated). We need to simplify n′h′n. We add
h′−1h′ at the end to get n′(h′nh′−1)h′. The part in parentheses is the conjugate of n which is in N
due to N being a normal subgroup. The top layers receive in their input both g = hn and h′ and
should conjugate n by h′ before applying it. This finishes the inductive construction of the k-layer
DCD SSM tracking G.
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