

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE EXPRESSIVE LIMITS OF DIAGONAL SSMs FOR STATE-TRACKING

Anonymous authors

Paper under double-blind review

ABSTRACT

State-Space Models (SSMs) have recently been shown to achieve strong empirical performance on a variety of long-range sequence modeling tasks while remaining efficient and highly-parallelizable. However, the theoretical understanding of their expressive power remains limited. In this work, we study the expressivity of input-Dependent Complex-valued Diagonal (DCD) SSMs on sequential state-tracking tasks. We show that single-layer DCD SSMs cannot express state-tracking of any non-Abelian group at finite precision. More generally, we show that k -layer DCD SSMs can express state-tracking of a group if and only if that group has a subnormal series of length at most k , with Abelian factor groups. That is, we identify the precise expressivity range of k -layer DCD SSMs within the solvable groups. Empirically, we find that multi-layer models often fail to learn state-tracking for non-Abelian groups, highlighting a gap between expressivity and learnability.

1 INTRODUCTION

Alternative architectures to Transformers are often motivated by efficiency and computational cost. Equally important, however, is the need to understand their failure modes. Addressing these failures is key to designing better models and requires analyzing three aspects: (1) the model’s intrinsic expressive capacity, (2) whether standard learning algorithms (e.g., gradient descent on finite data) can reliably realize solutions within that capacity, and (3) the extent to which these limitations actually transfer to or predict performance on real-world tasks. In this work, we focus on the first aspect, architectural expressivity.

A particularly illustrative class of tasks where Transformers are known to fail is state-tracking (Delatang et al., 2023; Liu et al., 2023; Hahn & Rofin, 2024b; Bhattacharya et al., 2022), a subset of regular languages in formal language theory that includes simple tasks like parity and modular addition. State-tracking tasks are considered representative of a model’s performance on real-world problems, such as code execution and program analysis. Examples of Transformers failing to generalize to out-of-distribution (OOD) inputs highlight how limited expressivity can lead models to rely on shortcut solutions that do not generalize beyond the training distribution (Liu et al., 2023). An example of a sequence modeling task that requires keeping track of a state that is being manipulated is program state analysis from big-bench GoogleResearch (2021). For example, given the following code,

$$x, y, z = 0, 1, 2; \quad x, y = y, x; \quad y, z = z, y; \quad x, y = y, x$$

what is the value of x after the fourth command? This specific example requires the ability to model permutations of three objects, i.e., the group S_3 .

State-Space Models (SSMs) have emerged as efficient alternatives to Transformers, promising linear-time sequence modeling with recurrent state representations (Gu et al., 2022b). Initially, they were expected to outperform Transformers on state-tracking tasks, because their recurrent statefulness resembles that of traditional RNNs. However, Merrill et al. (2024) showed that, despite having explicit state representations, SSMs still perform poorly on these tasks, much like Transformers. They highlight this issue in the context of tracking states over sequences of non-solvable group operations with SSMs that are either time-invariant or diagonal. Later work by Sarrof et al. (2024); Grazzi et al. (2025) reveals that these models are unable to track even solvable groups such as parity and modular counting, due to design limitations in their state transition matrices; that is, these matrices either lack input dependence or have no negative (or complex) eigenvalues, both of

054 which are essential for solving state-tracking tasks. We defer a detailed discussion of these findings
 055 to [Section 3](#).

056 Prior work shows that solving state-tracking tasks requires input-dependent, complex, and often non-
 057 diagonal transitions. In contrast, much of the SSM literature assumes diagonal or nearly diagonal
 058 transition matrices for efficiency and stability. In particular, the diagonal parameterization is often
 059 justified by the argument that allowing complex entries in the transition matrix can compensate for
 060 its diagonality on most tasks ([Orvieto et al., 2023](#)).

061 In this work, we show that a single-layer diagonal SSM, even with complex transitions, cannot track
 062 any non-Abelian group. We then show that stacking additional diagonal layers allows the model to
 063 track a group if and only if that group has a subnormal series, with Abelian factor groups, of length
 064 at most equal to the depth of the SSM. Such groups are a subset of the so-called solvable groups.

065 Overall, our theoretical analysis (1) establishes a provable expressivity gap between diagonal and
 066 non-diagonal SSMs in complex space, and (2) demonstrates the strict benefit of depth for modeling
 067 non-Abelian groups with diagonal SSMs.

068 Finally, we empirically evaluate complex diagonal SSMs, both single- and multi-layer, on a range
 069 of group state-tracking tasks, including Abelian groups, such as parity (C_2) and mod-60 addition
 070 (C_{60}), as well as non-Abelian groups, such as permutations of 3 elements. In practice, we observe
 071 a clear gap in generalization between Abelian and non-Abelian solvable tasks, even for multi-layer
 072 models. This suggests that, although some of these models are theoretically expressive enough, they
 073 encounter training challenges with standard gradient-based optimization.

075 2 BACKGROUND

076 2.1 SSMs

077 We review SSMs and provide background on some of the variants that we will refer to in this paper.
 078 We begin by defining an SSM layer using notation inspired by previous works ([Sarrof et al., 2024](#);
 079 [Graffi et al., 2025](#)).

080 **Definition 1** (SSM Layer). A d -dimensional SSM layer is a parametrized function that takes as
 081 input a sequence of $x_t \in \mathbb{F}^n$ and outputs a sequence of $y_t \in \mathbb{F}^m$ via an affine recurrence:

$$h_t = A(x_t)h_{t-1} + b(x_t), \quad (1)$$

$$y_t = \text{dec}(h_t, x_t), \quad (2)$$

082 where $h_t \in \mathbb{F}^d$ is the state, $A(x_t) \in \mathbb{F}^{d \times d}$ is the transition matrix, $b(x_t) \in \mathbb{F}^d$ is the input vector,
 083 and $\text{dec} : \mathbb{F}^d \times \mathbb{F}^n \rightarrow \mathbb{F}^m$ is the decoder. The learnable components of the SSM layer are A , b ,
 084 dec , and possibly the initial state h_0 . If $A(x)$ is diagonal for all $x \in \mathbb{F}^n$, we say the SSM layer is
 085 diagonal. If $\mathbb{F} = \mathbb{R}$ and $A(x)$ has only real eigenvalues, we say the SSM layer is real. Otherwise,
 086 we say the SSM layer is complex.

087 **Computation** The state's affine recurrence can be efficiently parallelized with the parallel scan
 088 (*a.k.a.*, prefix sum) algorithm ([Blelloch, 1990](#)) to run in depth $O(\log T)$, as opposed to the naive
 089 $O(T)$, where T is the sequence length. The parallel scan algorithm leverages the fact that the
 090 composition of affine maps simplifies into another affine map to compute the states in parallel. This
 091 is particularly efficient when $A(x)$ is diagonal, as matrix-matrix and matrix-vector multiplications
 092 reduce to element-wise multiplications.

093 Most variants of SSMs are captured by [Definition 1](#). We review some of the most relevant ones.

094 **S4** The Structured State Space Sequential model (S4) ([Gu et al., 2022b](#)) is based on continuous-
 095 time linear time-invariant (LTI) state-space models from control theory. It is obtained from [Def-
 096 inition 1](#) by setting $\mathbb{F} = \mathbb{C}$, $A(x) = \Lambda$, $b(x) = Bx$, and $\text{dec}(h, x) = \sigma(\mathfrak{R}(Ch) + Dx)$, where
 097 $\Lambda \in \mathbb{C}^{d \times d}$, $B \in \mathbb{C}^{d \times n}$, $C \in \mathbb{C}^{m \times d}$, and $D \in \mathbb{R}^{m \times n}$ are learnable parameters, and σ is a nonlinear-
 098 ity.

Model	$A(x)$	$B(x)$	$\text{dec}(h, x)$
S4	Λ	Bx	$\sigma(\Re(Ch) + Dx)$
S4D	Λ (diagonal)	Bx	$\sigma(\Re(Ch) + Dx)$
Mamba	$\exp(\Delta(x) \odot \Lambda)$	$\Lambda^{-1}(\exp(\Delta(x) \odot \Lambda) - I)Bx$	$\sigma(C(x)h + D(x))$
Negative Mamba	$2\exp(\Delta(x) \odot \Lambda) - I$	$\Lambda^{-1}(\exp(\Delta(x) \odot \Lambda) - I)Bx$	$\sigma(C(x)h + D(x))$
AUSSM	$\exp(i\Delta(x) \odot \Lambda(x))$	$\Delta(x)Bx$	$\sigma(C(x)h + D(x))$

Table 1: Summary of SSM variants in terms of their transition matrix $A(x)$, input vector $B(x)$, and decoder $\text{dec}(h, x)$.

Careful initialization of the parameters, especially the transition matrix Λ , *e.g.*, via HiPPO (Gu et al., 2020), allows these models to mitigate the vanishing gradient problem that affects classical RNNs. Moreover, the structure imposed on the A matrix (normal plus low-rank) makes learning efficient. S4 achieved state-of-the-art results on a set of long-range sequence modeling tasks (Tay et al., 2021), where transformers had previously struggled. As a result, it was seen as a promising alternative or complement to attention-based models.

S4 inspired several follow-up models. On the one hand, simpler variants such as DSS (Gupta et al., 2022), S4D (Gu et al., 2022a), and S5 (Smith et al., 2023) simplified S4’s architecture while retaining strong performance. On the other hand, more sophisticated models such as H3 (Fu et al., 2023) and Mamba (Gu & Dao, 2024) extended SSMs to handle a more diverse set of tasks, particularly language modeling.

S4D S4D is a simplified version of S4 in which the complex transition matrix A is constrained to be diagonal. This reduces the cost of matrix multiplication in the recurrence equations and hence leads to more efficient computation.

Mamba Designed specifically for language modeling tasks, Mamba introduces input dependence (also called selectivity) in the transition matrix while maintaining the diagonal structure of S4D. It is obtained from Definition 1 by setting $\mathbb{F} = \mathbb{R}$, $A(x) = \exp(\Delta(x) \odot \Lambda)$, $b(x) = \Lambda^{-1}(\exp(\Delta(x) \odot \Lambda) - I)Bx$, and $\text{dec}(h, x) = \sigma(C(x)h + D(x))$, where $\Lambda \in \mathbb{R}_{\geq 0}^d$, $\Delta(x) \in \mathbb{R}_{\geq 0}^d$, $B \in \mathbb{R}^{d \times n}$, $C(x) \in \mathbb{R}^{m \times d}$, and $D(x) \in \mathbb{R}^m$ are learnable functions of the input x , and σ is a nonlinearity. Note that Mamba’s transition matrix $A(x)$ is real-valued and in $(0, 1]$ due to the constraints on Λ and $\Delta(x)$. Another variant, due to Grazzi et al. (2025), is negative Mamba which simply replaces $A(x)$ with $2A(x) - I$ to bring the eigenvalue range to $(-1, 1]$.

AUSSM The Adaptive Unitary SSM (AUSSM) (Karuvally et al., 2025) is an input-dependent complex diagonal SSM with unit-modulus transitions. It is obtained from Definition 1 by setting $\mathbb{F} = \mathbb{C}$, $A(x) = \exp(i\Delta(x) \odot \Lambda(x))$, $b(x) = \Delta(x)B(x)$, and $\text{dec}(h, x) = \sigma(C(x)h + D(x))$, where $\Delta(x) \in \mathbb{R}_{\geq 0}^d$, $\Lambda(x) \in \mathbb{C}^d$, $B(x) \in \mathbb{C}^d$, $C(x) \in \mathbb{C}^{m \times d}$, and $D(x) \in \mathbb{C}^m$ are learnable functions of the input x , and σ is a nonlinearity.

These models have been summarized in Table 1.

2.2 GROUPS, AUTOMATA, AND STATE-TRACKING

A *semigroup* is a set G equipped with an associative binary operation \cdot , where the set is closed under the binary operation. If the operation has an identity element e such that $e \cdot g = g \cdot e = g$ for all $g \in G$, then G is a *monoid*. If every element $g \in G$ has an inverse g^{-1} such that $g \cdot g^{-1} = g^{-1} \cdot g = e$, then G is a *group*. A group is *Abelian* if its operation is commutative, *i.e.*, $g_1 \cdot g_2 = g_2 \cdot g_1$ for all $g_1, g_2 \in G$. A *subgroup* $H \leq G$ is a subset closed under \cdot and inverses (equivalently, a group under the restricted operation). A subgroup $N \triangleleft G$ is *normal* if $gNg^{-1} = N$ for all $g \in G$. Note that, by convention, juxtaposition such as gN or gNg^{-1} denotes the set obtained by multiplying each element of N by g (and by g^{-1} on the right, respectively). When $N \triangleleft G$, the set $G/N := \{gN : g \in G\}$ forms the *quotient group*, with operation $(gN) \cdot (hN) = (g \cdot h)N$. A *subnormal series* is a chain

$$(G = G_k) \triangleright G_{k-1} \triangleright \dots \triangleright G_1 \triangleright (G_0 = \{e\}), \quad (3)$$

162 where $G_i \triangleleft G_{i+1}$ for all i . Its *factors* are the quotients G_{i+1}/G_i . A group is *solvable* if it admits
 163 a subnormal series whose factors are all Abelian. A group is *simple* if it has no non-trivial normal
 164 subgroups. See [Rotman \(2012\)](#) for more details.
 165

166 **Example 1.** The group of all permutations of 3 items is denoted S_3 and consists of the elements
 167 $\{e, (12), (23), (13), (123), (132)\}$. It admits the subnormal series
 168

$$\{e\} \triangleleft C_3 \triangleleft S_3, \quad (4)$$

170 where $C_3 = \{e, (123), (123)^2\}$ is the cyclic group of order 3. The factors $C_3/\{e\} \cong C_3$ and
 171 $S_3/C_3 \cong C_2$ are both Abelian, so S_3 is solvable.
 172

173 The set of state-transition functions of a finite automaton when receiving a (possibly empty) sequence of inputs, equipped with composition, forms a monoid. If the automaton is reversible, this monoid is in fact a group. The Krohn–Rhodes theorem ([Krohn & Rhodes, 1965](#)) states that any finite automaton can be decomposed into a cascade product of simple groups and reset automata (*i.e.*, flip-flops). An automaton is called solvable if all the simple groups in its decomposition are solvable. In a cascade product of two automata, the state and input of the first automaton provide the input to the second, loosely resembling stacked neural network layers with skip-connections. The Krohn–Rhodes theorem thus reduces the simulation of complex automata to the simulation of simple groups, flip-flops, and their interactions. Since the latter two are relatively easy, the essential challenge lies in the system’s ability to simulate groups, which is the focus of this work.
 183

184 Sequential state-tracking tasks are meant to capture the ability to simulate semigroups. Given a semigroup G its state-tracking task is, given a sequence of elements $x_1, x_2, \dots, x_T \in G$, to output a sequence $y_1, y_2, \dots, y_T \in G$ such that $y_t = x_1 \cdot x_2 \cdot \dots \cdot x_t$. Some specific tasks of interest are parity, which corresponds to the cyclic group C_2 , and mod- n counting, which corresponds to the cyclic group C_n .
 188

190 3 RELATED WORK

191 [Merrill et al. \(2024\)](#) study the state-tracking capability of SSMs through the lens of circuit complexity.
 192 They show that both input-independent non-diagonal and input-dependent diagonal SSMs with
 193 real-valued transition matrices belong to the complexity class TC^0 , the class of problems solvable
 194 by constant-depth, polynomial-size circuits of AND, OR, and threshold gates with unbounded fan-in.
 195 This class is widely conjectured to be *incapable of expressing non-solvable state-tracking tasks* such
 196 as S_5 . To address this, they propose either adding nonlinearities to the recurrence, which renders the
 197 model non-parallelizable, or making the recurrence non-diagonal and input-dependent. They thus
 198 propose an Input-Dependent S4 (IDS4) and empirically show that it performs better on non-solvable
 199 state-tracking tasks of relatively longer length. However, the drawbacks of the circuit-complexity
 200 approach are that it does not tell us which problems within TC^0 *can* be solved by these SSMs, and it
 201 relies on a conjecture in circuit complexity. In this work, we precisely describe the groups that can
 202 be tracked with a k -layer diagonal SSM (unconditional to any conjecture). In the limit of $k \rightarrow \infty$
 203 all solvable groups can be tracked.
 204

205 While [Merrill et al. \(2024\)](#) focus on the limitations of SSMs compared to RNNs on non-solvable
 206 state-tracking tasks, [Sarrof et al. \(2024\)](#) highlight a significant gap between linear and nonlinear
 207 RNNs on parity, which is the simplest solvable state-tracking task. They prove that input-dependent
 208 non-negative diagonal SSMs (*e.g.*, Mamba) cannot solve parity in finite precision for arbitrary
 209 sequence lengths. They also show that time-invariant complex-valued diagonal SSMs (*e.g.*, S4D) fail
 210 on parity. Connecting with the result of [Merrill et al. \(2024\)](#), this means that common SSM models
 211 only cover a very small subset of TC^0 . On the positive side, [Sarrof et al. \(2024\)](#) show that a
 212 Mamba layer can simulate a flip-flop, and as a result, multi-layer Mamba can simulate counter-free
 213 automata.
 214

215 Extending these results to non-diagonal models, [Grazzi et al. \(2025\)](#) prove that a multilayer SSM
 216 can solve parity in finite precision for arbitrary sequence lengths only if at least one layer has a
 217

negative eigenvalue. This implies that even DeltaNet¹ fails to solve parity in its standard form. They argue that existing SSMs typically lack either input dependence or negative (resp. complex) eigenvalues. Both of these are essential for solving parity (resp. modular counting). To address this, they modify Mamba and DeltaNet to allow eigenvalues in the range $[-1, 1]$ instead of $[0, 1]$. This leads to empirical improvements on both parity and real-world tasks.

While negative eigenvalues are sufficient for solving parity, [Graffi et al. \(2025\)](#) show that complex eigenvalues are necessary for harder tasks such as modular counting. Thus, although modifying Mamba to include negative eigenvalues enables it to solve parity, solving more complex tasks demands transition matrices with complex eigenvalues. They note that such matrices can be constructed by multiplying several real-eigenvalued matrices, provided the product is non-triangular.²

Building on this idea, [Siems et al. \(2025\)](#) proposes DeltaProduct, an adaptive extension of DeltaNet that generalizes the transition matrix from diagonal-plus-rank-1 to a structured rank- n matrix. Here n is tunable to trade off between expressivity and efficiency. Their construction is based on products of n generalized Householder matrices. A limitation of this approach is the computational cost of multiplying non-diagonal matrices.

[Karuvally et al. \(2025\)](#) propose the Adaptive Unitary SSM (AUSSM), which is a complex-valued input-dependent diagonal SSM with unit-modulus eigenvalues. They show that a single-layer AUSSM can simulate any Abelian group but it cannot simulate flip-flops. Since Mamba is able to simulate flip-flops, they propose interleaving Mamba and AUSSM layers to handle solvable automata (according to Krohn–Rhodes theory). However, it is currently unknown (1) if a single-layer AUSSM can simulate non-Abelian groups, (2) what the expressive capacity of k -layer AUSSM is, and (3) if it is unconditionally true³ that multi-layer AUSSMs cannot simulate non-solvable groups. These are questions that we aim to address.

4 THEORETICAL RESULTS

4.1 SINGLE-LAYER DCD SSM

We begin by analyzing the limitations of a single-layer input-Dependent Complex-valued Diagonal (DCD) SSM (recall [Definition 1](#)) on sequential state-tracking tasks for groups. We assume that A , b , and dec are universal function approximators. [In this section, we will build up to the following theorem.](#)

Theorem 1. *There is a single-layer DCD SSM that tracks G at finite precision iff G is Abelian.*

Having b in the state recurrence makes the problem non-trivial. Without b , the state recurrence is given by $h_t = A(x_t)h_{t-1}$ and since $A(x_t)$ is assumed to be diagonal and since diagonal matrices commute, the expressed group operation has to be commutative, *i.e.*, the group is Abelian. However, with b , the SSM can perform non-commutative state updates. We show that even with b , a single-layer DCD SSM cannot express non-Abelian groups at finite precision. In other words, our result implies that having b does not increase expressivity for tracking groups at finite precision.

Another point that makes the problem difficult is the existence of a decoder (especially a powerful one), as it can implement complex decision boundaries in the state space. For example, we cannot assume that feeding the sequence (g, g^{-1}) to the SSM layer results in the identity map on the state. As long as the initial [state \$h_0\$](#) and the final state h_2 decode to the same group element, *i.e.*, $\text{dec}(h_0) = \text{dec}(h_2)$, the SSM is treating the input sequence correctly.

An important property of SSMs (and linear RNNs in general) is that the state update corresponding to a finite sequence of inputs simplifies into an affine map. More specifically, given an input sequence $\bar{x} = (x_1, x_2, \dots, x_T)$, the state update from $t = 0$ to $t = T$ of a diagonal SSM is given by

$$h_T = \lambda(\bar{x}) \odot h_0 + b(\bar{x}), \quad (5)$$

¹DeltaNet is a linear attention model that can also be interpreted as an SSM, with a diagonal plus low-rank transition matrix. More specifically, a generalized Householder matrix.

²Because the eigenvalues of a triangular matrix are the diagonal elements, and the product of two triangular matrices remains triangular.

³Unconditionally true means that the argument does not depend on any conjecture.

270 where

272
$$\lambda(\bar{x}) := \prod_{i=1}^T \lambda(x_i), \quad (6)$$

275
$$b(\bar{x}) := \sum_{i=1}^T \left(\prod_{j=i+1}^T \lambda(x_j) \right) b(x_i). \quad (7)$$

278 This is a key property that we will use in our proofs. Importantly, note that we have now overloaded
 279 λ and b to also accept a *sequence* of inputs.
 280

281 First, we show that if some input x causes some coordinate j of the state to contract ($|\lambda(x)_j| < 1$),
 282 **expand** ($|\lambda(x)_j| > 1$), or **drift** ($|\lambda(x)_j| = 1 \wedge b(x) \neq 0$), then we can construct another SSM that
 283 still solves the task while keeping state-coordinate j fixed. **As a result, such state-coordinates are**
 284 **useless for state-tracking groups and can be effectively ignored by the decoder.**

285 **Notation.** We will sometimes use multiplicative notation for groups. For example, g^3 means $g \cdot g \cdot g$
 286 and gh means $g \cdot h$. Sometimes we may want to concatenate group elements to form a sequence. We
 287 will use parentheses to denote sequences and write $\langle g \rangle$ for a sequence of length one consisting only
 288 of g . We will use multiplicative notation for the concatenation of sequences as well. For example,
 289 $\langle g \rangle \langle h \rangle^5$ is a sequence of length six consisting of a single g followed by five h elements.

290 **Lemma 1.** *Let M be a single-layer DCD SSM that tracks group G at finite precision with
 291 $|\lambda(x)_j| \neq 1$ or $|\lambda(x)_j| = 1 \wedge b(x)_j \neq 0$ for some $x \in G$ and $j \in [d]$, then there exists an
 292 other single-layer DCD SSM \widetilde{M} that also tracks group G at finite precision with $\tilde{\lambda}(g)_j = 0$ and
 293 $\tilde{b}(g)_j = c$ (for some constant c) for all $g \in G$.*

295 A proof is provided in [Appendix C.1](#).

297 Repeating the lemma above for all coordinates $j \in [d]$ lets us construct another SSM that tracks the
 298 same group but has no contracting coordinates. Therefore, we can now assume that all coordinates
 299 of the state have neutral rotation dynamics (case 2 in [Appendix A](#)) for all inputs. Next, we show
 300 that if two inputs have neutral rotation dynamics with *distinct* centers of rotation, then the SSM can
 301 diverge. The following lemma is useful.

302 **Lemma 2.** *The composition of neutral rotations $h \mapsto \lambda(h - c_1) + c_1$ and $h \mapsto \lambda^*(h - c_2) + c_2$,
 303 where λ^* is the conjugate of λ , with distinct centers of rotation $c_1 \neq c_2$ is a non-zero translation.*

305 A proof is provided in [Appendix C.2](#).

307 The above lemma gives us a strategy to make certain SSM configurations diverge.

308 **Lemma 3.** *If a single-layer DCD SSM tracks group G at finite precision and there exist two
 309 inputs $g, h \in G$ that induce neutral rotation about distinct centers in some coordinate $j \in [d]$ of
 310 the state, then the SSM diverges on some input sequence.*

312 A proof is provided in [Appendix C.3](#).

314 By putting the lemmas together, we can prove [Theorem 1](#). A proof is provided in [Appendix C.4](#).

315 4.2 MULTI-LAYER DCD SSM

317 In this section, we extend our results to the multi-layer setting, where the input to the r th layer is the
 318 input token x and the states of the previous $r - 1$ layers, denoted $h^{(1)}, \dots, h^{(r-1)}$. We aim to prove
 319 the following theorem.
 320

321 **Theorem 2.** *There is a k -layer DCD SSM that tracks G at finite precision iff one can write*

322
$$(G = G_k) \triangleright G_{k-1} \triangleright \dots \triangleright G_1 \triangleright (G_0 = \{e\}) \quad (8)$$

324 where G_{i+1}/G_i is Abelian for all $i \in [k]$.
 325

326 We begin by applying the same approach as the single-layer case to construct another SSM with
 327 simpler states and state transitions that tracks the same group.
 328

329 **Lemma 4.** *If a k -layer DCD SSM tracks group G at finite precision, then there exists another
 330 k -layer DCD SSM that also tracks group G at finite precision, where, for all layers $r \in [k]$ and
 331 all state-coordinates $j \in [d]$, the transition dynamics is fixed or a neutral rotation about a center
 332 that is a function of the states of previous layers $(h^{(1)}, \dots, h^{(r-1)})$.
 333*

334 A proof is provided in [Appendix C.5](#). We then use it to prove the theorem in [Appendix C.6](#).
 335

337 5 A DIAGONAL SSM FOR S_3

339 In this section, we present an example of a two-layer diagonal SSM that can track the non-
 340 commutative yet solvable group S_3 for arbitrary sequence lengths. This section has two purposes.
 341 First, it provides a concrete illustration of the theory introduced in the previous section. We begin
 342 by showing how two relatively simple automata can be combined to form a non-Abelian solvable
 343 automaton, and then demonstrate how this construction can be encoded in stacked diagonal SSM
 344 layers. Secondly, it highlights the gap between expressivity and learnability. While the theory sug-
 345 gests that a two-layer diagonal SSM can track the non-Abelian group S_3 , our experiments in the next
 346 section show that, in practice, the model often struggles to learn solutions that generalize to longer
 347 sequences. This implies that while generalizable solutions would lie within the expressive power of
 348 the diagonal SSMs we study, they may be difficult for the learning algorithm to find.
 349

350 5.1 THE S_3 GROUP

351 The symmetric group S_3 is the group of all permutations of three elements. It has six elements
 352 in total and provides the smallest non-Abelian example of a finite group. The elements can be
 353 written in cycle notation as $S_3 = \{e, (12), (13), (23), (123), (132)\}$, where e denotes the identity
 354 permutation, the transpositions $(12), (13), (23)$ swap two elements, and the 3-cycles (123) and (132)
 355 permute all three elements cyclically in opposite directions. S_3 can be decomposed as the semi-
 356 direct product of two Abelian groups, C_2 and C_3 . It, can also be presented by two generators, for
 357 example $S_3 = \langle (12), (123) \rangle$, with cycles 2 and 3, *i.e.*, $(12)^2 = e$, $(123)^3 = e$. The Cayley table of
 358 group multiplications for S_3 is given in [Appendix B.1](#).
 359

360 5.2 DECOMPOSING THE S_3 AUTOMATON

362 Now, we show that there exists a finite state automaton, built as a cascade product of two simpler
 363 automata, that can track S_3 . [Figure 1](#) illustrates one such composition of automata capable of track-
 364 ing S_3 . To illustrate how this solution works, we encode each $g \in S_3$ as $s^\alpha r^\beta$, with $s = (12)$,
 365 $r = (123)$ denoting swap and rotation generators, and multiplication applied left to right. Under
 366 this encoding, S_3 can be rewritten as $S_3 = \{e, s, sr^2, sr, r, r^2\}$. The combined automaton oper-
 367 ates as follows: $s^\alpha r^\beta$ first applies α swaps on the two-state automaton with state $Q^{(1)} \in \{-1, 1\}$,
 368 yielding $Q^{(1)} = Q_0^{(1)}(-1)^\alpha$, with $Q_0^{(1)}$ being the initial state. The second automaton then takes
 369 as input both the input group element and the state of the first automaton and transitions its state
 370 $Q^{(2)} \in \{Q_1, Q_2, Q_3\}$ according to the transition rule illustrated in [Figure 1](#); that is, if the state of
 371 the first automaton is $Q^{(1)} = 1$, upon seeing a group element with $\beta = 1$, it rotates its states accord-
 372 ing to the cyclic permutation (123) , and if $\beta = 2$, the cyclic permutation (132) is applied; however,
 373 if $Q^{(1)} = -1$, the cyclic permutations are applied in the other direction, *i.e.*, for $\beta = 1$, the state
 374 transitions according to (132) and for $\beta = 2$, it transitions according to (123) . In [Appendix B.2](#),
 375 we give concrete examples showing how this encoding, together with the transition rule of the two
 376 automata, correctly reproduces group multiplication and thus tracks S_3 with the compounded au-
 377 tomaton. In what follows, we use the result of [Example 2](#) in [Appendix B.2](#) based on this specific
 378 encoding, summarized in [Table 4](#), to parameterize a two-layer AUSSM that tracks S_3 consistently.

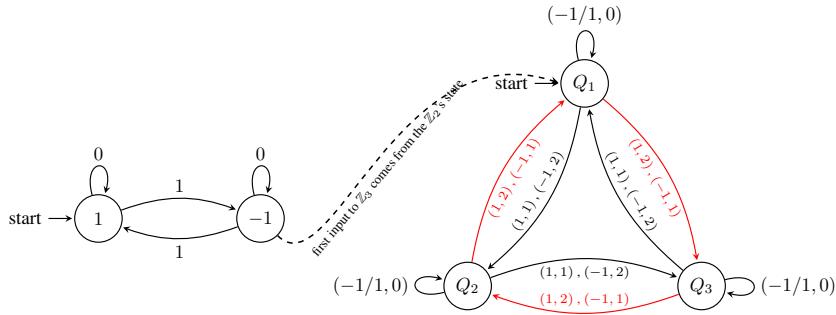


Figure 1: Compound automaton combining (left) two-state parity and (right) three-state cyclic group. The dashed curved line represents the connection between the two cyclic automata, equivalent to the semi-direct product of their groups. It shows that the automaton on the right considers the state of the first automaton, besides the original input. Commas separate inputs that produce the same state transition. States labelled *start* are the initial states of the automata.

5.3 SIMULATING THE 2-AUTOMATON FOR S_3 WITH DIAGONAL SSMs

From [Theorem 1](#), each diagonal SSM layer can model one Abelian automaton; it remains to show that we can stack them in a way that simulates the cascade product of the two Abelian automata.

With the encoding (α, β) for the input $s^\alpha r^\beta$, for the first AUSSM, with the state equation $h_t = e^{-i\Delta(x)\Lambda(x)}h_{t-1} + B(x_t)$, we set $B(x) = 0$, $\Delta(x) = 1$, and $\Lambda((0, \beta)) = 0$, $\Lambda((1, \beta)) = \pi$. The second layer gets the input $(h^{(1)}, \alpha, \beta)$, with $h^{(1)}$ being the state of the first AUSSM layer, fed to the second layer with a skip connection. Here we set $B^{(2)}(x) = 0$, $\Delta^{(2)}(x) = 1$, and $\Lambda^{(2)}((1, \alpha, \beta)) = \frac{2\pi}{3}\beta$, $\Lambda^{(2)}((-1, \alpha, \beta)) = -\frac{2\pi}{3}\beta$. The full state of the SSM will be $(h_0^{(1)}e^{-i\alpha\pi}, h_0^{(2)}e^{-\frac{2\pi i}{3}\beta}h_0^{(1)}e^{-i\alpha\pi})$. This results in a finite number of states, and with a correct decoding, we can map the states to the elements of the group.

6 EXPERIMENTS

We evaluate single- and two-layer diagonal SSMs on a set of solvable group state-tracking tasks. Our goal is to measure what these models learn with standard training, not just what they can represent in theory. Our models include Mamba ([Gu & Dao, 2024](#)), negative Mamba ([Grazzi et al., 2025](#)), AUSSM ([Karuvally et al., 2025](#)), RNN, and simplified AUSSM where Δ and B have been removed since they are theoretically not needed for expressing groups.

Datasets. Our set of tasks consists of different kinds of solvable groups that we are interested in: parity, which is C_2 , a small, a medium and a large cyclic Abelian group, C_6 , C_{24} and C_{60} respectively, two products of cyclic groups, $C_2 \times C_4$ and $C_3 \times C_6$, and two small solvable non-Abelian groups with subnormal chains of length 2, S_3 and A_4 . We also include the non-solvable group A_5 which we expect no model can learn.

For a cyclic group C_N with $N \in \mathbb{N}$, the task is essentially addition mod N with the input tokens being chosen uniformly at random from the group. An example input for the task C_{60} is the sequence [51, 20, 4, 49] and the correct output is [51, 11, 15, 4].

The group S_3 was introduced in detail in [Example 1](#). The alternating group A_4 consists of the 12 even permutations of four elements. Like S_3 , it admits a subnormal chain of length two with Abelian factors, and is therefore solvable.

The alternating group A_5 consists of the 60 even permutations of five items. In contrast to S_3 and A_4 , its shortest subnormal series is $\{e\} \triangleleft A_5$, with the non-Abelian factor $A_5/\{e\} \cong A_5$. Consequently, A_5 is not solvable.

432 **Experimental Details.** Models were trained on sequences of up to length 60 and tested on sequences up to length 1000 to assess their length generalization performance. We applied curriculum learning by gradually increasing the length of training sequences, starting from length 2. We report the sequence length ≥ 100 at which the trained model can obtain above 90% accuracy. If the model was unable to extrapolate we report \times . The results can be seen in Table 2.

433 All experiments were conducted with standard FP32 precision. We performed a grid search over 434 three state dimensions $\{32, 64, 128\}$, three learning rates $\{1e^{-4}, 5e^{-4}, 1e^{-3}\}$, and three learning- 435 rate schedulers {fixed, reduce on plateau, cosine}. The AdamW optimizer was used with these 436 learning rates and a weight decay of 0.01. Each experiment was run with three random seeds, 437 and we reported the best result across seeds. The embedding and model dimensions were fixed at 438 $m = n = 698$ across all experiments. The choice of a relatively large embedding dimension was 439 motivated by stabilizing optimization across both real- and complex-valued kernels. Unless otherwise 440 noted, models were trained with a batch size of 256. We used gelu nonlinearity between SSM 441 layers and residual connections within each SSM layer. The initial state h_0 of the SSMs were set to 442 1 and normalized to unit norm.

Task	Mamba	Negative Mamba	Simple AUSSM	AUSSM	RNN
C_2	\times	1000	160	1000	1000
C_6	\times	\times	240	940	1000
C_{24}	\times	\times	240	260	1000
C_{60}	\times	\times	300	240	\times
$C_2 \times C_4$	\times	\times	140	200	1000
$C_3 \times C_6$	\times	\times	500	200	\times
S_3	\times	\times	\times	\times	1000
A_4	\times	\times	\times	\times	1000
A_5	\times	\times	\times	\times	\times

(a) Single-layer models.

Task	Mamba	Negative Mamba	Simple AUSSM	AUSSM	RNN
C_2	\times	1000	1000	200	1000
C_6	\times	\times	240	100	1000
C_{24}	\times	\times	300	160	1000
C_{60}	\times	\times	260	\times	\times
$C_2 \times C_4$	\times	360	160	\times	1000
$C_3 \times C_6$	\times	\times	260	200	\times
S_3	\times	\times	\times	\times	1000
A_4	\times	\times	\times	\times	1000
A_5	\times	\times	\times	\times	\times

(b) Two-layer models.

455 Table 2: Performance of various models on state-tracking tasks. Each table reports the longest 456 sequence length ≥ 100 where a model is able to achieve accuracy greater than 90%. The maximum 457 training length was 60 for all models over all state-tracking tasks. \times indicates that the model failed 458 to extrapolate to long sequences.

461 **Results.** For RNNs, there is no theoretical expressivity barrier that would stop them from successfully 462 learning all tasks. However, in our experiments, the single-layer RNN struggles on C_{60} , likely 463 due to the large size of the group, and the two-layer variant struggles on both C_{60} and A_4 . It is 464 possible that with different architectural hyperparameters or longer training the RNN would have 465 succeeded.

466 For Mamba, since it does not have negative eigenvalues, in accordance to previous theoretical 467 results (Saroff et al., 2024), we expect it to not be able to track any group. This is indeed observed 468 in our experiments. Negative Mamba is a modified version of Mamba which allows for negative 469 eigenvalues and with a single layer, is expected to only be able to solve parity (Grazzi et al., 2025). 470 This is also observed in our experiments. On the other hand, according to our theory, stacking two 471 layers, each of which is capable of solving C_2 , e.g., Negative Mamba, can do state-tracking for C_4 .⁴ 472 This is because the group C_4 can be written as the subnormal chain $C_4 \triangleright C_2 \triangleright \{e\}$, where the factors 473 are all C_2 , i.e., Abelian. We see in practice that 2-layer Negative Mamba is able to do state-tracking 474 for $C_2 \times C_4$. Interestingly, this is a case where the increased expressivity from stacking layers is 475 usable through gradient-based learning.

476 For AUSSM and simple AUSSM, their single-layer variants are theoretically able to express Abelian 477 groups, which in our case are the four cyclic groups C_2 , C_6 , C_{24} , C_{60} , $C_2 \times C_4$ and $C_3 \times C_6$. 478 Gradient-based optimization has successfully been able to find solutions that extrapolate in this case 479 as well. However, their two-layer variants have not been able to match the expressive capacity that 480 is expected from them as they fail on S_3 and A_4 .

481 Overall, these experiments point to a learnability gap. The main bottleneck for non-Abelian tracking 482 is not expressivity but optimization and the models built-in bias: the solutions exist in the hypothesis 483 class, yet standard training does not reliably reach them.

484 ⁴This has also been stated in Theorem 2 of (Grazzi et al., 2025).

486 To gain insight into the potential causes of this learnability issue, we initialized AUSSM near the
 487 analytical solution for S_3 from Section 5.3. We observed that sufficiently close initialization (with
 488 closeness measured relative to sequence length) improves training: the model successfully learns
 489 and extrapolates to sequences at least four times longer. This suggests that solutions lie within a
 490 basin of attraction in the loss landscape. However, the broader structure of the loss landscape is still
 491 not well understood. A study analogous to (Hahn & Rofin, 2024a), which investigates transformers,
 492 would be a valuable future direction for SSMs. Notably, since initialization near the solution aids
 493 optimization in SSMs, the challenges they face may differ substantially from those of transform-
 494 ers, where solutions have been shown by Hahn & Rofin (2024a) to correspond to isolated points in
 495 weight space.

497 7 DISCUSSION

498 Our results reveal a sharp distinction between what diagonal SSMs can represent in principle and
 499 what they can learn in practice. Theoretically, a single diagonal layer suffices for all Abelian
 500 groups, and stacking layers expands expressivity exactly to solvable groups with a subnormal series
 501 of matching length. This characterization places diagonal SSMs within a precise group-theoretic
 502 boundary: they are strictly weaker than non-diagonal recurrent models, yet depth provides a dis-
 503 plined pathway to handle increasingly complex dynamics.

504 Empirically, however, our experiments show that diagonal SSMs often fail to realize their expressive
 505 potential. Even two-layer models, which can provably represent S_3 , rarely discover solutions that
 506 generalize beyond training lengths. This gap points to difficulties of gradient-based optimization
 507 when searching for encodings of non-Abelian structure within the restricted hypothesis class. It also
 508 suggests that diagonality, while efficient, imposes inductive biases that may actively hinder training
 509 on harder tasks.

510 From a broader perspective, our findings connect to other architectural choices in sequence mod-
 511 els. Allowing block-diagonal structure, even in 2×2 form, would in principle lift the expressivity
 512 of SSMs into NC^1 , enabling simulation of non-solvable groups. Similarly, introducing complex-
 513 valued attention weights in Transformers may bring them closer to the expressivity frontier we
 514 identify here for SSMs. Finally, it is worth noting that many practical applications do not demand
 515 arbitrary-length state-tracking; being able to stably handle moderately long sequences may be suffi-
 516 cient, though our results clarify what is lost at the limit.

517 Finally, although we state the main results for groups, the framework extends naturally to semigroups
 518 and monoids. Allowing inputs that *reset* a layer (*i.e.*, map a coordinate to a fixed center under finite
 519 precision) lets a diagonal SSM simulate reset automata in addition to group components. Conse-
 520 quently, the same depth-based view applies to cascade products comprising Abelian group factors
 521 and resets, bringing the analysis in line with the Krohn–Rhodes perspective on solvable automata.

523 8 CONCLUSION

524 We have given a complete characterization of the expressive power of diagonal SSMs on group
 525 state-tracking tasks. A single diagonal layer cannot track non-Abelian groups, while a k -layer SSM
 526 can track precisely those groups admitting a subnormal series of Abelian factors of length at most
 527 k . This establishes a provable expressivity gap between single- and multi-layer diagonal SSMs.

528 Our experiments further demonstrate a learnability gap: despite their theoretical capacity, multi-
 529 layer diagonal SSMs struggle to learn even simple non-Abelian solvable groups such as S_3 and
 530 A_4 . Together, these results highlight the importance of separating expressivity from trainability
 531 when evaluating new sequence architectures. Future progress will require not only expanding the
 532 expressive frontier – through, for example, block-diagonal transitions or hybrid models – but also
 533 developing training methods that can reliably reach the solutions guaranteed to exist in principle.

540 REFERENCES
541

542 Satwik Bhattacharya, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
543 and their ability to learn sparse boolean functions. *arXiv preprint arXiv:2211.12316*, 2022. Cited at 1.

544

545 Guy E Blelloch. Prefix sums and their applications. 1990. Cited at 2.

546

547 Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
548 Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
549 the chomsky hierarchy. In *International Conference on Learning Representations*, 2023. Cited at 1.

550

551 Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
552 Hungry hungry hippos: Towards language modeling with state space models. In *The Eleventh
553 International Conference on Learning Representations*, 2023. Cited at 3.

554

555 GoogleResearch. Big-bench: Auto debugging task. [https://github.com/google/
556 BIG-bench/tree/main/bigbench/benchmark_tasks/auto_debugging](https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/auto_debugging), 2021.
557 Accessed: 2025-11-28. Cited at 1.

558

559 Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, and Massimiliano Pon-
560 til. Unlocking state-tracking in linear RNNs through negative eigenvalues. In *The Thirteenth
561 International Conference on Learning Representations*, 2025. Cited at 1, 2, 3, 4, 5, 8, and 9.

562

563 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First
564 Conference on Language Modeling*, 2024. Cited at 3 and 8.

565

566 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
567 optimal polynomial projections. In *Conference on Advances in Neural Information Processing
568 Systems*, 2020. Cited at 3.

569

570 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
571 of diagonal state space models. In *Conference on Advances in Neural Information Processing
572 Systems*, 2022a. Cited at 3.

573

574 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
575 state spaces. In *International Conference on Learning Representations*, 2022b. Cited at 1 and 2.

576

577 Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
578 state spaces. *Advances in Neural Information Processing Systems*, 35:22982–22994, 2022. Cited
579 at 3.

580

581 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? *ArXiv*,
582 abs/2402.09963, 2024a. URL [https://api.semanticscholar.org/CorpusID:
583 267682011](https://api.semanticscholar.org/CorpusID:267682011). Cited at 10.

584

585 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In *Proceedings
586 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
587 Papers)*, pp. 14973–15008, 2024b. Cited at 1.

588

589 Arjun Karuvally, Franz Nowak, Anderson T Keller, Carmen Amo Alonso, Terrence J Sejnowski,
590 and Hava T Siegelmann. Bridging expressivity and scalability with adaptive unitary ssms. *arXiv
591 preprint arXiv:2507.05238*, 2025. Cited at 3, 5, and 8.

592

593 Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theorem
594 for finite semigroups and machines. *Transactions of the American Mathematical Society*, 116:
595 450–464, 1965. Cited at 4.

596

597 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
598 learn shortcuts to automata. In *International Conference on Learning Representations*, 2023.
599 Cited at 1.

594 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
595 In *International Conference on Machine Learning*, 2024. Cited at [1](#) and [4](#).
596

597 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
598 canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In *International*
599 *Conference on Machine Learning*, pp. 26670–26698. PMLR, 2023. Cited at [2](#).

600 Joseph J Rotman. *An introduction to the theory of groups*, volume 148. Springer Science & Business
601 Media, 2012. Cited at [4](#) and [16](#).
602

603 Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models:
604 A formal language perspective. In *Conference on Advances in Neural Information Processing*
605 *Systems*, 2024. Cited at [1](#), [2](#), [4](#), and [9](#).

606 Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
607 Grazzi. Deltaproduct: Improving state-tracking in linear rnns via householder products. *arXiv*
608 *preprint arXiv:2502.10297*, 2025. Cited at [5](#).
609

610 Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
611 sequence modeling. In *International Conference on Learning Representations*, 2023. Cited at [3](#).
612

613 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
614 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
615 transformers. In *International Conference on Learning Representations*, 2021. Cited at [3](#).
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A BACKGROUND: ONE-DIMENSIONAL COMPLEX AFFINE DYNAMICS
649650 We consider the affine recurrence
651

652
$$x_{t+1} = \lambda x_t + b, \quad \lambda, b \in \mathbb{C}, \quad t = 0, 1, 2, \dots \quad (9)$$

653

654 with initial condition $x_0 \in \mathbb{C}$. This section records a complete, self-contained classification of the
655 dynamics and then isolates the bounded regimes relevant for our work.
656657 **Closed form and fixed points.** Iterating (9) yields
658

659
$$x_t = \lambda^t x_0 + b \sum_{k=0}^{t-1} \lambda^k = \begin{cases} \lambda^t (x_0 - c) + c, & \lambda \neq 1, \\ x_0 + t b, & \lambda = 1, \end{cases} \quad c := \frac{b}{1 - \lambda} \quad (\lambda \neq 1). \quad (10)$$

660

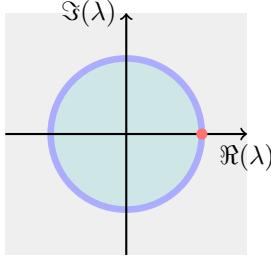
661 A fixed point exists iff either $\lambda \neq 1$ (unique fixed point c) or $(\lambda = 1 \text{ and } b = 0)$ (every point is
662 fixed). When $\lambda = 1$ and $b \neq 0$ there is no fixed point.
663664 **Shift-of-origin reduction.** When $\lambda \neq 1$, define the shift $y_t := x_t - c$ with $c = \frac{b}{1 - \lambda}$. Then
665

666
$$y_{t+1} = \lambda y_t, \quad (11)$$

667

668 so the inhomogeneous recurrence (9) is conjugate to the homogeneous linear map $y \mapsto \lambda y$. All
669 asymptotics therefore reduce to the magnitude and argument of λ :
670671 **Complete case split.** Let $\lambda = r e^{i\theta}$ with $r = |\lambda|$.
672673 1. *Strict contraction* ($|\lambda| < 1$): $x_t \rightarrow c$ exponentially at rate r^t (independent of x_0). If
674 $\lambda \in \mathbb{R}_{>0}$ there is no rotation; otherwise each step rotates by θ while contracting.
675 2. *Neutral rotation* ($|\lambda| = 1, \lambda \neq 1$): $|x_t - c| = |x_0 - c|$; the orbit is periodic iff $\theta/2\pi \in \mathbb{Q}$
676 and is dense on the circle centered at c otherwise.
677 3. *Neutral translation* ($\lambda = 1$):
678

- $b = 0$: $x_t = x_0$ (every point is fixed).
- $b \neq 0$: $x_t = x_0 + t b$ (unbounded linear drift).

679 4. *Expansive* ($|\lambda| > 1$): generically $|x_t| \rightarrow \infty$ exponentially; the unique nongeneric exception
680 is $x_0 = c$ (then $x_t = c$).
681686 Figure 2: We distinguish 4 cases for λ : (teal) $|\lambda| < 1$, (purple) $|\lambda| = 1, \lambda \neq 1$, (pink) $\lambda = 1$,
687 (gray) $|\lambda| > 1$.
688689 **Boundedness.** The trajectory (x_t) is bounded if either $|\lambda| < 1$ or $|\lambda| = 1$ with $(\lambda \neq 1)$ or
690 $(\lambda = 1 \text{ and } b = 0)$. It is unbounded if $|\lambda| > 1$ (unless $x_0 = c$) or $(\lambda = 1 \text{ and } b \neq 0)$.
691692 **Higher Dimensions.** If $\Lambda \in \mathbb{C}^{d \times d}$ is diagonal and $b \in \mathbb{C}^d$, the dynamics decouple coordinate-wise
693 and the above 1D classification applies to each coordinate independently.
694

.	e	(12)	(13)	(23)	(123)	(132)
e	e	(12)	(13)	(23)	(123)	(132)
(12)	(12)	e	(132)	(123)	(13)	(23)
(13)	(13)	(123)	e	(132)	(23)	(12)
(23)	(23)	(132)	(123)	e	(12)	(13)
(123)	(123)	(13)	(23)	(12)	(132)	e
(132)	(132)	(23)	(12)	(13)	e	(123)

Table 3: Cayley table of the symmetric group S_3 .

B THE EXAMPLE OF THE GROUP S_3

B.1 CAYLEY TABLE FOR S_3

B.2 TWO-AUTOMATON CORRECTLY SIMULATES S_3

Example 2. Consider the $s^\alpha r^\beta$ encoding for S_3 elements, with $s = (12)$, $r = (123)$, $\alpha \in \{0, 1\}$ and $\beta \in \{0, 1, 2\}$, and the transition rules described above. We represent the three states Q_1, Q_2, Q_3 of the second automaton by the cube roots of unity $e^{-i0} = 1$, $e^{-\frac{2i\pi}{3}}$, and $e^{-\frac{4i\pi}{3}}$. This representation does not change the fact that the automaton has discrete states; rather, it provides a convenient way to describe transitions as rotations, and later to connect the automaton to SSMs with continuous states. In this view, a rotation between states corresponds to multiplying by a discrete power of $e^{-\frac{2i\pi}{3}}$. Starting from the initial state $(1, e^{-i0})$, we apply each group element to obtain the automaton states and derive a decoding rule that maps any automaton state back to its associated group element.

For the identity e , the automaton remains $(1, 1)$. The swap $s = s^1 r^0$ flips $Q^{(1)}$ to -1 while leaving the second automaton unchanged, giving $(-1, 1)$, decoded as s . For sr^2 , $Q^{(1)}$ flips to -1 , and the second automaton rotates according to $Q^{(1)} = -1$ and $\beta = 2$, resulting in $(-1, e^{i\frac{2\pi}{3}})$, decoded as sr^2 . Similarly for sr , $Q^{(1)}$ flips to -1 and the second automaton rotates to $(-1, e^{i\frac{4\pi}{3}})$, decoded as sr . Finally, for r and r^2 , with no swap, the second layer rotates positively by $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$, giving $(1, e^{-i\frac{2\pi}{3}})$ and $(1, e^{-i\frac{4\pi}{3}})$, decoded as r and r^2 .

Table 4 summarizes this decoding rule by providing a map between the states of the two-automaton and the elements of S_3 .

Automaton State	Group Element in S_3
$(1, 1)$	e
$(-1, 1)$	s
$(-1, e^{i\frac{4\pi}{3}})$	sr^2
$(-1, e^{i\frac{2\pi}{3}})$	sr
$(1, e^{-i\frac{2\pi}{3}})$	r
$(1, e^{-i\frac{4\pi}{3}})$	r^2

Table 4: Mapping between automaton states and group elements of S_3 .

Example 3. Using the encoding, decoding, and transition rules above, one can in principle reproduce the full Cayley table of S_3 with the two-automaton. Here, we verify several nontrivial products to illustrate this behavior.

Trivial products such as $s \cdot s$ or $r \cdot r$ follow immediately. For less obvious cases, consider $sr^2 \cdot sr^2$. The first sr^2 maps the automaton to $(-1, e^{i\frac{4\pi}{3}})$; the second flips $Q^{(1)}$ back to 1 and rotates the

756 second automaton by $4\pi/3$ in the positive direction, returning the system to $(1, 1)$, which is the
 757 correct result for two consecutive applications of the same swap. Similarly, $sr \cdot sr$ returns the au-
 758 tomaton to $(1, 1)$. Next, $s \cdot sr$ maps to $(-1, 0)$ after s , then sr flips $Q^{(1)}$ back to 1 and rotates the
 759 second automaton by $2\pi/3$, yielding $(1, e^{-i2\pi/3}) \equiv r$, with \equiv denoting the equivalence. Revers-
 760 ing the order, $sr \cdot s$ gives $(-1, e^{i2\pi/3})$ after sr , then s flips $Q^{(1)}$ back to 1, giving $(1, e^{i2\pi/3}) \equiv r^2$.
 761 Finally, for $sr \cdot sr^2$, the first sr gives $(-1, e^{i2\pi/3})$, and sr^2 flips $Q^{(1)}$ to 1 and rotates the second
 762 automaton by $4\pi/3$, yielding $(1, e^{-i2\pi/3}) \equiv r$. Conversely, $sr^2 \cdot sr$ maps first to $(-1, e^{i4\pi/3})$
 763 and then to $(1, e^{i2\pi/3}) \equiv r^2$. These checks confirm that the two-automaton correctly reproduces
 764 the nontrivial entries of the Cayley table.
 765

766

767

C PROOFS

768

769

C.1

770

771

C.1 PROOF OF LEMMA 1

772

773

Proof. We split the proof into two cases:

774

775

(Case $|\lambda(x)_j| < 1$) In M , for all $g \in G$, we have $\lambda(\langle g \rangle \langle x \rangle^n)_j = \lambda(g)_j \lambda(x)_j^n \approx 0$ for sufficiently
 776 large n , where \approx means equality at finite precision. We pick a sufficiently large n such that $x^n = e$
 777 as well. Note that this is always possible for all groups elements x . For this n , the input sequence
 778 $\langle g \rangle \langle x \rangle^n$ transitions h_j into x 's center of rotation (i.e., fixed point) in coordinate j . Let c be this
 779 center of rotation. We thus construct a new SSM \widetilde{M} with $\tilde{\lambda}(g) = \tilde{\lambda}(gx^n) := \lambda(\langle g \rangle \langle x \rangle^n) \approx_j 0$ and
 780 $\tilde{b}(g) = \tilde{b}(gx^n) := b(\langle g \rangle \langle x \rangle^n) \approx_j c$ for all $g \in G$, where \approx_j means that we are referring to the j th
 781 coordinate. In this new SSM, all inputs transition state-coordinate j into the fixed point c of input x .
 782 Note that \widetilde{M} has been constructed in such a way that it respects the group law of G . Intuitively, this
 783 new SSM acts the way the old SSM would if we were to input x for n times after every g seen in the
 784 input sequence and ignore the first n outputs, and since $x^n = e$, the output of the new SSM should
 785 be the same.

786

787

788

789

790

(Case $|\lambda(x)_j| > 1$ or $|\lambda(x)_j| = 1 \wedge b(x)_j \neq 0$) With a similar argument to the previous case
 791 one can construct a new SSM where all inputs transition state-coordinate j into inf , that is, the
 792 constant c will be equal to inf . We are assuming here that in our finite-precision model, whenever
 793 the magnitude of a variable grows beyond some threshold, the variable gets fixed to a value, denoted
 794 by inf , that represents infinity. \square

795

796

C.2 PROOF OF LEMMA 2

797

798

Proof. With some simple algebra we get

799

$$\lambda^*(\lambda(h - c_1) + c_1 - c_2) + c_2 = (\lambda\lambda^*)h - (\lambda\lambda^*)c_1 + \lambda^*(c_1 - c_2) + c_2 \quad (12)$$

800

$$= h + (\lambda^* - 1)c_1 + (1 - \lambda^*)c_2 \quad (\lambda\lambda^* = 1) \quad (13)$$

801

$$= h + (1 - \lambda^*)(c_2 - c_1). \quad (14)$$

802

Thus, the composition simplifies to $h \mapsto h + (1 - \lambda^*)(c_2 - c_1)$, which is a non-zero translation since
 803 $\lambda^* \neq 1$ and $c_1 \neq c_2$. \square

804

805

C.3 PROOF OF LEMMA 3

806

807

808

809

Proof. We can find $\alpha_1, \alpha_2 \in \mathbb{N}$ such that $\lambda(g_1)_j^{\alpha_1} \lambda(g_2)_j^{\alpha_2} \approx 1$ at finite precision, $\lambda(g_1)_j^{\alpha_1} \neq 1$, and
 $\lambda(g_2)_j^{\alpha_2} \neq 1$. If the rotations are rational, this can be done exactly; if not, it can be done to arbitrary
 810 precision. Note that $\langle g_1 \rangle^{\alpha_1}$ and $\langle g_2 \rangle^{\alpha_2}$ induce neutral rotations about distinct centers in coordinate
 811 j . Thus, according to Lemma 2, the input sequence $\langle g_1 \rangle^{\alpha_1} \langle g_2 \rangle^{\alpha_2}$ induces a non-zero translation in
 812 coordinate j . Similar to Lemma 1, repeating this sequence causes the SSM to diverge to inf . \square

810 C.4 PROOF OF THEOREM 1
811

812 *Proof of Theorem 1.* (\Rightarrow) We assume there is a single-layer DCD SSM that tracks group G and we
813 show that G is Abelian. Applying Lemma 1 to all coordinates implies that there exists a DCD
814 SSM layer \tilde{M} that tracks G at finite precision, where no input and no coordinate has contraction
815 or expansion or translation dynamics. In other words, all inputs and all coordinates have neutral
816 rotation dynamics. Lemma 3 then implies that all inputs must induce neutral rotations *about the*
817 *same center* in each coordinate. As a result, the effect of any input sequence is independent of the
818 order of the inputs, and hence the group G must be Abelian.

819 (\Leftarrow) We assume G is Abelian and we show there is a single-layer DCD SSM that tracks G . We
820 construct a single-layer DCD SSM that tracks G . By the fundamental theorem of finite Abelian
821 groups (Rotman, 2012), G is isomorphic to a product of n cyclic groups $C_{k_1} \times \dots \times C_{k_n}$ for some
822 n and k_1, \dots, k_n . Every group element g can be represented as $(m_1, \dots, m_n) \in [k_1] \times \dots \times [k_n]$.
823 The group's diagonal complex matrix representation $g \in G \mapsto \Lambda(g) \in \mathbb{C}^{n \times n}$, where $\Lambda(g)_{j,j} =$
824 $\exp(2\pi i \frac{m_j}{k_j})$, can be used as the SSM transition matrix. With enough precision bits, k_j roots of
825 unity can be distinguished for all j . Let $h_0 = \mathbf{1}$ and $b(x) = \mathbf{0}$. The decoder simply maps each state
826 to the corresponding group element. This SSM tracks G at finite precision. \square

827 828 C.5 PROOF OF LEMMA 4
829

830 *Proof.* We do a proof by induction. The base case is the single-layer case ($k = 1$), which says that
831 there exists another single-layer DCD SSM that also tracks group G at finite precision, where, for all
832 state-coordinates $j \in [d]$, the transition dynamics is fixed or a neutral rotation about a fixed center.
833 We have already proved this in Theorem 1.

834 Let's assume the claim is true for $k \leq r - 1$ layers, and the goal will be to prove it for $k = r$.
835 Let $\tilde{M}^{(r-1)}$ be the SSM with the first $r - 1$ layers simplified. We apply the same strategy as the
836 single-layer case in Lemma 1. Arbitrarily fix a coordinate $j \in [d]$ for the r th layer and the states
837 of the first $r - 1$ layers of $\tilde{M}^{(r-1)}$ to $h^{(1:r-1)}$. If some input sequence \bar{x} keeps $h^{(1:r-1)}$ fixed and
838 induces a contraction or expansion or translation in the j th component of the r th layer, with similar
839 arguments as the single-layer case, we can construct another SSM where $\tilde{\lambda}^{(r)}(h^{(1:r-1)}, g)_j \approx 0$ for
840 all $g \in G$. Otherwise, we skip this $j, h^{(1:r-1)}$ pair as it already satisfies the claim. Intuitively, this
841 new SSM acts the way the old SSM would if every time the state of the first $r - 1$ layers was $h^{(1:r-1)}$
842 we would input \bar{x} for n times, where n is sufficiently large and such that the sequence \bar{x} evaluates to
843 identity, and ignore the first n outputs. We repeat this procedure for all $j, h^{(1:r-1)}$ pairs, which are
844 finite due to the finite precision assumption. Call the final SSM $\tilde{M}^{(r)}$. \square

845 846 C.6 PROOF OF THEOREM 2
847

848 *Proof of Theorem 2.* (\Rightarrow) Let M be a k -layer DCD SSM that tracks G at finite precision. Apply
849 the layerwise simplification lemma above to obtain an equivalent model (which we keep denot-
850 ing by M) such that, for every layer $r \in [k]$ and every fixed configuration of the previous states
851 $(h^{(1)}, \dots, h^{(r-1)})$, each coordinate of layer r either is fixed or undergoes a neutral rotation about
852 a center that depends only on $(h^{(1)}, \dots, h^{(r-1)})$. By Lemma 3, for any fixed $(h^{(1)}, \dots, h^{(r-1)})$, all
853 inputs must induce rotations *about the same center* in each coordinate of layer r ; consequently, the
854 family of updates realizable at layer r with $(h^{(1)}, \dots, h^{(r-1)})$ frozen commute.

855 Write Γ for the group of state-update functions realized by M (modulo the decoder), which is
856 isomorphic to G because M tracks G exactly. For $r = 0, 1, \dots, k$ define the subgroup

$$857 \Gamma^{(r)} := \{ \phi \in \Gamma : \phi \text{ acts trivially on layers } r+1, \dots, k \}. \quad (15)$$

858 Then

$$859 (\{e\} = \Gamma^{(0)}) \triangleleft \Gamma^{(1)} \triangleleft \dots \triangleleft (\Gamma^{(k)} = \Gamma), \quad (16)$$

860 where normality is immediate from the triangular (cascade) dependence: conjugating an update that
861 only touches layers $\leq r$ by any global update cannot introduce action on layers $> r$. Moreover,
862 the quotient $\Gamma^{(r)}/\Gamma^{(r-1)}$ identifies with the family of updates that act *only* at layer r while keeping
863 layers $< r$ fixed at an arbitrary configuration; by the previous paragraph, each such fiber is Abelian,

864 and changing the fixed lower-layer configuration merely conjugates within the same Abelian class,
 865 so the quotient is Abelian.

866 Transport this chain to G via the isomorphism induced by decoding: there exist subgroups

$$868 \quad (G = G_k) \triangleright G_{k-1} \triangleright \dots \triangleright G_1 \triangleright (G_0 = \{e\}) \quad (17)$$

870 with G_{i+1}/G_i Abelian for all i . This is exactly the stated condition.

871 (\Leftarrow) We assume there is a subnormal series $(G = G_k) \triangleright G_{k-1} \triangleright \dots \triangleright G_1 \triangleright (G_0 = \{e\})$ where
 872 G_{i+1}/G_i is Abelian for all $i \in [k]$ and we show that there exists a k -layer DCD SSM that tracks G .
 873 We do a proof by induction on k . The base case $k = 1$ which we have proved in the single-layer
 874 case (Theorem 1).

875 We now assume that we have a $k - 1$ layer DCD SSM that tracks the group $N := G_{k-1}$ which
 876 is a normal subgroup of G . We show that we can add an initial layer to get a k -layer DCD SSM
 877 that tracks G . The first layer is constructed following Theorem 1 to track the Abelian group $H :=$
 878 G_k/G_{k-1} .

879 We now need to describe how this first layer interacts with the top $k - 1$ layers. Any input token
 880 $g \in G$ can be written as $g = h \cdot n$ where $h \in H$ and $n \in N$. The first layer of the SSM extracts and
 881 applies h . Let $h' \in H$ be the group element corresponding to the updated state of the first layer and
 882 let $n' \in N$ be the state of the top $k - 1$ layers (not yet updated). We need to simplify $n'h'n$. We add
 883 $h'^{-1}h'$ at the end to get $n'(h'n'h'^{-1})h'$. The part in parentheses is the conjugate of n which is in N
 884 due to N being a normal subgroup. The top layers receive in their input both $g = hn$ and h' and
 885 should conjugate n by h' before applying it. This finishes the inductive construction of the k -layer
 886 DCD SSM tracking G . \square

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917