

000 BEYOND ISOLATED FACTS: SYNTHESIZING NARRA- 001 002 TIVE AND GROUNDED SUPERVISION FOR VIDEOQA 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 The performance of Video Question Answering (VideoQA) models is fundamen-
012 tally constrained by the nature of their supervision, which typically consists of
013 isolated, factual question-answer pairs. This "bag-of-facts" approach fails to cap-
014 ture the underlying narrative and causal structure of events, limiting models to a
015 shallow understanding of video content. To move beyond this paradigm, we intro-
016 duce a framework to synthesize richer supervisory signals. We propose two com-
017 plementary strategies: Question-Based Paraphrasing (QBP), which synthesizes
018 the diverse inquiries (what, how, why) from a video's existing set of question-
019 answer pairs into a holistic narrative paragraph that reconstructs the video's event
020 structure; and Question-Based Captioning (QBC), which generates fine-grained
021 visual rationales, grounding the answer to each question in specific, relevant ev-
022 idence. Leveraging powerful generative models, we use this synthetic data to
023 train VideoQA models under a unified next-token prediction objective. Exten-
024 sive experiments on STAR and NExT-QA validate our approach, demonstrating
025 significant accuracy gains and establishing new state-of-the-art results, such as
026 improving a 3B model to 72.5% on STAR (+4.9%) and a 7B model to 80.8%
027 on NExT-QA. Beyond accuracy, our analysis reveals that both QBP and QBC
028 substantially enhance cross-dataset generalization, with QBP additionally accel-
029 erating model convergence by over 2.5x. These results demonstrate that shifting
030 data synthesis from isolated facts to narrative coherence and grounded rationales
yields a more accurate, efficient, and generalizable training paradigm.

031 1 INTRODUCTION 032

033
034 Video Question Answering (VideoQA) (Patel et al., 2021; Zhong et al., 2022) is a pivotal multimodal
035 task that requires models to reason over complex visual and textual inputs to answer natural language
036 questions about videos. It has broad applications, including video retrieval and surveillance (Sreenu
037 & Durai, 2019), as well as assistive technologies and interactive AI systems (Rajavel et al., 2022).

038
039 Benefiting from recent advances in Large Language Models (LLMs) (Achiam et al., 2023; OpenAI,
040 2024a) and Multimodal Large Language Models (MLLMs) (Team et al., 2023; OpenAI, 2024b),
041 VideoQA has made rapid progress. Strong MLLMs equipped with cross-modal attention, tempo-
042 ral modeling, and instruction-following abilities have substantially improved accuracy on standard
043 benchmarks. Nevertheless, significant challenges remain, rooted in the very structure of our training
044 data. Conventional datasets (Jang et al., 2017; Wu et al., 2021; Xiao et al., 2021) are composed
045 of discrete question-answer pairs that, while factually correct, present video content as a series of
046 fragmented, isolated facts. This format omits the rich web of inter-dependencies, such as the causal,
047 temporal, and social links, that connect these facts into a coherent event. To highlight this funda-
048 mental limitation, Table 1 presents a typical set of human-annotated questions for a single video.

049
050 Individually, each QA pair in Table 1 provides a useful, atomic piece of information. However, their
051 true value lies in the semantic links that are entirely ignored by conventional training paradigms.
052 For instance, understanding why the people are resting (Q3, Q5) is contingent on knowing they are
053 on snowmobiles (Q1). Inferring their relationship as 'friends' (Q6) is not a direct visual fact but
an inference supported by the playful 'posing' interaction (Q4). Current models (Ko et al., 2023;
Liang et al., 2024), trained on this data, are tasked with learning from a "bag-of-facts," forcing
them to rely on shallow correlations rather than deep, structural understanding. This not only limits

054 generalization but is a primary cause of model hallucination when complex reasoning is required.
 055 The critical research gap, therefore, is not just the scarcity of data, but the absence of a supervision
 056 signal that represents this underlying event structure.

057 To address this fundamental challenge, we propose a framework that introduces two novel forms of
 058 supervision by transforming the fragmented QA pairs already present in existing datasets. Our first
 059 strategy, **Question-based Paraphrasing (QBP)**, addresses the need for structured understanding. It
 060 leverages the rich interrogative diversity (what, how, why) inherent in human-annotated questions to
 061 reverse-engineer a video’s underlying event structure. Instead of treating them as a bag of isolated
 062 facts, QBP compels a LLM to synthesize these descriptive, procedural, and causal inquiries into a
 063 single, logic-infused narrative. This process transforms fragmented seeds of human curiosity into
 064 a holistic, narrative-level supervision signal. However, a global narrative alone cannot guarantee
 065 visual grounding. To this end, our second strategy, **Question-based Captioning (QBC)**, provides
 066 instance-level grounding. It generates fine-grained, question-conditioned captions that serve as vi-
 067 sual rationales, forcing the model to anchor its reasoning in specific, relevant visual evidence. To-
 068 gether, QBP and QBC provide two orthogonal yet synergistic forms of supervision: one that builds
 069 a coherent narrative fabric, and another that ties each thread of that fabric to a concrete visual detail.

070 Extensive experiments validate the effectiveness of our approach. On two widely used benchmarks,
 071 NExT-QA and STAR (Xiao et al., 2021; Wu et al., 2021), our QBP+QBC strategies consistently
 072 improve performance across different model backbones. For example, with a Qwen2.5-VL-3B (Bai
 073 et al., 2025) backbone, accuracy on STAR improves from 67.6% to 72.5%, a gain of nearly +5 points.
 074 Larger backbones like Qwen2.5-VL-7B and MiMo-VL-SFT (Team et al., 2025) also benefit, with
 075 our QBP+QBC supervision pushing a 7B model to a new state-of-the-art of 80.8% on NExT-QA.
 076 Beyond raw accuracy, our analyses reveal significant secondary benefits: QBP’s narrative super-
 077 vision accelerates model convergence by more than 2.5 times, while both strategies substantially
 078 improve cross-dataset generalization, demonstrating enhanced robustness.

079 In summary, our contributions are as follows: (i) We propose a new supervision paradigm for
 080 VideoQA that moves beyond isolated facts, introducing two complementary synthesis strategies
 081 (QBP and QBC) to generate narrative-level and instance-level supervision. (ii) We demonstrate
 082 through large-scale experiments that our framework significantly improves both in-domain accu-
 083 racy and cross-dataset generalization, achieving new state-of-the-art results on multiple challenging
 084 benchmarks. (iii) We provide a comprehensive analysis of the distinct benefits of our methods,
 085 showing that QBP accelerates model convergence by over 2.5x while both strategies enhance gen-
 086 eralization, underscoring the efficiency and robustness of our approach.

087 2 RELATED WORK

089 **Video Question Answering: From Architectures to Data Bottlenecks.** VideoQA is a challeng-
 090 ing multimodal task requiring complex spatio-temporal reasoning. Early progress was largely driven
 091 by architectural innovations, from spatio-temporal attention mechanisms (Xu et al., 2017; Jang et al.,
 092 2017) and graph-based models (Xiao et al., 2022) to large-scale pre-trained transformers (Yang et al.,
 093 2020; Wang et al., 2022). While these models have become increasingly sophisticated, their per-
 094 formance is fundamentally bottlenecked by the available training data (Zhang et al., 2023; Li et al.,
 095 2023). Manually annotating large-scale, diverse, and unbiased datasets that cover complex reason-
 096 ing scenarios is prohibitively expensive. Consequently, the field’s focus is gradually shifting from
 097 purely architectural improvements to data-centric approaches (Liang et al., 2025) that can enhance
 098 the quality and form of the supervision signal itself.

099 **Data Synthesis for Video Understanding.** Early approaches in VideoQA relied on rule-based
 100 templates (Grunde-McLaughlin et al., 2021; Wu et al., 2021) or simple question generation (Falcon
 101 et al., 2020), but these methods often produce syntactically simple and semantically repetitive data.
 102 The advent of powerful generative models has enabled more sophisticated synthesis. MLLMs like
 103 Video-LLaMA (Zhang et al., 2023) can generate descriptive video captions, while recent work such
 104 as LLaVA-Video (Zhang et al., 2024) and ShareGPT4V (Chen et al., 2024) has prompted LLMs like
 105 GPT-4 (Achiam et al., 2023) to generate a variety of video-centric textual data.

107 However, despite the improved quality, the dominant paradigm remains the generation of more iso-
 108 lated data points—be it captions or individual QA pairs. This approach enriches the dataset in

108 Table 1: An example of fragmented yet semantically linked QA pairs for a single video from NExT-
 109 QA. While each pair provides an isolated fact, their inter-dependencies (rightmost column) reveal a
 110 richer event structure. Conventional training paradigms ignore these crucial links, forcing models to
 111 learn from a “bag-of-facts” and hindering deep reasoning.

Question & Answer	Question Type	Semantic Links & Implied Context
Q1: How are the people transported on snow? (snowmobile)	Transportation	Context for understanding the setting and actions in Q3, Q5.
Q2: What is the weather like? (cold)	Scene / Weather	Provides general atmospheric context for the entire scene.
Q3: Why is the person in red sitting on a snowmobile? (resting)	Action Reasoning	Links the action (‘sitting’) to a purpose (‘resting’), dependent on Q1, Q5.
Q4: How does the man in black react to the camera? (poses)	Interaction	Implies a social relationship (‘friends’, Q6) and connects to camera actions (Q7, Q8).
Q5: Why are the snowmobiles parked? (resting)	Causal Reasoning	The overarching reason for the scene’s static nature, connects to Q1, Q3.
Q6: What is the relationship between the people? (friends)	Social Relation	Inferred from playful interactions like ‘posing’ (Q4) and ‘taking photos’ (Q7, Q8).
Q7: Why is the man in blue holding a camera? (to take a photo)	Action Purpose	Explains the core interaction, directly linked to the reaction in Q4 and action in Q8.
Q8: What does the man in red do? (takes a photo)	Specific Action	A key interaction that supports the inference of ‘friends’ (Q6) and explains the ‘posing’ (Q4).

127 volume but fails to address the core problem we identify in our introduction: the structural fragmentation
 128 of supervision. These methods do not provide the connective tissue that links discrete facts
 129 into a coherent event structure, which is essential for deep reasoning.

131 **Our Contribution in Context.** Our work is situated within this trend of LLM-based data synthesis but makes a distinct and complementary contribution. Instead of generating *more* fragmented
 132 data, we focus on creating *new forms* of structured supervision. We are the first to propose a dual-
 133 pronged framework that explicitly addresses the structural deficit. Our Question-based Paraphrasing
 134 introduces a novel narrative-level supervision signal, designed to reconstruct the video’s event struc-
 135 ture from existing queries. Concurrently, our Question-based Captioning provides rationale-level
 136 supervision, forcing a tight, evidence-based alignment between a specific query and its visual proof.
 137 By synthesizing these two synergistic forms of supervision, our work directly tackles the limitations
 138 of the “bag-of-facts” paradigm that characterizes prior work.

3 METHOD

143 Our work introduces a novel framework for synthesizing high-quality training data to improve
 144 VideoQA models. Instead of simply augmenting existing datasets, we propose a method to transform
 145 the sparse, fragmented supervision inherent in human-annotated QA pairs into dense, multi-level
 146 training signals. We develop two complementary synthesis techniques: Question-based Paraphras-
 147 ing (QBP), which generates holistic, narrative-level supervision; and Question-based Captioning
 148 (QBC), which provides fine-grained, instance-level grounding. The overall pipeline of our method
 149 is illustrated in Figure 1.

3.1 PROBLEM FORMULATION

152 Formally, let the source data be a collection of videos $\mathcal{V} = \{v_i\}_{i=1}^N$. Each video v_i is associated
 153 with a set of K_i human-annotated question-answer pairs, which we denote as a question group
 154 $\mathcal{G}_i = \{(Q_{i,k}, A_{i,k})\}_{k=1}^{K_i}$. A video v_i is represented as a sequence of T uniformly sampled frames:

$$v_i = \{f_{i,1}, f_{i,2}, \dots, f_{i,T}\}, \quad f_{i,t} \in \mathbb{R}^{H \times W \times 3}.$$

157 Our first step is to leverage the question groups $\{\mathcal{G}_i\}_{i=1}^N$ to synthesize two new datasets derived from
 158 the videos in \mathcal{V} :

- 160 • A narrative-level dataset, $\mathcal{D}^{\text{QBP}} = \{(v_i, \tilde{d}_i^{\text{narrative}})\}_{i=1}^N$, generated via our QBP strategy.
- 161 • A rationale-level dataset, $\mathcal{D}^{\text{QBC}} = \bigcup_{i,k} \{(v_i, \tilde{d}_{i,k}^{\text{rationale}})\}$, generated via our QBC strategy.

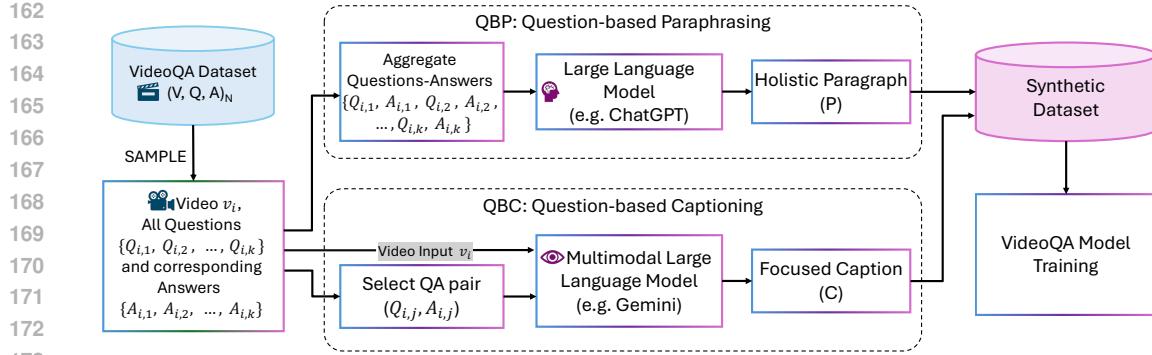


Figure 1: An overview of our framework for transforming fragmented QA pairs into structured supervision. Question-based Paraphrasing (QBP) synthesizes multiple QA pairs into a holistic narrative for global context, while Question-based Captioning (QBC) generates a visual rationale from a single QA pair to provide fine-grained, evidence-based grounding.

Crucially, our training paradigm for a model \mathcal{M} does not use the original, fragmented QA pairs for supervision. Instead, our objective is to train \mathcal{M} exclusively on the union of our synthesized datasets:

$$\mathcal{D}_{\text{train}} = \mathcal{D}^{\text{QBP}} \cup \mathcal{D}^{\text{QBC}}.$$

We aim to demonstrate that training on $\mathcal{D}_{\text{train}}$ yields superior performance in terms of reasoning, generalization, and grounding compared to models trained on the standard QA dataset format.

3.2 QUESTION-BASED PARAPHRASING (QBP): BUILDING GLOBAL NARRATIVES

A key limitation of the standard VideoQA training paradigm is its reliance on isolated question-answer pairs as supervision units. This fragmentation ignores the rich semantic dependencies that often exist between questions associated with the same video. As illustrated in Table 1, questions may be temporally, causally, or logically linked (e.g., Q1, Q3, and Q5 all concern the resting state, while Q7 and Q8 both hinge on camera-related actions). Ignoring these relations prevents models from forming a unified representation of the video’s event structure.

Conceptual Framework. To overcome this fragmentation, we introduce Question-based Paraphrasing (QBP), a strategy designed to reconstruct the underlying event structure from these isolated annotations. Our key insight is that the set of human-annotated questions for a video, \mathcal{G}_i , is not a random collection of facts, but a rich sample of *interrogative diversity*. These questions probe the video’s content at multiple semantic levels: ‘what’ questions establish static entities, ‘how’ questions trace dynamic processes, and ‘why’ questions uncover causal relationships.

QBP frames the data synthesis task as a *reasoning integration* problem. It compels an LLM to move beyond answering individual questions and instead synthesize these descriptive, procedural, and causal inquiries into a single, logic-infused narrative. This process transforms the fragmented “bag-of-facts” represented by \mathcal{G}_i into a holistic, narrative-level supervision signal, $\tilde{d}_i^{\text{narrative}}$. By training on these narratives, the model is exposed to the connective tissue of the event, encouraging a shift from simple fact retrieval to structured event comprehension.

Formalization. Formally, given the question group \mathcal{G}_i for a video v_i , we employ a LLM, denoted as Φ_{QBP} , to generate a single narrative description $\tilde{d}_i^{\text{narrative}}$:

$$\tilde{d}_i^{\text{narrative}} = \Phi_{\text{QBP}}(\mathcal{G}_i).$$

Here, the full question-answer pairs in \mathcal{G}_i are provided as input, allowing the LLM to use the ground-truth answers as factual cornerstones for its narrative reconstruction. The prompt for Φ_{QBP} explicitly instructs the model to integrate information across all QA pairs in \mathcal{G}_i into a coherent, fluent paragraph, capturing latent dependencies. This process is applied to all videos in the source collection to construct the full narrative-level dataset:

$$\mathcal{D}^{\text{QBP}} = \{(v_i, \tilde{d}_i^{\text{narrative}})\}_{i=1}^N.$$

216 3.3 QUESTION-BASED CAPTIONING (QBC): ENHANCING VISUAL GROUNDING
217

218 While QBP provides models with a global narrative context, a persistent challenge in VideoQA is
219 *visual grounding*: ensuring answers are derived from tangible visual evidence rather than dataset
220 biases or spurious correlations. Models often fail at fine-grained spatio-temporal localization, parti-
221 cularly for complex “why” or “how” questions. For example, given the question “Why did the
222 person drop the ball?”, a generic caption like “A person is playing with a ball” offers little explana-
223 tory power. In contrast, a targeted *visual rationale* such as “The person’s hand slips as they try to
224 catch the ball, causing it to fall” directly links the reasoning to an observable, causal event.

225 **Conceptual Framework.** To instill this level of grounding, we propose Question-based Caption-
226 ing. This strategy generates fine-grained visual rationales conditioned on individual question-answer
227 pairs. The question focuses the general topic, while the ground-truth answer provides a specific an-
228 chor for correctness. This prompts a Multimodal Large Language Model to identify and describe
229 the precise visual evidence that *justifies* the given answer. This process creates a strong alignment
230 between a query, its correct answer, and its visual proof, forcing the downstream model to learn not
231 just *what* the answer is, but *why* it is correct based on the video.

232 **Formalization.** For each video v_i and each of its associated question-answer pairs $(Q_{i,k}, A_{i,k})$
233 from the question group \mathcal{G}_i , we synthesize a targeted visual rationale $\tilde{d}_{i,k}^{\text{rationale}}$. This is generated by
234 a Multimodal LLM, denoted as Φ_{QBC} , which takes the video, the question, and the answer as input:

$$\tilde{d}_{i,k}^{\text{rationale}} = \Phi_{\text{QBC}}(v_i, Q_{i,k}, A_{i,k}).$$

235 Here, explicitly providing the ground-truth answer $A_{i,k}$ is a crucial design choice. It constrains
236 the generation task, ensuring the correctness and relevance of the output. Instead of open-endedly
237 describing the scene, the MLLM is instructed to find and articulate the specific visual evidence that
238 supports the given correct answer. The prompt is carefully designed to forbid the model from merely
239 repeating the answer, forcing it to generate a descriptive proof. This synthesis is performed for all
240 question-answer pairs in the original dataset to construct the rationale-level dataset:
241

$$\mathcal{D}^{\text{QBC}} = \bigcup_{i=1}^N \bigcup_{k=1}^{K_i} \{(v_i, \tilde{d}_{i,k}^{\text{rationale}})\}.$$

242 This dataset consists of ‘(video, text)’ pairs, structurally identical to \mathcal{D}^{QBP} , where each text serves
243 as a grounded explanation for an implicit question-answer pair.
244

245 **Complementary Nature.** Conceptually, QBC complements QBP. Whereas QBP focuses on con-
246 structing holistic narratives that capture global dependencies across multiple questions, QBC oper-
247 ates at a fine-grained level, enforcing a tight alignment between an individual query-answer pair and
248 its supporting visual evidence. Together, they provide two orthogonal yet synergistic forms of syn-
249 thetic supervision, namely global narrative coherence and local visual grounding, which constitute
250 our final training set $\mathcal{D}_{\text{train}} = \mathcal{D}^{\text{QBP}} \cup \mathcal{D}^{\text{QBC}}$.
251

252 4 EXPERIMENTS
253

254 In this section, we conduct comprehensive experiments to empirically validate our proposed data
255 synthesis framework. Our evaluation is structured to answer several key questions regarding its
256 effectiveness, properties, and the quality of its outputs. We first describe our experimental setup and
257 then present a human evaluation to assess the quality and factual fidelity of the generated supervision
258 signals, including an analysis of the seed datasets and the statistical properties of our synthetic data.
259 Finally, we evaluate model performance and analyze the contributions of different components in
260 our framework.
261

262 **Training.** All models are fine-tuned exclusively with a next-token prediction objective. For fair
263 comparison, hyperparameters are kept consistent across all experimental settings. We use the
264 AdamW optimizer with a learning rate of 1e-6 and train for 1-2 epochs. For video processing,
265 we uniformly sample 16 frames. See more details in Appendix B.
266

267 **Evaluation Metrics.** Our primary metric is *Accuracy*, calculated via exact match with ground-truth
268 answers. To assess generalization, we perform cross-dataset evaluation, where a model is trained on
269 one dataset (e.g., NExT-QA) and tested on another unseen dataset (e.g., STAR).

270
271 4.1 SYNTHETIC DATA QUALITY ASSESSMENT

272
273 **Data Analysis.** Our data synthesis process
274 begins with three widely-used VideoQA bench-
275 marks as seeds: NExT-QA, STAR, and
276 DiDeMo (Xiao et al., 2021; Wu et al., 2021;
277 Anne Hendricks et al., 2017). As shown in Ta-
278 ble 2, these datasets exhibit notably different
279 annotation densities. NExT-QA and STAR pro-
280 vide relatively dense supervision, with an av-
281 erage of 9 and 15 QA pairs per video, respec-
282 tively. In contrast, DiDeMo is much sparser,
283 with only 3.5 QA pairs per video. This dis-
284 parity is further visualized in Figure 2. These
285 statistics underscore the complementary nature
286 of our proposed methods. The high density of
287 questions in datasets like STAR provides a rich
288 source for QBP to consolidate into coherent
289 narratives. Conversely, the sparsity of datasets
290 like DiDeMo highlights the need for QBC to
291 expand annotation coverage with fine-grained,
292 grounded descriptions.

293 Next, we analyze the textual properties of our
294 synthesized data. Figure 3 compares the length
295 distributions. The original answers are pre-
296 dominantly short and fragmented. In contrast,
297 QBP narratives are moderately longer and ex-
298 hibit high semantic density, while QBC ratio-
299 nales produce the longest and most detailed descriptions. This analysis confirms that our framework
300 successfully transforms sparse annotations into two distinct and complementary forms of supervi-
301 sion: one focused on semantic density (QBP) and the other on descriptive richness (QBC).

302 **Quantitative Human Evaluation.** While our synthesis process is seeded with human-annotated
303 QA pairs, the LLM or MLLM generator could potentially introduce errors. To rigorously evaluate
304 this, we conduct a human evaluation study on the quality of our generated data. We randomly sample
100 QBP narratives and 100 QBC rationales and ask three human evaluators to rate them on a 1-5
305 Likert scale across several key dimensions. Instructions for human evaluators are in the App. D.1.

306 As shown in Table 3, our synthesized
307 data achieves consistently high scores.
308 Both QBP and QBC demonstrate strong
309 *Factual Consistency* (4.21 and 4.35, re-
310 spectively), confirming that the LLM and
311 MLLM generally preserve the ground-
312 truth information from the source QA
313 pairs. QBP narratives are rated favorably
314 for *Logical Coherence* (4.25), while QBC
315 rationales receive a high score for *Visual*
316 *Grounding* (4.38). The low standard de-
317 viation across most metrics, particularly
318 *Fluency*, indicates strong agreement among
319 evaluators on the high quality of the generated text.
320 These results confirm that our synthesis process produces reliable supervision signals suitable for
321 model training.

322 **Qualitative Error Analysis.** We perform a qualitative analysis of failure cases to better under-
323 stand the limitations of our approach. We find that severe errors, such as hallucinating non-existent
events, are extremely rare. The more common, though still infrequent, failure modes are subtle and
method-specific. For QBP, the primary challenge lies in logical cohesion. We observe occasional
324 errors in temporal ordering, where the LLM incorrectly sequences two closely related actions. This

Table 2: Statistics of the datasets we used.

	#video	#QA(Annotation)
NExT-QA	3.8k	34k
STAR	3k	45k
DiDeMo	2k	7k

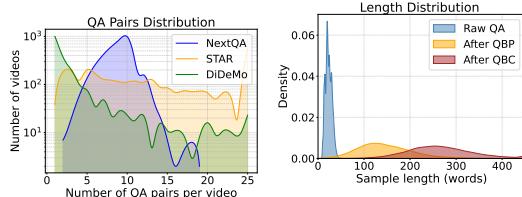


Figure 2: Distribution of the number of QA pairs per video across datasets. NExT-QA and STAR include a wide range of annotations per video, with some clips having more than 20 questions, while DiDeMo remains consistently sparse.

Figure 3: Length distributions of textual supervision before and after synthesis. Raw QA pairs are short and fragmented. QBP generates moderately longer narratives with high semantic density, while QBC produces the longest, fine-grained captions.

Table 3: Human evaluation of synthetic data quality on a 1-5 scale. The scores are consistently high, confirming the overall quality and fidelity of the synthesized data.

Evaluation Dimension	QBP	QBC
Factual Consistency	4.21 ± 0.55	4.35 ± 0.48
Logical Coherence	4.25 ± 0.61	-
Visual Grounding	-	4.38 ± 0.52
Fluency	4.88 ± 0.21	4.91 ± 0.19

324 Table 4: Model comparison on NExT-QA and STAR. All scores are reported in Accuracy (%).
325

326 Model	327 LLM Arch.	328 NExT-QA	329 STAR
<i>Fine-tuned on Raw QA pairs</i>			
330 InternVideo (Wang et al., 2022)	331 -	332 63.2	333 58.7
334 LSTP (Wang et al., 2024)	335 FlanT5 3B	336 72.1	337 -
338 VidF4 (Liang et al., 2024)	339 FlanT5 3B	340 74.1	341 68.1
342 LLaMA-VQA (Ko et al., 2023)	343 LLaMA 7B	344 72.0	345 65.4
346 MotionEpic (Fei et al., 2024)	347 Vicuna 7B	348 76.0	349 71.0
350 Vamos (Wang et al., 2023)	351 LLaMA2 7B	352 75.0	353 -
354 LLaVA-OV(Li et al., 2024)	355 Qwen2 7B	356 77.5	357 66.2
<i>Combined with on QBP+QBC (ours)</i>			
358 Qwen2.5-VL (Bai et al., 2025)	359 Qwen2.5 3B	360 74.3	361 67.5
362 w. QBP+QBC (ours)	363 Qwen2.5-3B	364 76.8 (+2.5)	365 72.5 (+5.0)
366 MiMo-VL-SFT (Team et al., 2025)	367 MiMo 7B	368 75.3	369 52.0
370 w. QBP+QBC (ours)	371 MiMo 7B	372 77.0 (+1.7)	373 56.2 (+4.2)
374 Qwen2.5-VL (Bai et al., 2025)	375 Qwen2.5 7B	376 76.2	377 70.6
378 w. QBP+QBC (ours)	379 Qwen2.5 7B	380 80.8 (+4.6)	381 73.3 (+2.7)

343 issue is sometimes exacerbated by imprecise temporal boundary annotations in the source QA pairs
344 themselves, which provide ambiguous cues. In rarer cases, we note entity confusion, where a single
345 person is described with conflicting pronouns as if they were two separate individuals. For QBC,
346 the most notable failure mode is a form of "justified fabrication." Since the MLLM is provided with
347 the correct answer, it sometimes invents plausible-sounding visual details to rationalize the answer,
348 especially when the actual visual evidence is subtle or ambiguous. Detailed examples are provided
349 in the Appendix C.2.

351 4.2 MAIN PERFORMANCE EVALUATION

353 We evaluate our data synthesis framework by comparing it against previously published state-of-
354 the-art (SOTA) models (e.g., Vamos (Wang et al., 2023), MotionEpic (Fei et al., 2024)), which are
355 fine-tuned on the original QA training sets of each benchmark. Further details on these baselines
356 are provided in Appendix B. For our evaluation, we select two representative MLLMs, Qwen2.5-
357 VL (Bai et al., 2025) and MiMo-VL (Team et al., 2025), chosen for their strong general-purpose
358 reasoning ability. Table 4 summarizes the results on NExT-QA and STAR.

359 The results are clear and consistent: across all backbones and model scales, training exclusively on
360 our synthesized data provides significant performance improvements. For example, when applied
361 to the Qwen2.5-VL-3B, our method boosts accuracy on NExT-QA from 74.3% to 76.8% (+2.5) and
362 delivers a remarkable +5.0 point gain on STAR, increasing accuracy from 67.5% to 72.5%. This
363 trend holds for larger 7B models as well; notably, our method pushes the Qwen2.5-VL-7B model to
364 a new SOTA of 80.8% on NExT-QA. Importantly, even when built upon strong backbones, our syn-
365 thesized supervision consistently outperforms models fine-tuned on the raw QA pairs, underscoring
366 its effectiveness and general applicability.

367 This consistent improvement validates our core hypothesis: transforming the supervision format
368 from a "bag-of-facts" into structured, multi-level signals is a more effective way to train VideoQA
369 models. The narrative-level context from QBP enables models to better understand temporal and
370 causal event structures, while the instance-level grounding from QBC forces a tighter alignment
371 between reasoning and specific visual evidence. This richer supervision allows models to move be-
372 yond shallow pattern matching and develop a deeper, more robust comprehension of video content,
373 leading to higher accuracy on complex reasoning tasks.

375 4.3 IN-DEPTH ANALYSIS OF QUESTION-BASED PARAPHRASING (QBP)

376 In this section, we conduct a detailed analysis to understand the properties of QBP. We aim to answer
377 two key questions: (1) How does fine-tuning on QBP-synthesized narratives compare to fine-tuning

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Table 5: Comparison of fine-tuning on raw QA pairs vs. our QBP-synthesized narratives. QBP effectively improves in-domain performance while also enhancing cross-domain generalization, mitigating the overfitting seen with raw data.

Training Data	Test on NExT-QA	Test on STAR
<i>Qwen2.5-VL-3B</i>	74.3	67.6
NExT-QA (raw)	76.2 (+1.9)	66.5 (-1.1)
QBP from NExT-QA	76.0 (+1.7)	69.8 (+2.2)
STAR (raw)	73.1 (-1.2)	70.2 ((+2.6))
QBP from STAR	75.5 (+1.2)	69.9 ((+2.3))

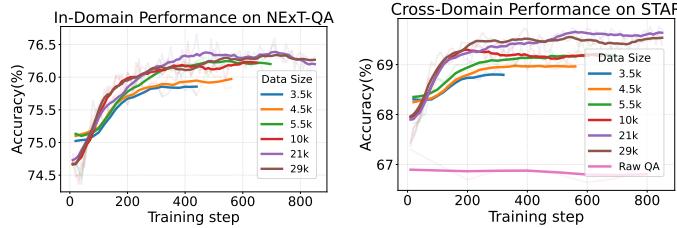


Figure 4: Effect of QBC scale. Larger amounts of synthesized QBC data improve accuracy and convergence on both NExT-QA and STAR, with clear gains in cross-dataset generalization.

Table 6: Effect of using different and combined seed datasets for QBP synthesis. Performance is evaluated on NExT-QA and STAR. Combining diverse seeds yields the best generalization.

QBP Seed Data Source(s)	Test on NExT-QA	Test on STAR
<i>Qwen2.5-VL-3B (No fine-tuning)</i>	74.3	67.6
NExT-QA only	76.0	69.8
DiDeMo only	76.0	69.1
STAR only	75.5	69.9
NExT-QA + DiDeMo	76.3	69.4
NExT-QA + STAR	76.2	70.9
NExT-QA + DiDeMo + STAR	76.5	70.8

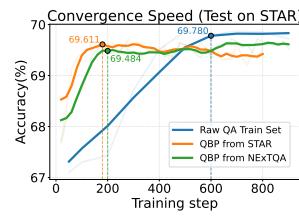


Figure 5: Convergence with raw QA vs. QBP. QBP enables faster convergence compared to raw QA training, showing the efficiency of holistic descriptions.

on raw QA pairs, particularly concerning cross-dataset generalization? (2) How does the choice of seed dataset for synthesis affect QBP’s performance?

QBP Mitigates Overfitting from Raw Data. A common risk in fine-tuning is overfitting to the source dataset’s specific patterns and biases. To investigate whether QBP can mitigate this issue, we compare models fine-tuned on raw QA pairs from a single source against models fine-tuned on QBP narratives synthesized from that same source.

Table 5 reveals a critical trend. As expected, fine-tuning the backbone on the raw NExT-QA training set improves its in-domain performance significantly (+1.9%), but this comes at the cost of degraded performance on the unseen STAR dataset (-1.1%), a clear sign of overfitting. Conversely, training on QBP narratives synthesized from NExT-QA not only boosts in-domain accuracy but also enhances cross-dataset generalization to STAR (+2.2%). The same pattern holds when using STAR as the source dataset. This directly validates that the narrative supervision from QBP provides a more generalizable signal than the original, fragmented QA pairs.

Effect of Diverse Seeds for QBP Synthesis. Next, we explore how leveraging a diverse mix of seed datasets for QBP synthesis impacts performance. We generate QBP narratives using various combinations of NExT-QA, STAR, and DiDeMo as source material. As shown in Table 6, combining seeds from multiple datasets yields the most significant gains, particularly for cross-domain generalization. While narratives from a single source already provide benefits, synthesizing from a mix of NExT-QA and STAR pushes the STAR accuracy to a high of 70.9% (+3.3% over the backbone). Incorporating all three diverse sources (NExT-QA, STAR, DiDeMo) achieves the best overall balance, reaching 76.5% on NExT-QA and 70.8% on STAR. This confirms that QBP is most effective when it can draw upon a wide range of question styles and content, allowing it to generate a richer and more robust narrative supervision signal that transcends the biases of any single dataset.

Accelerated Convergence with QBP’s Narrative Supervision. A striking finding of our study concerns the training efficiency of QBP. As shown in Figure 5, models trained on QBP-synthesized narratives converge dramatically faster than those trained on the original, fragmented QA pairs. For

432 instance, the NExT-QA training set consists of approximately 30k individual QA pairs, which our
 433 QBP process condenses into about 3k holistic paragraphs. Despite this ten-fold reduction in the
 434 number of training instances, the model trained on QBP data reaches its performance plateau within
 435 approximately 220 steps. In stark contrast, the model trained on the raw QA set requires around
 436 600 steps to reach a similar performance level. This demonstrates that our QBP-based supervision
 437 accelerates convergence by more than 2.5x compared to the standard QA training paradigm.

438 This accelerated convergence may seem counterintuitive, given that QBP narratives are textually
 439 longer than individual QA pairs. We hypothesize this is because the narrative supervision acts as a
 440 far more semantically dense and informative training signal. Each paragraph synthesizes multiple
 441 related inquiries ('what', 'how', 'why') and their dependencies into a unified context that reflects
 442 the video's underlying event structure (see Table 1). This provides the model with richer, more
 443 structured reasoning cues in a single optimization step, effectively reducing the redundancy inherent
 444 in processing numerous overlapping, low-level QA pairs.

445 From a practical standpoint, this highlights a significant efficiency advantage of QBP. In resource-
 446 constrained settings, the ability to reach a high-performance state with fewer training steps makes
 447 QBP-based supervision a particularly appealing and cost-effective strategy.

449 4.4 ANALYSIS OF QBC: DATA SCALING AND GENERALIZATION

450 Having analyzed QBP's properties with respect to seed diversity, we now turn to QBC and investigate
 451 its effectiveness as a function of data scale. We synthesize varying amounts of QBC rationales
 452 from the NExT-QA training set (from 3.5k up to the full 29k samples) and fine-tune the Qwen2.5-
 453 VL-3B backbone on each subset. Performance is monitored on both the in-domain (NExT-QA) and
 454 cross-domain (STAR) test sets.

455 The results, plotted in Figure 4, show a clear and positive correlation between the volume of synthetic
 456 data and model performance. (1) **In-domain Performance (Fig. 4a):** On NExT-QA, accuracy
 457 steadily improves as more QBC rationales are added. With just 5k samples, the model already sur-
 458 passes the baseline, and performance continues to climb as the dataset scales to 10k and then 29k
 459 samples. This confirms that the fine-grained, grounded supervision provided by QBC offers a strong
 460 and scalable training signal for improving in-domain reasoning. (2) **Cross-dataset Generalization**
 461 **(Fig. 4b):** The benefits of scaling QBC data are even more pronounced in the cross-dataset transfer
 462 setting. On STAR, performance rises from a baseline of 66.5% (*Raw QA*) to nearly 70.0% with
 463 the full 29k set, a gain of +3.5 points. This striking trend demonstrates that training on QBC's vi-
 464 sual rationales effectively forces the model to ground its predictions in visual evidence rather than
 465 source-specific linguistic biases, thereby enhancing its ability to generalize to new, unseen domains.

466 In summary, this analysis validates QBC as a highly scalable form of supervision. Increasing the
 467 volume of QBC data consistently improves both in-domain accuracy and, critically, cross-dataset
 468 generalization. This highlights its role as a powerful tool for generating fine-grained, evidence-
 469 based supervision that complements the holistic, narrative context provided by QBP.

471 5 CONCLUSION

472 In this work, we present a novel data-centric paradigm for VideoQA that moves beyond the limi-
 473 tations of training on isolated, factual annotations. Our framework introduces two complementary
 474 synthesis strategies: Question-based Paraphrasing (QBP), which generates coherent, narrative-level
 475 supervision, and Question-based Captioning (QBC), which provides fine-grained, instance-level vi-
 476 sual grounding. Our extensive experiments demonstrate that training models exclusively on this
 477 synthesized data establishes a new state-of-the-art on multiple challenging benchmarks. Beyond
 478 accuracy, we show that our method yields significant secondary benefits: it substantially enhances
 479 cross-dataset generalization, and the narrative supervision from QBP markedly accelerates model
 480 convergence by more than 2.5x. Our rigorous human evaluation further confirms the high factual
 481 consistency and logical coherence of the synthesized data, solidifying its reliability as a high-quality
 482 supervision signal. These results highlight the profound potential of shifting focus from model
 483 architecture to the supervision signal itself. By transforming fragmented inquiries into structured
 484 narratives and grounded rationales, we unlock significant gains in model performance, robustness,
 485 and training efficiency.

486 ETHICS STATEMENT
487488 This work builds on publicly available VideoQA datasets, which contain human-annotated QA pairs
489 and captions. No private or sensitive data are used. Our data synthesis strategies (QBP and QBC)
490 rely on large language models and multimodal models to generate additional supervision, but the
491 generated content remains constrained to the semantics of the original annotations, reducing risks of
492 misinformation or harmful outputs. Potential societal risks include over-reliance on synthetic data
493 or propagation of biases from source models; we mitigate this by grounding synthesis in human-
494 verified annotations and reporting transparent analyses. All experiments follow standard academic
495 use of benchmarks and are intended solely for advancing research in multimodal reasoning.
496497 REPRODUCIBILITY STATEMENT
498499 We provide detailed descriptions of our methods, datasets, and experimental settings to ensure re-
500 producibility. Specifically, we outline the backbone architectures, frame sampling strategy, training
501 objectives, and hyperparameters. Dataset splits follow publicly available benchmarks. Prompts used
502 for QBP and QBC synthesis are included in the Appendix. We also report results averaged across
503 multiple random seeds to account for variance. All resources required to reproduce our results in-
504 cluding code, and processed data will be released upon publication.
505506 REFERENCES
507508 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
509 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
510 report. *arXiv preprint arXiv:2303.08774*, 2023.511 Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
512 Localizing moments in video with natural language. In *Proceedings of the IEEE international*
513 *conference on computer vision*, pp. 5803–5812, 2017.
514515 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
516 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
517 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
518 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
519 URL <https://arxiv.org/abs/2502.13923>.
520521 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahu-
522 Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *European Confer-*
523 *ence on Computer Vision*, pp. 370–387. Springer, 2024.
524524 Alex Falcon, Oswald Lanz, and Giuseppe Serra. Data augmentation techniques for the video ques-
525 tion answering task. In *European Conference on Computer Vision*, pp. 511–525. Springer, 2020.
526527 Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne
528 Hsu. Video-of-thought: Step-by-step video reasoning from perception to cognition. In *Forty-first*
529 *International Conference on Machine Learning*, 2024.
530531 Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa: A benchmark
532 for compositional spatio-temporal reasoning. In *Proceedings of the IEEE/CVF Conference on*
533 *Computer Vision and Pattern Recognition*, pp. 11287–11297, 2021.
534535 Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Tgif-qa: Toward spatio-
536 temporal reasoning in visual question answering. In *Proceedings of the IEEE conference on*
537 *computer vision and pattern recognition*, pp. 2758–2766, 2017.
538539 Dohwan Ko, Ji Lee, Woo-Young Kang, Byungseok Roh, and Hyunwoo Kim. Large language models
are temporal and causal reasoners for video question answering. In *Proceedings of the 2023*
Conference on Empirical Methods in Natural Language Processing, pp. 4300–4316, 2023.
540

- 540 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 541 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 542 *arXiv:2408.03326*, 2024.
- 543
- 544 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang,
 545 and Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*,
 546 2023.
- 547 Jianxin Liang, Xiaojun Meng, Yueqian Wang, Chang Liu, Qun Liu, and Dongyan Zhao. End-to-end
 548 video question answering with frame scoring mechanisms and adaptive sampling. *arXiv preprint*
 549 *arXiv:2407.15047*, 2024.
- 550
- 551 Jianxin Liang, Xiaojun Meng, Huishuai Zhang, Yueqian Wang, Jiansheng Wei, and Dongyan Zhao.
 552 ReasVQA: Advancing VideoQA with imperfect reasoning process. In Luis Chiruzzo, Alan Ritter,
 553 and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter*
 554 *of the Association for Computational Linguistics: Human Language Technologies (Volume*
 555 *1: Long Papers)*, pp. 1696–1709, Albuquerque, New Mexico, April 2025. Association for Com-
 556 putational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.82. URL
 557 <https://aclanthology.org/2025.naacl-long.82/>.
- 558 OpenAI. Gpt-4o system card., 2024a. URL <https://openai.com/research/gpt-4v.html>.
 559 <https://cdn.openai.com/gpt-4o-system-card.pdf>.
- 560
- 561 OpenAI. Gpt-4v(ision) system card, 2024b. URL <https://openai.com/research/gpt-4v.html>.
 562 https://cdn.openai.com/papers/GPTV_System_Card.pdf.
- 563 Devshree Patel, Ratnam Parikh, and Yesha Shastri. Recent advances in video question answering:
 564 A review of datasets and methods. In *Pattern Recognition. ICPR International Workshops and*
 565 *Challenges: Virtual Event, January 10–15, 2021, Proceedings, Part II*, pp. 339–356. Springer,
 566 2021.
- 567
- 568 Rajkumar Rajavel, Sathish Kumar Ravichandran, Karthikeyan Harimoorthy, Partheeban Nagappan,
 569 and Kanagachidambaresan Ramasubramanian Gobichettipalayam. Iot-based smart healthcare
 570 video surveillance system using edge computing. *Journal of ambient intelligence and human-
 571 ized computing*, 13(6):3195–3207, 2022.
- 572 GSDMA Sreenu and Saleem Durai. Intelligent video surveillance: a review through deep learning
 573 techniques for crowd analysis. *Journal of Big Data*, 6(1):1–27, 2019.
- 574
- 575 Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng
 576 Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei
 577 Zhu, Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng,
 578 Zhichao Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang,
 579 Xu Wang, Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng,
 580 Wenyu Yang, Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao
 581 Chen, Shihua Yu, Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen,
 582 Menghang Zhu, Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jiniao Dong, Jiebao Xiao,
 583 Jiaming Xu, Huaqiu Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang,
 584 Duo Zhang, Dong Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl
 585 technical report, 2025. URL <https://arxiv.org/abs/2506.03569>.
- 586
- 587 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
 588 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
 589 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 590
- 591 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 592 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 593 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- 594
- 595 Shijie Wang, Qi Zhao, Minh Quan Do, Nakul Agarwal, Kwonjoon Lee, and Chen Sun. Vamos:
 596 Versatile action models for video understanding. *arXiv preprint arXiv:2311.13627*, 2023.

- 594 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 595 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 596 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.
- 597
- 598 Yuxuan Wang, Yueqian Wang, Pengfei Wu, Jianxin Liang, Dongyan Zhao, and Zilong Zheng. Lstp:
 599 Language-guided spatial-temporal prompt learning for long-form video-text understanding. *arXiv*
 600 *preprint arXiv:2402.16050*, 2024.
- 601
- 602 Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. Star: A bench-
 603 mark for situated reasoning in real-world videos. In *Thirty-fifth conference on neural information*
 604 *processing systems datasets and benchmarks track (Round 2)*, 2021.
- 605
- 606 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 607 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on com-*
 608 *puter vision and pattern recognition*, pp. 9777–9786, 2021.
- 609
- 610 Junbin Xiao, Pan Zhou, Tat-Seng Chua, and Shuicheng Yan. Video graph transformer for video
 611 question answering. In *European Conference on Computer Vision*, pp. 39–58. Springer, 2022.
- 612
- 613 Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
 614 Video question answering via gradually refined attention over appearance and motion. In *Pro-*
 615 , pp. 1645–1653, 2017.
- 616
- 617 Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani, Yuta Nakashima, and Haruo Takemura. Bert
 618 representations for video question answering. In *Proceedings of the IEEE/CVF Winter Conference*
 619 *on Applications of Computer Vision*, pp. 1556–1565, 2020.
- 620
- 621 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 622 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023.
- 623
- 624 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 625 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024.
- 626
- 627 Yaoyao Zhong, Junbin Xiao, Wei Ji, Yicong Li, Weihong Deng, and Tat-Seng Chua. Video question
 628 answering: Datasets, algorithms and challenges. In *The 2022 Conference on Empirical Methods*
 629 *in Natural Language Processing*, 2022.
- 630

A USE OF LARGE LANGUAGE MODELS

631
 632
 633 large language models are used in two ways in this work. First, they support data synthesis, where
 634 QBP relies on language models to paraphrase human-annotated QA pairs into narrative form, and
 635 QBC employs multimodal models to generate query-conditioned captions. Second, they play a
 636 supportive role in writing, including proofreading, correcting grammatical errors, and improving
 637 clarity of exposition. All model outputs are carefully reviewed by the authors, and responsibility for
 638 the final content rests entirely with the authors.

B EXPERIMENTAL DETAILS

640
 641
 642 **Training details** We finetune model using the SFTTrainer from TRL¹ and DeepSpeed² during
 643 training in NVIDIA H800 (80GB) GPU × 2. We use AdamW with a cosine learning rate scheduler,
 644 whose max learning rate is 1e-6, and a batch size of 8. We train our model within 1-2 epochs. Our
 645 training code will be later open sourced.

646
 647 ¹https://huggingface.co/docs/trl/v0.22.1/en/sft_trainer

²<https://github.com/deepspeedai/DeepSpeed>

648 **Baselines.** We evaluate our data synthesis framework by comparing it against previously SOTA
 649 models, such as InternVideo (Wang et al., 2022), LLaMA-VQA (Ko et al., 2023), LSTP (Wang
 650 et al., 2024), VidF4 (Liang et al., 2024), Vamos (Wang et al., 2023), MotionEpic (Fei et al., 2024)
 651 and LLaVA-OV Li et al. (2024). Among these models, LLaMA-VQA, Vamos, and MotionEpic use
 652 7B-parameter LLM as part of the model.

653 **LSTP** adopts the BLIP-2 architecture and uses optical flow for frame selection, followed by using
 654 LLM to generate answers. Similarly, VidF4 (Liang et al., 2024) update its model by training on raw
 655 QA pairs after extracting key frames from videos.

656 **LLaMA-VQA** is built based on LLaMA-7B (Touvron et al., 2023), enabling the model to under-
 657 stand the complex relationships between videos, questions, and answers by constructing multiple
 658 auxiliary tasks.

659 **MotionEpic** breaks down the raw intricate video reasoning problem into a chain of simpler sub-
 660 problems and solves them one by one sequentially.

662 **Vamos** (Wang et al., 2023) generalizes the concept bottleneck model to work with tokens and non-
 663 linear models, which uses hard attention to select a small subset of tokens from the free-form text as
 664 inputs to the LLM reasoner.

665 **LLaVA-OV** (Li et al., 2024) builds upon LLaVA by constructing synthetic data to further enhance
 666 the base model. Liang et al. (2025) fine-tune the model on raw QA pairs for VideoQA tasks. How-
 667 ever, the official paper also shows that current MLLM backbones may overlap with common bench-
 668 marks; see the original work for details.

672 C PROMPTS AND EXAMPLES FOR QBP AND QBC

675 C.1 PROMPTS AND EXAMPLES FOR DATA SYNTHESIS

678 Here, we provide the detailed prompts and concrete examples used for our data synthesis strategies.

681 C.1.1 QUESTION-BASED CAPTIONING (QBC)

684 The QBC prompt instructs the MLLM to generate a visual rationale—a caption that describes the
 685 visual evidence supporting a given answer, without explicitly stating the answer itself.

688 **Prompt for QBC**

690 Given a video, a question, and its answer, generate a natural
 691 language caption that highlights the visual content most
 692 relevant to justifying the answer.

693 The caption should be a descriptive proof grounded in visual
 694 evidence, NOT a direct restatement of the answer.

698 C.1.2 QUESTION-BASED PARAPHRASING (QBP)

701 The QBP prompt is designed to instruct the LLM (DeepSeek, GPT-4o) to act as a reasoning integra-
 702 tor, synthesizing a holistic narrative from a collection of fragmented QA pairs.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755**Prompt for QBP**

Transform the following QA pairs into a single, logically coherent paragraph in present tense. Follow these rules strictly:

1. **Content Requirements**:

- Use ONLY information from the provided QA pairs. Do not invent new facts.
- If questions imply clear chronological order (e.g., "before"/"after"), preserve it.
- If no temporal relationship exists (e.g., between weather and object questions), present facts in neutral order without implying sequence (avoid "first"/"then"/"while").
- Group related facts by theme (e.g., environment → actions → social interactions).

2. **Prohibitions**:

- Never assume unstated temporal/causal relationships.
- Avoid speculative terms like "probably", "might", or "seems".
- Do not use filler phrases like "the questions ask about...".

QA Pairs:

{QAGroup}

Output:

Example. To illustrate QBP's ability to reconstruct a complex event structure, we use the same set of questions previously shown in Table 1 of the introduction.

Input QA Pairs for QBP (from Table 1)

- Q1: How are the people transported on snow? (snowmobile)
- Q2: What is the weather like? (cold)
- Q3: Why is the person in red sitting on a snowmobile? (resting)
- Q4: How does the man in black react to the camera? (poses)
- Q5: Why have the snowmobiles parked? (resting)
- Q6: What is the relationship between the people? (friends)
- Q7: Why is the man in blue holding a camera? (to take a photo)
- Q8: What does the man in red do? (takes a photo)

Synthesized QBP Narrative

In cold weather conditions, a group of friends is transported on a snowmobile across the snow. They come to a halt and park the snowmobile to rest. The man wearing red, after placing his helmet on the motorbike, takes a photo. Meanwhile, the person dressed in red sits on the snowmobile, resting alongside the group. The man in black strikes a pose when the man in red raises his camera at the end of the video. In the group, there is also a man wearing blue who holds a camera to take a photo.

This example demonstrates how QBP synthesizes descriptive ('cold', 'snowmobile'), causal ('resting'), and social ('friends', 'poses') information from the fragmented QA pairs into a single, logic-infused narrative.

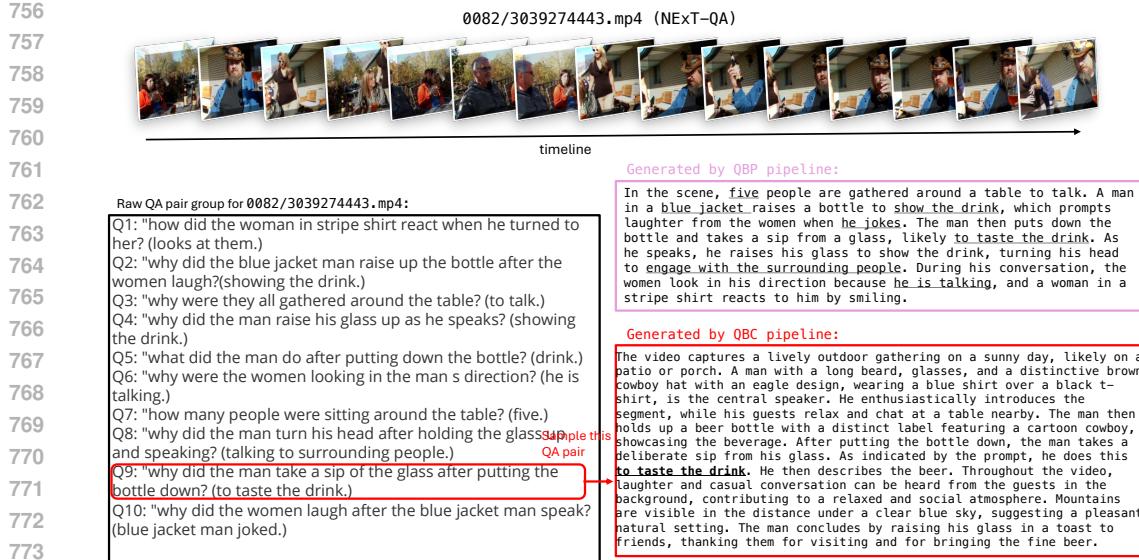


Figure 6: An example of synthesized data generated by our framework. The left shows the raw QA pairs from NExT-QA, while the right presents the corresponding outputs: a narrative produced by the QBP pipeline and rationales generated by the QBC pipeline.

C.2 EXAMPLES

To offer a more concrete understanding of our approach, this section showcases several examples generated by our proposed QBP and QBC methods. As illustrated in Figures 6 and 7, these examples highlight the practical output and effectiveness of our techniques. As noted in Section 4.1, while the proportion of imperfections remains small, occasional issues are unavoidable. For instance, in Figure 7, semantic overlap within the question group (e.g., Q2 and Q10) causes the QBP-generated narrative to include redundant concluding sentences.

D ASSESSING THE QUALITY OF SYNTHETIC DATA

D.1 HUMAN EVALUATION

To quantitatively assess the quality of our synthesized data, we design and conduct a human evaluation study. We refer to QBP as Task A (Narrative Evaluation) and QBC as Task B (Rationale Evaluation). For each task, evaluators are asked to rate each generated text on a 1–5 scale across several quality dimensions, guided by the detailed descriptions provided. A score of 5 indicates the highest quality, while 1 indicates the lowest.

1. Factual Consistency

Guiding Question: Does the generated text contradict any of the facts provided in the source information (the QA pairs for Task A; the video and correct answer for Task B)?

- **5 (Excellent):** The text is perfectly consistent with all source facts.
- **3 (Moderate):** The text contains minor inaccuracies or makes claims that are plausible but not directly supported by the source.
- **1 (Poor):** The text directly contradicts a key fact from the source (e.g., says “the person is running” when the answer is “walking”).

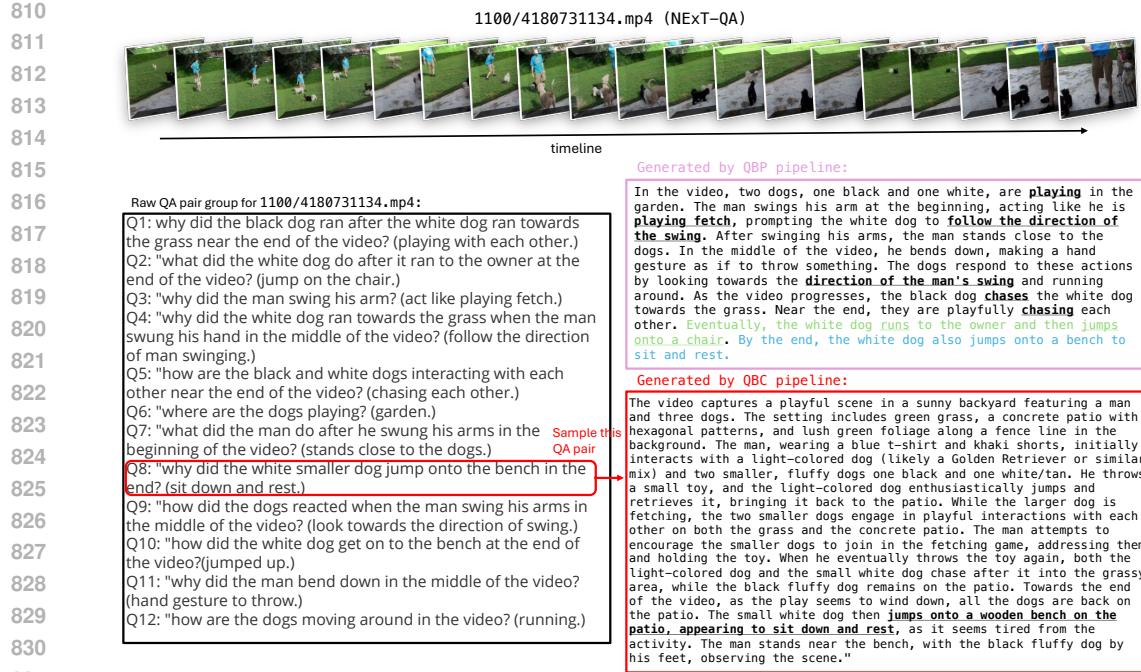


Figure 7: An example of synthesized data generated by our framework. The left shows the raw QA pairs from NExT-QA, while the right presents the corresponding outputs: a narrative produced by the QBP pipeline and rationales generated by the QBC pipeline. Due to overlapping content in the question group (e.g., Q2 and Q10), the generated QBP narrative includes two similar concluding sentences, marked in blue and green for clarity, reflecting minor redundancy introduced by semantically repetitive QA pairs.

2. Logical Coherence (Task A - QBP only)

Guiding Question: Does the narrative describe events in a logical and coherent order? Does the story make sense?

- **5 (Excellent):** The sequence of events is clear, logical, and easy to follow. Causal and temporal relationships are sensible.
- **3 (Moderate):** The narrative is generally understandable, but the ordering of some events might be slightly awkward or ambiguous.
- **1 (Poor):** The narrative is confusing, jumbled, or illogical (e.g., describes an effect before its cause, or confuses the identities of different people).

3. Visual Grounding (Task B - QBC only)

Guiding Question: Does the rationale describe specific, observable evidence from the video that helps to justify the given answer?

- **5 (Excellent):** The rationale perfectly describes tangible visual details that serve as strong, direct evidence for the answer.
- **3 (Moderate):** The rationale is relevant but somewhat generic, describing the general scene rather than the specific evidence.
- **1 (Poor):** The rationale is irrelevant, describes something not visible in the video (fabrication), or simply rephrases the question without providing visual evidence.

864
865**4. Fluency**866
867

Guiding Question: Is the generated text well-written, grammatically correct, and easy for a native speaker to read?

868
869

- **5 (Excellent):** Flawless grammar and natural, fluent phrasing.
- **3 (Moderate):** Contains minor grammatical errors or awkward phrasing that do not impede understanding.
- **1 (Poor):** The text is ungrammatical, nonsensical, or very difficult to understand.

872
873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917