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Abstract

Building reliable speech systems often requires combining multiple modalities, like audio
and visual cues. While such multimodal solutions frequently lead to improvements in
performance and may even be critical in certain cases, they come with several constraints
such as increased sensory requirements, computational cost, and modality synchronization,
to mention a few. These challenges constrain the direct uses of these multimodal solutions
in real-world applications. In this work, we develop approaches where the learning happens
with all available modalities but the deployment or inference is done with just one or
reduced modalities. To do so, we propose a Multimodal Training and Unimodal Deployment
(MUTUD) framework which includes a Temporally Aligned Modality feature Estimation
(TAME) module that can estimate information from missing modality using modalities present
during inference. This innovative approach facilitates the integration of information across
different modalities, enhancing the overall inference process by leveraging the strengths of
each modality to compensate for the absence of certain modalities during inference. We apply
MUTUD to various audiovisual speech tasks and show that it can reduce the performance
gap between the multimodal and corresponding unimodal models to a considerable extent.
MUTUD can achieve this while reducing the model size and compute compared to multimodal
models, in some cases by almost 80%.

1 Introduction

Unimodal (audio-only) approaches to well-known speech problems such as speech enhancement, speaker
separation, and automatic speech recognition, have made rapid progress using deep learning. At the same
time, multimodal approaches to these tasks are also increasingly gaining significance (Mira et al., 2023; Xu
et al., 2020; Ma et al., 2021b; Hong et al., 2022; 2023). While the additional modality may come in different
forms such as text, contact microphones, IMUs, etc., visual modality is the most widely used in these speech
tasks. This bears similarity to humans as we also innately rely on visuals to perceive sounds and speech
(Schwartz et al., 2004). In fact, people with hearing impairments have also been shown to rely on visuals for
better perception of speech (Burnham et al., 2013). Given the significance of multimodal perception of speech
by humans, it is natural that multimodal learning has shown impressive gains over unimodal systems for
various speech tasks. The role of visuals in speech understanding becomes much more critical in acoustically
difficult scenarios such as noisy environments or situations where the speech signals on their own are not
reliable for the task at hand (Weninger et al., 2015; Tan & Wang, 2019; Wang et al., 2020; Braun et al., 2021).

While multimodal systems can extract supplementary and complementary information from different modalities
(Baltrušaitis et al., 2018; Lu, 2023), leading to performance improvements, certain challenges with multimodal
models can restrain their uses in real-world systems. These include but are not limited to (1) Multimodal
models are often computationally much more expensive compared to their unimodal counterparts and the
performance gain might not justify the substantial increase in computational cost. This is especially relevant
for real-time and on-device applications (e.g., speech enhancement). In fact, in several cases, this can prohibit
the deployment of multimodal systems. (2) Multimodal data comes at a significantly higher cost. Acquisition
of multimodal data requires complex sensory devices working together seamlessly. Alignment, synchronization,
and annotation efforts in multimodal data are far more challenging than audio-only data. More importantly,
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such aligned and synchronized multimodal data is required even during inference, necessitating the availability
of all sensory devices and the processing power to align and synchronize the captured signals. This can
make multimodal systems impractical in several real-world applications. (3) Lastly, it might not be feasible
to use multiple modalities for a speech task due to practical constraints such as privacy or difficulties in
getting signals for all modalities. For example, while multimodal ASR could improve audio-only ASR in noisy
conditions, getting the visual signals during real-world uses might not be possible.

The above discussion highlights benefits of multimodal learning over unimodal learning, yet there are
certain constraints which can make unimodal models preferable over multimodal despite lower performance.
Motivated by this, the primary question we ask is how do we learn from multimodal data while enabling
unimodal uses of the model? In this framework, we still want to learn from the rich information available in
multimodal data but unimodal inference removes the constraints around uses of the multimodal system. Note
that, unlike works on robustness to missing modality we develop a fundamental approach for MUltimodal
Training and Unimodal Deployment (MUTUD, pronounced “muted"). In modality robustness, the model
behavior remains the same during training and inference, and hence the challenges of multimodal systems
outlined before are not rectified. MUTUD is driven by architectural and training novelties, which addresses
those challenges. MUTUD framework is built using a novel Temporally Aligned Modality feature Estimation
(TAME) module. The TAME module is designed to estimate deep representations of modalities which are
absent during inference using the representations of modalities present during inference. TAME achieves this
by having codebooks for each modality and linking cross-modal pairs of codebooks in a way that enables
modality feature recall using the codebooks and the features of available modalities. Keeping in mind the
importance of temporal information, TAME is designed to temporally align modalities sampled at different
time resolutions.

We apply our framework for 3 well-known tasks in the speech processing domain and do multimodal
(audiovisual (AV)) training and unimodal inference; speech enhancement, speech recognition, and active
speaker detection. Speech enhancement in particular may have tight real-time and low-compute requirements
for several applications. In all the tasks, we show that MUTUD achieves unimodal inference with a significantly
better performance compared to the counterpart models trained on unimodal data. Moreover, compared
to the full multimodal systems, our model has significantly lesser parameters and compute and yet gives
competitive performance.

2 Related works

Audiovisual speech processing. Analogous to humans, AV learning for speech-related tasks naturally
results in methods that are more robust to noisy scenarios such as acoustic SNR degradation, poor lighting
conditions, motion blur, etc. In this paper we focus on three AV speech problems namely, speech enhancement
(Gabbay et al., 2017; Afouras et al., 2018a; Gao & Grauman, 2021; Mira et al., 2023; Yang et al., 2022;
Owens & Efros, 2018; Hou et al., 2018), speech recognition (Huang & Kingsbury, 2013; Mroueh et al., 2015;
Noda et al., 2015; Stewart et al., 2013; Ma et al., 2021b) and speaker detection (Garg et al., 2000; Cutler &
Davis, 2000; Chakravarty et al., 2016; Roth et al., 2020). The reader is referred to excellent survey papers
for a detailed overview of different methodologies (Michelsanti et al., 2021; Potamianos et al., 2017). As
already highlighted, traditional AV approaches suffer from several constraints such as sensor requirements,
computational cost, and modality synchronization which limit their applicability in real-world applications.

Resource-constrained learning. Considerable progress has been made in resource-constrained audio-only
speech processing (Kim et al., 2020; Lee et al., 2021; Maayah et al., 2023), even though such multimodal
methods are relatively smaller. Typical strategies include lightweight network design (Maayah et al., 2023),
quantization and pruning (Tan et al., 2021) and knowledge distillation (Thakker et al., 2022). Gogate
et al. (2020) build a robust language-dependent audiovisual model called CochleaNet for real-time speech
enhancement through audiovisual mask estimation. LAVSE (Chuang et al., 2020) proposed a visual data
compression technique for speech enhancement. Our focus in this work is very different. We intend to develop
efficiency in multimodal learning by allowing resource-heavy modalities to be absent during prediction or
when deployed.
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Figure 1: (a) The left panel shows a comparison between conventional audiovisual speech processing and
MUTUD. TAME module enables audiovisual learning without doing video processing during prediction. (b)
The upper half in the right panel illustrates MUTUD for an AVSE model. After training the video encoder is
discarded. (c) The bottom half in the right panel shows the estimation of video representations using TAME.
The illustration is for t = 0 in Eq 5.

Learning with missing modality. Multimodal learning for robustness to missing modality is a practical
problem that has been explored in some works before. Each work differs in the modality considered to
be missing, the phase (training or testing) in which this information is absent, and whether the loss of
information is partial or complete (Hegde et al., 2021; Ma et al., 2021a; Chang et al., 2022; Woo et al., 2023;
Ma et al., 2022; Lee et al., 2023). The methods are often tailor-made for the scenarios in consideration. For
brevity, here we limit our discussion to AV speech-related tasks. Some studies rely on a memory architecture
to retrieve missing modality via associated bridging mechanism (Kim et al., 2021b; Hong et al., 2021; Kim
et al., 2021a). These related works serve as inspiration for MUTUD. Further, AV-HuBERT (Shi et al., 2022)
and u-HuBERT (Hsu & Shi, 2022) presented a self-supervised pre-training framework that can leverage both
multimodal and unimodal speech with a unified masked cluster prediction objective, achieving zero-shot
modality generalization for multiple speech processing tasks. While these works have made significant progress
on various speech processing problems, they are very different from ours – their focus is on self-supervised
training of large models with massive amounts of unlabeled data. The learned models are then fine-tuned for
tasks like ASR. These models are not designed for unimodal deployment with compute/memory efficiency
in mind. Furthermore, it is difficult to adapt AV-HuBERT/u-HuBERT for tasks like speech enhancement,
especially in causal settings.

Unlike these works, we are driven by the challenges of multimodal learning outlined before. We focus explicitly
on multimodal learning for unimodal prediction and real-world deployment, which addresses those challenges.
Our approach is fairly generic and can be applied to many common multimodal learning methods and tasks.
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3 MUTUD: Multimodal Training and Unimodal Deployment

We describe our proposed method, which we call Multimodal Training and Unimodal Deployment (MUTUD).
Our goal is to design a network that leverages multimodal sensory inputs during training, but only takes in a
subset of them during inference. In section 3.1, we first describe MUTUD in its general setting, where an
arbitrary number of modalities are considered, followed by a discussion targeted to the audiovisual speech
domain. In section 3.2, we introduce our proposed TAME Module, which is the key component to enable
unimodal predictions. Finally in section 3.3, we describe the training objectives. The left panel in Figure 1
shows the difference between MUTUD and conventional multimodal learning.

3.1 MUTUD Overview

Let D be a dataset where each sample X ∈ D is characterized by M different modalities X = {Xmi
},

i = 1 : M . M = {m1,m2, · · · ,mM } is the set of modalities. Conventionally, multimodal learning operates
with the assumption that the model always inputs all M modalities, during training as well as for predictions.
Let hM(X = {Xmi

,mi ∈ M};ϕ) a deep neural network (DNN) based multimodal system (parameterized
by ϕ). In MUTUD, all M modalities of X are available during training, but only a subset, Ms ⊂ M, are
available during real-world deployment or for inference.

To this end, we design MUTUD with two crucial characteristics in mind. Let h(; θ) be the MUTUD system.
(1) Since h(; θ) processes only |Ms| modalities for prediction, we expect it to have fewer parameters and be
computationally more efficient in real-world deployment. Ideally, we would like h(; θ) to have inference size
and compute similar to hMs(X = {Xmi ,mi ∈ Ms};ψ), a model counterpart of hM(X;ϕ) with M = Ms. (2)
On the performance end, hM(;ϕ) should have superior performance compared to hMs(;ψ) due to utilization
of more modalities in the learning process. We expect h(; θ) to have superior performance compared to
hMs(X;ψ) and closer to that of hM(X;ϕ).

In a typical multimodal model, all Xmi are encoded by a network, these representations are then fused
through various mechanisms (concatenation, attention, etc. Kalkhorani et al. (2023); Wei et al. (2020); Ma
et al. (2021b); Lee et al. (2020); Praveen et al. (2023)). The fused representations are further processed by
more neural layers to solve the task at hand. We operate in a similar setting. To achieve our goal, we develop
an efficient and effective mechanism to associate and relate missing modalities, (M − Ms), to those in Ms,
such that the representations of Xmi ∈ M − Ms can be recalled using those of Xmi ∈ Ms. We propose a
Temporally Aligned Modality feature Estimation (TAME) module. TAME learns a pair of codebooks (Cmi ,
Cmj ) for each pair of modality in {(mi,mj), ∀mi ∈ M − Ms, ∀mj ∈ Ms}. The training objectives link
these codebooks in a way that enables estimation of representations for Xmi

∈ M − Ms during inference.

MUTUD for AudioVisual Speech Processing. We focus on audiovisual speech tasks where MUTUD is
designed to use only one of them during deployment. For a succinct and clear description of MUTUD and
TAME, we explain it through the task of Audiovisual Speech Enhancement (AVSE) but the method similarly
adapts to other tasks. The right panel in Figure 1 outlines the base AVSE model (hM(;ϕ)). The speech and
video encoders produce Fa ∈ RTa×D and Fv ∈ RTv×D representations, respectively. Ta and Tv represent time
dimensions and depend on the frame rates of speech and audio. The frame rate of speech is K times of video
(Ta = Tv ∗ K) and hence Fv is upsampled by a factor of K to match the size along a temporal direction
before the concatenation step. The concatenated representations are then decoded by the decoder to produce
the enhanced speech. The hMs(;ψ) model is the Audio-only model, where everything is the same except that
there are no visual inputs, and the decoder decodes the encoded audio representations to output enhanced
speech. Under MUTUD, our goal is to train with both visual and audio inputs but deploy an Audio-only
model. Hence, we design and train TAME module to estimate video representations during prediction.

3.2 TAME Module

The core of the TAME consists of modality-specific codebooks (MSCs) for audio and video. These are used
to associate and relate modalities through their respective representations during training. During inference,
the audio representations are used to retrieve the video representations through these MSCs. The MSCs
are designed to capture temporal alignment and synchronized relations between the audio and the video.

4



Under review as submission to TMLR

Since the audio representations frame rate (in Fa) is higher by a factor of K, we design TAME keeping
this temporal relation in consideration. That is the tth video frame feature in Fv, f t

v, is associated with K
audio features (fK·t

a , fK·t+1
a , . . . , fK·t+K−1

a ) in Fa. Besides keeping the temporal alignment between audio
and video representations intact, this temporal coupling between the audio and video is also necessary for
learning to estimate video features using audio.

TAME formulates this through K blocks of codebooks in each MSC, represented as Ca ∈ RK×N×D and
Cv ∈ RK×N×D for the audio and video respectively, (see Figure 1). N is the number of codes in each set of
codebooks in Ca and Cv.

All features in consideration (f t
v for video and f t

a = {fK·t
a , fK·t+1

a , . . . , fK·t+k
a , . . . , fK·t+K−1

a } for audio) are
first embedded through their respective MSC. This relationship between f t

v and kth codebook in Cv is
established through the vectors kvt. For improved readability, we represent the left superscripts (k) kvt

vectors as v̇t

v̇t = ⟨ ċv
n , f

t
v ⟩

∥ċv
n∥2 ∥f t

v∥2
, (1)

where ċv
n = Cv[k, n, :], n = {0, 1, . . . , N}.

v̇t is computed for all K codebooks (k ∈ {0,K − 1}) using Eq 1. Similarly, the audio features are related to
its codebooks Ca as,

ȧK·t+k = ⟨ ċa
n , f

K·t+k
a ⟩

∥ċa
n∥2 ∥fK·t+k

a ∥2
, (2)

where ċa
n = Ca[k, n, :], n = {0, 1, . . . , N}

The temporal steps t are {0, 1, . . . , Tv − 1}. Note that, for audio the kth codebook of Ca is linked with kth

audio feature in f t
a. Eq 1 and 2 embed the audio and video information into their respective MSCs. A softmax

across the number of codes gives the probability distribution of the relationship between the codebooks and
the corresponding modality representations,

ṗt = exp (τ · v̇t
n)∑N

j=1 exp (τ · v̇t
j)
, (3)

q̇K·t+k = exp (τ · ȧK·t+k
n )∑N

j=1 exp (τ · ȧK·t+k
j )

, (4)

where n = {0, 1, . . . , N}

τ is the temperature for the softmax function. These distributions are computed for each k ∈ {0, 1, . . . ,K−1}.
The modality-specific information captured by ṗt and q̇t are used to relate and associate the two modalities
as well as retrieve the video representations using the audio representations.

Audio-to-Video Representations. The bottom half in the right panel of Figure 1 shows the schematics
for obtaining video representations using audio. The kth feature in f t

a directly estimates “interleaved"
representations for video using the kth codebook in Cv,

f̂K·t+k
v = linear

(
N∑

n=1

kqK·t+k
n . kcv

n; θl

)
(5)

where θl are the parameters of the linear layer, in practice, this linear layer includes batch-normalization
(Ioffe & Szegedy, 2015). The f̂K·t+k

v (instead) are concatenated with fK·t+k
a and then decoded by the decoder

to produce enhanced speech. Note that, in the base AVSE model Ta video features are simply repeated to
upsample by a factor of K and then concatenated to audio features. TAME helps estimate video information
at a lower temporal resolution, which can be crucial for precise replacement of video representations.
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Clearly, the video encoder is discarded during inference and as long as the size and compute of the TAME mod-
ule is significantly smaller than the video encoder, the whole model is much more efficient compared to the
full audiovisual model.

3.3 Training Objectives

TAME Specific Losses. To train the proposed TAME module, we propose three different training objectives.
First, we need to ensure that the relationship between the video features and video codebook Cv is well-
structured so that Cv gets embedded with video information. This is achieved through self-modality recall of
f t

v for each codebook in Cv, kf̃ t
v = linear(

∑N
n=1

kpt
n .

kcv
n; θl). A reconstruction loss then guides the learning

Lv→v =
Tv−1∑
t=0

K−1∑
k=0

∥ kf̃ t
v − f t

v∥2
2 (6)

Next, a reconstruction loss between the estimated video representations f̂K·t+k
v and f t

v enforces retrieval of
video information through audio representations.

La→v =
Tv−1∑
t=0

K−1∑
k=0

∥ f̂K·t+k
v − f t

v∥2
2 (7)

Lastly, we establish a cross-modal association by linking the two MSCs through the distribution captured
by kpt and kqK∗t+k. Let P k (captured by kpt) and Qk (captured by kqK∗t+k) be the distributions over the
codes for kth codebook in Cv and Ca respectively.

LCa→Cv
=

K∑
k=1

DKL(P k||Qk). (8)

The loss function in Eq 8, the distribution of codes in each codebook of Ca matches the corresponding ones
in Cv. This is necessary as the codebooks in Cv are probed using audio representations embedded in kqt to
obtain video representations.

Task-Specific Loss Functions. The overall training of MUTUD includes task-specific loss functions which
in this case are speech enhancement losses. In this work, the outputs of the enhancement models are complex
spectrograms (E) of the enhanced speech. The time-domain waveform (e) from E is obtained using the
Inverse-Short Time Fourier Transform. The speech enhancement loss functions we use are

Ltask = ∥E − C∥1 − SI-SDR(e, c) (9)

where C is the complex STFT of target clean speech and c is the time-domain target clean speech. The
SI-SDR loss is defined as SI-SDR(e, c) = 10 log10

∥αc∥2

∥αc−e∥2 , where α = eT c
∥c∥2 . The enhancement losses in Eq 9

are computed using both f t
v and f̂ t

v as inputs to the decoder and the overall Ltask is the sum of these losses.
This is necessary to warrant that the video encoder learns meaningful representations in the end-to-end
training.

The total loss function is

LMUTUD = Lv→v + La→v + LCa→Cv
+ λLtask (10)

where λ is the weight given to the task loss.

A few points are worth noting here. The TAME which is enabling MUTUD seamlessly fits into the base AVSE
framework and can be easily adopted for many common multimodal methods and tasks. In our experiments,
we evaluate MUTUD for 3 multimodal tasks; AVSE, audiovisual speech recognition (AVSR), and audiovisual
active speaker detection (AV-ASD).

6



Under review as submission to TMLR

4 Experimental Setup

We evaluate MUTUD under 3 multimodal tasks; AVSE, audiovisual speech recognition (AVSR), and ego-
centric audiovisual active speaker detection (AV-ASD). AVSE is of key focus as this task is often desired to
be deployed in real-time communication and on-device, which exacerbates the multimodal challenges outlined
earlier in the paper.

4.1 Datasets

For AVSE and AVSR tasks, we utilize the LRS3-TED corpus (Afouras et al., 2018b), a large-scale audiovisual
dataset for speech tasks. For the AV-ASD task, we use EasyCom, a challenging real-world egocentric dataset
(Donley et al., 2021). Overall, this allows for a comprehensive evaluation of MUTUD under a wide variety of
acoustic and visual noise conditions.

LRS3-TED. LRS3-TED corpus (Afouras et al., 2018b) is a large-scale dataset of TED and TEDx videos.
LRS3-TED consists of audio-visual pairs and corresponding text transcriptions for 151,819 utterances, totaling
439 hours. Following the original splits, we use ∼131,000 utterances for training and ∼1,300 utterances for
testing. For AVSE, the clean speech samples are taken from LRS3 and the noise samples are taken from
Reddy et al. (2021) noise set. The videos are 25 fps with 224 × 224 resolution. During pre-processing, we
center-crop at the mouth with a size of 88 × 88.

EasyCom. We employ EasyCom (Donley et al., 2021) for the AV-ASD task. This dataset contains ∼ 5
hours of natural conversations recorded in a noisy restaurant-like environment. The ego-centric nature of the
data makes it extremely challenging as the sensory devices (camera and microphone on wearable glasses)
are always moving. The ego-motions make it difficult to learn from the video and the audio is corrupted
by noise, making audiovisual active speaker detection (AV-ASD), challenging on this dataset. The dataset
includes annotated voice activity, speech transcriptions, head bounding boxes, target of speech, and source
identification labels. We use train-test splits from Hsu et al. (2022).

4.2 Implementation Details for AVSE

Data processing. For LRS3, we crop the lip regions, resize the cropped frames into 88×88, and transform
them to grayscale following Kim et al. (2021c). The audio, sampled at 16kHz, is converted into a spectrogram
using a window size of 20 ms and a hop length of 10 ms. We augment the video data by applying random
spatial erasure and time masking for effective modeling of the visual context (Mira et al., 2022).

All models are trained using noisy-clean speech pairs where, speech samples from LRS3 are mixed with noise
samples from the DNS Challenge (Reddy et al., 2021) noise set. The noisy mixture is obtained by randomly
mixing up to 5 different noise samples. The SNR range for mixing is -15 dB to 10 dB. We report results under
2 test conditions, (a) 3 background noises (3-BN) are present in the noisy mixture, and (b) 5 background
noises (5-BN) are present. Evaluations are done at five different SNRs (in dB): 5, 0, -5, -10, and -15.

Architectural and Training details. We use 3 different backbones of audio-only/audiovisual models for
comprehensively evaluating our proposed MUTUD on the speech enhancement task. 2 of the backbone models
are inspired from the U-Net architecture design of gated convolutional recurrent network (GCRN) (Tan &
Wang, 2019) and the corresponding audiovisual model (Mira et al., 2023). The Audio-only enhancement model
here is a U-Net style encoder-decoder architecture. The input to the audio model is complex spectrogram of
the audio. The audio encoder is composed of stacking of 4 gated convolutional blocks; which consists of two
2D convolutional layers, where the outputs of each convolutional layer, one followed by Sigmoid activation,
are multiplied. The decoder includes an LSTM layer. The Audiovisual model (Mira et al., 2023) is built
on top of this Audio-only model by employing a 3D convolutional layer followed by a ResNet18 (He et al.,
2016) as the video encoder. The video and audio encoder outputs are concatenated and forwarded through
the decoder to produce complex spectrograms of the enhanced audio. The concatenated audio features and
video features are taken into a 2-layer Grouped LSTM. The decoder consists of 5 deconvolutional layers
with a skip connection like a U-net architecture. The encoder-decoder structure is designed in a symmetric
way, where the number of kernels progressively increases in the encoder and decreases in the decoder. To
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Table 1: Speech Enhancement performance Comparison of different models for 3-BN test condition.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.01 -5.02 -10.03 -15.07 1.24 1.12 1.07 1.07 1.07

Audio-only 92.7 88.1 80.1 67.5 51.5 13.64 10.55 7.08 2.88 -2.82 2.18 1.80 1.48 1.27 1.14
Audio-only
w. similar # params 93.0 88.3 80.4 68.0 52.6 13.75 10.58 7.05 2.86 -2.62 2.30 1.87 1.53 1.30 1.16

MUTUD
w.o. pretrained TAME 93.4 89.1 81.6 69.5 53.6 14.07 10.99 7.54 3.32 -2.24 2.37 1.93 1.58 1.33 1.17

MUTUD 93.5 89.2 81.8 69.8 54.0 14.11 11.02 7.56 3.38 -2.19 2.36 1.92 1.57 1.32 1.17
Audiovisual 93.5 89.6 83.3 74.0 62.7 13.92 10.90 7.61 3.81 -0.86 2.35 1.94 1.60 1.38 1.20

aggregate the context along the frequency direction, a stride of 2 is adopted along the frequency, dimension
in all convolutional and up-convolutional layers. For MUTUD, K = 4 and we set the number of codes, N
in the MSCs to 32 after conducting an ablation study for different N (Sec. 5.5). We train using AdamW
optimizer (Kingma & Ba, 2014) with a learning rate of 10−4. We adopt a cosine scheduler (Loshchilov &
Hutter, 2016), adding a warmup for 20 epochs. Loss function hyperparameter λ is set to 0.01.

We also use VisualVoice (Gao & Grauman, 2021) as another type of backbone for audiovisual speech
enhancement and follow the original architecture details and implementations.

Evaluation metrics. We utilize three standard speech quality and intelligibility metrics for AVSE: Short
Time Objective Intelligibility (STOI) (Taal et al., 2010), Scale-Invariant Signal-to-Distortion Ratio (SISDR)
(Le Roux et al., 2019), Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001).

5 0 -5 -10 -15
SNR Level (dB)

Au
di

o
Au

di
o-

3.
63

M
M

U
TU

D
Au

di
ov

is
ua

l
M

et
ho

d

92.7 91.3 86.0 74.2 52.9

95.4 92.4 87.3 76.2 57.6

100.0 97.7 93.4 83.3 63.4

100.0 100.0 100.0 100.0 100.0

Figure 2: MUTUD bridges the gap between Audiovisual and Audio-only models. Performance (in %) of gain
in STOI through different methods relative to the gain Audiovisual brings in average intelligibility (STOI) of
noisy speech samples. MUTUD is able to get most of performance gains of the Audiovisual model across
different SNRs. For example, at -5dB SNR Audio-only gives gives 86.0% of the gain of the Audioivisual
model whereas MUTUD is at 93.4% of Audiovisual model.

5 Results and Discussions

5.1 Effectiveness of MUTUD

Table 1 presents quantitative results for the AVSE task under 3-background noise test conditions. A few
important details about the reported methods are in order. For a fair comparison, in addition to Audio-only,
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Table 2: Speech Enhancement performance comparison of different models for 5-BN test condition.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 81.7 70.8 58.2 46.0 36.3 5.00 0.00 -5.00 -10.00 -15.02 1.21 1.10 1.06 1.06 1.08

Audio-only 92.2 87.0 78.3 64.4 47.0 13.28 10.08 6.47 1.99 -4.17 2.16 1.74 1.43 1.23 1.11
MUTUD
w.o. pretrained TAME 92.7 87.7 79.3 65.5 48.1 13.45 10.32 6.72 2.27 -3.88 2.24 1.8 1.47 1.25 1.12

MUTUD 92.8 88.0 79.6 65.6 48.0 13.60 10.43 6.85 2.33 -3.86 2.23 1.80 1.47 1.25 1.12
Audiovisual 92.9 88.6 81.6 71.3 58.9 13.43 10.37 6.95 2.90 -2.23 2.25 1.85 1.53 1.30 1.16

we also report the performance of Audio-only (w. matched params), that is, a model with the number of
parameters matched with MUTUD. This is important to establish that the proposed TAME module is in
fact providing crucial information not present in the audio modality and cannot be compensated for by
simply adding more parameters to the Audio-only model. We show results for two versions of MUTUD
representing two different training mechanisms: One where we train the entire model from scratch, denoted
by w.o. pretrained TAME. Another is where we first pre-train the TAME module solely with clean audio and
video frames and then fine-tune the entire model for the enhancement task. This is done to better guide the
TAME module to store modality-specific information in the MSCs.

It is clear from Table 1 that our proposed framework MUTUD outperforms both the Audio-only and the
Audio-only with matched parameters over all metrics and SNRs. This shows that the model has learned
with visual information available during training and MUTUD is able to estimate video encodings and use
them for better enhancement. It is worth mentioning that for extremely low SNRs of -10dB and -15dB,
where multimodal models heavily rely on visual information for speech enhancement, MUTUD continues to
consistently perform better than the Audio-only model. Figure 2 shows each model’s performance relative to
the Audiovisual model, the gain Audiovisual model brings in speech intelligibility (STOI) at different SNRs.
As one can see at each SNR, the MUTUD model is able to recover most of the Audiovisual performance,
without directly using visual signal during inference. This further highlights the TAME module’s ability
to estimate relevant visual information at prediction time. While we do not expect the MUTUD model to
outperform or fully match the performance of the Audiovisual model, it does an excellent job of reducing the
gap between the unimodal and multimodal models. Except for extremely low SNR (-15dB), MUTUD is fairly
competitive with the Audiovisual model on all 3 metrics. This further argues for our multimodal training
and unimodal deployment strategy. We also observe that the pre-trained TAME module is slightly superior
to the one simply trained from scratch.

We conduct additional experiments to further verify the effectiveness of MUTUD. We tackle a more challenging
condition with a 5-background noise test. Shown in Table 2, we observe similar trends for the 5-background
noise test conditions showing that MUTUD can be successfully employed in such extreme noise conditions.

Spectrogram Visualization: We visualize the spectrogram of each model to illustrate the improvements
over the baseline in Figure 3. The advantage of MUTUD over Audio-only is most visible at SNR −10/−15 dB:
MUTUD preserves thinner, more continuous harmonics and darker inter-harmonic valleys (lower noise floor),
and it shows a cleaner F0 trajectory with reduced low-frequency clutter. At −5 dB, MUTUD further reduces
high-frequency speckle and keeps consonant transitions (short vertical stripes) sharper than Audio-only.
Across all SNRs, MUTUD remains consistently closer to Audiovisual than Audio-only.

Different Backbone Models: We analyze the robustness of the TAME module with different architectural
backbones. The first one is a smaller Audio-only architectural backbone inspired again from the GCRN
(Tan & Wang, 2019) Audio-only model. To do so, we reduce the output dimension of the last two layers
of the the audio encoder from 128 to 64. The visual part of the corresponding Audiovisual model remains
same as before. This results in Audio-only and Audiovisual models with 0.815M and 12.195M parameters,
respectively. Results in Table 3 verify the robustness of TAME module which showcases quantitative trends
similar to those observed before, MUTUD is able to bridge the gap between the Audio-only model and the
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Figure 3: Spectrograms for noisy audio, Audio-only, MUTUD, Audiovisual, and clean audio (rows) at SNR =
5, 0, −5, −10, −15 dB (columns).

Table 3: Speech Enhancement performance comparison for Backbone 2. A smaller backbone, that is the
Audio-only and the corresponding audiovisual models used here are smaller and weaker.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.00 -5.0 -10.03 -15.06 1.24 1.12 1.07 1.07 1.07

Audio-only 91.9 86.6 77.7 64.5 49.3 12.98 9.68 5.99 1.58 -4.14 2.12 1.73 1.44 1.24 1.13
MUTUD
w.o. pretrained TAME 92.3 87.3 78.9 66.0 50.3 13.31 10.07 6.45 2.08 -3.65 2.20 1.79 1.49 1.27 1.14

MUTUD 92.3 87.3 78.9 66.0 50.5 13.29 10.04 6.43 2.06 -3.66 2.22 1.81 1.49 1.27 1.14
Audiovisual 92.6 88.2 81.1 71.1 59.9 13.23 10.10 6.65 2.72 -2.01 2.15 1.80 1.51 1.31 1.18

Audiovisual model. Finally, we adopt a different baseline, VisualVoice (Gao & Grauman, 2021), in order
to demonstrate our method’s flexibility with the underlying network architectures for the AVSE task. We
successfully verify that, shown in Table 4, our proposed model can be adapted to a different baseline model
achieving superior performance to the Audio-only model.

5.2 Generalization to Audio-only Datasets

Our MUTUD models as well as the Audio-only and Audiovisual models are trained and evaluated on the
LRS3 audiovisual dataset. To understand generalization capabilities of these models we evaluate them on an
out-of-domain Audio-only dataset and also compare them with other state-the-art methods on this dataset.
We use the well-established DNS Challenge eval set (Reddy et al., 2020) for this evaluation. There are a
few points worth noting from Table 5. Unlike other methods in the table, our Audio-only is not trained on
DNS Challenge set, yet the performance is competitive with other state-of-the-art methods. Moreover, our
model is causal and relatively small, unlike some of the other models in the table. Overall, it shows that
our Audio-only speech enhancement experimental backbone is a strong and competitive backbone model.
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Table 4: Speech Enhancement performance comparison for Backbone 3. VisualVoice as backbone for
Audio-only, audiovisual, and MUTUD.

Method
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

Noisy Audio 82.6 72.4 60.5 48.8 38.9 5.00 0.00 -5.00 -10.03 -15.06 1.24 1.12 1.07 1.07 1.07

Audio-only 91.8 85.9 76.5 64.0 48.8 11.67 8.62 5.17 1.08 -4.90 2.05 1.60 1.32 1.17 1.09
MUTUD 93.5 89.0 82.0 71.3 56.5 12.72 9.68 6.53 2.98 -2.04 2.40 1.94 1.58 1.33 1.18
Audiovisual 94.0 90.1 84.1 75.4 64.3 12.92 9.94 6.90 3.54 -0.86 2.51 2.03 1.65 1.39 1.21

Table 5: Performance comparison on DNS Challenge evaluation (no-reverb) set.

Method PESQ SI-SDR STOI # Params

Noisy 1.58 9.07 0.92 -
FullSubnet (Hao et al., 2021) 2.77 17.29 0.96 5.6M

CleanUNet (Kong et al., 2022) 3.15 - 0.96 46.07M
Demucs (Defossez et al., 2020) 2.66 - 0.97 33.53M

NSNet (Xia et al., 2020) 2.15 15.61 0.94 5.1M
Audio-only (Ours) 2.32 16.24 0.94 2.98M
MUTUD (Ours) 2.56 17.50 0.96 3.63M

The MUTUD model improves over the Audio-only model on this evaluation set as well. Furthermore, this
independent evaluation on an Audio-only dataset shows that MUTUD generalizes well and is not limited to
audiovisual data seen during training. It also evidences practicality and usefulness of MUTUD in real-word,
as this test setting is how the model will be used in real-world.

5.3 Efficiency Analysis

Table 6 shows parameter and Multiply Accumulate Operations (MAC) counts for all models. The MUTUD
model is comparable in size and compute to both Audio-only models. In fact, the MAC for MUTUD is
around 13% lower compared to even the Audio-only model with a matching parameter count. However,
we saw in Table 1 that MUTUD is much more superior compared to these models. With respect to the
Audiovisual model, MUTUD is smaller almost by a factor of 5 and has a smaller size and MAC by around
83% and 77% respectively. This shows the massive gain in efficiency one can achieve through our MUTUD
learning framework.

5.4 TAME Module Analysis

To analyze the estimated video features from the TAME module, we measure how similar they are to the
original video and audio features. We compute the average cosine similarity and ℓ2 distance between video

Table 6: Number of Parameters and Multiply Accumulate Operations (MACs) for all models.

Audio-only Audio-only
w. matched params Audiovisual MUTUD

# of Param. 2.978M 3.627M 15.736M 3.635M
MACs 1.381G 1.821G 9.324G 1.593G

Inference Time (ms) 98.1 ± 2.87 100.2 ± 2.50 206.0 ± 8.1 108.0 ± 2.1
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Figure 4: Cosine similarity (red) and ℓ2 distance (blue) between video features and estimated video features,
video and audio features, and estimated video and audio features for different SNRs.
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Figure 5: TSNE visualization of the estimated video features F̂v, the actual video features Fv, and the audio
features Fa for SNRs ranging from 5dB to -15dB.

features and estimated video features (Fv vs. F̂v), video features and audio features (Fv vs. Fa), and
estimated video features and audio features (F̂v vs. Fa) for SNRs ranging from 5dB to -15dB. Figure 4 clearly
indicates that the cosine similarity between the estimated video features and the original video features is
high, around 0.94, while the similarity between audio and original (estimated) video features is low, ≈ –
0.40 (≈ – 0.42). The ℓ2 distances show a similar trend where the audio and video features are further apart,
and the estimated video features and the original ones are much closer. The high similarity between the
estimated and original video features, while having low similarity between the estimated video and audio
features evidence that TAME is not just regurgitating audio features but is actually functioning as designed
(use audio information to get video information).

In addition, in Figure 5 we show the t-SNE visualization of the estimated video features, the original video
features, and the audio features for all SNRs. Analyzing the clusters, we can clearly observe that the audio
features Fa form a distinct group, separate from the estimated video features F̂v and the actual video
feature Fv, demonstrating that the TAME can differentiate between modality-specific characteristics. More
importantly, the estimated video features F̂v and the actual video features Fv are clustered closely together in
the feature space, implying that the TAME module can accurately retrieve video features from the memory
block, closely mirroring the actual video features even as the SNR levels decrease.

We further analyze the distribution across the audio and video codebooks for all K. Figure 6 shows a
visualization of all the learned codebooks Ca and Cv for audio and video. We visualize the mean of all 32
codebooks for each k. One key inference from this visualization is that all codes are well-represented and the
training formulation does not lead to mode collapse. This is further evidenced through the visualization of
the probability distribution q for a sample noisy audio frame in Figure 7. Figure 7 shows the variation in
the usage pattern of different codebooks by just a single frame of audio and shows that the codes are not
collapsing and are learning to capture the expected information.

5.5 Ablation for Codebook Size

We perform an ablation for the size of the codebooks in MSCs. We experiment with 4 different codebook
sizes, N (8, 16, 32, and 64) in each MSC of the TAME module. Table 7 indicates that as the size increases,
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Figure 6: Visualization of the learned audio and video codebooks (Ca and Cv). The plots show the mean of
each code in all K(= 4) codebooks.
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Figure 7: Visualization of the probability distribution q (for each k) for a sample noisy audio frame.

more gain in speech enhancement performance is achieved, meaning that a larger number of codes in the
MSCs can contain more meaningful features. We see that the N = 64 does not get much performance gain
over N = 32. N = 32 is sufficient for embedding the audio and video information into the codebooks and
then relating them to enable estimation of video representations using audio.

5.6 Audiovisual Speech Recognition (AVSR)

To showcase our method’s versatility, we additionally show results on different downstream tasks: AVSR
and AV-ASD to verify the effectiveness of the proposed TAME module. In this subsection, we will show the
experimental details for the AVSR task and the performance analysis.

Table 7: Ablation on different numbers of codes, N , in each MSC of TAME.

# of codes
STOI (%) SISDR (dB) PESQ

5 0 -5 -10 -15 5 0 -5 -10 -15 5 0 -5 -10 -15

8 93.3 88.7 80.9 68.6 53.0 13.91 10.71 7.20 3.02 -2.39 2.36 1.91 1.56 1.32 1.17
16 93.4 88.8 81.1 68.9 53.3 13.98 10.81 7.30 3.10 -2.41 2.35 1.92 1.57 1.32 1.17
32 93.5 89.2 81.8 69.8 54.0 14.11 11.02 7.56 3.38 -2.19 2.36 1.92 1.57 1.32 1.17
64 93.6 89.1 81.6 69.6 54.0 14.11 11.00 7.51 3.31 -2.21 2.38 1.95 1.59 1.34 1.18
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Table 8: MUTUD effectiveness in Audiovisual Speech Recognition (AVSR) task.

Method
WER (%) ↓

5 0 -5 -10 -15

Audio-only 12.24 17.836 31.37 60.64 93.32
Audiovisual 5.26 7.088 11.01 21.12 36.56

MUTUD 11.71 16.299 24.99 44.07 73.56

5.6.1 Implementation Details

For AVSR we adopt V-CAFE (Hong et al., 2022) as a baseline architecture. The video encoder in the
V-CAFE architecture consists of a 3D convolution layer with Batch Normalization and Max-pool followed
by ResNet-18 (He et al., 2016), and the audio encoder contains two 2D convolution layers followed by one
ResBlock for the audio front-end. The input shape of the model is the same as the Audiovisual Speech
Enhancement model. VCAFE consists of a cross-modal attention followed by a noise reduction mask. The
noise reduction mask consists of two convolution layers with ReLU and Sigmoid activation respectively. The
mask is multiplicated to the audio features fa, and the masked audio features are summed with the original
features to obtain the enhanced audio features. Finally, with the enhanced audio features and the visual
features are concatenated with the linear layer and taken into Conformer (Gulati et al., 2020) for the encoder
and Transformer (Serdyuk et al., 2022) for the decoder for predicting the speech.

The Conformer (Gulati et al., 2020) sequence encoder is composed of hidden dimensions of 512, feed-forward
dimensions of 2048, 12 layers, 8 attention heads, and a convolution kernel size of 31. The Transformer
(Serdyuk et al., 2022) sequence decoder contains hidden dimensions of 512, feed-forward dimensions of 2048,
6 layers, and 8 attention heads are employed. Note that the video features are upsampled with the nearest
neighbor interpolation to match the size of the audio features when taken into the proposed TAME Module.

V-CAFE achieves a Word Error Rates (WER) of 2.9% on LRS3 tests when trained on only LRS3 dataset,
which is competitive with other works such as (Ma et al., 2021b). Other works such as (Shi et al., 2022;
Serdyuk et al., 2022) use much larger additional training data for slightly better WER. This shows that
V-CAFE is a simple and reliable backbone for uses in our experiments.

To make results more insightful we show results under noisy conditions. We utilize background noises in
diverse environments of DEMAND (Thiemann et al., 2013) dataset with SNR range randomly chosen from
-15dB to 15dB for training. For testing, we report the testing performance at five different SNRs (in dB): 5,
0, -5, -10, and -15, measuring speech recognition quality through (WER).

5.6.2 Performance Analysis

As shown in Table 8, MUTUD, while not outperforming the AV approach, shows a substantial reduction in
WER compared to the Audio-only method, highlighting TAME module’s contribution in learning to leverage
visuals even if it is available only during training. This is especially true for low-SNRs where visuals play
more important roles and MUTUD can help reduce WER by a considerable margin (6% for -5dB and 16%
for -10dB in absolute terms). The reduced WER across various levels of background noise indicates that
the TAME module effectively utilizes visual information to complement audio input, thus enhancing overall
speech recognition accuracy.

5.7 Audiovisual Active Speaker Detection (AV-ASD)

We additionally conduct the experiment on the AV-ASD task. In the AV-ASD task, we assume the absence
of audio modality at inference time, instead of the visual modality as done in previous experiments. We
show results on the EasyCom dataset, a considerably more challenging real-world noisy dataset than the
LRS3-TED dataset.
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Table 9: MUTUD effectiveness in Audiovisual Active Speaker Detection (AV-ASD) task.

Method mAP(%)
SyncNet (Chung & Zisserman, 2017) 82.1

TalkNet (Tao et al., 2021) 79.9
SPELL+ (Min et al., 2022) 85.9

Audiovisual EgoASD (Huh et al., 2025) 87.6
Video-only EgoASD 82.3
MUTUD EgoASD 86.5

5.7.1 Implementation Details

The AV-ASD model follows Huh et al. (2025). It consists of a mouth keypoint detector to crop the lip region,
CNN-based video, and audio encoders, and a fusion layer followed by a causal temporal layer to incorporate a
longer temporal past context. For the mouth keypoint detector, we adopt the ground truth facial per speaker
manually checked by annotators. From the keypoints, we generate a new face crop by cropping the region
by half of the width of the face region horizontally and also crop a quarter of the height downwards and
three-quarters of the height upwards from the center of the mouth. We also generate a lip region, cropping
the same way horizontally but cropping a quarter of height up and down from the mouth center.

The audio encoder is adopted from a VGG-M (Chatfield et al., 2014) operating on 13-dim Mel-Frequency
Cepstral Coefficient (MFCC). For the video encoder, we use a spatio-temporal VGG-M (Chatfield et al., 2014)
composed of a 3D convolutional layer followed by a stack of 2D convolutions. We also adopt a Self-Attentive
Pooling (SAP) layer (Bhattacharya et al., 2017) for fusing the output audio and video features. Lastly, we set
a unidirectional LSTM layer for temporal modeling to sequentially process consecutive embeddings from the
fusion layers to predict speech activity corresponding to the latest frame followed by a projection layer and a
sigmoid activation to derive activity predictions for each target speaker. For TAME module integration, like
the AVSR model, the video features are upsampled with the nearest-neighbor interpolation to match the
number of the audio features.

For training, we apply horizontal flipping, random rotation within −15° ∼ +15°, and motion blur augmentation
with kernels randomly from 10, 25, 50, and 100. Due to the limited size of Easycom, we firstly pretrain
the model with a larger dataset, VoxCeleb2 (Chung et al., 2018), to produce a better performance and
generalization. We train using SGD optimizer (Robbins & Monro, 1951) with a learning rate of 5−5 with a
weight decay of 5−4. We evaluate the performance using the mean Average Precision (mAP).

5.7.2 Performance Analysis

As indicated in Table 9, the model showcases a mean Average Precision (mAP) of 86.50%, which sits
comfortably between the Video-only method at 82.25% and the AudioVisual approach at 87.60%. Notably,
this outcome demonstrates the TAME’s capability to properly retrieve audio features, complementing the
previously illustrated proficiency in video feature retrieval. Therefore, the comparative performance indicates
that the proposed TAME is not only effective in leveraging visual information but also exhibits a reciprocal
competence in audio feature retrieval, thereby reinforcing its applicability in multimodal scenarios. Thus, the
experimental results underscore the versatility of the proposed TAME module.

6 Conclusion

This work is motivated to address practical challenges in using multimodal solutions in real-world applications.
We build and train the models keeping in mind that inference will be unimodal – a multimodal training
but unimodal deployment strategy, and propose MUTUD. In MUTUD, the model learns to associate and
relate different modalities through modality-specific codebooks. Once this is achieved during training, the
representations of modality absent during inference are obtained using the one present during inference.
We show substantial gains over corresponding unimodal models and efficiency gains over full multimodal
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counterparts while retaining performance to a considerable extent. Moreover, our framework and TAME are
fairly generic and can be easily adapted for other common multimodal learning tasks and models. We can
also extend MUTUD to more than two modalities through pairwise MSCs.
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