
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ZERO-SHOT GENERALIZATION OF GNNS OVER
DISTINCT ATTRIBUTE DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive GNNs are able to generalize across graphs with the same set of node
attributes. However, zero-shot generalization across attributed graphs with disparate
node attribute domains remains a fundamental challenge in graph machine learning.
Existing methods are unable to effectively make use of node attributes when
transferring to unseen attribute domains, frequently performing no better than
models that ignore attributes entirely. This limitation stems from the fact that
models trained on one set of attributes (e.g., biographical data in social networks)
fail to capture relational dependencies that extend to new attributes in unseen test
graphs (e.g., TV and movies preferences). Here, we introduce STAGE, a method
that learns representations of statistical dependencies between attributes rather than
the attribute values themselves, which can then be applied to completely unseen
test-time attributes, generalizing by identifying analogous dependencies between
features in test. STAGE leverages the theoretical link between maximal invariants
and measures of statistical dependencies, enabling it to provably generalize to
unseen feature domains for a family of domain shifts. Our empirical results show
that when STAGE is pretrained on multiple graph datasets with unrelated feature
spaces (distinct feature types and dimensions) and evaluated zero-shot on graphs
with yet new feature types and dimensions, it achieves a relative improvement in
Hits@1 between 40% to 103% for link prediction, and an 10% improvement in
node classification against state-of-the-art baselines.

1 INTRODUCTION

Zero-shot generalization, or a model’s ability to handle unseen test data without additional training
or adaptation, has long been a key objective for AI systems (Larochelle et al., 2008; Xian et al.,
2017; Wang et al., 2022). An essential prerequisite to zero-shot generalization is for models to learn
prediction rules that can be used across entirely different sets of features (or attributes) at test time.
This challenge has been addressed in other domains, such as natural language, through processes that
can split up any data into a pre-determined set of tokens (Samuel & Øvrelid, 2023).

However, in the context of graph data with node attributes, zero-shot generalization presents unique
challenges. First, features can vary significantly between graphs in different domains. Any method
must be able to handle heterogeneous node features, including mixtures of continuous and categorical
features, as well as features that are highly dataset specific such as RAM on an electronics store and
clothes size in a department store, as shown in Figure 1. Second, the interpretation of certain features
(such as size) is often context-dependent, requiring graph learning methods that can jointly model
both the topology and the node attributes. These challenges make it hard to define a unified input
space allowing graph models to zero-shot generalize to unseen attributed graphs.

For these reasons, pretraining general purpose graph models remains an open challenge. This is
reflected in the fact that generalizing to new attribute domains is rarely tackled in zero-shot settings (as
we discuss in Section 5). One strategy in such cases is to ignore node attributes altogether, focusing
on learning node and edge relations. Alternatively, some works textify node features (or the entire
graph) using pre-trained text embedding models (Chen et al., 2024a; Huang et al., 2023; Liu et al.,
2024; Zhang et al., 2023). However, this latter approach is limited by the text encoder, which may
overlook significant predictive signal in numerical attributes (Collins et al., 2024; Gruver et al., 2024;
Schwartz et al., 2024), and the inclusion of text encoders often makes end-to-end training challenging.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Bob

purchase
view

Smartphone 2

age: 30
income_level: $120K

edu_level: college

price: $1299
RAM: 3GB
battery: 2716 mAh

Claire

purchase

fashion_news: regular

height: 5'6''
club_status: active

size: M
colour_group: red

product_type: shorts

Dominic

Clothes 1 Clothes 2

purchase

view

(a) Train (b) Test

view viewview

age: 20

income_level: $70K
edu_level: high school

Alice

price: $699
RAM: 3GB
battery: 2500 mAh

view

fashion_news: regular

height: 6'2''
club_status: active

size: XL
colour_group: black

product_type: jeans

view
purchase

view

Smartphone 1

Figure 1: The task of zero-shot generalization to attributed graphs with unseen attribute/features. This
task is challenging because features in the train and test graphs have different semantics. Moreover,
real-world graphs typically contain a mixture of continuous and categorical features. Nevertheless,
features associated with an edge can be highly correlated (e.g. income level is positively correlated to
phone price in (a)). Our proposed method, STAGE, jointly learns both the statistical dependencies
among features and the graph structure, and leverages the analogous statistical dependencies
between features in the test graph (e.g. the positively correlated height and clothes sizes in (b))
to perform zero-shot transfer of distinct attribute domains.

Another approach is to focus on test-time adaptation for the GNN node embeddings, accepting that
the models representations may degrade on unseen attribute domains. This can be done, for example,
by applying linear models to node embeddings using closed-form maximum-likelihood solutions
(Zhao et al., 2024). Whilst test-time adaptation may prove to be useful in conjunction with domain
generalization, it does not address the fundamental problem of domain generalization itself, which is
to bestow the pretrained GNN model with the ability to produce useful representations of any graph.

In this work, we introduce STAGE (Statistical Transfer for Attributed Graph Embeddings), a novel
design for encoding node features to address the challenges of generalization to new attribute domains
on graphs. The core idea behind STAGE is to transform raw node attributes, which exist in an
“absolute” natural space that can vary arbitrarily across graphs, into a relative space that captures
their statistical dependencies over graph edges. For instance, Figure 1 illustrates purchases triggered
by positive correlations between the features in both domains. More specifically, STAGE builds a
graphical representation of such statistical dependencies that is invariant to three transformations
commonly observed when transferring across distinct attribute domains—changes in attribute values,
permutations of attribute dimensions, and permutations of node identities—while preserving the
maximal amount of information about the raw attribute values. In particular, STAGE transforms node
features into edge embeddings through a two-step process:

1. STAGE-edge-graph construction: For each edge in the original graph, STAGE constructs an
STAGE-edge-graph (such as illustrated in Figure 2(b), a fully connected weighted graph whose

(a) Input attributed graph

view

vi
ew

view

pu
rc

ha
se

?

Alice

Phone1

view

purchase

Phone2

Bob
age: 30
income_level: $120K

price: $1299
RAM: 3GB

...

...

...

...

...

...

(b) STAGE-edge-graph
 of the edge (Alice, Phone1)

(c) STAGE-edge-graph embedding as
edge feature for GNN forward propagation

Alice

Phone1 Phone2

Bob

Figure 2: Given an input attributed graph G (a), STAGE builds a STAGE-edge-graph (b) for every
edge in G. Nodes in a STAGE-edge-graph correspond to individual features of the two edge endpoints,
and the node and edge attributes are the empirical marginal and conditional probabilities of feature
values (Equations (2) and (3)). STAGE then applies the intra-edge GNN on STAGE-edge-graph (b) to
obtain an edge-level embedding for each input graph edge, and finally applies the inter-edge GNN to
obtain the input graph representations leveraging the set of edge-level embeddings (c).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

nodes correspond to the features of the two endpoints (if there are m features for each node,
the STAGE-edge-graph has 2m nodes). The edge weights are the conditional probabilities later
introduced in Equation (2), and the node attributes are assigned the marginal probabilities later
introduced in Equation (3).

2. Edge embedding addition: As illustrated in Figure 2(c), for each edge of the original graph,
STAGE associates an embedding of a standard GNN architecture applied to that edge’s STAGE-
edge-graph. As GNNs can operate on variable-sized graphs, STAGE is capable of learning over
feature spaces of varying dimensions.

STAGE then adds these embeddings to their respective edges as edge features (as illustrated in
Figure 2(c)), and removes the original node features before applying a second GNN to process the
entire modified graph, now featurized only by the new embeddings as edge features. This allows
STAGE to end-to-end pretrain on multiple graph datasets from diverse feature domains for a single
task. At test time, it can zero-shot generalize to solve that task on any graph, regardless of the novelty,
unobserved nature, or varying-size of their node feature spaces.

In order to shift from embedding node features to embedding statistical dependencies on edges, the
STAGE-edge-graph is constructed using principles established by Bell (1964) and Berk & Bickel
(1968), which link the theory of maximal invariants to measuring statistical dependencies between
random variables. Namely, we prove that any function that can measure statistical dependencies
of node features from totally ordered sets (e.g., Rd, d ≥ 1), can be described as a graph regression
task on a variant of our STAGE-edge-graph, as long as its GNN encoder is sufficiently expressive.
This means that our method can learn expressive representations independent of the attribute domain
for a class of domain shifts, allowing generalization between graph tasks that rely on the interplay
between attribute dependencies and graph structure. Note that we do not prove generalization between
arbitrary graphs, since there are clear worst-case examples for which transfer is impossible.

Our experiments show that STAGE substantially improves zero-shot out-of-domain generalization
against state-of-the-art baselines for both link prediction and node classification tasks on multiple
datasets. Predicting future customer activity on an e-commerce website (link prediction) involving six
distinct stores selling beds, desktops, refrigerators, smartphones, shoes and clothes and apparel from
another (H&M), STAGE achieves up to a 103% improvement in Hits@1 over the best state-of-the-art
baselines. Additionally, in node classification, by pretraining on Friendster and zero-shooting into
Pokec, STAGE outperforms state-of-the-art by approximately 10%. Notably, STAGE’s performance
improves as the number of training domains increases, showing it is currently the only method
capable of learning generalizable patterns across distinct feature domains during pretraining.

These results underscore STAGE’s ability to learn transferable representations that are robust to
variations in node attribute domains. By embedding feature dependencies rather than their absolute
values, STAGE enables robust zero-shot predictions across entirely new and unseen graph domains.

2 STAGE: ZERO-SHOT GENERALIZATION TO DISTINCT ATTRIBUTE DOMAINS

GNNs typically assume that the node feature dimensions of training and test graphs correspond to the
same semantics, restricting their applicability to graphs with novel or misaligned feature dimensions
at test time. To overcome this limitation, we introduce STAGE, a novel architecture that enables
knowledge transfer across graphs with distinct feature spaces.

We are given an attributed graph G = (V,E,X) where V is the set of nodes, E the set of edges, and
X = {xv}v∈V the set of node features xv for each node v ∈ V . We assume all xv belong to some
measurable space of dimension d ≥ 1. To design a model capable of generalizing to test graphs that
may have node features living in a different space than X , we design a projection map that transforms
the node features (xu,xv) of an edge (u, v) ∈ E into a fixed dimensional pairwise embedding

P : (xu,xv) 7→ ruv ∈ Rk, k ≥ 1. (1)

The choice to consider pairwise embeddings allows STAGE to model relations between features
belonging to different nodes. For instance, modeling the relation between customer node Alice and
product node Smartphone1 (Phone1) in Figure 2(a). We design the mapping P by building a graph
based on the pairwise pdf feature descriptors. Viewing node features through their pdf s is a crucial
step as it transforms potentially non-aligned node feature spaces into a universal space of densities.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Concretely, let A and B be a random pair of nodes jointly and uniformly sampled from the edge set,
(A,B) ∼ Unif(E). Let xA

i denote the random variable of the i-th feature value of random node A,
and xB

j the j-th feature value of random node B. Given a specific pair of distinct nodes u, v ∈ V and
specific feature values xu

i and xv
j , we define p(xu

i |xv
j) from the conditional probabilities as follows,

accounting for mixture of totally ordered (e.g., scalar) and unordered (e.g., categorical) features:

• p(xu
i |xv

j) := P(A,B)∼Unif(E)(xA
i ≤ xu

i |xB
j ≤ xv

j), if both feature i and j are totally ordered.

For brevity we omit the distribution (A,B) ∼ Unif(E), writing P instead of P(A,B)∼Unif(E) from now.

• p(xu
i |xv

j) := P(xA
i = xu

i |xB
j ≤ xv

j), if feature i is unordered and feature j is totally ordered.

• p(xu
i |xv

j) := P(xA
i ≤ xu

i |xB
j = xv

j), if feature i is totally ordered and feature j is unordered.

• p(xu
i |xv

j) := P(xA
i = xu

i |xB
j = xv

j), if both feature i and j are unordered.

If u = v, we change the sampling distribution to (A) ∼ Unif(V) and let B = A. Everything else
remains the same in the definitions above. In practice, all these probabilities can be empirically
estimated from the input data. For the node-pair u, v we define a conditional probability matrix Suv ,
with indices i, j ∈ {1, . . . , 2d}, i ̸= j as follows:

Suv
ij =

p(xu

i | xu
j) if i ≤ d and j ≤ d,

p(xv
i−d | xv

j−d) if d < i ≤ 2d and d < j ≤ 2d,

p(xu
i | xv

j−d) if i ≤ d and d < j ≤ 2d,

p(xv
i−d | xu

j) if d < i ≤ 2d and j ≤ d.

(2)

and for the diagonal i = j we define,

Suv
ij =

{
p(xu

i) if i ≤ d,

p(xv
i) if i > d,

(3)

where p(xu
i) := P(xi = xu

i) if xu
i is unordered and p(xu

i) := P(xi ≤ xu
i) if xui is totally ordered.

This diagonal term allows STAGE to also model intra-node feature dependencies.

The matrix Suv is the core node-pair data representation STAGE uses. This matrix is used to define
a graph structure which we call a STAGE-edge-graph as illustrated in Figure 2(b), which gives a
parwise feature coordinate-level description of the relation between the two endpoint nodes.
Definition 2.1 (STAGE-edge-graph). Given a pair of nodes u, v ∈ V , a STAGE-edge-graph for (u, v)
is a fully connected, weighted, directed graph G(Suv) with 2d nodes, where node i has a scalar
attribute Suv

ii , and edge (i, j) has a scalar attribute Suv
ij .

STAGE algorithm. As illustrated in Figures 2(b) and 2(c), STAGE uses the STAGE-edge-graph of
all edges in a two-stage process to produce attribute-domain-transferable graph representations. First,
STAGE uses a GNN to generate expressive embeddings for each STAGE-edge-graph of each edge.
After these edge embeddings are added, STAGE removes the original node features. This modified
graph is then fed into a second GNN to solve the overall task, producing the final node, link, or graph
representation. The two steps of STAGE are as follows.

1. (Intra-edge) Each G(Suv) is processed independently with a GNN M1 to produce edge-level
embeddings ruv = M1(G(Suv)) in Equation (1).

2. (Inter-edge) A second GNN M2 processes G′ = (V,E, {ruv}(u,v)∈E), i.e., the original graph
equipped with the learned edge embeddings to give a final representation M(G) := M2(G

′).

The two GNNs M1 and M2 are trained end-to-end on the task. Note that M1 can be any GNN
designed to produce whole-graph embeddings and can take single-dimensional edge features, whilst
M2 can be any GNN that can take edge embeddings as input.

Modelling pairwise relations. Suv is only computed for edges (u, v), and so can only model
pairwise relations between nodes connected by an edge. In some cases, such as bipartite graphs, we
find it beneficial to add extra edges between nodes of the same type (see Section 4 for details). In
general, higher-order relations could also be modelled similarly, albeit at increased complexity. We
leave exploration of higher-order relations to future work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 STATISTICAL UNDERPINNINGS OF STAGE

This section explains how STAGE achieves domain transferability. The central result is to show that
STAGE generates representations capable of measuring feature dependencies on graphs. This means
that STAGE is able to ignore “absolute” feature values, whilst still generalizing through analogous
statistical dependecies of the unseen features in the test graph.

Our first step (Section 3.1) connects measures of statistical dependencies with a novel graph regression
task. Then, Section 3.2 shows that our STAGE-edge-graphs (Definition 2.1) can lead to a compact
model for this regression, with a variant that is invariant to a class of shifts between train and test
feature domains. The following theoretical results are meant to provide insights and are restricted
to domains with a fixed number of features to simplify the proofs, extending them to variable size
spaces is left as future work. Detailed proofs are provided in Appendix A.

3.1 STATISTICAL DEPENDENCE OF NODE-PAIR FEATURES AS A GRAPH REGRESSION

We begin by introducing the framework for building what we call feature hypergraphs. We will show
that feature hypergraphs can sufficiently encapsulate the statistical dependencies between features,
whilst only leveraging the relative orders rather than the numerical values of the feature, enabling it to
be invariant to the order-preserving transformations (defined later in Definition A.2) to achieve better
domain transferability. Throughout this exposition we assume one feature space defined over a totally
ordered set (e.g., Rd for d ≥ 1, where the total order ≤ is well defined). Since the invariances of
unordered sets are a special case (as these do not need order-preserving transformations), this section
focuses on totally ordered sets. Before we describe how feature hypergraphs are built, we start with
the concept of order statistic, which captures the relative ordering of the feature values.

Order statistic (David & Nagaraja, 2004). Let x1,x2, . . . ,xm be a sequence of m ≥ 2 random
variables from some unknown distribution F over a totally ordered set (e.g., a convex set F ⊆ R). Its
order statistics are defined as the sorted values x(1) ≤ x(2) ≤ · · · ≤ x(m), where x(k) denotes the
k-th smallest value in the m samples.

Consider a domain with m entities (e.g., products in an appliance store), where each entity is
characterized by d features. Specifically, an entity u can be represented by a (row) vector of random
feature variables, xu = [xu1 , xu

2 , . . . , xu
d]. where xui describes the i-th feature of entity u that takes

on values from the i-th feature space Fi ⊆ R. With these variables, we define the (random) matrix
X := [(x1)T , (x2)T , . . . , (xm)T]T of shape m × d. Alternatively, we can view X column-wise,
where each feature i corresponds to a (column) random vector xi = [x1i , x2i , . . . , xm

i]T . Next, we
introduce the order statistic for these features: let xi(k) denote the k-th order statistic of {x1

i , . . . , xm
i }.

For instance, xi(1) = min{x1
i , . . . , xmi }.

Given an input graph G = (V,E,X), we regard it as a sample from some unknown distribution
over all attributed graphs with m entities and d features, where X is a random variable with
X = [x1, . . . ,xd]. Consider the edges in E as samples of pairs of nodes that give rise to the multiset
of edge endpoint features, E = {{(xu,xv) | (u, v) ∈ E}}. Together with the order statistics, we now
define the feature hypergraph as follows:

Definition 3.1 (Feature hypergraph FE). Given a multiset of edge endpoint features E =
{{(xu,xv) | (u, v) ∈ E}} of m entities with totally ordered feature spaces, the feature hypergraph
FE is defined as follows. First, we label the graph with m. Then,

• For each order statistic xi(k) of feature i and order k (1 ≤ k ≤ m), there are 2 nodes, labeled as
(i, k, 1) and (i, k, 2), respectively. In total, there are exactly 2md nodes in FE (feature values need
not be unique). Nodes (i, k, 1) and (i, k, 2) store a single feature to mark their order: k.

• Let oi(u) be the order of the feature value xu
i , i.e., xi(oi(u)) = xu

i . For each pair of edge endpoint
features (xu,xv) ∈ E , there is a hyperedge Huv in FE defined as

Huv := {(1, o1(u), 1), (1, o1(v), 2), (2, o2(u), 1), (2, o2(v), 2), . . . , (d, od(u), 1), (d, od(v), 2)}.

Our first observation is that the feature hypergraph in Definition 3.1 perfectly captures the order
statistics of the set E but discards the actual values of the features.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We now consider statistical tests that measure dependencies of the endpoint features. As an illustrating
example, consider that if (xu,xv) ∈ E are samples (not necessarily independently sampled) from a
bivariate distribution (x,x′) ∼ F , one may be interested in testing the hypothesis

H0 : F (x,x′) = F1(x)F2(x
′),

i.e., that x and x′ are independent. Bell (1964); Berk & Bickel (1968) have shown over totally ordered
sets, measures (e.g., p-values) of such hypothesis tests, for pairwise independence (H0 above) and
more generally higher-order conditional independence between multiple variables, have invariances
that simplify the data representation to such a degree that the original values are discarded, retaining
only the order relationships between the variable values. And that any such test is therefore a rank test,
i.e., it relies solely on indices of the order statistic rather than the numerical values of the features.

Our first theoretical contribution is the observation that any statistical test that focuses on measuring
the (conditional) dependencies of endpoint features in E can be defined as a graph regression task
over the feature hypergraph FE of Definition 3.1.

Theorem 3.2. Given a multiset of edge endpoint features E , the corresponding feature hypergraph
FE (Definition 3.1) and a most-expressive hypergraph GNN encoder Mθ∗(FE), then any test T (E)
that focuses on measuring the dependence of the endpoint features of E has an equivalent function h
within the space of Multilayer Perceptrons (MLPs) that depends solely on the graph representation
Mθ∗(FE), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗(FE)).

Next we show that the hypergraph FE can be simplified with STAGE-edge-graph and that it its ability
to compute dependency measures can be made invariant to some domain shifts between train and test.

3.2 TRANSFERABILITY: STAGE CAN MODEL MEASURES OF STATISTICAL DEPENDENCIES
AND IS INVARIANT TO A FAMILY OF DOMAIN TRANSFORMATIONS

The feature hypergraph FE in Definition 3.1 is used to obtain a maximal invariant graph representation
via hypergraph GNN. This solution has a high computational cost from the use of hypergraph GNNs.
Fortunately, we show that by assigning unique feature identifiers to label the nodes of our STAGE-
edge-graphs G(Suv) (Definition 2.1), STAGE-edge-graphs are as informative as the corresponding
feature hypergraph (Definition 3.1) while preserving the same invariances.

Theorem 3.3. Given the endpoint features E (Definition 3.1) of a graph G = (V,E,X), there exists
an optimal parameterization θ∗g , θ

∗
s for a most expressive GNN encoder Mg and a most-expressive

multiset encoder Ms, respectively, such that Mθ∗
s ,θ

∗
g
(G) := Ms

θ∗
s

({{
Mg

θ∗
g
(G(Suv)) : (u, v) ∈ E

}})
such that any test T (E) that measures the dependence of E’s endpoint features has an equivalent
function h within the space of Multilayer Perceptrons (MLPs) that depends solely on the graph
representation Mθ∗

s ,θ
∗
g
(G), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗

s ,θ
∗
g
(G)).

Theorem 3.3 motivates the design of STAGE, which leverages a GNN on STAGE-edge-graphs to
obtain edge-level embeddings. However, the use of unique feature identifiers in the STAGE-edge-
graphs disrupts invariance to permutations in feature dimensions (e.g., U.S. shoe size appearing as the
first dimension in one dataset and U.K. shoe size as the last dimension in another), thereby limiting
its domain transferability. More broadly, we now describe all the invariances we want for STAGE to
have to be robust to a class of feature domain shifts.

COGG invariances. STAGE-edge-graphs facilitates domain transfer to distinct feature domains.
Intuitively, the full set of invariances required for domain transferability over G = (V,E,X) consists
of: (1) invariance or equivariance to transformations of feature values that preserve the order statistic,
(2) invariance or equivariance to permutations of feature dimensions (columns of X), and (3)
invariance or equivariance to permutations of entities (nodes) in the graph, affecting both V (and
consequently E) and the rows of X . These invariances are formally described in Definition A.5 at
Appendix A.4 through actions of component-wise order-preserving groupoid for graphs (COGG).

We now introduce our final theoretical contribution which establishes that STAGE achieves invariance
to COGGs by design. This result shows that STAGE can provably achieve the zero-shot transferability
to the class of feature domain shifts defined by COGGs-type transformations.

Theorem 3.4. STAGE (Section 2) is invariant to COGGs (Definition A.5).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

bed desktop refrigerators smartphone shoes H&M
Test Graph Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

hi
ts

@
1

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

Model
random
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

Figure 3: Zero-shot Hits@1 performance (higher is better) of STAGE and baselines, pretrained on
four (or five) distinct store domains and evaluated on the held-out domain (or H&M dataset). NBFNet
with STAGE feature encoding consistently achieves the highest zero-shot accuracy across all
test domains showing up to 103% improvement. Error bars show standard deviation over seeds.

The proof sketch is essentially as follows. The first insight is to drop the feature-id labels in
STAGE-edge-graphs. This modification sacrifices maximal expressivity (Theorem 3.3), but ensures
that STAGE is invariant to permutations of the feature dimensions. Second, STAGE employs a
second GNN on the original input graph, using the graph embeddings of the STAGE-edge-graphs
as additional edge-level embeddings, while omitting the original node features. This configuration
ensures STAGE’s invariance to graph isomorphisms. Thus, the entire method is invariant to COGGs.

4 EXPERIMENTS

We now show the effectiveness of STAGE across multiple experimental settings. We refer the reader
to Appendix C for details and to Appendix F for a complexity analysis and runtime comparison.

Datasets. To evaluate STAGE’s zero-shot generalization to graphs with unseen attributes, we consider
several graph datasets with unique domain-specific node features but a shared task. See Appendix B
for more details on these datasets, their tasks, and their construction.

E-Commerce Stores dataset (link prediction). We use an E-Commerce dataset from a multi-category
store (Kechinov, 2020) containing customer-product interactions (purchases, cart additions, views)
over time. We split it into five single product category domains with disjoint customers (simulating
five distinct single-category stores): shoes, refrigerators, desktops, smartphones, and beds, each with
unique features (e.g., smartphones have display type, RAM size; shoes have ankle height, material)
and unique customers. The task is to predict future customer-product interactions from past actions.

H&M dataset (link prediction). We use the H&M Personalized Fashion Recommendations dataset
(Kaggle, 2021), containing transactions from a large fashion retailer, to evaluate the zero-shot
performance of models trained on the E-Commerce Stores dataset. Attributes in H&M dataset except
one (“price”) are distinct from those in E-Commerce Stores. The task remains predicting future
customer-product interactions from past actions.

Social network datasets (node classification): Friendster and Pokec. We consider the Friendster (Teix-
eira et al., 2019) and Pokec (SNAP, 2012) datasets, two online social networks from different regions
and user bases. Friendster nodes have features such as age, gender, interests, etc., while Pokec nodes
have public profile status, completion percentage, region, age, and gender. The task is to predict a
node feature common to both social networks using network structure and remaining node features.
Since only age and gender are common, we create two tasks: mask and predict gender, and mask and
regress on age (however, age seems to not be predictable as discussed in Appendix D).

Baselines. We compare STAGE to several baselines for handling new node features. GNN-RAW:
Projects each raw node feature into a fixed-dimensional space via linear transformations, before
summing across the projected dimensions. GNN-GAUSSIAN: Use Gaussian noise as node fea-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Zero-shot Hits@1 and MRR (higher is better) of STAGE and baselines. NBFNet-STAGE
outperforms all baselines in zero-shot Hits@1 and MRR (including supervised approaches)
across the E-Commerce Stores and H&M datasets. Models were trained on all combinations of
four graph domains and tested on the remaining domain for the E-Commerce Stores dataset, and
trained on the five E-Commerce Stores domains and tested zero-shot on the unseen H&M dataset. The
Structural-Supervised baseline was trained on additional edges in the H&M dataset. Improvement (%
gain) is calculated as the relative increase in performance of STAGE compared to each baseline.

Pretraining: E-Commerce Stores Test: Held-out E-Comm. Store Test: H&M Dataset
Model Hits@1 (↑) % gain MRR % gain Hits@1 (↑) % gain MRR (↑) % gain
random 0.0026 ± 0.0000 17615% - - 0.0006 ± 0.0000 77667% - -
NBFNet-raw 0.0000 ± 0.0000 ∞ 0.0032 ± 0.0009 15434% 0.0005 ± 0.0004 93220% 0.0059 ± 0.0011 7871%
NBFNet-gaussian 0.2101 ± 0.0428 119% 0.2617 ± 0.0459 90% 0.0925 ± 0.0708 404% 0.1176 ± 0.0756 300%
NBFNet-structural 0.3149 ± 0.0253 46% 0.3721 ± 0.0219 34% 0.2231 ± 0.0060 109% 0.2302 ± 0.0080 104%
NBFNet-llm 0.3226 ± 0.0190 43% 0.3830 ± 0.0145 30% 0.2302 ± 0.0015 103% 0.2365 ± 0.0021 99%
NBFNet-normalized 0.3269 ± 0.0213 41% 0.3844 ± 0.0159 29% 0.2286 ± 0.0010 104% 0.2341 ± 0.0018 101%
NBFNet-structural-supervised N/A N/A N/A N/A 0.1546 ± 0.0084 202% 0.2103 ± 0.0164 124%

NBFNet-STAGE (Ours) 0.4606 ± 0.0123 0% 0.4971 ± 0.0073 0% 0.4666 ± 0.0020 0% 0.4703 ± 0.0029 0%

tures (Sato et al., 2021; Abboud et al., 2021). STRUCTURAL: Disregards node features entirely,
using only the graph structure. GNN-LLM: Converts node features into textual descriptions and
obtains embeddings using a pre-trained encoder-only language model, akin to PRODIGY (Huang
et al., 2023). GNN-NORMALIZED: Retains only continuous features and standardize them. For a
fair comparison, we use the same underlying GNN architecture for all methods: NBFNet (Zhu et al.,
2021c) for the E-Commerce and H&M datasets (link prediction), and GINE (Hu et al., 2020) for
social network datasets (node classification). In addition to these baselines, we also evaluate our
approach against GraphAny (Zhao et al., 2024), a recent method specifically tailored for domain
transferability in node classification tasks, but not applicable to link prediction. In Appendix E, we
perform additional ablation studies with alternative GNNs. All models share hyperparameters where
applicable, and results are averaged over three seeds. For graphs with node types lacking features
(e.g., customers in E-Commerce Stores), we build edges between featured nodes of the same type
(e.g., products) based on common connections, forming STAGE-edge-graph for these new edges.
These edges are provided to all baselines.

4.1 ZERO-SHOT LINK PREDICTION ON UNSEEN DOMAINS

We evaluate STAGE’s zero-shot out-of-domain generalization using the E-Commerce Stores dataset
with five distinct product categories, each having unique features. We train models on a union of four
categories and test on the fifth held-out category, predicting customer-product interaction links.

Results. Figure 3 shows that STAGE consistently outperforms all baselines in zero-shot Hits@1
scores across test domains, with significant gains in the smartphone category, achieving a substantial
103% Hits@1 improvement against the best baseline (NBFNet-structural), with 0.51 Hits@1 for
STAGE vs 0.25 for structural. Similar gains are observed in the bed and refrigerator categories,
where STAGE outperforms the strongest baselines (LLM and normalized feature encodings), by
margins of 40% (with a Hits@1 score of 0.44) and 33% (with a Hits@1 score of 0.59), respectively.

Table 1 shows the Hits@1 and Mean Reciprocal Rank (MRR) averaged over all held-out E-Commerce
Stores. STAGE achieves the highest zero-shot Hits@1 showing a 41% improvement over the strongest
baseline (normalized), with a Hits@1 of 0.46. In terms of MRR, STAGE also leads with an MRR of
0.4971, outperforming the best baseline by 29%. Interestingly, not only STAGE’s outperforms the
zero-shot SOTA in average, but it also exhibits lower variance across seeds (shown in both Figure 3
and Table 1), emphasizing its robustness to these zero-shot domain-generalization tasks.

4.2 ZERO-SHOT LINK PREDICTION WITH EXTREME DOMAIN SHIFT

To further challenge STAGE, we apply the pretrained NBFNet-STAGE on the E-Commerce Stores to
zero-shot predict activities in the H&M dataset. The H&M dataset, sourced from an entirely different
data provider, with distinct customers, products, features, and activity patterns, works to eliminate
any potential shared predictive signals present in the E-Commerce dataset (Kechinov, 2020).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4
Number of Graph Domains

0.0

0.2

0.4

0.6
Hi

ts
@

1

Model
NBFNet-raw
NBFNet-gaussian

NBFNet-structural
NBFNet-llm

NBFNet-normalized
NBFNet-STAGE

(a) Zero-shot hits@1

1 2 3 4
Number of Graph Domains

0.0

0.2

0.4

0.6

M
ea

n
Re

cip
ro

ca
l R

an
k

(M
RR

)

Model
NBFNet-raw
NBFNet-gaussian

NBFNet-structural
NBFNet-llm

NBFNet-normalized
NBFNet-STAGE

(b) Zero-shot MRR

Figure 4: STAGE’s zero-shot performance improves with more train domains, while this is not
the case for other methods. Zero-shot Hits@1 and MRR plots for different numbers of training
graph domains. Box-plot distribution over all combinations of a fixed number of graph domains in
the E-Commerce Stores Dataset and testing on the held-out domain, averaged over random seeds.

Results. Table 1 shows the zero-shot performance on H&M of our pretrained STAGE on
E-Commerce Stores is virtually identical to its performance on the held-out E-Commerce Stores
(0.46 vs. 0.46 on Hits@1). This highlights the robustness of STAGE to substantial domain shifts, as
E-Commerce Stores mostly sells completely different products (household items, electronics, and
shoes) from H&M (primarily clothing, very few shoes (Cuoghi, 2021)).

Compared to the baselines, STAGE achieves a relative zero-shot out-of-domain Hits@1 improvement
of 102% over the best baseline (NBFNet-llm) (0.46 vs. 0.23 Hits@1). Moreover, STAGE achieves a
relative Hits@1 improvement of 201% against a supervised structural method trained and tested on
H&M (STRUCTURAL-SUPERVISED). These substantial gains in this stress-task highlights the ability
of a pretrained STAGE to generalize to entirely new domains in zero-shot scenarios, demonstrating
transfer learning capabilities that exceed that of the popular approach of encoding numerical features
with LLMs. On MRR, STAGE leads with a score of 0.4703, surpassing the best baseline by 99%.

4.3 ZERO-SHOT NODE CLASSIFICATION ON UNSEEN DOMAINS

Table 2: Zero-shot test accuracy (higher is bet-
ter) of STAGE and baselines on the pokec dataset,
trained on a sample of Friendster. STAGE demon-
strates a gain of 10.88% in zero-shot test ac-
curacy. For GINE-age, models were trained and
tested using only the shared age feature.

Model Accuracy (↑) ± std
GINE-structural 0.564±0.0466
GINE-gaussian 0.588±0.0250
GINE-normalized 0.541±0.0148
GINE-llm 0.550±0.0368
GraphAny 0.591±0.0083

GINE-STAGE (Ours) 0.652±0.0042

To confirm that our results are not specific to link
prediction and E-Commerce tasks, we bench-
mark on a node classification task using the
Pokec and Friendster datasets, where the goal
is to predict the gender of each user. We train
models on a sample of Friendster and evaluate
zero-shot on Pokec. Appendix C presents details
of this experiment.

Results. Table 2 shows that STAGE achieves a
10.3% improvement over the best baseline (and
significantly lower standard deviation), includ-
ing the existing node classification foundation
model GraphAny Zhao et al. (2024). This in-
dicates that STAGE effectively captures feature
dependencies also in node classification tasks.

4.4 GENERALIZATION WHEN TRAINING ON MULTIPLE DOMAINS

We now examine how STAGE improves performance if the number of training domains increases.

Results. Figure 4a shows that STAGE’s zero-shot out-of-domain Hits@1 and MRR performance
consistently improves as the number of training domains increases. This trend is unique to STAGE,
indicating that it is the only method capable of learning generalizable patterns across many domains,
enabling it to accurately zero-shot predict customer interest in new domains.

Discussion. The superior performance of STAGE highlights its ability to generalize when node
feature spaces vary significantly between train and test graphs. These results demonstrate that STAGE-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

edge-graphs effectively encode dependencies between features and topology, making representations
transferable across feature space domains. The consistent improvements show that ignoring node
features or using generic embeddings can be insufficient for cross-domain generalization. Appendix E
presents more results on ablation studies, confirming STAGE’s effectiveness on alternative GNN
backbones and ability to leverage dependencies among unseen attributes on test domains.

5 RELATED WORK

A more comprehensive discussion of related work can be found in Appendix G.

Graphs Generalization under Distribution Shifts. Several works address distribution shifts between
train and test graphs over the same feature space, such as You et al. (2022); Zhu et al. (2021b),
which employ learned augmentations to mitigate distribution shift in node attributes. Meanwhile,
extensive research has focused on domain adaptation for GNNs (Dai et al., 2022; Li et al., 2020;
Kong et al., 2022; Pei et al., 2020; Veličković et al., 2019; Wiles et al., 2022; Zhang et al., 2019; Zhu
et al., 2021a), which typically assume access to data in both source and target domains. In contrast,
our work tackles the more challenging scenario of zero-shot generalization to unseen attribute spaces.

Foundation Models for Graph Data. Developing foundation models for graph data is a growing
research interest, aiming to create versatile graph models capable of generalizing across different
graphs and tasks (Mao et al., 2024). Initial efforts in this direction convert attributed graphs into texts
and apply an LLM (Liu et al., 2024; Chen et al., 2024b;a; Tang et al., 2024; Zhao et al., 2023; He
& Hooi, 2024; Huang et al., 2023). However, while promising, this methodology risks information
loss and may limit transferability (Collins et al., 2024; Gruver et al., 2024; Schwartz et al., 2024).
In contrast, non-LLM approaches attempt to directly address domain transferability in the attribute
space (Xia & Huang, 2024; Lachi et al., 2024; Zhao et al., 2024), or forgo the attributes entirely (Gao
et al., 2023; Lee et al., 2023; Galkin et al., 2024). However, no definitive solution has emerged, and
the search for a universal graph model for node feature domain shift remains an open challenge.

Maximal Invariants and Statistical Testing. Bell (1964) first explored the relationship between
invariant and almost-invariant tests in hypothesis testing. Berk & Bickel (1968) and Berk (1970)
extended Bell’s approach to show that almost-invariant tests are equivalent to invariant ones under
certain conditions, which are those met in our work. Later, Berk et al. (1996) explored the interplay be-
tween sufficiency and invariance in hypothesis testing by providing counterexamples that demonstrate
how these concepts can differ significantly in other scenarios. More recently, Koning & Hemerik
(2024) improves the efficiency of hypothesis testing under invariances for large transformation groups
such as rotation or sign-flipping without resorting to sampling.

6 CONCLUSION

Designing graph models with the same intuitive flexibility as vision and language models is limited by
the challenge of learning representations that are informative across diverse feature spaces, including
new unseen concepts at test time. We tackle this challenge by proposing STAGE, a method designed
for zero-shot generalization across graphs with distinct node feature spaces. STAGE provides a
principled framework that learns embeddings by capturing how feature dependencies are structured
within the graph topology, rather than feature values. STAGE shows strong empirical performance
even under entirely new attribute spaces, unlike its natural baselines. We believe STAGE represents a
meaningful advance in graph machine learning, paving the way for more universal pretained models
that generalize across diverse datasets while fully leveraging node attributes.

Limitations and Future Work. While our method demonstrates scalability with respect to the
number of nodes (Appendix F), it may encounter limitations when dealing with high-dimensional
feature spaces. To address this challenge, various techniques can be explored, such as feature selection
via association studies, which we identify as a promising direction for future research.

Looking ahead, several avenues for further investigation emerge. These include extending our
framework to accommodate multi-dimensional and multi-modal attributes, such as text and images,
integrating large language models (LLMs) into the pipeline, and evaluating its performance on diverse
domains, including biomedical and geospatial networks. Pursuing these directions will be a positive
step towards realizing a robust graph foundation model for attributed graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement. The assumptions and proofs of our theoretical results can be found in
Appendix A. A detailed description of how to obtain and process our datasets and of our tasks can be
found in Appendix B. The configurations we use for experiments can be found in Appendix C. All
our experiments were performed on an Nvidia A100 80GB using Pytorch and the PyTorch Geometric
library (Fey & Lenssen, 2019).

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence (IJCAI), 2021.

C. B. Bell. A characterization of multisample distribution-free statistics. Annals of Mathematical
Statistics, 35(2):735–738, 1964. doi: 10.1214/aoms/1177703564.

R. Berk and P. Bickel. On invariance and almost invariance. Annals of Mathematical Statistics, 39(5):
1573–1576, 1968. doi: 10.1214/aoms/1177698328.

RH Berk, AG Nogales, and JA Oyola. Some counterexamples concerning sufficiency and invariance.
The Annals of Statistics, pp. 902–905, 1996.

Robert H Berk. A remark on almost invariance. The Annals of Mathematical Statistics, pp. 733–735,
1970.

Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model local
structure, 2021.

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
language and graph assistant. In Forty-first International Conference on Machine Learning, 2024a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms)
in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024b.

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models
for mathematics through interactions. Proceedings of the National Academy of Sciences, 121(24):
e2318124121, 2024.

Ludovico Cuoghi. H&m sales and customers deep analysis, 2021. URL https:
//www.kaggle.com/code/ludovicocuoghi/h-m-sales-and-customers-
deep-analysis. Accessed: 2024-09-21.

Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning via
adversarial domain adaptation with graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 35(5):4908–4922, 2022.

HA David and HN Nagaraja. Order statistics. Encyclopedia of Statistical Sciences, 2004.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In The Twelfth International Conference on Learning
Representations, 2024.

Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. arXiv preprint arXiv:2302.01313, 2023.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from natural
language. ArXiv, abs/2402.13630, 2024.

11

https://www.kaggle.com/code/ludovicocuoghi/h-m-sales-and-customers-deep-analysis
https://www.kaggle.com/code/ludovicocuoghi/h-m-sales-and-customers-deep-analysis
https://www.kaggle.com/code/ludovicocuoghi/h-m-sales-and-customers-deep-analysis

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2023.

Kaggle. H&m personalized fashion recommendations, 2021. URL https://www.kaggle.com/
competitions/h-and-m-personalized-fashion-recommendations/
overview. Accessed: 2024-09-21.

Michael Kechinov. ecommerce behavior data from multi category store, 2020. URL
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-
multi-category-store.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ArXiv, abs/1609.02907, 2016. URL https://api.semanticscholar.org/CorpusID:
3144218.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2022.

Nick W Koning and Jesse Hemerik. More efficient exact group invariance testing: using a representa-
tive subgroup. Biometrika, 111(2):441–458, 2024.

Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

H. Larochelle, D. Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In AAAI Conference
on Artificial Intelligence, 2008.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph
embedding via relation graphs. In International Conference on Machine Learning, pp. 18796–
18809. PMLR, 2023.

Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing statistical hypotheses, volume 3.
Springer, 3rd edition, 2005.

Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861–867, 1993. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-6080(05)80131-5.

Yang Li, Tianchi Ma, Jinwei Zhang, Yi Ding, Yuan Chen, and Jiliang Tang. Progressive graph
learning for open-set domain adaptation. In International Conference on Machine Learning, pp.
5968–5977. PMLR, 2020.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024.

Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong Zhao, Neil Shah,
and Jiliang Tang. Revisiting link prediction: A data perspective. arXiv preprint arXiv:2310.00793,
2023.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Michael
Galkin, and Jiliang Tang. Graph foundation models. In arXiv preprint arXiv:2402.02216, 2024.

Hao Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Domain adaptation on
graphs by learning aligned graph bases. In Advances in Neural Information Processing Systems,
volume 33, pp. 16735–16745, 2020.

12

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:3144218

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Samuel and Lilja Øvrelid. Tokenization with factorized subword encoding. In Findings of the
Association for Computational Linguistics: ACL 2023, Toronto, Canada, 2023. Association for
Computational Linguistics.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, SDM,
2021.

Eli Schwartz, Leshem Choshen, Joseph Shtok, Sivan Doveh, Leonid Karlinsky, and Assaf Ar-
belle. Numerologic: Number encoding for enhanced llms’ numerical reasoning. arXiv preprint
arXiv:2404.00459, 2024.

Stanford Network Analysis Project SNAP. Pokec social network dataset, 2012. URL https:
//snap.stanford.edu/data/soc-Pokec.html. Accessed: 2024-09-21.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, 2024.

Leonardo Teixeira, Brian Jalaian, and Bruno Ribeiro. Are graph neural networks miscalibrated? In
ICML Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 22964–22984.
PMLR, 17–23 Jul 2022.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy
Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In International
Conference on Learning Representations (ICLR), 2022.

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the good, the bad and the ugly.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4582–4591,
2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ArXiv, abs/1810.00826, 2018. URL https://api.semanticscholar.org/
CorpusID:52895589.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Neighbor contrastive learning on
learnable graph augmentation. In Proceedings of the 39th International Conference on Machine
Learning, pp. 25319–25333, 2022.

Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. Dane: Domain adaptive network
embedding. arXiv preprint arXiv:1906.00684, 2019.

Ziwei Zhang, Haoyang Li, Zeyang Zhang, Yijian Qin, Xin Wang, and Wenwu Zhu. Graph meets
llms: Towards large graph models. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning,
2023.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space, 2023.

Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael Bronstein, Zhaocheng Zhu, and Jian Tang.
Graphany: A foundation model for node classification on any graph. ArXiv, abs/2405.20445, 2024.

13

https://snap.stanford.edu/data/soc-Pokec.html
https://snap.stanford.edu/data/soc-Pokec.html
https://api.semanticscholar.org/CorpusID:52895589
https://api.semanticscholar.org/CorpusID:52895589

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021a.

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
In Proceedings of the NeurIPS Track on Datasets and Benchmarks, 2021b.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476–29490, 2021c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS AND FURTHER THEORETICAL RESULTS

A.1 GROUPOIDS

Definition A.1 (Groupoids). A groupoid G consists of the following elements:

1. A collection of distinct spaces, denoted as Spaces(G).

2. A set of transformations (also called morphisms) between these spaces, denoted as Trans(G).

3. Each transformation f ∈ Trans(G) maps one space in Spaces(G) to another space (or potentially
to itself), denoted as f : X → Y , where X,Y ∈ Spaces(G).

4. There is a rule for combining transformations: for any two transformations f : X → Y and
g : Y → Z, their composition results in a transformation g ◦ f : X → Z.

5. Each space S ∈ Spaces(G) has an identity transformation idS : S → S that maps S to itself,
such that for any space X ∈ Spaces(G) and any transformation f1 : S → X and f2 : X → S, it
guarantees f1 ◦ idS = f1 and idS ◦ f2 = f2.

6. Every transformation f : X → Y has a unique inverse transformation f−1 : Y → X such that
f−1 ◦ f = idX and f ◦ f−1 = idY .

A.2 STATISTICAL TESTS AS GRAPH REGRESSION ON FEATURE HYPERGRAPHS

To prove the result of Theorem 3.2, we will first show an intermediate result using the notion of
maximal invariants. Let G be a transformation group acting on a space X. A function M : X → Z is
said to be maximal invariant if it is invariant to transformations of G and if ∀x1, x2 ∈ X, M(x1) =
M(x2) implies x2 = g ◦ x1 for some group action g ∈ G, that is, if M is constant on the orbits but
for each orbit, it takes on a different value (Lehmann et al., 2005, pp. 214). A maximal invariant is a
representation theory counterpart of sufficient statistics.

Our intermediate result will show that the feature hypergraph admits a graph representation that is a
maximal invariant. But first, we need to formally define the class of invariances, which we show later
is essential for STAGE’s domain transferability. Since we are interested in attribute spaces of distinct
domains, rather than using groups (which involve automorphisms mapping a space onto itself),
we will use groupoids (Definition A.1). Groupoids generalize the concept of groups by allowing
transformations between multiple spaces. In a group, all transformations map a space onto itself,
while in a groupoid, transformations can map between different spaces, but must still be invertible.
Definition A.2 (Component-wise order-preserving groupoids for features (COGF)). Let X1,X2 be
two feature spaces, both with d feature dimensions. A feature transformation f : X1 → X2 is said to
be component-wise order-preserving if it can be decomposed into a set of maps f1, . . . , fd, where
each fi maps the i-th dimension of X1 to the i-th dimension of X2 and is a homomorphism that
preserves the total order in X1, and all dimensions of both X1 and X2 have a mapping.

Given an edge endpoint features E = {{(xu,xv) | (u, v) ∈ E}} and a groupoid action f from the
COGF (Definition A.2), we define how f acts on E as follows:

f(E) = {{(f(xu), f(xv)) | (u, v) ∈ E}} .

Now, we are ready to establish the intermediate result as follows.
Lemma A.3. Given a multiset of edge endpoint features E and the feature hypergraph FE (Defini-
tion 3.1). There exists a parameterization θ∗ for a maximally expressive hypergraph GNN encoder
M such that Mθ∗(FE) is a maximal invariant under COGFs (Definition A.2).

Proof. Let V(FE) be set of labeled nodes (labeled with the feature id and the order statistic position)
of FE , let H(FE) be set of hyperedges of FE , and let m(FE) be the number of entities from E ,
which are labeled with the entire graph during creation. Given two hypergraphs FE1

,FE2
, we define

FE1
= FE2

if and only if V(FE1
) = V(FE2

), H(FE1
) = H(FE2

), and m(FE) = m(FE′). Note that
since the node in the feature hypergraph are always labeled, a most expressive hypergraph GNN Mθ∗

will ensure that Mθ∗(FE1) = Mθ∗(FE2) if and only if FE1 = FE2 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Let G be the COGF (Definition A.2) and let f ∈ G be an arbitrary groupoid action of COFG. To
show invariance, the goal is to show that Mθ∗(FE) = Mθ∗(Ff(E)) for any E . Because Mθ∗ is most
expressive, this is equivalent to showing FE = Ff(E).

Let V(FE) = {(i, k, l)}i∈[d],k∈[m],l∈{1,2}. We first observe that since f acts on individual feature
values, it does not change the total number of entities. Hence, the set of hypergraph nodes remain
unchanged, V(Ff(E)) = V(FE) = m.

For the edges, consider an arbitrary hyperedge Huv in FE . Then, because f is a COGF, it preserves
the order statistics of all feature values. Thus, the order of the feature value oi(u) from E remains the
the same as o′i(u) from f(E), for all i and u. Hence, Huv is also a hyperedge in Ff(E). Similarly,
because f has an inverse f−1, we can show that for every edge H ′

uv in Ff(E), it is also in FE
under the transformation f−1. Thus, H(FE) = H(Ff(E)) and so FE = Ff(E), and therefore
Mθ(FE) = Mθ(Ff(E)).

To show maximality, let Mθ∗(FE) = Mθ(FE′) for some E and E ′. Our goal is to show that E and E ′

are on the same orbit, i.e. there exists a f ∈ G such that f(E) = E ′.

Because Mθ∗ is most expressive, we know FE = FE′ . This implies that V(FE) = V(FE′) and
|H(FE)| = |H(FE′)|. First, Let m = |V(FE)| = |V(FE′)|. And since V(FE) = V(FE′), we also
know both E and E ′ must have the same number of features. Denote it d. In addition, because
H(FE) = H(FG′), we have |E| = |E′|. Second, pick any endpoint features (xu,xv) ∈ E , and let
Huv ∈ H(FE) be the corresponding hyperedge. We know that Huv ∈ H(FE′) as well. Hence, there
exists an counterpart endpoint features (xu′

,xv′
) ∈ E ′ such that

∀1 ≤ i ≤ d, oi(u) = o′i(u
′) and oi(v) = o′i(v

′),

where oi(·) is the order of values of i-th feature in FE and o′i(·) the order of values of i-th feature in
FE′ . Thus, we can construct a COGF groupoid action f as follows:

Let f be decomposed into a set of maps f1, . . . , fd for every feature dimension i. Each fi is a
piecewise linear function fi defined as follows:

fi(a) =

a− (x)i(0) + (x′)i(0) if a < (x)i(0)
(x′)i(k) if a = xi(k) for some k : 1 ≤ k ≤ m′

i

(x′)i(k0) +
(x′)i(k1)−(x′)i(k0)

(x)i(k1)−(x)i(k0)
(a− (x)i(k0)) if xi(k0) < a < xi(k1) for some

k0, k1 : 1 ≤ k0 < k1 ≤ m′
i

a− (x)i(m′
i)
+ (x′)i(m′

i)
if a > (x)i(m′

i)

Since each fi is a piecewise linear function that strictly increases, each of them preserves the order of
feature values. And since f can be decomposed into fi’s, f is a COGF groupoid action.

Hence, we have showed that there exists a f such that f(E) = E ′ which shows maximality. Hence
completing the proof.

Based on Lemma A.3, we are ready to prove that measuring dependencies of the features (xu,xv) ∈ E
under COGF invariances can be defined as depending only on a most-expressive GNN encoding of
the feature hypergraph FE . In short, this is because any hypothesis test T (E) that can be expressed as
rank test is invariant to COGF, and any invariant function can necessarily be expressed as depending
only on a maximal invariant.
Theorem 3.2. Given a multiset of edge endpoint features E , the corresponding feature hypergraph
FE (Definition 3.1) and a most-expressive hypergraph GNN encoder Mθ∗(FE), then any test T (E)
that focuses on measuring the dependence of the endpoint features of E has an equivalent function h
within the space of Multilayer Perceptrons (MLPs) that depends solely on the graph representation
Mθ∗(FE), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗(FE)).

Proof. We first note that any test T (E) that focuses on measuring the dependence or independence of
endpoint features of E is necessarily a rank test that relies solely on the indices of the order statistics
rather than the numerical values of the features (Bell, 1964; Berk & Bickel, 1968). As such, T (E)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

is invariant to COGFs (Definition A.2). Now, we show that given E , FE , and a most expressive
hypergraph GNN encoder Mθ∗ , there exists an h such that T (E) = h(Mθ∗(FE)).

For any E1, E2, we know that if Mθ∗(FE1) = Mθ∗(FE2), then f(E1) = E2 for some groupoid action f
in COGF (Lemma A.3). Then, because T is invariant to f , we have that T (E1) = T (f(E1)) = T (E2).
Hence, each value of Mθ∗(FE) is associated with no more than one value of T (E). In other words,
there exists a mapping h∗ such that h∗(Mθ∗(FE)) = T (E).
Since MLPs are universal function approximators (Leshno et al., 1993), there exists a MLP h that
approximates h∗, i.e., h(Mθ∗(FE)) = T (E).

A.3 CORRESPONDENCE BETWEEN STAGE-EDGE-GRAPHS AND FEATURE HYPERGRAPHS

For the proof of Theorem 3.3, we first prove an intermediate result, which establishes that there
exists a bijective mapping between the feature hypergraph FE and the multiset of stage graphs,
SE := {{G(Suv) | (u, v) ∈ E}}, where each STAGE-edge-graph is equipped with unique feature
ids. In the case of repeated feature values, we will show a bijective mapping to a collapsed feature
hypergraph, where the nodes corresponding to the repeated feature values are collapsed into one
single node, with its order k being the smallest order of these repeated values. We denote by n′

i the
number of unique feature values of feature i. We note that such a collapsed feature hypergraph in the
case of repeated feature values will provide a representation that is stabler than the traditional rank
tests, as repeated values will translates into uncertainty or noise in the rank test results, whereas our
feature hypergraph representation will remain stable.

Lemma A.4. There exists a bijective mapping I between the multiset of STAGE-edge-graphs SE :=
{{G(Suv) | (u, v) ∈ E}} with unique feature ids and the feature hypergraph FE (Definition 3.1).

Proof. Let G = (V,E,X) be an input graph and let E = {{(xu,xv) | (u, v) ∈ E}} be the corre-
sponding multiset of edge endpoint features. We assume that each stage graph G(Suv) ∈ SE has
nodes labeled as follows: the node associated with i-th feature for the source node u is labeled with
(i, 1), and the node associated with i-th feature for the target node v is labeled with (i, 2), for every
feature i ∈ [d]. Thus, given the graph G(Suv), we can recover weighted adjacency matrix Suv , and
so there is a one-to-one mapping between them. Hence, for the following discussion, we refer to
G(Suv) and Suv interchangeably.

We first show that, given SE , we can construct FE .

Construct I : I(SE) = FE :

We first construct the set of feature hypergraph nodes. For every feature i, collect the multiset
Qi1 = {{Suv

ii }}(u,v)∈E and Qi2 =
{{

Suv
(i+d)(i+d)

}}
(u,v)∈E

and let Qi = Qi1 ∪Qi2. In words, Qi1

collects the i-th feature’s empirical c.d.f., Suv
ii = p(xu

i) = P(xi ≤ xu
i), of the source node u of all

edges. Similarly, Qi2 collects the i-th feature’s empirical c.d.f., Suv
(i+d)(i+d) = p(xv

i) = P(xi ≤ xv
i),

of the target node v of all edges. Note that Qi is a multiset, so if there are multiple nodes u (or v)
with the same i-th feature value xu

i (or xv
i), they will have the same empirical c.d.f. p(xu

i) (or p(xv
i)),

and thus Qi will record the multiplicity (number of occurrence) of such repeated c.d.f. values.

Sort the unique values in the multiset Qi in ascending order and denote the sorted sequence of unique
values as Si = (s1, s2, . . . , sm′

i
) where sl ∈ Qi for each l ∈ [m′

i] where m′
i ≤ m is the total number

of unique values for feature i (if all values have multiplicity of 1, then m′
i = m). Denote ni(sl) the

multiplicity of the value sl in the multiset Qi. Then, we can recover the feature hypergraph’s nodes
corresponding to the i-th feature as follows:

• For the smallest feature value, Ccnstruct the two nodes labeled (i, 1, 1) and (i, 1, 2).

• For l ∈ {2, 3, . . . ,m′
i} and sl ∈ Si, construct the two nodes labeled as (i, l − 1 + ni(sl−1), 1)

and (i, l − 1 + ni(sl−1), 2). l − 1 + ni(sl−1) is the order of the feature value sl, accounting for
multiplicity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Repeating the above process for all features i will recover the node set of the feature hypergraph.

Then, we reconstruct the multiset of hyperedges. Take any Suv ∈ SE . Again, for every feature i,
we have Suv

ii = p(xu
i) denoting the empirical c.d.f. of the i-th feature of the source node u. Let

Niu = {(i, ki,1, 1), . . . , (i, ki,m′
i
, 1)}, where the ki,l’s are the orders (l ∈ [m′

i]). Niu then is the
subset of hypernodes for feature i associated with the source node u in the original edge in the
input graph. Now, let l′ be the smallest integer in [m′

i] such that ki,l′ > Suv
ii = p(xu

i), and let
kui = ki,l′ − 1. Then, kui is the order of the i-th feature of node u, i.e., kui = oi(u).

Similarly, for every feature i, we have Suv
(i+d)(i+d) = p(xv

i), the empirical marginal c.d.f. when node
v is the target node of an edge. Let Niv = {(i, ki,1, 2), . . . , (i, ki,m′

i
, 2)}. Let l′′ be the smallest

integer in [m′
i] such that kl′′ > Suv

(i+d)(i+d) = p(xv
i). Then, let kvi = kl′′ − 1, and this is the order of

the i-th feature of node v, i.e., kvi = oi(v).

Hence, we have recovered the hyperedge:

Huv = {(i, kui , 1)}i∈[d] ∪ {(i, kvi , 2)}i∈[d].

where kui and kvi are defined as above.

Repeat the above process for every Suv ∈ SE , then we recover the entire multiset of hyperedges for
the feature hypergraph.

Construct I−1 : I−1(FE) = SE .

Given a feature hypergraph FE with V(FE) the set of nodes and H(FE) the multiset of hyperedges.
Our goal is to reconstruct the multiset of STAGE-edge-graphs SE = {{G(Suv) | (u, v) ∈ E}} for
some underlying edge set E.

Pick any hyperedge H = {(i, k1i , 1)}i∈[d] ∪ {(i, k2i , 2)}i∈[d] ∈ H(FE), where k1i = oi(u) is the
order of i-th feature value for some unknown node u and k2i = oi(v) the order of i-th feature value for
some unknown node v. We first construct the corresponding STAGE-edge-graph adjacency matrix,
which we denote SH . Once SH is obtained, then we have the STAGE-edge-graph G(SH).

First, we construct the diagonal entries of SH as follows. Note that the entire hypergraph is
labeled with an integer m, which indicate the total number of entities (nodes) in the original input
graph. Hence, we can recover the marginal empirical c.d.f. of the i-th feature value of each entity.
Specifically, for every feature i, we have k1i from the hyperedge H , denoting the order of i-th feature
value of the underlying source node u of an edge in the original input graph. If there is another
hypergraph node (i, k′, 1) ∈ V(FE) such that k′ > k1i , then let n1

i = k′ − 1. Otherwise, let n1
i = m.

Thus, n1
i indicates the total number of nodes in the original input graph that have the i-th feature

values smaller than or equal to the i-th feature value of the current node u. Note that n1
i accounts for

multiplicity, if there were multiple nodes having the same i-th feature value as this node. Hence, let
SH
ii = n1

i /m, which is equal to the marginal empirical c.d.f. of the i-th feature value of node u.

Similarly, for every feature i we have k2i . If there is another hypergraph node (i, k′, 2) ∈ V(FE) such
that k′ > k2i , then let n2

i = k′ − 1. Otherwise, let n2
i = m. Let SH

(i+d)(i+d) = n2
i /m. Hence, we

have filled in the diagonal entries of SH .

Second, we construct the off-diagonal entries of SH . Recall that the off-diagonal entries of STAGE-
edge-graph weighted adjacency matrices denote the empirical conditional probabilities between two
different features (Equation (2)), either within the same source node, the same target node, or between
the source and target node. Specifically, for any two features i, j ∈ [d], i ̸= j, the entry is

SH
ij = PA∼Unif(V)(xA

i ≤ xu
i | xA

j ≤ xu
j)

SH
i(j+d) = P(A,B)∼Unif(E)(xA

i ≤ xu
i | xB

j ≤ xv
j)

SH
(i+d)j = P(A,B)∼Unif(E)(xB

i ≤ xv
i | xA

j ≤ xu
j)

SH
(i+d)(j+d) = PB∼Unif(V)(xB

i ≤ xv
i | xB

j ≤ xv
j)

where (u, v) is the edge in the input graph corresponding to the hyperedge H .

We can compute these entries of SH as follows. First, given any hyperedge H ′ ∈ V(FE), denote
Kd

H′(i) for any i ∈ [d] and r ∈ {1, 2} such that (i,Kd
H′(i), r) ∈ H ′. Then, regarding our particular

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

hyperedge H of interest, for every pair of features i, j ∈ [d] with i ̸= j, we can obtain n1
i , n1

j , n2
i ,

and n2
j as defined previously. Recall that nd

i is the number of feature values of i-th feature that are
smaller than or equal to the current i-th feature value captured by H , for both the source node (r = 1)
or the target node (r = 2).

For the entry SH
ij and SH

(i+d)(j+d), they capture inner-node feature dependencies, and we notice that
the empirical conditional probabilities are defined w.r.t. random nodes sampled uniformly from the
set of all nodes. Hence, we can compute these two entries as follows:

SH
ij = min{1, n1

i /n
1
j}

SH
(i+d)(j+d) = min{1, n2

i /n
2
j}.

To compute the entries for SH
i(j+d) and SH

(i+d)j , we note that the random nodes A,B are uniformly
sampled from the set of edges E. To do so, we first define the two subsets of hyperedges H1

j and H2
j

as follows:

H1
j := {K1

H′(j) ≤ n1
j | H ′ ∈ H(FE)}

H2
j := {K2

H′(j) ≤ n2
j | H ′ ∈ H(FE)}.

In other words, H1
j is the subset of hyperedges whose node, (i,K1

H′(j), 1), has an order K1
H′(j) that

is smaller than or equal to the order of the counterpart node of the current hyperedge H . Vice versa
for H2

j . Hence, we have

|H1
j |/|H(FE)| = P(A,B)∈Unif(E)(xA

j ≤ xu
j)

|H2
j |/|H(FE)| = P(A,B)∈Unif(E)(xB

j ≤ xv
j).

Then, we define the next two subsets H1|2
i|j and H2|1

i|j as follows:

H1|2
i|j := {K1

H′(i) ≤ n1
i | H ′ ∈ H2

j}

H2|1
i|j := {K2

H′(i) ≤ n2
i | H ′ ∈ H1

j}

These two subsets help us effectively computes the empirical conditional probabilities. Namely, now
we have

|H1|2
i|j |/|H

2
j | = P(A,B)∈Unif(E)(xA

i ≤ xu
i | xB

j ≤ xv
j)

|H2|1
i|j |/|H

1
j | = P(A,B)∈Unif(E)(xB

i ≤ xv
i | xA

j ≤ xu
j)

Thus, we set the adjacency matrix entries for inter-node dependencies to

SH
i(j+d) = |H1|2

i|j |/|H
2
j |

SH
(i+d)j = |H2|1

i|j |/|H
2
j |

Now that we have constructed a mapping I mapping SE to FE , and another mapping I−1 mapping
FE to SE , we now want to check that they are valid bijections. To show this, we show that
I−1 ◦ I = Identity, and I ◦ I−1 = Identity.

Show that I−1 ◦ I = Identity

Let SE be an arbitrary multiset of STAGE-edge-graphs. Let F ′ = I(SE) and S′′ = I−1(F ′) =
I−1(I(SE)). First, we observe that the mapping I transforms each element G(Suv) ∈ SE to
one hyperedge H ′ ∈ F ′. Similarly, the mapping I−1 transforms each hyperedge H ′ ∈ F ′ to one
STAGE-edge-graph G′′ ∈ S′′. Hence, as long as we show that, for any G(Suv) ∈ SE , the composed

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

transformation I−1◦I produces a STAGE-edge-graph G′′ such that G(Suv) = G′′, we can conclude
I−1 ◦ I = Identity.

To observe this, we first note that G′′ has the same set of labeled nodes with G, and that each node
(i, r), i ∈ [d], r ∈ {1, 2} has the same empirical marginal c.d.f. values. Similarly, between any two
nodes (i1, r1) and (i2, r2), G and G′′ will have the same edge attribute for the edge ((i1, r1), (i2, r2)),
which corresponds to the empirical conditional probabilities between features i1 and i2 and between
node placement in the original edge (source or target) r1 and r2. Thus, G = G′′.

Show that I ◦ I−1 = Identity

Let FE be an arbitrary feature hypergraph. Let S′ = I−1(FE) and F ′′ = I(S′). Similarly, as long
as we show that, for any hyperedge H ∈ FE , the composed transformation I ◦ I−1 produces a
hypergraph H ′′ such that H = H ′′, we can conclude that I ◦ I−1 = Identity.

To observe this, we note that every hyperedge (i, k, r) ∈ H , where i ∈ [d], 1 ≤ k ≤ m′
i, r ∈ {1, 2},

will be recovered in H ′′. This is because each (i, k, r) ∈ H corresponds to a unique labeled node
(i, r) in the STAGE-edge-graph G′, which will be used to construct a node (i, k′′, r) in H ′′ under the
mapping I . In terms of the order k, the mapping I−1 will converts it into the marginal empirical c.d.f.
value, which is treated as the attribute of node (i, r) in the STAGE-edge-graph G′. The mapping I,
on the other hand, will convert this marginal empirical c.d.f. value into the order k′′ for the node
(i, k′′, r) in H ′′, guaranteeing k′′ = k. Thus, every node (i, k, r) that is in H is also in H ′′, and there
will be no additional nodes created for H ′′. Hence, H = H ′′ for every hyperedge H ∈ FE , and thus
I ◦ I−1 = Identity.

In conclusion, we have shown two mappings, I and I−1, and have shown that they are the inverse
transformation of each other. Hence, I is a bijective mapping between the multiset of STAGE-edge-
graphs and feature hypergraph.

Given the bijective mapping in Lemma A.4 between the multiset of STAGE-edge-graphs with unique
feature identifiers and the feature hypergraph, and the fact that the feature hypergraph allows for a
maximal invariant graph representation (Lemma A.3), it follows that the set of STAGE-edge-graphs
can also yield a maximal invariant representation of the original input graph. This observation is
formalized as below, which is our second theoretical contribution:

Theorem 3.3. Given the endpoint features E (Definition 3.1) of a graph G = (V,E,X), there exists
an optimal parameterization θ∗g , θ

∗
s for a most expressive GNN encoder Mg and a most-expressive

multiset encoder Ms, respectively, such that Mθ∗
s ,θ

∗
g
(G) := Ms

θ∗
s

({{
Mg

θ∗
g
(G(Suv)) : (u, v) ∈ E

}})
such that any test T (E) that measures the dependence of E’s endpoint features has an equivalent
function h within the space of Multilayer Perceptrons (MLPs) that depends solely on the graph
representation Mθ∗

s ,θ
∗
g
(G), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗

s ,θ
∗
g
(G)).

Proof. To show invariance, let G1 = (V,E,X2) and G2 = (V,E,X2) be two graphs such that
f(X1) = X2 for some groupoid action f in the COGF. Let E1 and E2 be the corresponding edge end-
point features respectively, from which we have f(E1) = E2. Let S1E = {{G(Suv

1) | (u, v) ∈ E}}
and S2E = {{G(Suv

2) | (u, v) ∈ E}} be the corresponding STAGE-edge-graphs respectively.

Since f(E1) = E2, and the feature hypergraph is invariant to COGF (shown in the proof for
Lemma A.3), we have FE1

= FE2
. And since there is a one-to-one mapping between the mul-

tiset of STAGE-edge-graphs and the feature hypergraph, we have S1E = S2E . Hence,{{
Mθ∗

g
(Suv

1) | (u, v) ∈ E
}}

=
{{

Mθ∗
g
(S)

}}
S∈S1E

=
{{

Mθ∗
g
(S)

}}
S∈S2E

=
{{

Mθ∗
g
(Suv

2) | (u, v) ∈ E
}}

.

As a result,

Mθ∗
s ,θ

∗
g
(G1) = Ms

θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

1)) | (u, v) ∈ E
}}

)

= Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

2)) | (u, v) ∈ E
}}

) = Mθ∗
s ,θ

∗
g
(G2).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To show maximality, Let G1 and G2 be two graphs such that Mθ∗
s ,θ

∗
g
(G1) = Mθ∗

s ,θ
∗
g
(G2). Then,

because Ms
θ∗
s

is a most expressive multiset encoder, we have that

Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

1)) | (u, v) ∈ E
}}

) = Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

2)) | (u, v) ∈ E
}}

).

Again, since Mg
θ∗
g

is a most expressive GNN, we have

S1E = {{G(Suv
1) | (u, v) ∈ E}} = {{G(Suv

2) | (u, v) ∈ E}} = S2E .

This implies that the feature hypergraphs FE1 and FE2 are the same, FE1 = FE2 due to the bijective
mapping between multisets of STAGE-edge-graphs and feature hypergraphs. And as has been
shown in the proof of Lemma A.3, this implies there exists a groupoid action f in COGF such that
f(E1) = E2. Hence, we have shown that Mθ∗

s ,θ
∗
g
(G) is a maximal invariant representation w.r.t.

COGF.

Thus, similar to the proof of Theorem 3.2, there exists a MLP h such that for any test T (E), we have

T (E) = h(Mθ∗
s ,θ

∗
g
(G)).

A.4 COGG INVARIANCES

Definition A.5 (Component-wise order-preserving groupoid for graphs (COGG)). Denote X the
space of node features with d ≥ 1 dimensions, and G(X) the space of attributed graphs with feature
space X and m ≥ 2 entities. A graph transformation g : G(X1) → G(X2) of two feature spaces X1

and X2 is said to be a groupoid action of the component-wise order-preserving groupoid for graphs if
it can be decomposed into a permutation of node identities gnode : V → V and a transformation of
node features gfeature : X1 → X2 satisfying the following. Given G1 = (V,E1,X1) ∈ G(X1) and
G2 = (V,E2,X2) ∈ G(X2) with g(G1) = G2,

• ∀u, v ∈ V, (u, v) ∈ E1 ⇐⇒ (gnode(u), gnode(v)) ∈ E2 .

• gfeature is a COGF (Definition A.2) except for any i ∈ [d], the i-th component gfeature,i may map the i-
th dimension of X1 to a different dimension of X2, while maintaining a one-to-one correspondence
between all dimensions of X1 and X2.

A.5 STAGE AS A COGG INVARIANT REPRESENTATION

Theorem 3.4. STAGE (Section 2) is invariant to COGGs (Definition A.5).

Proof. Given a graph G = (V,E,X), a STAGE model M applies two instances of equivariant
GNNs, an intra-edge GNN and an inter-edge one, to process the input graph. Denote the intra-
edge GNN M1 and the inter-edge GNN M2. The intra-edge GNN M1 is applied onto SE :=
{{G(Suv) | (u, v) ∈ E}}, the set of STAGE-edge-graphs, to produce edge-leve embeddings:

ruv = M1(G(Suv)),∀(u, v) ∈ E

and the inter-edge GNN M2 takes the edge-level embeddings as the edge attributes onto the original
graph, i.e., making a G′ = (V,E,

{{
ruv(u,v)∈E

}}
) to produce a final graph representation:

M(G) = M2(G
′) = M2((V,E, {{ruv}}(u,v)∈E))

Now, consider a train graph Gtr = (Vtr, Etr,Xtr) with Etr and a test graph Gte = (Vte, Ete,Xte) such
that there exists a groupoid action g in the COGG (Definition A.5) satisfying g(Gtr) = Gte. As
per Definition A.5, g is composed of a node identity permutation gnode and a feature transformation
gfeature.

We first note that the multiset {{ruv}}(u,v)∈E is invariant to node identity permutation gnode because a
multiset is invariant to the permutation of its elements. Since the inter-edge GNN M2 is an equivariant
GNN, we have that

M(gnode(Gtr)) = M((gnode(Vtr), gnode(Etr), {{ruv}}(u,v)∈gnode(Etr)
)) = M(Gtr).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Hence, as long as we can show that the graph representation given by M is also invariant under
gfeature, then we together we can show that M is invariant to our groupoid action g, and that M(Gtr) =
M(Gte).

To proceed, we first note that the groupoid action gfeature, when applied to an attributed graph G, can
be expressed as gfeature(G) = (V,E, gfeature(X)), because the feature transformation only acts on
the node features but leaves the graph structure unchanged. Hence, when applying the inner-edge
GNN M1 to the multiset of STAGE-edge-graphs of a transformed input graph gfeature(G), we write
M1(gfeature(G(Suv))), for all (u, v) ∈ E.

Now, all we need to show is that the intra-edge GNN M1 produces a multiset of STAGE-
edge-graph representations that is invariant under the feature transformation gfeature, i.e.,
{{M1(G(Suv))}}(u,v)∈E = {{M1(gfeature(G(Suv)))}}(u,v)∈E . Since gfeature is COGF (Defini-
tion A.2) except it may map different training feature dimensions of Xtr to different feature di-
mensions of Xte, we can therefore further decompose it into two different components: h and f with
g = h ◦ f , where h is a mapping that permutes feature dimensions, and f is a COGF.

In Theorem 3.3, we have shown that a most expressive GNN applied to a STAGE-edge-graph
G(Suv) equipped with feature ids (which are the nodes ids in the STAGE-edge-graph because nodes
correspond to feature dimensions) produces maximal invariant representation under COGF. Hence,
this implies that the intra-edge GNN M1, when applied to each STAGE-edge-graph, without unique
node ids, will produce an invariant representation to the COGF f . Namely, for all (u, v) ∈ E,

M1(f(G(Suv))) = M1(G(f(Suv))) = M1(G(Suv)).

Note that f(G(Suv)) = G(f(Suv)) because f acts on the node and edge attributes in G(Suv)
(which are derived from the feature values), but preserve the graph structure.

On the other hand, once the node ids in STAGE-edge-graph G(Suv) is dropped, because M1 is an
equivariant GNN, we also have that the M1’s output representations are invariant to permutations of
the feature dimensions, which corresponds to the permutations of node ids in the STAGE-edge-graph.
Namely, for all (u, v) ∈ E,

M1(h(G(Suv))) = M1(G(Suv)).

Hence, together we have that for any (u, v) ∈ E,

M1(gfeature(G(Suv))) = M1(h ◦ f(G(Suv))) = M1(h(G(Suv))) = M1(G(Suv)),

Thus completing the proof.

B DATASET CONSTRUCTION

Here we describe how we construct the E-Commerce Category Dataset, the H&M Dataset, and the
Social Network Datasets (Friendster and Pokec).

B.1 E-COMMERCE CATEGORY DATASET

To test the model’s generalization to new input feature spaces, we consider a dataset of E-Commerce
users and products (Kechinov, 2020). There are 29,228,809 different product categories, such as
smartphones, shoes, and computers. We select a subset of the most popular product categories and
form an input graph from the products under each category and their respective connected users.
At test time, we hold out an entirely different graph containing unseen products, from new unseen
categories and associated users, and test the zero-shot (i.e., frozen model) performance on the test
data. In this dataset, we focus on the single task of predicting links between users and products, with
links indicating a user purchasing/viewing/carting/uncarting a product.

However, all categories originally share the same features. To ensure that the graph domains we
build have different feature types, we use GPT-4 to retrieve information specific to each category.
Specifically, the information retrieval process involves prompting GPT-4 with the following content:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

"According to the following information regarding an E-Commerce
purchase, give information about the product in the following
asked format."

"First, the product is purchased at time: " + row["event_time"] +
"."

"Second, the category of the product is " + row["category_code"] +
"."

"Third, the brand of the product is " + row["brand"] + "."
"Last, the price of the product is " + str(row["price"]) + "."
"Please provide information about the product in the following json

format."
"{json_prototype}"

The JSON prototype is different for different categories, and contains features that are specific for
the category being prompted. That is, the JSON prototype for smartphones contains, for instance,
features like display type, which is not a feature for shoes, containing instead features such as ankle
height. In the following, we report the JSON prototype for all categories.

bed

{
"type": <select from [’Twin’, ’Twin XL’, ’Full’, ’Queen’, ’King

’, ’California King’]>,
"material": <select from [’Wood’, ’Metal’, ’Upholstered’, ’

Bamboo’, ’Particle Board’, ’Composite’]>,
"bed_frame_included": <select from [’True’, ’False’]>,
"headboard_included": <select from [’True’, ’False’]>,
"footboard_included": <select from [’True’, ’False’]>,
"mattress_included": <select from [’True’, ’False’]>,
"box_spring_required": <select from [’True’, ’False’]>,
"weight_capacity_lbs": <give int in lbs>,
"bed_size_length_inches": <give float in inches>,
"bed_size_width_inches": <give float in inches>,
"bed_size_height_inches": <give float in inches>

}

desktop

{
"processor_type": <select from [’Intel Core i3’, ’Intel Core i5

’, ’Intel Core i7’, ’Intel Core i9’, ’AMD Ryzen 3’, ’AMD
Ryzen 5’, ’AMD Ryzen 7’, ’AMD Ryzen 9’, ’Apple M1’, ’ARM
other’]>,

"ram_gb": <give int>,
"storage_type_hdd_size_gb": <give int>,
"storage_type_ssd_size_gb": <give int>,
"storage_type_hybrid_size_gb": <give int>,
"graphics_card": <select from [’NVIDIA GeForce GTX 1660’, ’

NVIDIA GeForce RTX 2060’, ’NVIDIA GeForce RTX 2070’, ’NVIDIA
GeForce RTX 2080’, ’AMD Radeon RX 570’, ’AMD Radeon RX

580’, ’AMD Radeon RX 590’, ’AMD Radeon RX 5700’, ’AMD Radeon
RX 5700 XT’]>,

"operating_system": <select from [’Windows 10’, ’macOS’, ’Linux
Ubuntu’, ’Linux Fedora’, ’Linux Mint’, ’Debian’, ’FreeBSD

’]>,
"power_supply_watts": <give int>,
"cooling_system": <select from [’Air cooling’, ’Liquid cooling

’, ’Passive cooling’]>,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

"has_bluetooth": <select from [’True’, ’False’]>
}

refrigerators

{
"energy_rating": <select from [’A+++’, ’A++’, ’A+’, ’A’, ’B’, ’

C’]>,
"capacity_liters": <give int>,
"refrigerator_type": <select from [’Top Freezer’, ’Bottom

Freezer’, ’Side-by-Side’, ’French Door’, ’Mini Fridge’, ’
Commercial’]>,

"defrost_type": <select from [’Manual’, ’Frost Free’, ’
Automatic Defrost’]>,

"has_ice_maker": <select from [’True’, ’False’]>,
"has_water_dispenser": <select from [’True’, ’False’]>,
"has_smart_technology": <select from [’True’, ’False’]>,
"is_energy_efficient": <select from [’True’, ’False’]>,
"height_cm": <give float>,
"width_cm": <give float>,
"depth_cm": <give float>

}

smartphone

{
"display_type": <select from [’OLED’, ’LCD’]>,
"display_size": <give float in inches>,
"display_resolution": <give int in pixels>,
"processor_type": <give string>,
"ram": <give int in GB>,
"storage_options": <give int in GB>,
"rear_camera_primary_resolution": <give int in MP>,
"front_camera_resolution": <give int in MP>,
"operating_system": <select from [’Android’, ’iOS’, ’HarmonyOS

’, ’KaiOS’, ’Tizen’, ’Ubuntu Touch’, ’PureOS’, ’Sailfish OS
’, ’Plasma Mobile’]>,

"Battery_capacity": <give int in mAh>,
"Has_gps": <select from [’True’, ’False’]>,
"has_nfc": <select from [’True’, ’False’]>
}

shoes

{
"type": <select from [’Running’, ’Casual’, ’Formal’, ’Sports’,

’Boots’, ’Sandals’, ’Slippers’, ’Hiking’, ’Dress’, ’Work’, ’
Safety’]>,

"material": <select from [’Leather’, ’Synthetic’, ’Textile’, ’
Rubber’, ’Canvas’, ’Mesh’, ’Suede’, ’Patent Leather’, ’
Nubuck’, ’Faux Leather’]>,

"color": <give string>,
"size": <give float in UK sizes>,
"gender": <select from [’Men’, ’Women’, ’Unisex’, ’Children’, ’

Infants’]>,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

"closure_type": <select from [’Laces’, ’Velcro’, ’Slip-on’, ’
Buckle’, ’Zip’, ’Hook and Loop’, ’None’]>,

"sole_material": <select from [’Rubber’, ’Synthetic’, ’PVC’, ’
EVA’, ’Leather’, ’TPU (Thermoplastic Polyurethane)’, ’TPR (
Thermoplastic Rubber)’]>,

"water_resistant": <select from [’True’, ’False’]>,
"ankle_height": <select from [’Low-top’, ’Mid-top’, ’High-top’,

’Over the ankle’]>,
"breathability": <select from [’High’, ’Medium’, ’Low’]>,
"weight": <give float in grams>,
"origin_country": <give string>,
"seasonality": <select from [’All-season’, ’Summer’, ’Winter’,

’Rainy’, ’Spring’, ’Autumn’]>,
"eco_friendly": <select from [’True’, ’False’]>

}

After extracting features of different numbers for all categories, we also append the original two
shared features of all products (price, brand) that are considered to have a different distribution across
categories, forming the following dataset statistics.

Category Number of Nodes Number of Edges Average Degree Num Features
bed 4044 25788 6.38 13
desktop 3011 37450 12.44 12
refrigerators 2985 33520 11.23 13
smartphone 3391 31970 9.43 14
shoes 4032 54890 13.62 16

Table 3: Statistics of E-Commerce Categories

B.2 H&M DATASET

H&M has 106K products, sharing the same 25 features, and 1.37M customers, sharing the same 7
features. We sampled the interaction between the most popular 830 products and 830 customers
based on their node degrees. We discarded 14 product features since 12 of them are repetitive
(e.g. perceived colour value id is just a one-to-one mapping of perceived colour value name), 1
of them is the detail desc an English sentence that connects the other features, and 1 of them is the
article id serving as the identifier of each product. We also discarded 4 user features: customer id
as the identifier, FN and Active due to too many missing values (65% and 66% respectively), and
postal code that is overdispersed.

After picking the largest connected component of the graph formed by the 830 products and 830
users, we construct this dataset to have 77080 edges, 1580 nodes with an average degree 48.78,
and 11 features for each product node and 3 features for each user node. The product features
are: product type name, product group name, graphical appearance name, colour group name,
perceived colour value name, perceived colour master name, department name, index name, in-
dex group name, section name, garment group name. The user features are: club member status,
fashion news frequency, age.

B.3 SOCIAL NETWORK DATASETS (FRIENDSTER AND POKEC)

The original Pokec social network dataset contains 1632803 nodes and 30622564 edges and each
node has 58 features. However, 54 of them are difficult to encode either because they are random
texts input by the user or because there is no straightforward way to turn the features into totally
ordered ones. We first filtered out the nodes that contain invalid features and then sample the most
popular 150 female and male nodes each before picking the largest connected components of the
graph formed by the popular nodes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 4: Comparison of statistics between the Pokec and Friendster social network datasets after
filtering and sampling nodes.

Statistics Pokec Friendster
Number of nodes 283 1392
Number of edges 2084 3322
Number of node features 4 5

Features public, completion percentage, age, interest, occupation,
region, age music, tv

Average degree 7.363957597173145 2.3864942528735633
Minimum degree 1 1
Maximum degree 29 12
Lowest degrees [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
Nodes with lowest degrees [35, 31, 25, 21, 14] [516, 404, 213, 113, 62]
Label 0 Ratio 50.88% 46.84%
Label 1 Ratio 49.12% 53.16%

The original Friendster social network dataset contains 43880 nodes and 145407 edges and each node
has 644 features. However, most of the features are binary, which is inefficient for STAGE to encode
(i.e. will need 644*2 nodes in each STAGE feature-edge graph). We find out the features are in the
format of a meta feature (e.g. occupation) followed by a more detailed feature (e.g. writer). Therefore,
we turned the binary features that share the same meta feature into a multicategorical feature. We
then filtered out the nodes that have only one active binary feature under each meta feature (otherwise
the multi-category does not make sense) and pick the largest connected components of the graph
formed by the these nodes.
In the end, the statistics of Pokec and Friendster datasets are available in Table 4.

C EXPERIMENT DETAILS

For Figure 3, Table 1, and Figure 4 We use the default NBFNet-PyG configuration for the inductive
WN18RR dataset (Zhu et al., 2021c), except for a few specific parameters. The input dimension
for the node feature is set to 256, and the model includes six hidden layers with dimensions [256,
256, 256, 256, 256, 256], making a total of seven layers. For STAGE, we use 1 layer of GINEConv
(Brossard et al., 2021) for the GNN on STAGE-edge-graph, which produces an edge representation
of dimension 256. We also append an extra p value to each edge in the STAGE-edge-graph for
expressivity. All model are trained with a batch size of 32 over 30 epochs.

For Figure 3, Figure 4, and the E-Commerce columns of Table 1 we average over seeds 0, 1, 2. For
the H&M columns of Table 1, we average over seeds 1024, 1025, 1026.

For Table 2, we average over seeds 32, 33, and 34 using the following configuration. The input
feature dimension is set to 64, with 128 as the dimension of hidden channels. The model uses 2 layers
of GINEConv (Brossard et al., 2021). The learning rate for the optimizer was set to 0.0001, with
a dropout rate of 0.5 to mitigate overfitting. Training was carried out for 400 epochs. Additionally,
STAGE is deployed with 2 layers of GNN on STAGE-edge-graph with GINEConv and an edge
representation of dimension 32.

D AGE REGRESSION EXPERIMENT RESULTS

Table 5 shows that the zero-shot regression on age across different social networks is a challenging
task, particularly when the age distributions of the datasets are drastically different. Figure 5 shows
that the age distribution in the Pokec dataset is skewed towards younger users, with notable frequencies
for ages such as 0 (invalid data), 18, and 20, while ages above 42 are scarcely represented. In contrast,
the Friendster dataset contains a much broader range of ages, including significant numbers of users
aged in their mid-twenties, such as 25, with smaller frequencies for users up to age 91. This disparity
in distribution—where Pokec’s frequencies are centered around younger users and Friendster’s are

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 5: Zero-shot test Mean-Square Loss (lower is better) of STAGE and baselines on the soc-pokec
dataset with regression tasks on predicting the user’s age. Models were trained on the same sample of
the Friendster dataset in Section 4. All models show the same bad performance on doing this very
challenging task because the root mean squared error (RMSE) of constantly predicting the mean of
all age values is 10.7. We use the same configurations as Table 2.

Model RMSE (↓) ± Std
GINE-structural 10.99±0.000
GINE-gaussian 10.99±0.000
GINE-normalized 10.99±0.000
GINE-llm 10.99±0.000
GINE-age 10.99±0.000

GINE-STAGE (Ours) 10.99±0.000

0 10 20 30 40
Age

0

20

40

60

80

100

Fr
eq

ue
nc

y

Pokec Age Distribution

20 30 40 50 60 70 80 90
Age

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Friendster Age Distribution

Figure 5: Comparison of Age Distributions in Pokec and Friendster Datasets. The top histogram
shows the age distribution for the Pokec dataset, where a significant number of users have an age
of 0, followed by a noticeable peak around the age of 20. The bottom histogram illustrates the age
distribution for the Friendster dataset, with a strong concentration of users around the age of 25, and
a smaller presence of older individuals.

more spread across the adult age spectrum—poses a substantial difficulty for models attempting to
generalize across the two networks.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 6: Zero-shot test accuracy (higher is better) of STAGE and baselines on the soc-pokec dataset.
Models were trained on a sample of the Friendster dataset. GCN-STAGE demonstrates the best
zero-shot test accuracy, surpassing all other methods in both average accuracy and stability.

Model Accuracy (↑) ± std
GCN-structural 0.547±0.0658
GCN-gaussian 0.567±0.0382
GCN-normalized 0.570±0.0315
GCN-llm 0.526±0.0300
GraphAny 0.591±0.0083

GCN-STAGE (Ours) 0.593±0.0046

E ABLATION STUDY

In this section, we provide ablation studies to further investigate the effectiveness and versatility of
STAGE. Experiments in Appendix E.1 complement the main results in the paper by exploring whether
STAGE is effective on alternative GNN backbones and configurations. Experiments in Appendix E.2
then study if STAGE can outperform a model trained on the common features shared between train
and test domain, validating whether STAGE truly leverages dependencies among unseen features at
test time to make predictions.

E.1 EVALUATING STAGE WITH GCN AS THE BACKBONE GNN

In the main experiments, we employed GINE + NBFNet for link prediction and GINE + GINE for
node classification as the backbone GNN configurations. A natural question arises: Can STAGE be
effective when using other backbone GNN architectures? To address this, we propose GCN-STAGE
(GINE + GCN (Kipf & Welling, 2016)), where we replace the second GINE with a modified GCN to
perform message passing on the original graph. We choose GCN as it is a well-known baseline for
node classification tasks. We modified GCN to process edge attributes by applying an MLP layer to
edge attributes before incorporating them into the edge messages. The first GINE model operating on
STAGE-edge-graphs remained unchanged.

Table 6 presents the results, which demonstrate that GCN-STAGE outperforms all baseline methods in
terms of average accuracy. Comparing to the other GCN-backbone models, GCN-STAGE outperforms
with a 7.33% relative improvement, and achieves an order-of-magnitude smaller standard deviation,
showcasing the stability and consistency of predictions across random seeds. Furthermore, same
as GINE-STAGE, GCN-STAGE also outperforms GraphAny (Zhao et al., 2024), demonstrating
that STAGE is effective on both GCN and GINE. We note that, however, the gain observed with
GCN-STAGE is slightly lower than that of GINE-STAGE as shown in Table 2. This is not surprising,
as GCN has been shown to have lesser expressivity than GINE (Xu et al., 2018).

These results demonstrate the effectiveness of STAGE regardless of the backbone GNN architecture
(GINE or GCN), reinforcing the versatility and general applicability of STAGE across tasks and
architectures, further solidifying its strength as a robust framework.

E.2 COMPARISON WITH MODELS TRAINED ON COMMON FEATURES

In the second ablation study, we aim to investigate whether STAGE is truly leveraging dependencies
among multiple unseen node attributes to make zero-shot predictions on the test domain, rather than
simply relying on the common attributes shared between train and test. In particular, the attribute
“price” and “brand” are shared between the E-commerce datasets (Appendix B.1), and the attribute
“age” is shared between Friendster and Pokec (Appendix B.3). Hence, we compare STAGE to a model
with the same backbone GNN trained to utilize the shared feature to make predictions. We name these
models NBFNet-price on E-commerce datasets for link prediction, and GINE-age on Friendster and
Pokec for node classification. We do not experiment with training on the “brand” attribute because its
values are distinct (or the distribution have different supports) in different product categories.

Tables 7 and 8 shows the results of this ablation study. NBFNet-STAGE outperforms NBFNet-price
with a relative improvement of 69.8% and GINE-STAGE outperforms GINE-age with a relative

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 7: Zero-shot Hits@1 and MRR of NBFNet-STAGE and NBFNet-price on the E-Commerce
dataset. Models are trained on all combinations of four graph domains and tested on the remaining
domain. NBFNet-STAGE significantly outperforms NBFNet-price, demonstrating that STAGE
effectively utilizes more information than common feature (price) shared between attribute
domains.

Model Hits@1 (↑) MRR (↑)
NBFNet-price 0.2713 ± 0.0280 0.3263 ± 0.0301
NBFNet-STAGE (Ours) 0.4606 ± 0.0123 0.4971 ± 0.0073

Table 8: Zero-shot test accuracy of GINE-STAGE and GINE-age on the social network datasets.
Models are trained on Friendster and zero-shot tested on Pokec. GINE-STAGE outperforms GINE-
age, demonstrating that STAGE effectively utilizes more information than common feature
(age) shared between attribute domains.

Model Accuracy (↑)
GINE-price 0.582 ± 0.0657
GINE-STAGE (Ours) 0.652 ± 0.0042

improvement of 12.0%. These results corroborates our statement that STAGE is capable of leveraging
complex dependencies among multiple attributes to make predictions, even when said attributes
are unseen during training, as STAGE significantly outperforms the models relying only on shared
attributes.

F COMPLEXITY ANALYSIS AND RUNTIME COMPARISON

F.1 STAGE COMPLEXITY

Here we analyze the runtime complexity of STAGE. In particular, we analyze NBFNet-STAGE (used
for link prediction) and GINE-STAGE (used for node classification).

Let p be the number of features, d the dimension of internal node and edge embeddings, |E| the
number of edges, and |V | the number of nodes in the input graph. For all tasks, STAGE consists of
three steps:

1. Fully Connected STAGE-edge-graph Construction: This step requires O(|E|p2) operations
because each fully connected STAGE-edge-graph has 2p nodes, and each edge in the original
graph induces a fully connected STAGE-edge-graph.

2. Inference on STAGE-edge-graphs: We use 2 shared layers of GINE for all STAGE-edge-graphs.
A single layer on one fully connected STAGE-edge-graph has complexity O(pd+p2d) = O(p2d),
since we have 2p d-dimensional nodes and (2p)2 d-dimensional edges in each STAGE-edge-graph.
Obtaining edge embeddings across all STAGE-edge-graphs takes O(|E|p2d).

3. Inference on the original graph: For link prediction tasks, we use NBFNet to perform message
passing on the original graph, which requires O(|E|d+ |V |d2) for one forward pass (Zhu et al.,
2021c). For node classification tasks, we use GINE again, which requires O(|E|d) time.

Hence, in total, running one forward pass has a complexity of O(|E|p2d + |E|d + |V |d2) for
NBFNet-STAGE, and O(|E|p2d+ |E|d) for GINE-STAGE.

F.2 TRAINING WALL TIME COMPARISON

The analysis above shows the theoretical complexity of STAGE. Now we study whether STAGE
poses a significant computational overhead when deployed in practice. To this end, we measured
the average wall time per training epoch of NBFNet-STAGE on the E-Commerce Stores dataset (see
Appendix B.1) using an 80GB A100 GPU. We chose this dataset because it is the largest one in our
experiment with in total 17463 nodes, 183618 edges, and up to 16 node attributes. Thus it produces
the most number of STAGE-edge-graphs and showcases the most explicit runtime contrast. For quick

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 9: Average per-epoch training time and zero-shot Hits@1 performance of NBFNet-STAGE and
baselines on E-Commerce dataset. Time is measured on an 80GB A100 GPU and averaged across
3 training epochs. NBFNet-STAGE is 7.83% slower than the fastest baseline NBFNet-llm, a
reasonable trade-off for its performance gains.

Model Wall Time per Training Epoch (seconds) Zero-shot Hits@1 on H&M
NBFNet-raw 318.65 0.0005 ± 0.0004
NBFNet-gaussian 322.13 0.0925 ± 0.0708
NBFNet-structural 322.31 0.2231 ± 0.0060
NBFNet-llm 316.55 0.2302 ± 0.0015
NBFNet-normalized 316.87 0.2286 ± 0.0010

NBFNet-STAGE (Ours) 341.36 0.4666 ± 0.0020

comparison, we also display the zero-shot Hits@1 performance when these models are tested on the
H&M dataset, which is the result shown in Table 1.

Table 9 displays the runtime comparison results. We observe that NBFNet-STAGE is 7.83% slower
than the fastest baseline (NBFNet-llm). Nevertheless, this computational overhead is not extreme but
a reasonable tradeoff for its performance gains. The additional time is due to computing STAGE-edge-
graph embeddings during each forward pass, while building the STAGE-edge-graphs is a one-time
pre-processing step. In practice, the additional factor in the complexity has never prevented us from
running in the datasets we considered.

G ADDITIONAL DISCUSSION OF RELATED WORK

Graphs Generalization under Distribution Shifts. Several works address distribution shifts
between train and test sets over the same feature space. For instance, (You et al., 2022; Zhu et al.,
2021b) employ learned augmentations to mitigate differences in node attribute distributions, training
a feature extractor that cannot be used to identify the domain of the node, but these methods are not
designed to generalize across distinct attribute spaces. Meanwhile, extensive research has focused on
domain adaptation and transfer learning for GNNs (Dai et al., 2022; Li et al., 2020; Kong et al., 2022;
Pei et al., 2020; Veličković et al., 2019; Wiles et al., 2022; Zhang et al., 2019; Zhu et al., 2021a),
typically assuming access to both source and target domains. In contrast, our work tackles the more
challenging scenario of generalizing not only to unseen domains, but also to entirely new attribute
spaces.

Foundation Models for Graph Data. Foundation models for graph data aim to create versatile
graph models capable of generalizing across different graphs and tasks. Despite growing interest,
achieving a truly universal graph foundation model remains challenging, especially due to the
complexities in designing a suitable graph vocabulary that ensures transferability across datasets
and tasks (Mao et al., 2024). Initial efforts in this direction convert attributed graphs into texts
and apply an LLM, but this methodology, while promising, risks information loss and may limit
transferability (Collins et al., 2024; Gruver et al., 2024; Schwartz et al., 2024). For instance, OFA (Liu
et al., 2024) uses frozen LLMs to generate features, and then trains a GNN to perform multiple tasks,
while Chen et al. (2024b) explores the potential of LLMs as predictors or enhancersof graph-based
predictions. Other methods, like LLaGA (Chen et al., 2024a) and GraphGPT (Tang et al., 2024), use
instruction tuning to map graph data into the LLM embedding space. Similarly, Graphtext (Zhao
et al., 2023) and Unigraph (He & Hooi, 2024) adopt NLP techniques, with Graphtext (Zhao et al.,
2023) translating graphs into natural language via a syntax tree encapsulating node attributes and
inter-node relationships, and Unigraph (He & Hooi, 2024) learning a unified graph tokenizer in a
self-supervised fashion to generalize across different attribute domains. Prodigy (Huang et al., 2023)
further encodes textual features with an LLM and leverages prompt-based graph representations for
task generalization.

In contrast, recent approaches forgo LLMs entirely. For instance, Xia & Huang (2024) employs SVD
decomposition of the feature matrix to handle shifts to new datasets. Lachi et al. (2024) employs a
Perceiver-based encoder to compress domain-specific features into a shared latent space. Zhao et al.
(2024) proposes GraphAny, specifically designed for node classification, which models inference

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

on new graphs as an analytical solution to LinearGNNs, and addresses generalization by learning
attention scores to fuse predictions from multiple LinearGNNs. Mao et al. (2023) introduces the
concept of feature proximity as a key factor in determining the likelihood of links forming between
nodes. Unfortunately, the definition of proximity still depends on the feature space.

Another line of work addresses zero-shot domain transferability on heterogeneous graphs such as
knowledge graphs, where both the nodes (entities) and edge types (relations) may be new and unseen
on the test-time graph. For instance, ISDEA+ (Gao et al., 2023) proposes a set aggregation layer over
the set of edge-type-specific graph representations to ensure equivariance to edge type permutations.
Gao et al. (2023) also proposes a theoretical framework named double equivariance that underlies the
necessary design principles of models capable of tackling such a task. In contrast, the theoretical
framework of our work addresses transferability to unseen attribute domains and proposes a novel
connection between statistical tests and the graph regression task. ULTRA (Galkin et al., 2024), on
the other hand, builds a relation graph that captures the interactions among different edge types, and
applies a two-stage pipeline based on NBFNet (Zhu et al., 2021c) to ensure equivariance to edge type
permutations. Similarly, InGram (Lee et al., 2023) also builds a relation graph, but its relation graph
differs from ULTRA’s in that it computes a set of affinity scores between pairs of relations and use
them as edge weights on the relation graph. In comparison, the STAGE-edge-graphs built by our
method captures the statistical dependencies among different feature dimensions of node attributes
in the graph. However, all of these methods soly rely on graph structure and disregard attributes or
features in nodes or edges. In contrast, our work focus on attributed graphs, which is capable of
leveraging important information carried in the node attributes.

However, a definitive solution for a universal graph foundation models is yet to arrive, and the search
for such a model remains an open challenge.

Maximal Invariants and Statistical Testing. Bell (1964) first explored the relationship between
invariant and almost-invariant tests in hypothesis testing. Berk & Bickel (1968) and Berk (1970)
extended Bell’s approach to show that almost-invariant tests are equivalent to invariant ones under
certain conditions, which are conditions met in our work. Later, Berk et al. (1996) explored the
interplay between sufficiency and invariance in hypothesis testing by providing counterexamples
that demonstrate how these concepts, typically assumed to be equivalent under certain conditions,
can differ significantly in other scenarios. More recently, Koning & Hemerik (2024) improves the
efficiency of hypothesis testing under invariances for large transformation groups such as rotation or
sign-flipping without resorting to sampling.

31

	Introduction
	STAGE: zero-shot generalization to distinct attribute domains
	Statistical underpinnings of STAGE
	Statistical dependence of node-pair features as a graph regression
	Transferability: STAGE can model measures of statistical dependencies and is invariant to a family of domain transformations

	Experiments
	Zero-shot link prediction on unseen domains
	Zero-shot link prediction with extreme domain shift
	Zero-shot node classification on unseen domains
	Generalization when training on multiple domains

	Related Work
	Conclusion
	Proofs and further theoretical results
	Groupoids
	Statistical tests as graph regression on feature hypergraphs
	Correspondence between STAGE-edge-graphs and feature hypergraphs
	COGG Invariances
	STAGE as a COGG Invariant Representation

	Dataset Construction
	E-Commerce Category Dataset
	H&M Dataset
	Social Network Datasets (Friendster and Pokec)

	Experiment Details
	Age Regression Experiment Results
	Ablation Study
	Evaluating STAGE with GCN as the backbone GNN
	Comparison with models trained on common features

	Complexity Analysis and Runtime Comparison
	STAGE Complexity
	Training wall time comparison

	Additional discussion of related work

