
Self-Supervised Learning of Graph Representations
for Network Intrusion Detection

Lorenzo Guerra1,2 Thomas Chapuis2 Guillaume Duc1

Pavlo Mozharovskyi1 Van-Tam Nguyen1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
{name.surname}@telecom-paris.fr

2Ampere Software Technology, Guyancourt, France
{name.surname}@ampere.cars

Abstract

Detecting intrusions in network traffic is a challenging task, particularly under
limited supervision and constantly evolving attack patterns. While recent works
have leveraged graph neural networks for network intrusion detection, they often
decouple representation learning from anomaly detection, limiting the utility of
the embeddings for identifying attacks. We propose GraphIDS, a self-supervised
intrusion detection model that unifies these two stages by learning local graph
representations of normal communication patterns through a masked autoencoder.
An inductive graph neural network embeds each flow with its local topological
context to capture typical network behavior, while a Transformer-based encoder-
decoder reconstructs these embeddings, implicitly learning global co-occurrence
patterns via self-attention without requiring explicit positional information. During
inference, flows with unusually high reconstruction errors are flagged as potential
intrusions. This end-to-end framework ensures that embeddings are directly op-
timized for the downstream task, facilitating the recognition of malicious traffic.
On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and
99.61% macro F1-score, outperforming baselines by 5–25 percentage points.1

1 Introduction

As more devices are connected to the internet, the frequency and sophistication of cyberattacks
continue to rise, exposing vulnerabilities across diverse network environments, from enterprise
infrastructures to embedded devices. These threats are difficult to anticipate, as they evolve rapidly
and exploit previously unknown weaknesses, making timely and accurate detection essential for
protecting critical services. Although numerous network intrusion detection methods have been
proposed, most rely on supervised learning and depend on large volumes of labeled data, which
are expensive and labor-intensive to obtain. Additionally, supervised models are typically trained
on known patterns, limiting their ability to detect novel threats and requiring frequent retraining to
remain effective. Unsupervised methods have also been explored, but they often struggle to capture
the complexity of network traffic, reducing their effectiveness against subtle or sophisticated attack
patterns [1].

Self-supervised learning has emerged as a promising alternative by enabling the extraction of rich
representations from data without the need for explicit labels. In the context of network intrusion
detection, recent studies have leveraged network topology through graph-based methods [2], achieving
substantial improvements over traditional techniques. As computer networks can be naturally

1Code and pre-trained models: https://github.com/lorenzo9uerra/GraphIDS.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/lorenzo9uerra/GraphIDS

MAE

Encoder

Decoder

Figure 1: Overview of GraphIDS: the model detects network intrusions by evaluating the reconstruc-
tion error of graph-based flow embeddings. Flows representing attacks (highlighted in red) typically
yield higher reconstruction errors, as they deviate from normal communication patterns.

represented as graphs, where nodes represent hosts and edges represent communication flows, we
can employ Graph Neural Networks (GNNs) to learn meaningful representations that facilitate
modeling the normal network behavior. However, unlike typical GNN applications, where the
relevant information is encoded in node features and their connections, network intrusion detection
primarily encodes critical information within the edges, which reflect either normal host interactions
or malicious activities.

Nevertheless, most existing approaches decouple graph representation learning from the anomaly
detection task, which limits their ability to learn meaningful embeddings that are directly useful for
detecting intrusions. Moreover, the self-supervised pretext tasks frequently rely on the availability
of negative samples or prior knowledge to construct them—assumptions that often do not hold in
practical intrusion detection scenarios, where labeled anomalies or well-defined negative examples
are scarce or entirely unavailable.

To address these limitations, we propose GraphIDS, a self-supervised model jointly trained to
reconstruct local graph representations of benign network traffic, using reconstruction error to
identify potential intrusions (Figure 1). In network intrusion detection, anomalous behavior often
manifests through irregular communication patterns and deviations from typical structural or statistical
relationships. The GNN encoder captures local topological context by modeling the immediate
neighborhood of each flow, integrating both structural and edge-level features that characterize the
underlying structure of benign traffic.

The masked autoencoding objective, applied to batches of flow embeddings, enables the Transformer
to learn broader contextual dependencies and co-occurrence patterns across the network. During
training, random attention masking forces the model to infer missing information from partial context,
encouraging the learning of a robust distribution over normal network behavior. At inference time,
flows that significantly deviate from this learned distribution exhibit high reconstruction errors and are
flagged as potential intrusions. This end-to-end framework enables the model to generalize effectively
to unseen attack types and dynamic network environments without relying on supervision or negative
samples.

We evaluate our model on multiple NetFlow-based datasets for Network Intrusion Detection Systems
(NIDS), including NF-UNSW-NB15 and NF-CSE-CIC-IDS2018. We use both their second version
(v2), which includes 43 NetFlow features, and their third version (v3), which extends these with 10
additional temporal features, resulting in a total of 53 features [3][4].

This work makes the following key contributions:

1. We present GraphIDS, a novel self-supervised framework that jointly trains a GNN encoder
and a Transformer-based masked autoencoder to reconstruct local representations of benign
network traffic. By leveraging both topological and contextual information in an end-to-end
manner, GraphIDS directly optimizes flow embeddings for anomaly detection, without

2

relying on labeled data or prior knowledge of attack patterns. To the best of our knowledge,
this is the first application of a jointly trained GNN-Transformer architecture for network
intrusion detection (Section 3).

2. We conduct extensive experiments on NIDS datasets, covering diverse network environ-
ments and a wide range of attack types. GraphIDS achieves state-of-the-art performance,
outperforming existing methods by 5% to over 25% in both macro F1 and PR-AUC. These
results demonstrate its strong generalization to previously unseen attacks, highlighting its
practical effectiveness for real-world intrusion detection (Section 4).

2 Related Work

Self-supervised Masked Modeling: Masked modeling has emerged as a fundamental technique
for self-supervised learning across various data modalities. In natural language processing, BERT is
trained to reconstruct randomly masked tokens through a bidirectional Transformer, thereby learning
to generate word embeddings that are transferable to a wide range of downstream tasks [5]. Similarly,
in computer vision, masked autoencoders are trained to reconstruct randomly masked patches of an
image by employing an asymmetric encoder-decoder architecture, compelling the model to extract
rich contextual representations from the input data [6]. GraphMAE [7] extended this concept to the
graph domain by training a graph masked autoencoder to reconstruct masked node features in order
to learn meaningful graph representations.

All of these models share a common objective: learning the normal structure or contextual dependen-
cies of the data through a reconstruction-based task. This paradigm is particularly well-suited for
anomaly and intrusion detection, as anomalies, such as attacks, typically lead to poor reconstruction,
and can thus be effectively identified by quantifying the reconstruction error relative to the original
data. For example, Georgescu [8] applied MAE to medical imaging, training the model exclusively
on healthy samples to identify abnormal scans based on reconstruction discrepancies. Similarly,
BERT-like models have also been adapted to textual anomaly detection, enabling the identification of
system malfunctions or malicious activity in log data by capturing deviations from learned normal
patterns [9].

Graph Neural Networks for Supervised Intrusion Detection: GNNs provide a principled frame-
work for integrating graph topology with node/edge attributes into learned embeddings. Foundational
models such as Graph Convolutional Networks (GCN) formulate spectral convolutions on graphs and
learn node embeddings by aggregating information from local neighborhoods [10]. GraphSAGE [11]
introduces an inductive approach that learns to aggregate and transform features from a node’s
neighbors to embed unseen nodes or graphs. These architectures propagate node features through
edges to encode local topology and features simultaneously. More advanced variants, including Graph
Attention and Graph Transformers, enhance expressivity, but the fundamental principle remains the
same: summarizing each node’s local structure into its embedding.

While standard GNNs primarily focus on node embeddings, edge-level representations can also be
learned by various techniques, such as employing the line graph, or combining end-point embeddings.
For example, E-GraphSAGE [12] explicitly incorporates edge features into GraphSAGE by per-
forming message passing that aggregates edge attributes and node attributes together. With network
flow data represented as a graph of endpoints connected by edges (flows), E-GraphSAGE becomes
crucial for capturing edge features (e.g., flow statistics) along with network topology. Alternatively,
Friji et al. [13] propose a novel graph construction in which each network flow is represented as a
node within a directed “flow graph”. This formulation allows complex behaviors such as multi-step
attacks and spoofing to emerge as recognizable graph patterns. In another example, Zhou et al. [14]
introduces a NIDS that exclusively leverages topology information to detect botnet activity, such
as the hierarchical organization of centralized botnets or the fast-mixing structure of decentralized
ones. Collectively, these studies highlight the inherent capability of GNNs to model rich structural
properties in network data. However, they rely on labeled traffic, which constrains their deployment
in practical, large-scale environments where annotated data is scarce or unavailable.

Graph Neural Networks for Self-Supervised Intrusion Detection: To address the limitations
imposed by the need for labeled data, Caville et al. [2] recently introduced Anomal-E, a self-supervised
framework designed to detect attack patterns without relying on flow labels. The approach begins

3

Source IP

172.1.1.1

172.1.1.1

37.1.5.5

Destination IP

37.1.5.5

37.1.4.3

172.1.1.1

135.5.3.537.1.4.3

...

...

...

...

...

Label

1

0

0

1

......

172.1.1.1

37.1.4.3
135.5.3.5

37.1.5.5

Figure 2: Illustration of the graph construction process. Network flows are transformed into a directed
graph, where nodes represent hosts (IP addresses) and edges correspond to communication flows
between them. Edge features capture flow statistics such as packet count, byte count, and protocol
information.

with the pretraining of a GNN-based encoder using a contrastive pretext task, which is then used to
generate representative flow embeddings. Afterwards, a separate unsupervised algorithm is applied
to identify the anomalous embeddings.

In contrast to Anomal-E, our method adopts an end-to-end training paradigm that jointly optimizes
a GNN with the Transformer encoder-decoder within a masked reconstruction framework. This
design enables the GNN to learn representations that are intrinsically aligned with the intrusion
detection objective. Moreover, our approach eliminates its reliance on contrastive learning and
negative samples, thereby removing the necessity for prior knowledge of attack patterns. Instead, the
model is trained exclusively on benign traffic, which is generally more accessible and easier to obtain
in real-world environments. This design choice allows the system to robustly capture the normal
behavior of network traffic, making it particularly suitable for practical deployment in dynamic and
evolving threat landscapes, where the nature of attacks can change significantly over time.

3 Method

3.1 Graph Construction and Framework Introduction

We define a network flow as a unidirectional sequence of packets that share at least five attributes [15]:
ingress interface, source IP address, destination IP address, IP protocol number, and IP Type of
Service. When UDP or TCP protocols are used, source and destination ports are also included,
providing additional granularity to uniquely identify individual flows.

Using the collected network flows, we construct a graph representation of the computer network,
where nodes correspond to hosts (identified by IP addresses) and edges represent communication
flows. Each flow defines a directed edge from a source node (source IP address) to a destination
node (destination IP address), with edge features derived from flow statistics that provide a high-level
summary of the communication. The overall graph construction process is illustrated in Figure 2.

Assuming the ability to monitor communications among network hosts to be protected from malicious
activity, we begin by collecting and aggregating network flows to obtain a comprehensive view of
network activity over time. These flows are then used to construct the graph, on which we apply a
GNN to compute flow-level embeddings that include neighborhood context, integrating information
about recent local communications. To learn the normal behavior of the network, we train the
model to reconstruct these local graph representations, enabling it to detect anomalies based on
reconstruction errors.

3.2 Graph Representation Learning

To incorporate local graph context into flow embeddings, we employ E-GraphSAGE [12], an extension
of the original GraphSAGE [11] which includes edge features during the embedding process. As
edges are the most informative elements in our graphs, this approach allows GraphIDS to integrate
local topological patterns into each flow representation, improving its ability to distinguish between
benign and malicious activity.

4

Unlike early GNN models such as the original GCN [10], which are mainly transductive (i.e., they
can only make predictions on nodes seen during training), E-GraphSAGE is designed for inductive
learning. It can generalize to unseen edges and graphs at inference time by learning aggregation
functions over neighborhoods rather than depending on a fixed adjacency matrix.

To ensure scalability, we use neighborhood sampling, which makes the method efficient in both
memory and computation and enables training on large graphs using mini-batches. In addition, by
not relying on a fixed graph structure, E-GraphSAGE is well-suited for network intrusion detection,
where the underlying graph is dynamic and affected by noise.

Although in principle deeper GNN architectures could be employed, we restrict our GNN to a
1-hop neighborhood to efficiently capture informative local context, a design choice validated by
our ablation study in Appendix C.5. In network intrusion detection, the immediate neighborhood of
a flow often reveals meaningful patterns that are indicative of malicious behavior, such as unusual
connections or bursty communications. Global co-occurrence patterns, which may span multiple
flows or hosts, are instead captured by the Transformer operating over batches of flow embeddings.
This separation of roles allows GraphIDS to jointly model both local and global dependencies without
incurring the computational overhead of deeper GNN layers.

To further reduce memory usage when processing graphs with a very large number of edges relative
to the number of nodes, we impose a configurable limit on each node’s fanout during sampling. This
fanout is treated as a tunable hyperparameter.

3.3 Masked Autoencoder

To learn global co-occurrence patterns, our model employs a Transformer-based masked autoencoder
designed to reconstruct benign graph representations. This component operates on batches of
flow embeddings, H = {h1, . . . , hn}, produced by the GNN layer, where each hi ∈ Rdgnn . We
construct each batch by concatenating 64 flow windows of 512 flows each, resulting in a sequence of
n = 32, 768 embeddings. Before being passed to the Transformer, these embeddings are projected
to a lower-dimensional space Rdmodel through a linear layer, encouraging the model to learn more
compact representations and reducing computational cost.

The Transformer consists of an encoder and a decoder, each built from a stack of identical blocks.
Each block contains a multi-head self-attention module followed by a position-wise feed-forward
network. Both sub-layers are wrapped with residual connections and layer normalization. During
training, we apply a symmetric binary attention mask that disables attention between a randomly
sampled subset of positions, encouraging the model to infer missing information from the remaining
context. Random masking is disabled at inference.

The encoder processes the projected, masked embeddings to produce contextual representations. The
decoder then takes the same projected sequence as reconstruction queries and attends to the encoder
outputs via cross-attention to compute per-position reconstructions. Finally, an output projection layer
maps these reconstructed embeddings, Ĥ′, back to the original GNN embedding space to produce
the final output, Ĥ = {ĥ1, . . . , ĥn}. The anomaly score for each flow is its squared reconstruction
error, computed in the original GNN embedding space:

si = ∥hi − ĥi∥2 (1)

During inference, higher anomaly scores identify potential attacks.

Let nvalid be the number of non-padded embeddings in a batch. The model is trained end-to-end by
minimizing the Mean Squared Error (MSE) over these embeddings:

LMSE =
1

nvalid

nvalid∑
i=1

si =
1

nvalid

nvalid∑
i=1

∥hi − ĥi∥2 (2)

The gradient of the MSE loss is backpropagated through both the Transformer and the GNN, jointly
updating their parameters. This aligns the training objectives of the two components, allowing the
model to capture both local structural context and global co-occurrence patterns without requiring
labeled attack data.

5

E-GraphSAGE Transformer
Encoder

Transformer
Decoder

Figure 3: Overview of the full training pipeline. During inference, attention masking is omitted. The
reconstruction errors s1, s2, . . . , sn serve as anomaly scores for each network flow.

3.4 Summary of the Pipeline

The full training pipeline is illustrated in Figure 3. Network flows are first collected and processed
into a graph, where edges represent communications between hosts. Using neighborhood sampling,
E-GraphSAGE integrates local context into edge embeddings h1, h2, . . . , hn. These embeddings
are then batched, projected, and passed to the masked autoencoder. The model’s parameters are
optimized end-to-end by backpropagating the gradient of the MSE loss. This gradient flows from
the output of the decoder back through both the Transformer and the GNN, allowing for the joint
update of all model parameters. This ensures that the GNN learns to produce representations that
are not only structurally informative but also optimized for the reconstruction task performed by the
Transformer.

At inference time, the model processes batches of flow embeddings without masking. Attacks are
detected by applying a threshold to the reconstruction error, calculated as the squared L2 norm be-
tween the original GNN embeddings and their final reconstructions. Flows with higher reconstruction
errors are flagged as potential intrusions, as they deviate from the learned patterns of normal network
traffic.

4 Experimental Evaluation

4.1 Datasets

For our experiments, we selected two widely used datasets for evaluating NIDS: UNSW-NB15 [16],
captured in a smaller-scale network environment, and CSE-CIC-IDS2018 [17], which captures traffic
from a significantly larger infrastructure. Specifically, we used their NetFlow-based versions, which
correct flow extraction errors introduced by CICFlowMeter [18] and provide a standard feature set
including IP addresses, allowing us to construct the graphs and fairly evaluate the models across
datasets. We conduct our experiments both on their second version [4], which includes 43 NetFlow
features, and their recently released third version [3], which adds 10 additional temporal features2.

Table 1 summarizes the main characteristics of the datasets. By selecting two datasets collected from
different network environments and with different attack scenarios, we can verify if our approach
is able to generalize across different settings. The datasets feature extensive encrypted traffic
(e.g., HTTPS, SSH) and diverse communication patterns, representing realistic, modern network
environments. We note that the differences in statistics between the second and third versions of each
dataset are due to variations in the NetFlow aggregation process during feature extraction, although
the details are not documented by the original authors.

4.2 Data Preprocessing

Before training, we replace missing or invalid values with zeros and split the dataset into 80% for the
training set, 10% for the validation set, and 10% for the test set, preserving the class distribution of
attack types. We normalize all NetFlow features to the interval [0, 1] using Min-Max scaling. The
scaler is fitted on the training set, which contains only benign flows, and then applied to transform

2The datasets are available under the "Permitted reuse with commercial use restriction" license (https:
//guides.library.uq.edu.au/deposit-your-data/license-reuse-noncommercial).

6

https://guides.library.uq.edu.au/deposit-your-data/license-reuse-noncommercial
https://guides.library.uq.edu.au/deposit-your-data/license-reuse-noncommercial

Table 1: Statistics of the NetFlow-based datasets, varying in scale and anomaly prevalence.

Dataset Number of Flows Number of Hosts Anomaly Ratio
NF-UNSW-NB15-v2 2,390,275 44 3.98%
NF-UNSW-NB15-v3 2,365,424 44 5.40%
NF-CSE-CIC-IDS2018-v2 18,893,708 255,042 11.95%
NF-CSE-CIC-IDS2018-v3 20,115,529 205,801 12.93%

both the validation and test sets. To avoid extreme input values, any scaled value falling outside the
original training range is clipped to the [−10, 10] range. For v3 datasets, timestamps are discarded,
as our experiments showed that these features introduced unnecessary noise, with no performance
improvement (Appendix C).

The graph is then constructed, as specified in Section 3.1, by using IP addresses to identify hosts,
while the remaining flow features are assigned to each edge. Since attack behaviors are directional,
we use a directed graph to preserve this information, allowing us to easily correlate the classification
results with the network flows. We also note that one of the baseline models considered, Anomal-E,
based on its original implementation and specification, is unable to efficiently process the full graph
of NF-CSE-CIC-IDS2018 on our hardware. Therefore, in this case, we downsample the dataset to
20% of its original size, maintaining the proportions of the attack types.

4.3 Training and Anomaly Detection Procedure

Mini-Batch Strategies. After preprocessing, training proceeds with different mini-batch strategies
for each component of our architecture. For E-GraphSAGE, we employ neighborhood sampling to
manage the computational demands of graph processing. First, we divide the full set of edges into
mini-batches (with batch sizes ranging from 16,384 to 32,768 depending on the dataset). For each
edge in a mini-batch, we sample edges from its 1-hop neighborhood up to a dataset-specific fan-out
limit.

For the Transformer encoder-decoder, we process the graph embeddings in fixed-size batches of 64,
where each batch contains 512 graph-based flow representations. The separate batching mechanisms
reflect the fundamentally different ways the GNN and Transformer components process information:
neighborhood-based for the former and context-based for the latter.

Since our approach computes embeddings using batched processing and randomly sampled neigh-
boring edges, it does not require a fixed adjacency matrix. This makes its application practical
for evolving network environments, where connections to new hosts are constantly established. In
realistic deployments, memory usage can be controlled by applying a graph-level time window that
discards outdated edges when new ones are added.

Implementation and Optimization Details. We train GraphIDS for a maximum of 100 epochs
using the AdamW optimizer on a machine with an NVIDIA A100 GPU, 32 GB of RAM, and 8 CPU
cores of an AMD EPYC 7302 processor. We implemented our model using PyTorch 2.3.1 and DGL
2.3.0. Random seeds were fixed to ensure reproducibility. Table 2 reports the training time for each
dataset, which varies depending on early stopping. Across all experiments, including hyperparameter
optimization and baselines, the total compute time was roughly 976 GPU hours.

As this architecture requires careful tuning, we thoroughly optimize several hyperparameters for each
dataset, including learning rate, weight decay coefficients, edge embedding dimension, autoencoder
latent dimension, number of transformer layers, dropout rate and the parameters related to the
batching strategies. We initially explored coarse configurations through grid search, followed by
Bayesian optimization to tune the hyperparameters based on validation Precision-Recall Area Under
Curve (PR-AUC).

Our experiments showed that the model reaches optimal performance when stronger regularization
is applied to the GNN encoder compared to the masked autoencoder. The GNN encoder typically
benefits from higher weight decay coefficients (up to 0.6) and dropout rates (up to 0.7), while the
masked autoencoder performs better with more moderate regularization (weight decay from 0.01 to
0.05 and dropout rate from 0 to 0.2). We also observe that an attention mask ratio of 0.15 provides a

7

Table 2: Total number of parameters, training time and inference time of GraphIDS across all datasets.
Inference is performed in batches; the reported time refers to the forward pass and excludes any
preprocessing.

Dataset # Params Training Time (h) Inference Time (µs/sample)
NF-UNSW-NB15-v2 0.867M 0.39 ± 0.27 2.27 ± 0.92
NF-UNSW-NB15-v3 0.874M 0.63 ± 0.32 3.04 ± 1.25
NF-CSE-CIC-IDS2018-v2 0.570M 1.00 ± 0.55 4.89 ± 0.50
NF-CSE-CIC-IDS2018-v3 0.572M 1.46 ± 0.59 5.09 ± 1.09

good balance between regularization and reconstruction quality across datasets (see Appendix C.4).
All code and configurations used for the experiments have been publicly released to ensure full
reproducibility.

Early Stopping. We use early stopping based on the PR-AUC achieved on the validation set with
a patience of 20 epochs. We selected PR-AUC because it provides a fair, threshold-independent
evaluation of the model performance. The model checkpoint achieving the highest validation PR-
AUC is saved for final evaluation and deployment. Although this procedure assumes access to
a small amount of labeled data for validation and threshold tuning, it avoids the scalability and
generalization issues of fully supervised models. In practice, a small amount of labeled data can
reasonably be collected during deployment to support this step and it may even provide a more
reliable and robust thresholding solution for practical applications. Nevertheless, exploring fully
unsupervised thresholding strategies remains an interesting direction for future research.

4.4 Baselines

To isolate the contribution of each component in GraphIDS, we evaluate the following targeted
ablations:

1. T-MAE: A Transformer-based masked autoencoder trained directly on raw NetFlow features,
without any graph-based representation learning. This ablation isolates the contribution of
the GNN by evaluating performance without local topological context.

2. SimpleAE: A lightweight fully connected autoencoder that replaces the Transformer with
a two-layer MLP encoder and a two-layer MLP decoder (ReLU activations). It is trained
end-to-end together with E-GraphSAGE on the same reconstruction objective and with
the same batching scheme as GraphIDS, isolating the role of self-attention and sequence
modeling.

We also compare GraphIDS against anomaly detection baselines:

• Anomal-E [2]: A state-of-the-art method using a pre-trained E-GraphSAGE encoder to
generate edge embeddings, followed by anomaly detection on those embeddings. Unlike
GraphIDS, it lacks joint training and self-attention, isolating the impact of the Transformer
reconstruction.

• CBLOF [19]: A clustering-based local outlier factor algorithm, representative of traditional
unsupervised detection techniques.

• SAFE [20]: A recent self-supervised method that transforms tabular network traffic data into
image-like representations for masked autoencoder reconstruction, followed by a lightweight
novelty detector.

4.5 Evaluation Metrics

To fairly evaluate and compare models on NIDS datasets, we use two complementary metrics
that are resistant to high class imbalance: a threshold-dependent macro-averaged F1-score and a
threshold-independent PR-AUC. The macro F1-score gives equal weight to both classes, preventing
the dominant benign class from overshadowing the minority attack class, and provides a balanced
view of false positives and false negatives. Unlike ROC-AUC, PR-AUC is well-suited for imbalanced

8

Table 3: Model performance on NetFlow datasets. Multiple values are bolded when differences are
not statistically significant.

v3 Datasets (w/ temporal features) v2 Datasets (w/o temporal features)
Model Metric UNSW-NB15 CSE-CIC-IDS2018 UNSW-NB15 CSE-CIC-IDS2018
External baselines

CBLOF PR-AUC 0.3658 ± 0.0634 0.2638 ± 0.0263 0.2102 ± 0.0157 0.7822 ± 0.0198
Macro F1 0.7319 ± 0.0225 0.6599 ± 0.0130 0.7046 ± 0.0140 0.8889 ± 0.0068

SAFE PR-AUC 0.8946 ± 0.0279 0.6294 ± 0.0923 0.2044 ± 0.0267 0.5222 ± 0.1896
Macro F1 0.9236 ± 0.0086 0.4662 ± 0.0016 0.5815 ± 0.0164 0.4684 ± 0.0001

Anomal-E PR-AUC 0.9032 ± 0.0041 0.2555 ± 0.0383 0.7489 ± 0.0074 0.9287 ± 0.0265
Macro F1 0.9459 ± 0.0009 0.6709 ± 0.0394 0.9156 ± 0.0217 0.9410 ± 0.0161

Ablations

T-MAE PR-AUC 0.9914 ± 0.0022 0.7398 ± 0.0777 0.5995 ± 0.0155 0.7375 ± 0.0035
Macro F1 0.9933 ± 0.0017 0.4707 ± 0.0049 0.8039 ± 0.0447 0.8453 ± 0.0317

SimpleAE PR-AUC 0.9996 ± 0.0007 0.8458 ± 0.0498 0.7864 ± 0.0608 0.9310 ± 0.0126
Macro F1 0.9838 ± 0.0321 0.9223 ± 0.0201 0.8680 ± 0.1579 0.9450 ± 0.0092

Ours

GraphIDS PR-AUC 0.9998 ± 0.0007 0.8819 ± 0.0347 0.8116 ± 0.0367 0.9201 ± 0.0238
Macro F1 0.9961 ± 0.0084 0.9447 ± 0.0213 0.9264 ± 0.0217 0.9431 ± 0.0131

datasets as it focuses on the positive class without being influenced by the large number of true
negatives [21]. PR-AUC is computed using scikit-learn’s implementation with linear interpolation.

To select the optimal threshold for the final classification, we maximize the macro F1-score on a
labeled validation set and then apply the same threshold to the test set. This approach ensures a fair
comparison across all models while avoiding threshold optimization bias on the test data.

4.6 Results

Table 3 presents averaged metrics across multiple random seeds, along with standard deviations.
Since Anomal-E combines several anomaly detectors, we report only its best-performing variant
(based on PR-AUC) for each dataset. A complete breakdown of Anomal-E’s performance across all
detectors is available in Appendix B.2.

On the third version of the NetFlow-based datasets, GraphIDS demonstrates a strong performance,
effectively leveraging both local topological context and global co-occurrence patterns to improve
detection by identifying complex attack behaviors. In the smaller network environment of NF-
UNSW-NB15-v3, our ablated T-MAE model, which relies solely on contextual information, performs
comparably to GraphIDS. However, on the larger and more diverse NF-CSE-CIC-IDS2018-v3
dataset, T-MAE shows a substantial drop in performance, highlighting the importance of structural
information in large-scale settings.

On the second version of the datasets, GraphIDS achieves comparable results to Anomal-E, while
clearly outperforming it on NF-UNSW-NB15-v2 in terms of PR-AUC. Although direct comparisons
between dataset versions are not possible due to differing flow aggregation and feature sets, we notice
that the v3 configuration made intrusion detection more challenging for NF-CSE-CIC-IDS2018
but improved it for NF-UNSW-NB15. These results suggest that both aggregation parameters and
NetFlow feature selection should be carefully tuned before deployment, as they can significantly
impact detection performance.

Finally, the SimpleAE ablation confirms that the autoencoding objective itself is a strong driver
of performance: it performs competitively across datasets and, in some cases, matches PR-AUC
achieved with the Transformer. Nevertheless, GraphIDS typically attains higher macro F1 and more
stable results, especially on the larger NF-CSE-CIC-IDS2018-v3, which supports the benefit of
self-attention for modeling global co-occurrence patterns among flows.

9

5 Conclusion

We introduced GraphIDS, a novel self-supervised framework that jointly trains a graph neural network
and a Transformer-based masked autoencoder to learn normal network behavior and detect complex
intrusion patterns. To the best of our knowledge, this is the first end-to-end architecture that combines
GNNs and masked autoencoding for network intrusion detection. Experimental results demonstrate
that GraphIDS achieves state-of-the-art performance across both small-scale and large-scale scenarios,
outperforming existing baselines by 5–25 percentage points. With an average inference time of 3.83
µs per sample, the model is also well-suited for real-time deployment, where rapid response is
essential.

Like other unsupervised models, GraphIDS assumes a relatively stable network topology, and its
performance may degrade under abrupt behavioral shifts, potentially leading to increased false
positives or missed detections. Online learning techniques offer a promising avenue to mitigate this
limitation by enabling continuous adaptation without requiring full retraining. Furthermore, similarly
to other GNN-based approaches, GraphIDS is less effective in single host monitoring scenarios,
where limited topological context constrains its representational capacity. Future work could address
this by incorporating multimodal data, such as combining network flows with logs or system calls, to
improve the detection of intrusions that leave minimal footprints in network traffic alone. Finally,
accurately assessing real-world detection latency requires a holistic evaluation of the entire processing
pipeline, including data collection, aggregation, preprocessing, and inference.

Overall, our findings underscore the effectiveness of jointly modeling local topological context and
global co-occurrence patterns for network intrusion detection. By unifying GNNs and Transformers
under a shared reconstruction objective, GraphIDS captures normal network behavior without relying
on labeled data or prior knowledge of attack signatures, offering a practical and scalable solution for
real-world deployment.

10

References
[1] Ziadoon Kamil Maseer, Robiah Yusof, Nazrulazhar Bahaman, Salama A. Mostafa, and Cik

Feresa Mohd Foozy. Benchmarking of machine learning for anomaly based intrusion detection
systems in the cicids2017 dataset. IEEE Access, 9:22351–22370, 2021. doi: 10.1109/ACCESS.
2021.3056614.

[2] Evan Caville, Wai Weng Lo, Siamak Layeghy, and Marius Portmann. Anomal-E: A self-
supervised network intrusion detection system based on graph neural networks. Knowledge-
Based Systems, 258:110030, December 2022. ISSN 0950-7051. doi: 10.1016/j.knosys.2022.
110030. URL http://dx.doi.org/10.1016/j.knosys.2022.110030.

[3] Majed Luay, Siamak Layeghy, Seyedehfaezeh Hosseininoorbin, Mohanad Sarhan, Nour
Moustafa, and Marius Portmann. Temporal analysis of netflow datasets for network intru-
sion detection systems, 2025. URL https://arxiv.org/abs/2503.04404.

[4] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Towards a standard feature set
for network intrusion detection system datasets. Mobile Networks and Applications, 27(1):
357–370, November 2021. ISSN 1572-8153. doi: 10.1007/s11036-021-01843-0. URL
http://dx.doi.org/10.1007/s11036-021-01843-0.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

[6] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111.06377.

[7] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders, 2022. URL https://arxiv.org/
abs/2205.10803.

[8] Mariana-Iuliana Georgescu. Masked autoencoders for unsupervised anomaly detection in
medical images, 2023. URL https://arxiv.org/abs/2307.07534.

[9] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via bert, 2021.
URL https://arxiv.org/abs/2103.04475.

[10] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017. URL https://arxiv.org/abs/1609.02907.

[11] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018. URL https://arxiv.org/abs/1706.02216.

[12] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Marius Portmann.
E-graphsage: A graph neural network based intrusion detection system for iot. In NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium, page 1–9. IEEE,
April 2022. doi: 10.1109/noms54207.2022.9789878. URL http://dx.doi.org/10.1109/
NOMS54207.2022.9789878.

[13] Hamdi Friji, Alexis Olivereau, and Mireille Sarkiss. Efficient Network Representation for
GNN-Based Intrusion Detection, page 532–554. Springer Nature Switzerland, 2023. ISBN
9783031334887. doi: 10.1007/978-3-031-33488-7_20. URL http://dx.doi.org/10.
1007/978-3-031-33488-7_20.

[14] Jiawei Zhou, Zhiying Xu, Alexander M. Rush, and Minlan Yu. Automating botnet detection
with graph neural networks, 2020. URL https://arxiv.org/abs/2003.06344.

[15] Inter Projekt. Interprojektwiki: Netflow, 2017. URL https://web.archive.org/web/
20170222053806/https://pliki.ip-sa.pl/wiki/Wiki.jsp?page=NetFlow.

[16] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detec-
tion systems (unsw-nb15 network data set). In 2015 Military Communications and Information
Systems Conference (MilCIS), pages 1–6, 2015. doi: 10.1109/MilCIS.2015.7348942.

11

http://dx.doi.org/10.1016/j.knosys.2022.110030
https://arxiv.org/abs/2503.04404
http://dx.doi.org/10.1007/s11036-021-01843-0
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2205.10803
https://arxiv.org/abs/2205.10803
https://arxiv.org/abs/2307.07534
https://arxiv.org/abs/2103.04475
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02216
http://dx.doi.org/10.1109/NOMS54207.2022.9789878
http://dx.doi.org/10.1109/NOMS54207.2022.9789878
http://dx.doi.org/10.1007/978-3-031-33488-7_20
http://dx.doi.org/10.1007/978-3-031-33488-7_20
https://arxiv.org/abs/2003.06344
https://web.archive.org/web/20170222053806/https://pliki.ip-sa.pl/wiki/Wiki.jsp?page=NetFlow
https://web.archive.org/web/20170222053806/https://pliki.ip-sa.pl/wiki/Wiki.jsp?page=NetFlow

[17] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In International Conference
on Information Systems Security and Privacy, 2018. URL https://api.semanticscholar.
org/CorpusID:4707749.

[18] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence in
nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In 2022 IEEE Conference on
Communications and Network Security (CNS), pages 254–262, 2022. doi: 10.1109/CNS56114.
2022.9947235.

[19] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers. Pattern
Recognition Letters, 24(9):1641–1650, 2003. ISSN 0167-8655. doi: https://doi.org/10.1016/
S0167-8655(03)00003-5. URL https://www.sciencedirect.com/science/article/
pii/S0167865503000035.

[20] Elvin Li, Zhengli Shang, Onat Gungor, and Tajana Rosing. Safe: Self-supervised anomaly
detection framework for intrusion detection, 2025. URL https://arxiv.org/abs/2502.
07119.

[21] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10(3):1–21,
03 2015. doi: 10.1371/journal.pone.0118432. URL https://doi.org/10.1371/journal.
pone.0118432.

[22] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax, 2018. URL https://arxiv.org/abs/1809.10341.

[23] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. A novel anomaly
detection scheme based on principal component classifier. In Proceedings of the IEEE Founda-
tions and New Directions of Data Mining Workshop, Melbourne, Florida, USA, 2003. IEEE.

[24] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008. doi: 10.1109/ICDM.2008.17.

[25] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsuper-
vised anomaly detection algorithm. In KI-2012: poster and demo track, 09 2012.

[26] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’00, page 93–104, New York, NY, USA, 2000.
Association for Computing Machinery. ISBN 1581132174. doi: 10.1145/342009.335388. URL
https://doi.org/10.1145/342009.335388.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

12

https://api.semanticscholar.org/CorpusID:4707749
https://api.semanticscholar.org/CorpusID:4707749
https://www.sciencedirect.com/science/article/pii/S0167865503000035
https://www.sciencedirect.com/science/article/pii/S0167865503000035
https://arxiv.org/abs/2502.07119
https://arxiv.org/abs/2502.07119
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://arxiv.org/abs/1809.10341
https://doi.org/10.1145/342009.335388
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and the introduction have been written to clearly describe the
contributions and our claims, supported by extensive experiments on the datasets mentioned.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions are clearly described along the paper, including the assump-
tions of being able to collect and aggregate traffic from the network to be monitored and the
relative stability of its activity. The limitations are shown in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13

Answer: [NA]
Justification: The paper does not define theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes as well as possible all information needed to reproduce
the experimental results. The configuration of the experiments, the code and pre-trained
models will be publicly released upon acceptance to allow the full reproducibility of the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all code and configuration files used during our experiments. The
instructions to train and evaluate the models are written in the README inside the zipped
file. The code contains a folder called "baselines" in which we store all the code used
to produce the results of the baseline models, along with the corrections we made to the
original implementations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4.2 we specify how we performed the data splits, while we specify
hyperparameter ranges and how we performed hyperparameter tuning in Section 4.3. All
training and test details are fully available in the released code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation across several runs with different random
seeds for all main metrics in all tables, as stated in Section 4.6. This reflects the statistical
reliability of the results by accounting for stochastic factors like random initialization, data
shuffling and train-test splitting.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4.3 reports the compute resources used in our experiments, including
GPU and CPU type, memory, and the typical runtime range per run. It also includes the
total compute cost, covering all experiments conducted, including hyperparameter tuning
and internal model selection.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper is in compliance with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

16

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential positive societal impacts of our work, partic-
ularly in enhancing network security and safeguarding critical services and infrastructures
from attacks. At the same time, it highlights the model’s sensitivity to abrupt changes in
normal network behavior, which could result in undetected attacks if the network’s behavior
deviates significantly.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe our model has a high risk of misuse, as its deployment to
monitor a network environment requires significant resources, effort and careful analysis
from security experts.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

17

Answer: [Yes]

Justification: The code for GraphIDS and T-MAE was produced by the authors. All other
assets (code, data, and models) are either original or properly cited, mentioning their
respective licenses. Notably, the implementation of SAFE has no formal license, but we
have reached out to the authors, who have granted us permission to use the code for research
purposes. We do not publicly redistribute the code, but we explain the changes we made to
the original implementation to allow reproducibility.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code will be submitted to the reviewers as part of the supplementary
material and will be publicly released upon paper acceptance. It follows the structured
NeurIPS template and includes documentation to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

18

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The current paper does not require IRB approval as it does not contain research
with human or animal subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have not been used for any important, original, or non-standard compo-
nent of the core methods in this research. Their use was limited to editing or formatting and
their output was thoroughly reviewed.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Additional Details on GraphIDS and Baseline Models

CBLOF [19]. CBLOF is an unsupervised anomaly detection method which identifies outliers based
on a clustering algorithm. In this case we use K-means for clustering and we compute the anomaly
scores based on the distance to the closest large cluster. As we do for other models, once the anomaly
scores are computed, we search for the best threshold on the validation set and we apply it to the test
set for the final classification.

Anomal-E [2]. Anomal-E is the first model to apply self-supervised GNNs to network intrusion
detection, demonstrating significant performance gains when applying anomaly detection methods to
local graph representations compared to raw NetFlow features. The model uses an E-GraphSAGE
encoder trained via a modified version of Deep Graph Infomax [22], and generates embeddings that
are subsequently processed by traditional unsupervised anomaly detection algorithms, including
PCA-based anomaly detection [23], Isolation Forest [24], CBLOF [19], and histogram-based outlier
score [25]. For our evaluation, we retained the original GNN encoder configuration, which was
already tuned for these datasets, as our attempts at further tuning did not yield performance gains.
We did, however, explore and adjust the hyperparameters of the downstream anomaly detection
components using the same ranges as in the original work, selecting the best-performing one for each
dataset to be included in the main table.

During the preprocessing phase, the original authors report using target encoding for categorical
features. Although the specific target used for encoding is not clarified in the paper, their public
implementation3 shows that attack labels are directly used as the target variable—introducing label
leakage. This ground-truth information encoded in the input features allows downstream models
to learn to identify attacks based on those statistics, undermining the validity of the unsupervised
learning setting. To ensure a fair comparison and preserve the integrity of the evaluation, we removed
the target encoding step in our implementation.

SAFE [20]. SAFE is an anomaly detection framework that processes tabular network traffic data by
first applying feature selection to discard irrelevant columns. The remaining features are then mapped
into a 2D grid to create image-like embeddings, which a lightweight CNN-based masked autoencoder
is trained to reconstruct, learning meaningful representations in the process. For novelty detection,
the latent embeddings produced by the encoder are passed to a local outlier factor detector [26] to
identify anomalies. In our evaluation, we tuned the hyperparameters of the LOF anomaly detection
component. However, a brief exploration of alternative hyperparameters for the MAE module yielded
no performance improvements. Given the high computational cost of tuning and the MAE’s limited
discrimination ability, as observed in the original codebase, we concluded that further tuning would
offer marginal gains and not meaningfully affect the conclusions.

In our experiments, we adopt different evaluation metrics, as the original implementation computes
the F1-score for the normal class, effectively measuring the model’s ability to recognize benign traffic
rather than attacks4. While this choice may be acceptable for balanced classes, it masks the model’s
real performance on the highly imbalanced datasets we consider.

T-MAE. T-MAE refers to our Transformer-based masked autoencoder component, similar to the
one used in GraphIDS but applied directly to raw NetFlow features. We use the same batching
strategy (batch size of 64 with 512 flow embeddings per batch) and tune its learning rate, weight
decay, and dropout. We found that a higher learning rate proved to be especially beneficial for the
performance on the NF-UNSW-NB15-v3. However, despite this adjustment, T-MAE exhibits slower
convergence, resulting in significantly longer training times. On average, it requires 2.21 hours per
run, compared to just 0.87 hours for GraphIDS.

SimpleAE. The SimpleAE ablation replaces the Transformer with a fully connected autoencoder
consisting of a two-layer MLP encoder and a two-layer MLP decoder with ReLU activations. It is
trained end-to-end jointly with E-GraphSAGE on the same reconstruction objective, isolating the

3https://github.com/waimorris/Anomal-E/. Apache License 2.0.
4https://github.com/ElvinLit/SAFE/. No formal license available. Used with permission from the

authors for research purposes only.

20

https://github.com/waimorris/Anomal-E/
https://github.com/ElvinLit/SAFE/

architectural benefit on top of our end-to-end reconstruction framework. To ensure a fair comparison,
we explored different bottleneck dimensions and hyperparameters.

B Extended Results and Comparative Analysis

B.1 Qualitative Analysis of Detection Behavior

Figure 4 summarizes model performance across datasets through precision-recall curves. These plots
illustrate that GraphIDS consistently matches or outperforms the baselines across a variety of settings.

To better understand GraphIDS’s behavior on specific attack types, we plot the distribution of anomaly
scores (by density) for each dataset, as shown in Figures 5, 6, 7, and 8. To maintain clarity, we
present representative examples without error bars. Each plot includes the classification threshold,
allowing us to visualize which attack types were correctly detected and which ones were missed. In
particular, GraphIDS’s lower performance on NF-UNSW-NB15-v2 is due to a higher rate of false
positives, as also demonstrated by the t-SNE visualizations of the GNN and reconstructed embeddings
in Figure 10. For the NF-CSE-CIC-IDS2018 datasets (both v2 and v3), the performance drop is
primarily caused by misclassifications of Infiltration attacks. These involve delivering a malicious
payload via email, which then attempts to exploit internal vulnerabilities by scanning the network.
Because this behavior closely resembles normal traffic, GraphIDS struggles to reliably classify it as
anomalous without prior knowledge of its specific signature, as illustrated in Figures 11 and 12. In
contrast, the strong performance on NF-UNSW-NB15-v3 is reflected in the clear separation between
benign and attack clusters in Figure 9.

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

NF-UNSW-NB15-v3 NF-UNSW-NB15-v2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

NF-CSE-CIC-IDS2018-v3

0.0 0.2 0.4 0.6 0.8 1.0
Recall

NF-CSE-CIC-IDS2018-v2

GraphIDS
T-MAE
Anomal-E
SAFE
CBLOF

Figure 4: Precision-recall curves for all models on each dataset.

21

10 6 10 5 10 4 10 3

Anomaly Score
10 1

100

101

102

103

104

De
ns

ity

Benign (TNR: 1.00)
Analysis (DR: 1.00)
Backdoor (DR: 1.00)
DoS (DR: 1.00)
Exploits (DR: 1.00)
Fuzzers (DR: 1.00)
Generic (DR: 1.00)
Reconnaissance (DR: 1.00)
Shellcode (DR: 1.00)
Worms (DR: 1.00)
Threshold: 1.15e-03

Figure 5: Anomaly score by attack type in NF-UNSW-NB15-v3.

10 18 × 10 2 9 × 10 2

Anomaly Score

10 2

10 1

100

101

102

103

De
ns

ity

Benign (TNR: 0.99)
Analysis (DR: 1.00)
Backdoor (DR: 1.00)
DoS (DR: 1.00)
Exploits (DR: 1.00)
Fuzzers (DR: 1.00)
Generic (DR: 1.00)
Reconnaissance (DR: 1.00)
Shellcode (DR: 1.00)
Worms (DR: 1.00)
Threshold: 9.10e-02

Figure 6: Anomaly score by attack type in NF-UNSW-NB15-v2.

10 5 10 4

Anomaly Score

101

103

105

107

109

De
ns

ity

Benign (TNR: 1.00)
Bot (DR: 1.00)
Brute_Force_-Web (DR: 1.00)
DDOS_attack-HOIC (DR: 1.00)
DDOS_attack-LOIC-UDP (DR: 1.00)
DDoS_attacks-LOIC-HTTP (DR: 1.00)
DoS_attacks-GoldenEye (DR: 1.00)
DoS_attacks-Hulk (DR: 1.00)
DoS_attacks-SlowHTTPTest (DR: 1.00)
DoS_attacks-Slowloris (DR: 1.00)
FTP-BruteForce (DR: 1.00)
Infiltration (DR: 0.04)
SSH-Bruteforce (DR: 1.00)
Threshold: 4.79e-06

Figure 7: Anomaly score by attack type in NF-CSE-CIC-IDS2018-v3.

22

10 5 10 4 10 3

Anomaly Score

10 1

100

101

102

103

104

105

106

De
ns

ity

Benign (TNR: 0.99)
Bot (DR: 0.90)
Brute_Force_-Web (DR: 1.00)
Brute_Force_-XSS (DR: 1.00)
DDOS_attack-HOIC (DR: 1.00)
DDOS_attack-LOIC-UDP (DR: 1.00)
DDoS_attacks-LOIC-HTTP (DR: 1.00)
DoS_attacks-GoldenEye (DR: 1.00)
DoS_attacks-Hulk (DR: 1.00)
DoS_attacks-SlowHTTPTest (DR: 1.00)
DoS_attacks-Slowloris (DR: 1.00)
FTP-BruteForce (DR: 1.00)
Infiltration (DR: 0.01)
SSH-Bruteforce (DR: 1.00)
Threshold: 5.98e-05

Figure 8: Anomaly score by attack type in NF-CSE-CIC-IDS2018-v2.

150 100 50 0 50 100
t-SNE dimension 1

100

50

0

50

100

t-S
NE

 d
im

en
sio

n
2

GNN Embeddings by Attack Type

75 50 25 0 25 50 75
t-SNE dimension 1

60

40

20

0

20

40

60

80

t-S
NE

 d
im

en
sio

n
2

Reconstructed Embeddings by Attack Type

Attack Types
Benign
Analysis
Backdoor

DoS
Exploits

Fuzzers
Generic

Reconnaissance
Shellcode

Figure 9: t-SNE visualization of embeddings by attack type in NF-UNSW-NB15-v3, with density
contours illustrating the concentration of benign samples.

23

150 100 50 0 50
t-SNE dimension 1

100

50

0

50

100

150

t-S
NE

 d
im

en
sio

n
2

GNN Embeddings by Attack Type

20 0 20 40 60 80 100 120
t-SNE dimension 1

75

50

25

0

25

50

75

100

t-S
NE

 d
im

en
sio

n
2

Reconstructed Embeddings by Attack Type

Attack Types
Benign
Analysis

Backdoor
DoS

Exploits
Fuzzers

Generic
Reconnaissance

Figure 10: t-SNE visualization of embeddings by attack type in NF-UNSW-NB15-v2.

75 50 25 0 25 50 75 100
t-SNE dimension 1

20

0

20

40

60

80

t-S
NE

 d
im

en
sio

n
2

GNN Embeddings by Attack Type

80 60 40 20 0 20 40 60
t-SNE dimension 1

100

80

60

40

20

0

t-S
NE

 d
im

en
sio

n
2

Reconstructed Embeddings by Attack Type

Attack Types
Benign
Bot
Brute_Force_-Web
DDOS_attack-HOIC

DDOS_attack-LOIC-UDP
DDoS_attacks-LOIC-HTTP
DoS_attacks-GoldenEye

DoS_attacks-Hulk
DoS_attacks-SlowHTTPTest
DoS_attacks-Slowloris

FTP-BruteForce
Infiltration
SSH-Bruteforce

Figure 11: t-SNE visualization of embeddings by attack type in NF-CSE-CIC-IDS2018-v3.

24

100 75 50 25 0 25 50 75
t-SNE dimension 1

100

80

60

40

20

0

20

40

t-S
NE

 d
im

en
sio

n
2

GNN Embeddings by Attack Type

75 50 25 0 25 50 75
t-SNE dimension 1

0

20

40

60

80

100
t-S

NE
 d

im
en

sio
n

2

Reconstructed Embeddings by Attack Type

Attack Types
Benign
Bot
Brute_Force_-XSS

DDOS_attack-HOIC
DDoS_attacks-LOIC-HTTP
DoS_attacks-GoldenEye

DoS_attacks-Hulk
DoS_attacks-SlowHTTPTest
DoS_attacks-Slowloris

FTP-BruteForce
Infiltration
SSH-Bruteforce

Figure 12: t-SNE visualization of embeddings by attack type in NF-CSE-CIC-IDS2018-v2.

25

B.2 Extended Baseline Comparison: Anomal-E and Traditional Methods

In Table 4, we compare the training time and peak GPU memory usage of the evaluated models
across datasets. Traditional methods such as CBLOF are excluded from this comparison, as they do
not leverage GPU resources.

The results highlight the trade-offs between memory usage, training time, and performance across
models. SAFE requires very little GPU memory thanks to its shallow architecture, low input dimen-
sionality, and feature selection, but this comes at the cost of longer training times and substantially
lower performance, as shown in Figure 4 and in Table 3. In contrast, Anomal-E’s original design,
which relies on batch gradient descent and aggregates over the full neighborhood, leads to a consider-
able memory footprint of up to 30 GB, making it impractical for large graphs. GraphIDS offers a
balanced compromise between efficiency and accuracy, using about 1.37 GB of GPU memory and
training in 0.87 hours on average. SimpleAE further reduces compute, training in about 0.76 hours
with a peak of roughly 428 MB of GPU memory, while remaining competitive in accuracy in the
main tables. Finally, GraphIDS’s mini-batch strategy allows it to learn normal network behavior
from the full graphs of the NF-CSE-CIC-IDS2018 datasets without downsampling, which in our
experiments led to improved performance and stability.

Tables 5 and 6 summarize the performance of Anomal-E against the set of anomaly detection
algorithms introduced in the original paper. These results show that none of these methods, unlike
GraphIDS, is able to maintain a consistent performance across all datasets.

In addition, Tables 7 and 8 report results for traditional anomaly detection algorithms applied directly
to raw NetFlow features. All these models show substantially lower performance compared to
GraphIDS. Among them, CBLOF achieves the most competitive results on average and is used in the
main paper as a representative baseline for traditional methods.

Table 4: Comparison of training time and peak GPU memory usage across models.

Model Training Time (h) Peak Memory (MB)
SAFE 3.59 ± 1.34 66
Anomal-E 2.51 ± 1.39 29,775
T-MAE 2.21 ± 2.87 9,063
SimpleAE 0.76 ± 0.65 428
GraphIDS 0.87 ± 0.40 1,366

Table 5: Performance comparison of different anomaly detection algorithms applied to Anomal-E
embeddings on the v3 datasets. Results for GraphIDS are included as reference. Bold values indicate
statistically significant improvements.

Model Metric NF-UNSW-NB15-v3 NF-CSE-CIC-IDS2018-v3

Anomal-E-CBLOF PR-AUC 0.7827 ± 0.0840 0.2555 ± 0.0383
Macro F1 0.8891 ± 0.1127 0.6709 ± 0.0394

Anomal-E-HBOS PR-AUC 0.8735 ± 0.0126 0.1663 ± 0.0241
Macro F1 0.9458 ± 0.0007 0.5329 ± 0.0487

Anomal-E-IF PR-AUC 0.7613 ± 0.0530 0.1812 ± 0.0218
Macro F1 0.9166 ± 0.0345 0.5514 ± 0.0195

Anomal-E-PCA PR-AUC 0.9032 ± 0.0041 0.1098 ± 0.0165
Macro F1 0.9459 ± 0.0009 0.4898 ± 0.0347

GraphIDS (Ours) PR-AUC 0.9998 ± 0.0007 0.8819 ± 0.0347
Macro F1 0.9961 ± 0.0084 0.9447 ± 0.0213

26

Table 6: Performance comparison of different anomaly detection algorithms applied to Anomal-E
embeddings on the v2 datasets.

Model Metric NF-UNSW-NB15-v2 NF-CSE-CIC-IDS2018-v2

Anomal-E-CBLOF PR-AUC 0.7175 ± 0.0041 0.9287 ± 0.0265
Macro F1 0.9262 ± 0.0008 0.9410 ± 0.0161

Anomal-E-HBOS PR-AUC 0.7489 ± 0.0074 0.9154 ± 0.0181
Macro F1 0.9156 ± 0.0217 0.9415 ± 0.0131

Anomal-E-IF PR-AUC 0.7438 ± 0.0162 0.8847 ± 0.0789
Macro F1 0.9153 ± 0.0216 0.9332 ± 0.0302

Anomal-E-PCA PR-AUC 0.7133 ± 0.0034 0.9178 ± 0.0078
Macro F1 0.9262 ± 0.0008 0.9436 ± 0.0076

GraphIDS (Ours) PR-AUC 0.8116 ± 0.0367 0.9201 ± 0.0238
Macro F1 0.9264 ± 0.0217 0.9431 ± 0.0131

Table 7: Evaluation of traditional anomaly detection algorithms on the v3 datasets.

Model Metric NF-UNSW-NB15-v3 NF-CSE-CIC-IDS2018-v3

CBLOF PR-AUC 0.3658 ± 0.0634 0.2638 ± 0.0263
Macro F1 0.7319 ± 0.0225 0.6599 ± 0.0130

HBOS PR-AUC 0.2604 ± 0.0021 0.1822 ± 0.0011
Macro F1 0.7171 ± 0.0007 0.5365 ± 0.0070

IF PR-AUC 0.2537 ± 0.0205 0.1630 ± 0.0139
Macro F1 0.6822 ± 0.0152 0.5330 ± 0.0160

PCA PR-AUC 0.4380 ± 0.0038 0.1200 ± 0.0003
Macro F1 0.7554 ± 0.0018 0.5306 ± 0.0004

GraphIDS (Ours) PR-AUC 0.9998 ± 0.0007 0.8819 ± 0.0347
Macro F1 0.9961 ± 0.0084 0.9447 ± 0.0213

Table 8: Evaluation of traditional anomaly detection algorithms on the v2 datasets.

Model Metric NF-UNSW-NB15-v2 NF-CSE-CIC-IDS2018-v2

CBLOF PR-AUC 0.2102 ± 0.0157 0.7822 ± 0.0198
Macro F1 0.7046 ± 0.0140 0.8889 ± 0.0068

HBOS PR-AUC 0.3197 ± 0.0036 0.6662 ± 0.0205
Macro F1 0.7032 ± 0.0012 0.8578 ± 0.0034

IF PR-AUC 0.1914 ± 0.0075 0.6124 ± 0.0269
Macro F1 0.6844 ± 0.0071 0.8321 ± 0.0099

PCA PR-AUC 0.2840 ± 0.0039 0.5911 ± 0.0014
Macro F1 0.6975 ± 0.0023 0.6128 ± 0.0076

GraphIDS (Ours) PR-AUC 0.8116 ± 0.0367 0.9201 ± 0.0238
Macro F1 0.9264 ± 0.0217 0.9431 ± 0.0131

27

C Ablation Studies

In this section, we aim to isolate the individual contributions of specific design choices in GraphIDS.
To reduce the computational cost of the ablation study, we conducted experiments over fewer random
seeds than those used for the main results. Nevertheless, the setup was sufficient to clearly identify
the impact of each component.

C.1 Effect of Timestamp Features

In this ablation study, we evaluate the impact of including timestamps (FLOW_START_MILLISECONDS
and FLOW_END_MILLISECONDS) among the input features. Our goal is to determine whether they
provide useful temporal information or only introduce noise. As shown in Table 9, their inclusion has
negligible impact on NF-UNSW-NB15-v3, but clearly degrades the performance on NF-CSE-CIC-
IDS2018-v3. This suggests that, overall, excluding timestamps leads to more efficient representations.

Table 9: Effect of including timestamp features on model performance across v3 datasets.

Model Metric NF-UNSW-NB15-v3 NF-CSE-CIC-IDS2018-v3

w/ TS PR-AUC 0.9991 ± 0.0011 0.7909 ± 0.0151
Macro F1 0.9957 ± 0.0091 0.9088 ± 0.0110

w/o TS PR-AUC 0.9989 ± 0.0017 0.8523 ± 0.0283
Macro F1 0.9982 ± 0.0029 0.9385 ± 0.0122

C.2 Effect of Positional Encoding

To investigate whether our model can benefit from sequence modeling, beyond co-occurrence patterns,
we temporally ordered the flows in the v3 datasets and added positional encodings to each input
window before passing it to the Transformer. We evaluated two variants: sinusoidal and learnable
encodings.

For sinusoidal positional encoding, we used the formulation from [27], where the encoding at position
pos and dimension i is given by:

PE(pos,2i) = sin
(pos

100002i/d

)
, PE(pos,2i+1) = cos

(pos

100002i/d

)
(3)

For learnable positional encoding, we used a parameter matrix P ∈ RL×d, with L as the maximum
sequence length and d the embedding dimension. This matrix is optimized along with the rest of the
model during training.

The results in Table 10 indicate that positional encodings have little impact on GraphIDS’s perfor-
mance, suggesting that the model primarily learns global co-occurrence patterns rather than temporal
dependencies. To reflect this, we omit positional encodings in the main experiments and shuffle the
flow order.

Table 10: Effect of positional encoding across datasets.

Model Metric NF-UNSW-NB15-v3 NF-CSE-CIC-IDS2018-v3

w/ Learnable Encoding PR-AUC 0.9939 ± 0.0126 0.8572 ± 0.0284
Macro F1 0.9873 ± 0.0263 0.9480 ± 0.0153

w/ Sinusoidal Encoding PR-AUC 0.9955 ± 0.0110 0.8537 ± 0.0421
Macro F1 0.9904 ± 0.0214 0.9446 ± 0.0171

w/o Positional Encoding PR-AUC 0.9955 ± 0.0126 0.8661 ± 0.0411
Macro F1 0.9821 ± 0.0256 0.9546 ± 0.0099

28

C.3 Effect of GNN Dropout Rate

As shown in Table 11, the dropout rate in E-GraphSAGE has a relevant impact on GraphIDS’s
overall performance. Higher dropout rates achieved better results on the NF-UNSW-NB15 datasets,
suggesting that the GNN is prone to overfitting in smaller network environments. In these cases,
stronger regularization helps the model generalize to unseen data. On the NF-CSE-CIC-IDS2018
datasets, introducing a non-zero dropout rate also helped stabilize the learning process, although its
impact on final performance was less pronounced.

Table 11: Effect of the GNN dropout rate across datasets.

Dataset Metric 0.0 0.25 0.5 0.6 0.7

NF-UNSW-NB15-v3 PR-AUC 0.9773 0.9619 0.9845 0.9998 0.9790
Macro F1 1.0000 0.9999 1.0000 1.0000 1.0000

NF-CSE-CIC-IDS2018-v3 PR-AUC 0.8758 0.8645 0.8630 0.8461 0.8621
Macro F1 0.9466 0.9270 0.9450 0.9160 0.9219

NF-UNSW-NB15-v2 PR-AUC 0.8117 0.8154 0.8129 0.8094 0.8301
Macro F1 0.9342 0.9303 0.9140 0.9241 0.9285

NF-CSE-CIC-IDS2018-v2 PR-AUC 0.8952 0.8964 0.9005 0.8886 0.8925
Macro F1 0.9322 0.9429 0.9411 0.9402 0.9396

C.4 Effect of Masking Ratio

We found that the masking ratio had a noticeable impact on the model’s performance for NF-CSE-
CIC-IDS2018-v3. In this case, a masking ratio of 0.15 made the reconstruction task sufficiently
challenging for GraphIDS to learn more complex relationships within the flow embeddings. We
also noticed that ratios of 0.7 or higher led to gradient explosions and training instability across all
datasets.

Table 12: Effect of the attention mask ratio across datasets.

Dataset Metric 0.0 0.15 0.3 0.5 0.7

NF-UNSW-NB15-v3 PR-AUC 0.9992 1.0000 1.0000 1.0000 1.0000
Macro F1 0.9998 0.9999 0.9793 0.9998 0.9998

NF-CSE-CIC-IDS2018-v3 PR-AUC 0.8659 0.8772 0.8691 0.8391 0.8216
Macro F1 0.9445 0.9472 0.9485 0.9051 0.9308

NF-UNSW-NB15-v2 PR-AUC 0.8373 0.8384 0.8384 0.8261 0.8289
Macro F1 0.9344 0.9342 0.9344 0.9299 0.8756

NF-CSE-CIC-IDS2018-v2 PR-AUC 0.9115 0.9133 0.9132 0.9132 0.9155
Macro F1 0.9390 0.9419 0.9419 0.9398 0.9414

C.5 Effect of Neighborhood Size

We explored various neighborhood sizes during the initial development phase, as this choice directly
impacts both model performance and computational cost. To rigorously validate our design, we
conducted an ablation study comparing 1-hop, 2-hop, and 3-hop variants of GraphIDS under identical
experimental conditions. As shown in Table 13, increasing the number of hops did not consistently
improve performance, while substantially increasing training and inference runtime by up to 3×
and, on average, using 24% more memory. This not only makes extensive hyperparameter tuning
impractical but also negatively impacts real-time latency, a critical aspect of intrusion detection.

The results show that the 1-hop configuration delivers strong and stable performance across all
datasets. While the 3-hop variant scores slightly higher on NF-CSE-CIC-IDS2018-v3, the difference
is not statistically significant. On other datasets, larger neighborhoods lead to degraded or less
stable performance, suggesting that increasing the receptive field may introduce noise from distant,

29

less relevant nodes, thereby diluting local information. Given the added computational overhead,
these results support our choice of a 1-hop neighborhood as an effective and efficient default. Our
implementation, however, supports arbitrary n-hop configurations.

Table 13: Effect of neighborhood size (number of GNN hops) across datasets. Mean (std) over seeds.

Dataset Metric 1-hop 2-hop 3-hop

NF-UNSW-NB15-v3 PR-AUC 0.9998 ± 0.0007 0.9980 ± 0.0018 0.9992 ± 0.0008
Macro F1 0.9961 ± 0.0084 0.9935 ± 0.0142 0.9999 ± 0.0001

NF-CSE-CIC-IDS2018-v3 PR-AUC 0.8819 ± 0.0347 0.8385 ± 0.0528 0.8969 ± 0.0325
Macro F1 0.9447 ± 0.0213 0.9370 ± 0.0194 0.9606 ± 0.0083

NF-UNSW-NB15-v2 PR-AUC 0.8116 ± 0.0367 0.7883 ± 0.0321 0.8238 ± 0.0521
Macro F1 0.9264 ± 0.0217 0.9147 ± 0.0076 0.8005 ± 0.2486

NF-CSE-CIC-IDS2018-v2 PR-AUC 0.9201 ± 0.0238 0.7539 ± 0.3555 0.7482 ± 0.3526
Macro F1 0.9431 ± 0.0131 0.8371 ± 0.2071 0.8495 ± 0.2133

D Hyperparameters

Table 14 reports the complete set of optimized hyperparameters used for the GraphIDS model. While
these were selected to maximize PR-AUC performance, memory usage can be reduced by decreasing
the Transformer’s window size, while the GNN remains efficient by randomly sampling subsets of
neighboring edges.

Table 14: Hyperparameters for the GraphIDS model across datasets. Dataset names are shortened for
formatting.

Parameter UNSW-NB15-v3 NF-CSE-CIC-IDS2018-v3 UNSW-NB15-v2 NF-CSE-CIC-IDS2018-v2
GNN Parameters

edim_out 96 64 72 64
nhops 1 1 1 1
fanout 32,768 32,768 32,768 32,768
agg_type mean mean mean mean
dropout 0.6 0.5 0.75 0.5

Transformer Parameters

num_layers 1 1 1 1
num_heads 4 4 4 4
embed_dim 48 32 48 32
window_size 512 512 512 512
mask_ratio 0.15 0.15 0.15 0.15
dropout 0.0 0.2 0.0 0.2

Training Parameters

learning_rate 1× 10−4 1× 10−4 1.1× 10−5 7.4× 10−5

gnn_weight_decay 0.6 0.6 0.6 0.6
ae_weight_decay 0.04 0.04 0.046 0.011
gnn_batch_size 16,384 16,384 32,768 16,384
ae_batch_size 64 64 64 64

30

	Introduction
	Related Work
	Method
	Graph Construction and Framework Introduction
	Graph Representation Learning
	Masked Autoencoder
	Summary of the Pipeline

	Experimental Evaluation
	Datasets
	Data Preprocessing
	Training and Anomaly Detection Procedure
	Baselines
	Evaluation Metrics
	Results

	Conclusion
	Additional Details on GraphIDS and Baseline Models
	Extended Results and Comparative Analysis
	Qualitative Analysis of Detection Behavior
	Extended Baseline Comparison: Anomal-E and Traditional Methods

	Ablation Studies
	Effect of Timestamp Features
	Effect of Positional Encoding
	Effect of GNN Dropout Rate
	Effect of Masking Ratio
	Effect of Neighborhood Size

	Hyperparameters

