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ABSTRACT

Affordance grounding—localizing object regions based on natural language de-
scriptions of interactions—is a critical challenge for enabling intelligent agents
to understand and interact with their environments. However, this task remains
challenging due to the need for fine-grained localization, the ambiguity arising
from multiple valid interaction regions, and the scarcity of large-scale datasets. We
introduce AffoGato, a unified framework for open-vocabulary affordance ground-
ing across both 3D and 2D. Our approach leverages supervision from foundation
models to automatically generate scalable affordance annotations, enabling train-
ing without reliance on exhaustive manual labeling. As part of this pipeline, we
construct Affo-150K, a large-scale automatically generated dataset of 150K 3D
object instances with free-form affordance descriptions and corresponding 3D
affordance heatmaps. Within AffoGato, we design simple yet effective models,
Gato-3D and Gato-2D, by combining pre-trained part-aware vision encoders with
text-conditional heatmap decoders. Our models achieve state-of-the-art perfor-
mance across existing 3D and 2D benchmarks, with pretraining on Affo-150K
further enhancing their open-vocabulary capabilities.

1 INTRODUCTION

The theory of affordances addresses what an environment offers, provides, or furnishes animals (Gib-
son, 1979). For example, what does a cup afford to humans? The answer can be drinking, lifting,
throwing, etc. While the concept of affordances has long been studied in psychology (Asada et al.,
2009; Jamone et al., 2016) and robotics (Chemero & Turvey, 2007; Min et al., 2016; Ardón et al.,
2020), here we focus on visual affordance grounding from a computer vision perspective (Has-
sanin et al., 2021); given an object in 3D or 2D vision format, the task is to localize the relevant
region for a text description of an interaction with the object. Unlike other types of visual ground-
ing/segmentation (Yu et al., 2016; Kang & Cho, 2024; Lai et al., 2024), the affordance grounding is
particularly challenging because an object may have multiple affordances (functionalities) on different
regions, the affording regions often have indistinct boundaries, and the affordances are inherently
open-vocabulary, i.e., necessitating moving beyond a fixed set of terms for adequate description.

These challenges highlight the need for scalable learning frameworks that can handle a broad spectrum
of objects and diverse human-object interactions without relying on exhaustive manual annotation.
Existing datasets fall short of this open-ended nature; current 3D datasets (Deng et al., 2021; Nguyen
et al., 2023; Yang et al., 2023; Li et al., 2024c; Chu et al., 2025; Yu et al., 2025) are constrained to
predefined object and affordance categories (e.g. only 23 object classes (Deng et al., 2021)), while
2D datasets cover at most 304 object categories and 36 affordance types (Table 1). Moreover, they
contain only predefined affordance labels, limiting generalization to arbitrary text queries or unseen
concepts, and their dependence on human annotation restricts scalability.

To overcome these limitations, we propose AFFOrdance Grounding All aT Once, dubbed AffoGato,
a unified learning framework that integrates automatic dataset generation with model training for
both 3D and 2D affordance grounding. The key insight is that foundation models (Zhang et al., 2023;
Deitke et al., 2025; Gemma Team, 2025) have acquired rich knowledge about object properties and
human-object interactions through large-scale pretraining. Our framework leverages this knowledge
to automatically synthesize open-vocabulary affordance supervision at scale by enabling fine-grained
part-level localization and eliminating the need for manual annotation. Within this framework,
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Figure 1: Overview of AffoGato. Our framework consists of three stages: large-scale dataset
generation, pretraining, and transferring to target datasets. In the dataset generation stage, we leverage
foundation models—such as Gemma (Gemma Team, 2025), Molmo (Deitke et al., 2025), and
MobileSAM (Zhang et al., 2023)—to construct Affo-150K, a large-scale synthetic dataset comprising
150K 3D objects with open-vocabulary queries and spatially localized heatmap annotations. We
pretrain Gato-3D and Gato-2D on the Affo-150K train split, allowing the models to learn generalizable
affordance representations. Finally, we finetune our pretrained models on various target datasets,
demonstrating strong generalization ability.

we generate Affo-150K, the largest and most diverse dataset for affordance grounding to date,
comprising 150K 3D object assets from Objaverse (Deitke et al., 2023), each paired with multiple
textual affordance descriptions and corresponding 3D heatmaps. Using the obtained 3D heatmaps,
we construct a 2D dataset by rendering RGB images of the 3D assets and projecting the aggregated
3D heatmaps into image space, enabling pixel-level supervision aligned with 3D geometry.

We also propose models for both 3D point clouds and 2D images, referred to as Gato-3D and Gato-
2D. Our models share the same architectural concept that differs only in modality-specific vision
encoders. When trained on existing benchmarks (Li et al., 2024c; Luo et al., 2022a), they already
achieve state-of-the-art performance for both 3D and 2D affordance grounding. When pretrained
on Affo-150K, the models demonstrate significantly enhanced performance, particularly improving
generalization capabilities to unseen object categories. Despite their simplicity, our models achieve
strong performance across both modalities, demonstrating the effectiveness of our framework and the
benefits of large-scale pretraining for cross-category generalization. To the best of our knowledge,
we are the first to unify the previously separate streams of 3D and 2D affordance grounding within a
single scalable framework. To summarize, our contributions are as follows:

• We present AffoGato, a unified framework for 3D and 2D open-vocabulary affordance grounding
that automatically generates large-scale training data using foundation models and pretrains
affordance grounding models, eliminating manual annotation.

• Our framework generates Affo-150K, the first large-scale synthetic dataset for affordance ground-
ing that leverages foundation models to go beyond predefined affordance and object classes,
capturing diverse human-object interactions.

• Extensive experiments show our models significantly outperform existing methods on 3D and 2D
benchmarks by large margins, with particularly strong generalization to unseen object categories.

2 RELATED WORK

Visual affordance grounding. Visual affordance grounding aims to localize functional regions in
visual data given affordance concepts. Early 2D approaches (Myers et al., 2015; Nguyen et al., 2017;
Chuang et al., 2018; Fang et al., 2018; Nagarajan et al., 2019; Luo et al., 2022a; Mur-Labadia et al.,
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Table 1: Comparison of 3D (left) and 2D (right) affordance grounding datasets. Aff abbreviates
affordances. For Affo-150K, classes and affordances are Gemma3 (Gemma Team, 2025) predictions
with frequencies above 10 and 100, respectively.

Dataset 3D Source # Classes # Aff # 3D assets # Questions

3D AffordanceNet PartNet 23 18 22,949 0
PartAfford PartNet 23 24 >25,000 0
OpenAD 3D AffordanceNet 23 37 22,949 0
PIAD 3D AffordanceNet 23 17 7,012 0
LASO 3D AffordanceNet 23 17 8,434 870
SceneFun3D ARKitScenes N/A 9 710 17,133
IRAS OpenAD 23 36 22,949 42,119
SeqAfford 3D AffordanceNet 23 18 18,371 162,386
Affo-150K Objaverse >450 >350 150,104 750,520

Dataset # Classes # Aff # 2D images

UMD 17 7 10,000
IIT-Aff 10 9 8,835
ADE-Aff 150 3 10,011
ORPA N/A 7 2,512
Grounded I.H. 31 20 1,871
AGD20K 50 36 23,816
EPIC-Aff 304 20-36 38,876
3DOI N/A 3 10,000
VRB N/A N/A 54,000
Affo-150K >450 >350 150,104

2023; Qian & Fouhey, 2023; Bahl et al., 2023) focused on predefined affordance categories with
limited object diversity. To overcome the scarcity of annotations, recent works explored weakly
supervised learning (Luo et al., 2022a), few-shot or zero-shot approaches (Li et al., 2024a; Cuttano
et al., 2024), or utilized external videos of human–object interactions (Fang et al., 2018; Nagarajan
et al., 2019; Liu et al., 2022; Mur-Labadia et al., 2023; Ju et al., 2024) to produce affordance heatmaps.
However, the resultant training data suffer from data noise and biased distribution due to occlusions
and limited viewpoints.

In 3D domain, 3D AffordanceNet (Deng et al., 2021) established the first closed-vocabulary 3D
affordance grounding benchmark using PartNet (Mo et al., 2019) shapes. PartAfford (Xu et al., 2022)
and OpenAD (Nguyen et al., 2023) expanded affordance vocabularies while maintaining categorical
constraints. Recent advances toward open-vocabulary 3D grounding include LASO (Li et al., 2024c),
which introduced free-form textual queries with 3D heatmap prediction, and 3D AffordanceLLM (Chu
et al., 2025), which leveraged language models for query generation. SeqAfford (Yu et al., 2025)
focused on textual diversity through GPT-4 generated questions, while SceneFun3D (Delitzas et al.,
2024) explored scene-level functionality segmentation.

Despite progress, existing approaches remain constrained by limited training data diversity and scale.
Our work addresses these fundamental limitations through automated annotation, enabling robust
open-vocabulary affordance grounding across diverse object categories and interaction contexts.

Harnessing 2D foundation models for 3D supervision. Recent advances in 2D foundation models
have opened new pathways for generating high-quality 3D supervision without manual annotation.
Several works (Luo et al., 2022b; Xue et al., 2024; Xu et al., 2024) leverage large language models
(LLMs) and vision-language models (VLMs) to generate text captions for 3D objects using their
multi-view rendered images, facilitating joint 3D-language learning. Others (Yang et al., 2024b; Liu
et al., 2025) distill 2D visual knowledge from foundation models to train 3D geometric encoders,
while scene-centric methods (Yang et al., 2024a; Weder et al., 2024; Lee et al., 2025) extend this
paradigm to large-scale environments by generating region-level 3D annotations through integration
with 2D foundation models. Our work builds upon these ideas to tackle functional understanding via
affordance grounding. Instead of focusing on object categorization or part segmentation, we use 2D
foundation models on multi-view renderings to produce diverse affordance annotations. This bridges
geometric and functional understanding, connecting 2D perception with 3D affordance reasoning.

3 THE AFFO-150K DATASET

Advancing human-object interaction understanding in embodied AI systems demands comprehensive
affordance grounding data—a critical resource currently lacking in the field. Existing datasets suffer
from significant limitations in scale, diversity, and annotation quality, creating a substantial barrier to
progress in this important domain. To address the issue, we propose the Affo-150K dataset, a large-
scale open-vocabulary affordance grounding dataset. In this section, we elaborate on the pipeline used
to generate Affo-150K. Our pipeline leverages large-scale 3D object repositories (Deitke et al., 2023)
and state-of-the-art foundation models (Zhang et al., 2023; Gemma Team, 2025; Deitke et al., 2025)
to automatically generate high-quality affordance annotations. This addresses the aforementioned
limitations by enabling robust and generalizable affordance learning across diverse objects.
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Figure 2: Overview of our data annotation pipeline. Given multi-view renderings of an object,
Gemma3 (Gemma Team, 2025) generates affordance queries, Molmo (Deitke et al., 2025) points the
affordance, and MobileSAM (Zhang et al., 2023) decodes the point to a mask logit. The multi-view
mask logits are aggregated on the 3D object surface to obtain an affordance heatmap.

3.1 SOURCE DATASET

We build the Affo-150K dataset upon Objaverse (Deitke et al., 2023), one of the largest public 3D asset
repositories. It contains more than 700K web-crawled 3D object meshes spanning diverse functional
categories and geometries. Since raw 3D meshes are not directly compatible with recent vision-
language models (VLMs) that take 2D images and texts as input, we incorporate G-Objaverse (Zuo
et al., 2024), which provides high-resolution, multi-view renderings for over 280K Objaverse objects.
These renderings serve as 2D visual input to our annotation pipeline to bridge between 3D objects
and language. We select four subsets that have strong relevance to human-object interaction and
functional affordances in daily lives: Daily-Used, Furnitures, Transportations, and Electronics, which
results in 150K objects.

3.2 ANNOTATION PIPELINE

Our data annotation pipeline consists of three stages. Given a textured 3D object as input, it outputs
a set of natural language affordance queries alongside spatially localized 3D affordance heatmaps.
The entire process is automated and designed to scale to hundreds of thousands of objects, making it
suitable for constructing large-scale datasets. The overall annotation process is illustrated in Figure 2.
Please refer to Section D for stage-wise qualitative results.

Stage 1. Open-vocabulary affordance query generation. Given multi-view images of an Objaverse
object, we employ a multi-modal LLM, Gemma3 (Gemma Team, 2025), to produce natural language
queries that describe how a human might interact with the object. These queries follow a constrained
yet expressive format, allowing open-vocabulary interaction descriptions while maintaining spatial
grounding. By conditioning on rendered views instead of object class labels (Li et al., 2024c; Chu
et al., 2025; Yu et al., 2025), our approach leverages the rich knowledge embedded in VLMs to
generalize to open-vocabulary understanding of affordances. This also enables the system to adapt to
various intra-class variations (e.g., chairs with and without armrests) while maintaining consistent
affordance identification capabilities across diverse object geometries and functional categories.

Stage 2. Language-guided interaction point prediction. Once the affordance queries are generated,
we utilize Molmo (Deitke et al., 2025), a multimodal model capable of grounding natural language
queries to spatial locations in images. Specifically, Molmo demonstrates remarkable precision in
identifying exact pixel locations when provided with input images and natural language prompts that
request localization of specific regions in the image. This capability is crucial for accurately mapping
affordance queries to their corresponding spatial locations on the object. For each query and image
pair, we instruct Molmo to predict pixel coordinates that represent the most likely interaction point in
the given view. The predicted interaction points across views are then used to guide the next stage.

Stage 3. Affordance heatmap generation and aggregation. We convert discrete interaction points
into continuous 3D heatmap representations. First, the predicted point from each multi-view image
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(a) Object classes (b) Affordance classes

(c) Diverse annotations

Dataset Cov. ↑ Div. ↑
LASO (2024c) 0.6384 0.6578
Affo-150K 0.7532 2.6638

(d) Heatmap quality

Figure 3: Characteristics of the Affo-150K dataset. Please refer to Sec. 3.3 for details.

is used as a prompt for MobileSAM (Zhang et al., 2023) to generate a 2D segmentation mask. We
adopt the smallest-mask selection strategy, as it prioritizes precise interactions rather than capturing
broader contextual regions. The segmentation logits are transformed through a sigmoid function
to create probabilistic heatmaps with values between 0 and 1, representing the likelihood of an
affordance at each pixel location. These 2D heatmaps from multiple viewpoints are then projected
onto the 3D object surface using the known camera parameters and depth information. We employ a
voting-based aggregation process where each view contributes to the final 3D representation, with
regions consistently identified across multiple views receiving higher confidence scores. The output
of this stage serves as our final 3D affordance heatmap annotations.

Rendering 2D affordance heatmaps. To bridge our 3D dataset with 2D image domains, we project
the aggregated 3D affordance heatmaps onto 2D image planes from multiple viewpoints. Since
we overcome the multi-view inconsistency problem of Molmo and MobileSAM in stage 3, these
rendered 2D heatmaps exhibit high consistency across different viewpoints and accurate affordance
regions. For each object, we render heatmaps from 25 evenly distributed viewpoints and calculate
affordance region visibility by summing the projected heatmap values. We select the most visible
viewpoint for optimal representation.

Error mitigation. During the automatic dataset generation pipeline, we employ several strategies
to mitigate errors. First, to enhance the fidelity of Gemma3’s responses, we adopt chain-of-thought
(CoT) prompting, instructing the model to first predict the object’s semantic class and then generate
affordance queries conditioned on that class and its functionalities. This approach prevents the
model from relying solely on object shape, which often leads to affordance queries that fail to
capture the object’s intended functions. Second, we apply a multi-view aggregation described in
Stage 3 to reduce errors. Despite Molmo’s exceptional pointing capabilities, its predicted interaction
points can still contain errors and vary across viewpoints. Although a few views produce incorrect
heatmaps, the consensus aggregation reinforces the majority of correct predictions, resulting in robust,
view-consistent outputs.

3.3 STATISTICS AND ANALYSIS

Data statistics. As summarized in Table 1, Affo-150K provides over 150K 3D object instances
across four categories: Daily-Used includes the largest number of instances (121,799), followed by
Transportations (11,609), Furnitures (8,759), and Electronics (7,937). This represents approximately
five times the scale of existing datasets (Deng et al., 2021). Each object includes 5 affordance
query-heatmap pairs, totaling 750K annotations.

Semantic and spatial diversity. Unlike existing datasets constrained by predefined taxonomies,
Affo-150K achieves truly open-vocabulary coverage by leveraging VLM knowledge to generate
diverse and context-aware affordance queries. Figures 3a and 3b demonstrate this semantic breadth
across object classes and affordance types. Our annotations capture varied interaction patterns, from
precise point interactions (e.g. button pressing) to extended surface interactions (e.g. holding), as
shown in Figure 3c. Quantitatively, Table 3d shows Affo-150K achieves significantly higher coverage
(ratio of points covered by annotation union) and diversity (average pairwise KL divergence between
heatmaps) scores than LASO (Li et al., 2024c), indicating richer and more complementary affordance
representations.
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Figure 4: Gato-3D and Gato-2D architectures. Each model consists of a 3D or 2D visual encoder,
a text encoder, and a text-conditioned heatmap decoder. The affordance heatmap is predicted as the
cross-modal similarity of the vision representation and the conditioned text embedding.

Annotation quality evaluation. Beyond diversity and scale, we evaluated the annotation quality
to ensure reliability. To verify the efficacy of our automatic annotation pipeline, we conducted a
systematic quality assessment where 5K affordance query-heatmap pairs were randomly sampled for
human verification. The evaluation demonstrated robust annotation performance, achieving an 84.8%
pass rate. Please refer to Section B.1 for detailed statistics on manual evaluation.

Test split construction. We leveraged our quality validation process to construct a rigorous test split.
The 5K human-evaluated affordance query-heatmap pairs from the previous section were reserved
for testing, ensuring complete train-test separation and evaluation integrity. We engaged human
annotators to manually refine the annotations for the subset that fell outside the 84.8% validation
threshold. To facilitate this refinement process, we developed a comprehensive manual annotation
interface that enables precise editing and validation workflows. The final test split comprises these
validated objects with refined annotations, providing a reliable benchmark. Please refer to Section A.1
for details on the manual refinement process.

4 GATO MODEL ARCHITECTURE

We present a minimalistic architecture for affordance grounding, dubbed Gato. The architecture is
intentionally designed to be simple, yet effective in harnessing the power of the Affo-150K dataset.
Building on the shared architectural concept, we create two affordance grounding models: Gato-3D
for 3D point clouds and Gato-2D for 2D images. Each model consists of a modality-specific visual
encoder, a text encoder, and a text-conditioned heatmap decoder (Fig. 4). The core of our design
is a simple text-conditioned heatmap decoder that replaces learnable queries with text embeddings.
Although this follows the standard transformer-based mask decoder architecture (Cheng et al., 2021;
2022; Jain et al., 2023; Schult et al., 2023; Kolodiazhnyi et al., 2024), using text embeddings as
queries naturally supports open-vocabulary affordance grounding without predefined categories. The
following describes the modality-specific designs.

Gato-3D. For the 3D vision encoder, we use the pretrained PartField model (Liu et al., 2025),
which captures generic part concepts from large-scale 3D data. For the text encoder, we employ
Recap-CLIP (Li et al., 2024b), which provides robust language understanding capabilities. Following
PointRefer (Li et al., 2024c), we finetune both the pretrained 3D vision encoder and text encoder
during training to adapt them to our downstream task while leveraging their strong pretrained
representations. We empirically validate this finetuning strategy in our experiments.

Gato-2D. For the 2D vision encoder, we use the pretrained DINOv2 model (Oquab et al., 2023) as
the vision encoder, and CLIP (Radford et al., 2021) as the text encoder. Following OOAL (Li et al.,
2024a), we freeze both encoders during training to maintain their pretrained representations. Our
architecture adapts the design of OOAL (Li et al., 2024a) but differs in that we remove the learnable
prompt component and take a single affordance query as input, following the referring expression
segmentation framework.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

3D datasets. We evaluate Gato-3D on the LASO dataset (Li et al., 2024c), which supports open-
vocabulary 3D affordance grounding with free-form text queries. LASO provides both seen and
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Table 2: Open-vocabulary 3D affordance grounding on the LASO (Li et al., 2024c) test split. *
denotes models pretrained on the Affo-150K train split and then finetuned on the LASO train split.

Method Seen Unseen
aIoU↑ AUC↑ SIM↑ MAE↓ aIoU↑ AUC↑ SIM↑ MAE↓

Ref. Trans. (Li & Sigal, 2021) 13.7 79.8 0.497 0.124 10.2 69.1 0.432 0.145
3D-SPS (Luo et al., 2022b) 11.4 76.2 0.433 0.138 7.9 68.8 0.402 0.158
ReLA (Liu et al., 2023) 15.2 78.9 0.532 0.118 10.7 69.7 0.429 0.144
IAGNet (Yang et al., 2023) 17.8 82.3 0.561 0.109 12.9 77.8 0.443 0.129
OpenAD (Nguyen et al., 2023) 14.2 85.1 0.533 0.103 14.6 80.7 0.518 0.109
PointRefer (Li et al., 2024c) 20.8 87.3 0.629 0.093 14.6 80.2 0.507 0.119
Gato-3D 20.4 86.0 0.633 0.102 18.7 80.0 0.600 0.101
Gato-3D* 21.9 85.9 0.637 0.116 20.8 82.9 0.614 0.122

GTGato-3D (Ours)PointReferOpenAD

pull

open

put on

GTGato-3D (Ours)PointReferOpenAD

open

Figure 5: Qualitative comparison between OpenAD (Nguyen et al., 2023), PointRefer (Li et al.,
2024c), and Gato-3D on the LASO (Li et al., 2024c) test split.

unseen settings; the seen setting evaluates on object/affordance classes observed during training,
while the unseen setting tests on held-out classes to assess zero-shot generalization.

2D datasets. We evaluate Gato-2D on the AGD20K (Luo et al., 2022a), which consists of two object
splits: Seen and Unseen. AGD20K-Weak, 1-shot, and Full represent weakly supervised, one-shot,
and fully supervised versions of the AGD20K training dataset, respectively.

3D baselines. We select representative baselines for open-vocabulary 3D affordance grounding,
which take language descriptions paired with 3D point clouds as input. Our evaluation includes
multiple representative methods: Referring Transformer (Li & Sigal, 2021), 3D-SPS (Luo et al.,
2022b), ReLA (Liu et al., 2023), IAGNet (Yang et al., 2023), OpenAD (Nguyen et al., 2023), and
PointRefer (Li et al., 2024c). For OpenAD, since official results on LASO (Li et al., 2024c) were not
available, we trained the model on the LASO dataset using their official code implementation. All
other baseline results are taken directly from Li et al. (2024c). We compare these methods with our
proposed Gato-3D on both LASO seen and unseen splits to evaluate generalization performance.

2D baselines. For zero-shot evaluation on AGD20K, we use Molmo+SAM2 (Deitke et al., 2025;
Ravi et al., 2024), LISA-7B (Lai et al., 2024) (a reasoning segmentation model), and M2SA-7B (Jang
et al., 2025) (a part-level referring segmentation model). We format the open-vocabulary query
for an affordance as “Point to the part that you should interact with to {affordance}”. For the
affordance-specific model baselines in Table 4b, we adopt results from Qian et al. (2024).

Evaluation metrics. For 3D evaluation, following prior work (Li et al., 2024c), we use average
Intersection over Union (aIoU), Area Under the ROC Curve (AUC), Similarity (SIM), and Mean
Absolute Error (MAE). Since MAE is sensitive to annotation scale, we primarily report aIoU, AUC,
and SIM. For 2D evaluation, we use Kullback-Leibler Divergence (KLD), Similarity (SIM), and
Normalized Scanpath Saliency (NSS) (Fiorentino et al., 2023). Higher values are better for aIoU,
AUC, SIM, and NSS while lower values are better for MAE and KLD.

5.2 3D AFFORDANCE GROUNDING

LASO (Li et al., 2024c) test split. Table 2 presents the 3D affordance grounding results on LASO.
Our proposed Gato-3D achieves competitive performance on the seen setting and demonstrates
substantial improvements over existing baselines on the unseen setting. Specifically, Gato-3D
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Table 3: Open-vocabulary 3D affordance grounding on the Affo-150K test split. All → All shows
in-domain results. Daily-used → Furnitures and Furnitures → Daily-used show cross-domain results
where models are trained on one category and evaluated on the other.

Method All → All Daily-used → Furnitures Furnitures → Daily-used
aIoU↑ AUC↑ SIM↑ MAE↓ aIoU↑ AUC↑ SIM↑ MAE↓ aIoU↑ AUC↑ SIM↑ MAE↓

OpenAD 3.1 64.8 0.329 0.150 7.6 67.8 0.368 0.177 1.6 54.3 0.308 0.201
PointRefer 10.5 76.1 0.405 0.120 13.5 78.9 0.443 0.157 2.8 60.6 0.265 0.122
Gato-3D 13.6 79.0 0.429 0.111 18.2 80.4 0.475 0.125 4.6 62.4 0.304 0.130

Table 4: Open-vocabulary 2D affordance grounding on the AGD20K (Luo et al., 2022a) test split. For
zero-shot evaluation, Gato-2D is pretrained on the Affo-150K train split. * denotes models pretrained
on the Affo-150K train split and then finetuned on the AGD20K train split with full supervision.

(a) Zero-shot results

Method KLD↓ SIM↑ NSS↑
Seen split
Molmo+SAM2 (2025; 2024) 1.804 0.261 0.729
LISA-7B (2024) 1.627 0.296 0.819
M2SA-7B (2025) 1.772 0.258 0.620
Gato-2D 1.426 0.402 0.985
Unseen split
Molmo+SAM2 (2025; 2024) 1.953 0.226 0.718
LISA-7B (2024) 1.830 0.256 0.765
M2SA-7B (2025) 1.925 0.227 0.657
Gato-2D 1.571 0.376 1.016

(b) Supervised learning results

Method Sup. KLD↓ SIM↑ NSS↑
Cross-view-AG (2022a)

Weak

1.787 0.285 0.829
Cross-view-AG+ (2024) 1.765 0.279 0.882
AffCorrs (2023) 1.618 0.348 1.021
LOCATE (2023) 1.405 0.372 1.157
WSAG-PLSP (2025) 1.153 0.437 1.418

OOAL (2024a) 1-shot 1.070 0.461 1.503

LOCATE-Sup (2023)

Full

1.907 0.236 0.641
LOCATE-Sup-OWL (2023; 2022) 1.927 0.234 0.624
AffordanceLLM (2024) 1.463 0.377 1.070
Gato-2D 1.034 0.503 1.550
Gato-2D* 0.974 0.519 1.645

achieves competitive results compared to the previous SOTA method PointRefer (Li et al., 2024c)
on the seen setting (20.4 vs. 20.8 aIoU) and shows significant gains by a large margin of 4.1%p
aIoU (18.7 vs. 14.6) on the unseen setting, outperforming all existing methods. The effectiveness of
Affo-150K pretraining is particularly evident when finetuned on LASO, where Gato-3D* achieves
the best performance on both seen and unseen settings. Compared to the non-pretrained version,
the pretrained model shows improvements of 1.5%p aIoU (21.9 vs. 20.4) on the seen setting and
more substantial gains of 2.1%p aIoU (20.8 vs. 18.7) on the unseen setting. The pretraining effect is
especially pronounced on the unseen setting, demonstrating the value of large-scale pretraining for
generalization to novel object-affordance combinations. Figure 5 provides qualitative comparison
showing Gato-3D’s superior affordance localization on the LASO test split.

Affo-150K test split. We evaluate the open-vocabulary generalization ability of baseline models on
Affo-150K using both in-domain and cross-domain settings (Tab. 3). We train and evaluate Ope-
nAD (Nguyen et al., 2023) and PointRefer (Li et al., 2024c) using their official code implementations
on our dataset. For in-domain evaluation (All → All), Gato-3D achieves the best performance across
all metrics, with an aIoU of 13.6, AUC of 79.0, and SIM of 0.429, demonstrating superior affordance
grounding capabilities. For cross-domain evaluation, we train models on either the Daily-Used or
Furnitures subset and evaluate on the other, requiring both domain and category generalization.
Gato-3D consistently outperforms prior methods in both directions: when trained on Daily-Used and
tested on Furnitures, it achieves an aIoU of 18.2 and AUC of 80.4; when trained on Furnitures and
tested on Daily-Used, it achieves an aIoU of 4.6 and AUC of 62.4. This demonstrates Gato-3D’s
strong ability to generalize affordance concepts to unseen object categories, highlighting its effective
cross-domain generalization in open-vocabulary settings.

5.3 2D AFFORDANCE GROUNDING

Table 4a demonstrates the exceptional zero-shot generalization capability of Gato-2D on AGD20K.
Despite being a lightweight combination of DINOv2-ViT/B image encoder and CLIP text encoder,
our model significantly outperforms heavily parameterized LLM-based approaches across both seen
and unseen object splits. This superior generalization performance highlights the effectiveness of
large-scale Affo-150K pretraining for learning robust affordance representations that transfer well to
new domains and object categories. Please refer to section Section D for visualizations.
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Figure 6: Qualitative comparison between Cross-view-AG (Luo et al., 2022a), LOCATE (Li et al.,
2023), WSAG-PLSP (Xu & Yadong, 2025), OOAL (Li et al., 2024a), and Gato-2D, which is
pretrained on the Affo-150K train split and then finetuned on the AGD20K train split with full
supervision.

Table 4b presents supervised learning results across different supervision levels. Gato-2D pretrained
on Affo-150K and fine-tuned with full AGD20K supervision achieves state-of-the-art performance.
Notably, Affo-150K pretraining provides consistent improvements over training solely on AGD20K,
demonstrating the value of large-scale pretraining even when fine-tuning data is available. This
validates Affo-150K’s effectiveness as a pretraining dataset that enhances performance despite
domain differences, thanks to its diversity and scale. Figure 6 shows qualitative comparison showing
Gato-2D’s superior performance.

6 DISCUSSION AND CONCLUSION

We have presented AffoGato, a unified framework for open-vocabulary affordance grounding across
both 3D and 2D domains. By leveraging foundation models, our approach enables automatic gener-
ation of large-scale supervision signals, eliminating the need for manual annotation and capturing
diverse human-object interactions beyond predefined categories. Our approach produces Affo-150K,
the largest dataset for affordance grounding with 150K diverse 3D assets and free-form affordance de-
scriptions, moving beyond the predefined categories that have limited existing work. We also propose
Gato-3D and Gato-2D models that share a unified architectural concept with modality-specific vision
encoders. Despite their simplicity, these models achieve state-of-the-art performance on existing
benchmarks with particularly strong generalization to unseen object categories, demonstrating the
effectiveness of large-scale pretraining on Affo-150K. While our approach facilitates scalable learning
of contact points related to an action, an embodied agent in the real world requires predicting more
detailed and fine-grained information beyond spatial localization, e.g., temporal dynamics and force
requirements (Kim et al., 2024), which is limited in our current work. We believe that AffoGato
framework and the Affo-150K dataset will provide a solid foundation for future research toward more
comprehensive embodied AI systems.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive implementation details and
resources throughout the paper and supplementary materials. In Sec. A, we detail our data annotation
pipeline, specifying the exact foundation models used, computational requirements including GPU
usage and processing time, and provide complete architectural details for our Gato-3D and Gato-2D
models including loss functions, batch sizes, and training configurations. We include an interactive
annotation interface screenshot in Fig. 7 to illustrate our human evaluation methodology. Additionally,
we visualize intermediate results of our annotation pipeline in Fig. 12 to help others reproduce our data
generation process. Finally, we have officially released our Affo-150K dataset through Hugging Face
at https://huggingface.co/datasets/project-affogato/affogato, making our 150K annotated instances
publicly available for future research and comparison.
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A IMPLEMENTATION DETAILS

A.1 DATA ANNOTATION PIPELINE

Use of pretrained models. Our data annotation pipeline uses the following pretrained models: (1)
Gemma3 (Gemma Team, 2025) (google/gemma-3-4b-it) for generating natural language af-
fordance queries (2) Molmo (Deitke et al., 2025) (allenai/Molmo-7B-D-0924) for predicting
interaction points in 2D images, and (3) MobileSAM (Zhang et al., 2023) for predicting 2D heatmap
given interaction point prompts.

Computational resources. For Affo-150K dataset generation, we use 8 NVIDIA H100 GPUs with
80GB of memory each. The data generation pipeline takes approximately 24 hours to process 150K
Objaverse instances.

Image sampling. G-Objaverse (Zuo et al., 2024) provides 38 views per object. For computational
efficiency, we used the first 25 views that are captured with the same elevation but uniformly dis-
tributed azimuths around the object. For stage 1 of our pipeline, we sample 5 images at equal intervals
from these 25 views to generate affordance queries. This sampling strategy ensures comprehensive
coverage of the object from multiple perspectives while optimizing computational resources. For the
remaining stages, we utilized all 25 views.

Human evaluation. As discussed in Section 3.3, we instruct human annotators to evaluate the quality
of our automatically generated annotation and to refine annotations for those didn’t pass the quality
check. We guide the annotators to rate the affordance query-heatmap pairs from three criteria: (1)
semantic relevance between the query and object, (2) spatial accuracy of the predicted interaction
points, and (3) coverage of the heatmap for the intended affordance. We provide the annotators with a
web-based interactive viewer for screening the affordance query-heatmap pairs and assigning ratings
based on the three criteria. The example of the web-based interactive UI is shown in Figure 7.

Figure 7: Web-based interactive viewer for (Left) quality evaluation and (Right) human refinement

A.2 3D AFFORDANCE GROUNDING

Gato-3D architecture. Our Gato-3D model leverages the PartField (Liu et al., 2025) architecture for
processing 3D visual inputs and incorporates Recap-CLIP (Li et al., 2024b) for encoding language
queries. Specifically, we adopt a hybrid 3D encoder composed of PVCNN (Liu et al., 2019) and a
triplane transformer, as introduced in the official PartField repository. We used the official pretrained
checkpoint and froze the entire vision backbone during training to ensure consistent feature extraction.

For the text branch, we utilize the Recap-CLIP text encoder, which provides enhanced language
grounding compared to standard CLIP variants. The resulting query embeddings are fed into a
conditional heatmap decoder that predicts spatial affordance distributions over 3D points. The
decoder augments the 3D point features from the vision encoder with Fourier-based positional
encodings and uses them as keys and values in a cross-attention mechanism, where the language
embeddings act as queries. The attended features are then refined through a residual feedforward
network (an MLP with skip connections), which outputs the final heatmap over the point cloud.

Training detail. To ensure a fair comparison with prior methods, we adopt the same loss formulation
as LASO (Li et al., 2024c). The model is optimized using a combination of Binary Cross-Entropy
(BCE) Loss to handle classification and Dice Loss (Milletari et al., 2016) to improve region-level
alignment. The two losses are summed with equal weights to form the final training objective. We
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Table 5: Effect of random background augmentation

(a) Zero-shot evaluation on AGD20K (Luo et al., 2022a)

Method Affo-150K Data KLD ↓ SIM ↑ NSS ↑pretrain augmentation

Seen split
Gato-2D ✓ 1.493 0.355 0.920
Gato-2D ✓ ✓ 1.426 0.402 0.985
Unseen split
Gato-2D ✓ 1.688 0.313 0.876
Gato-2D ✓ ✓ 1.571 0.376 1.016

(b) Fine-tuning on the AGD20K-Full

Method Affo-150K Data KLD↓ SIM↑ NSS↑pretrain Augmentation

Gato-2D ✓ 1.100 0.470 1.497
Gato-2D ✓ ✓ 0.974 0.519 1.645

use the same training setup for both the LASO and Affo-150K datasets: 50 epochs, batch size of 64,
and training on 8 NVIDIA RTX A6000 GPUs.

A.3 2D AFFORDANCE GROUNDING

AGD20K dataset. AGD20K-Weak refers to the original AGD20K dataset. The training set consists of
23,083 / 13,323 image-level labels for the Seen / Unseen splits, respectively, while the corresponding
test sets contain 1,675 / 540 images. AGD20K-Oneshot refers to the AGD20K dataset for one-shot
affordance learning. The training set consists of 50 / 33 images—one per object class—for the Seen
/ Unseen splits, respectively. The test set is identical to that of AGD20K-Weak. AGD20K-Full is
constructed for fully supervised training, following the setup of Qian et al. (2024). The training set
consists of 999 images including object classes from the training set of AGD20K’s unseen split, each
annotated with dense pixel-level affordance masks. The test set contains 540 images from object
classes in the test set of the unseen split.

Background augmentation in Gato-2D pretraining stage. For the pretraining stage of Gato-2D,
we replace the null background in each rendered image with a randomly selected background from
the Background dataset (Gould et al., 2009). After background replacement, the image is resized
to 256×256, randomly cropped to 224×224, and horizontally flipped with a random probability.
Table 5 summarizes zero-shot performance on AGD20K with and without background augmentation
during pre-training, as well as the fine-tuning results on AGD20K-Full. Empirically, we observe that
background augmentation leads to better generalization compared to pretraining without it.

Gato-2D architecture. Our Gato-2D architecture is adapted from OOAL (Li et al., 2024a). Multi-
level features from different layers of DINOv2 are aggregated. To focus attention on foreground
regions, cross-attention is restricted to the regions indicated by the mask derived from the CLS token.
Unlike OOAL, which employs text prompt learning with fixed affordance labels as input, our model
takes a single natural language query as the text input without using any text prompt learning.

Training detail. We used the CLIP ViT-B/16 as the text encoder and DINOv2 ViT-B/14 as the vision
backbone. During pre-training on Affo-150K, the model is optimized using Adam with a learning
rate of 0.001. The training is conducted for 52,000 iterations with a per-GPU batch size of 512 on 7
NVIDIA RTX 3090 GPUs. For fine-tuning on AGD20K-Full, we use the Adam optimizer with a
learning rate of 0.0001. Training is performed for 400 iterations with a batch size of 512 on a single
NVIDIA RTX 3090 GPU. Binary cross-entropy loss is employed consistently in both the pretraining
and fine-tuning stages.
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Figure 8: Effect of CoT Prompting on Affordance Query Generation.

Method Training Res. Test Resolution (# Points)
(# Points) 2048 4096 8192 16384

Gato-3D 2048 0.237 0.245 0.249 0.251
16384 0.265 0.278 0.283 0.287

Table 6: Performance of Gato-3D under varying training and test resolutions. When the training
and test resolutions differ, we first perform inference at the training resolution and then interpolate
the predicted heatmaps to match the target test resolution.

B ANALYSES

B.1 ANALYSES ON DATA ANNOTATION PIPELINE

CoT alleviates affordance misprediction. We observe that CoT prompting helps reduce affordance
prediction errors. As shown in Figure 8, without CoT prompting, the model fails to capture the
object’s functional properties and instead relies primarily on its shape when generating affordance
queries. It produces “Point to the support where you would sit.” for a "Hat stand" or “Point to the
part you would hold to carry this.” for a “Door”. In contrast, with CoT prompting, the model infers
functionally meaningful outputs such as “Point to the handle to open the door,” or “Point to the part
you would place the hat on.”

Effect of data resolution. Affo-150K provides point clouds with a high resolution of 16,384 points,
enabling the capture of fine-grained geometric details critical for affordance understanding. This
represents a significant improvement over LASO (Li et al., 2024c), which provides only 2,048
points resolution. To assess the effect of data resolution, we trained Gato-3D on Affo-150K at two
resolutions (2,048 vs. 16,384 points) and report the results in Table 6. The model trained with
high-resolution data consistently outperforms its low-resolution counterpart across all test resolutions,
indicating that learning fine-grained geometric details during training is crucial for accurate 3D
affordance grounding at any scale.

Human vs. our annotation pipeline. We compare the affordance predictions from our annotation
pipeline with human annotations on 3D-AffordanceNet (Bahl et al., 2023) meshes. Figure 9 presents
a qualitative comparison, where the first and third columns display affordance heatmaps generated by
our annotation pipeline, while the second and fourth columns show human-annotated ground truth
from 3D-AffordanceNet. The visual comparison demonstrates that our automated pipeline produces
affordance heatmap predictions that closely align with human intuition about object affordances.
This suggests that our annotation pipeline can serve as a reliable substitute for manual annotation,
significantly reducing the time and effort required to create large-scale datasets.

Failure modes of annotation pipeline. Despite enabling automatic affordance annotation at scale,
our annotation pipeline exhibits several failure modes in its pipeline. First, despite our use of Chain-
of-Thought prompting to mitigate errors, Gemma3 (Gemma Team, 2025) occasionally produces
affordance queries that are semantically misaligned with the object’s functionality. This occurs
when the LLM misidentifies the object category, which then propagates through the chain-of-thought
prompting to generate irrelevant affordance queries. Second, SAM (Zhang et al., 2023; Ravi et al.,
2024) tends to be biased towards object edges, leading to heatmap predictions that over-emphasize
boundaries rather than functionally relevant regions. This edge bias can result in incomplete or
imprecise affordance annotations, particularly for affordances that involve interacting with the interior
regions of objects. Third, there are cases where the target object part described in the affordance query
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Human Human

(trashcan, pour) (trashcan, pour)

(knife, stab)(mug, grasp)

(dishwasher, open)

(microwave, open) (clock, display)

(vase,pour)

Our pipeline Our pipeline

Figure 9: Our annotation pipeline vs. Human. Comparison is conducted on 3D-
AffordanceNet (Bahl et al., 2023) meshes. First and third columns show affordance heatmaps
predicted by Affo-150K annotation pipeline, while second and fourth columns are human-annotated.

is not visible in the multi-view images due to occlusion or camera angle limitations. For example,
given the affordance query "Point to the part where you would use to brake the car", the brake pedal
is often occluded since our multi-view images are captured using a circular camera trajectory around
the object’s exterior. To ensure dataset quality, we address these visibility issues through our human
evaluation process, which filters out such problematic cases from the test split. The distribution of
failure modes across categories is shown in Figure 10.

B.2 FAILURE CASES OF GATO

Figure 11 illustrates failure cases from the zero-shot evaluation of the Gato-2D model, pretrained on
Affo-150K, on the AGD20K dataset. Images in AGD20K sometimes contain multiple objects, which
can result in several plausible regions corresponding to a single affordance. For example, in the left
image, the "hold" affordance could refer either to the handle of the coffee machine or to the handle of
the cup. Similarly, in the right image, "hold" could apply to either the chopsticks or the outer surface
of the bowl. These cases highlight limitations in the ground truth annotations. To make more precise
predictions, it may be necessary to include explicit object information in the prompt, such as “hold
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 Object misidentification (Stage 1)
 Incorrect affordance queries (Stage 1)
 Wrong interaction points (Stage 2)
 SAM edge bias (Stage 3)
 Limited camera angles (All stages)
 Other failures (-)
 Success

Figure 10: Annotation quality evaluation results from Section 3.3.

Figure 11: Failure cases of Gato-2D in zero-shot evaluation on AGD20K.

the cup” or “hold the bowl.” Our model is capable of accepting arbitrary natural language queries,
making it well-suited for resolving such disambiguities effectively.

C LIMITATIONS

As the Affo-150K dataset is derived from the Objaverse 3D assets, our data do not contain the
background information. Due to this limitation, we randomly synthesize background on the 2D
images as shown in Table 5, which is shown to be helpful when transferred to the real-world images.
Note that our data engine can be extended to the indoor or outdoor scene data to tackle navigation
environments, leaving them for future work.

D ADDITIONAL QUALITATIVE RESULTS

Stage-wise qualitative results. Figure 12 presents the intermediate qualitative results at each
stage of our pipeline. Stage 1 takes multi-view images as input and predicts the object’s class
name together with five candidate queries. Stage 2 leverages Molmo to point to the affordance
region corresponding to each query. Stage 3 converts Molmo’s pointing locations into pixel-wise
masks. These results highlight the robustness of our pipeline: even when Molmo produces incorrect
pointings for some views or MobileSAM generates imprecise masks, the multi-view consensus voting
effectively suppresses such errors, yielding an accurate final output.

Qualitative comparison of zero-shot evaluation on AGD20K. In Figure 13, we visualize qualitative
results for 2D zero-shot affordance grounding. It illustrates common failure modes of existing
methods (Lai et al., 2024; Jang et al., 2025) that capture whole objects rather than precise part-level
affordances. While Molmo+SAM provides rough part-level localization, our model trained on the
multi-view aggregated Affo-150K dataset achieves refined grounding capabilities.
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Figure 12: Intermediate qualitative results at each stage of annotation pipeline. For Stage 2 and
Stage 3, we present the results corresponding to the affordance query highlighted in black from Stage
1. In Stages 2 and 3, the visualizations are shown for five representative views, uniformly sampled
from the all 25 views.
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Figure 13: Zero-shot evaluation comparison of Gato-2D and others on AGD20K (Luo et al., 2022a)
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