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SUPPORTING MULTIMODAL INTERMEDIATE FUSION
WITH INFORMATIC CONSTRAINT AND DISTRIBUTION
COHERENCE

ABSTRACT

Based on the prevalent intermediate fusion (IF) and late fusion (LF) frameworks,
multimodal representation learning (MML) demonstrates its superiority over uni-
modal representation learning. To investigate the intrinsic factors underlying the
empirical success of MML, research grounded in theoretical justifications from the
perspective of generalization error has emerged. However, these provable MML
studies derive the theoretical findings based on LF, while theoretical exploration
based on IF remains scarce. This naturally gives rise to a question: Can we de-
sign a comprehensive MML approach supported by the sufficient theoretical
analysis across fusion types? To this end, we revisit the IF and LF paradigms
from a fine-grained dimensional perspective. The derived theoretical evidence
sufficiently establishes the superiority of IF over LF under a specific constraint.
Based on a general K-Lipschitz continuity assumption, we derive the general-
ization error upper bound of the IF-based methods, indicating that eliminating the
distribution incoherence can improve the generalizability of IF-based MML meth-
ods. Building upon these theoretical insights, we establish a novel IF-based MML
method, which introduces the informatic constraint and performs distribution co-
hering. Extensive experimental results on multiple widely adopted datasets verify
the effectiveness of the proposed method.

1 INTRODUCTION

Given the gradually increasing data from multiple modalities, multimodal representation learning
(MML) demonstrates the potential for supporting the comprehension of complex patterns. Accord-
ing to the feature mapping stages Wang et al.| (2020), two widely adopted multimodal fusion types
exist in recent MML studies, i.e., feature-level intermediate fusion (IF) and decision-level late fu-
sion (LF) [ﬂ IF integrates features from various modalities in the latent space, whereas LF merges
the prediction logits in the target space. MML recently has arisen as a popular area of research in
many fields, e.g., knowledge graph|Cao et al.|(2022); Lu et al.[(2022)), recommendation |Zhou et al.
(2023);|Wei et al.| (2023)); [Li et al.| (2024), sentiment analysis|Hazarika et al.|(2020); Li et al.| (2023));
Liu et al.[(2024) and so on. Besides the documented empirical success, studies|Zhang et al.|(2023b));
Cao et al.| (2024) investigate the inherent mechanisms behind MML from the generalization error
perspective, thereby providing theoretical supports for the multimodal models.

However, thus-far provable works from the generalization error perspective derive theorems based
on the LF framework, while the theoretical analysis focusing on the IF framework remains in-
sufficiently explored. Theoretically, according to the theory of data processing inequality |(Cover
& Thomas| (2001), IF-based methods may contain more task-dependent information. Empirically,
we conduct exploratory experiments by substituting the framework of two representative LF-based
methods (PDF[Cao et al. (2024) and QMF [Zhang et al.| (2023b)) with IF. As illustrated in Figure [T}
IF-based methods consistently outperform their LF-based counterparts on four multimodal datasets.
Despite the theoretical and empirical potentials of IF’s ascendancy over LF, the theoretical supports
behind IF-based MML models require further exploration. To this end, we revisit the IF and LF
paradigms from a fine-grained dimensional perspective. With rigorous deduction, we demonstrate
the superiority of IF over LF under a specific constraint. Therefore, we design our model based on
the IF framework, and incorporate a specific informatic constraint. The informatic constraint im-
poses a regularization on parameters of the linear target mapping in IF-based MML models from the

'Early fusion aggregates the original data directly, which is impractical in real-world scenarios due to the
heterogeneity of multimodal data. Therefore, we remove early fusion from the consideration.
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Figure 1: QMF (IF) replaces the LF framework in QMF with the IF, and the same applies to PDF
(IF). MVSA-Single, MVSA-Multiple, HFM, and Food101 are four vision-language datasets.

information theory perspective [Tishby et al. (2000). Such an informatic constraint can sufficiently
guarantee the superiority of IF over LF.
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serving the generalization error up-
per bound, we reveal that eliminating
the distribution incoherence can im-
prove the generalization performance
of IF-based MML models. Thus,
we determine to employ Wasserstein
distance to conduct distribution co-
hering for its favorable properties.
Directly calculating Wasserstein dis-
tance |Cuturi (2013) between high-
dimensional features requires huge
computational complexity. Accord-
ingly, two main categories of methods are proposed to practically estimate Wasserstein distance:
(1) Sampling-based Sinkhorn |Cao et al.|(2022); [Li et al.| (2023); (ii) Radon transform-based nonlin-
ear neural network calculation (RTN) /Bonneel et al.| (2015)); Kolouri et al.|(2019));/Chen et al.|(2022);
Sugimoto et al.|(2024). Nevertheless, due to the incompleteness of the partial sampling strategy in
sampling-based Sinkhorn and the inaccuracy of fitted non-linear functions in RTN, current methods
suffer from the degraded estimation of Wasserstein distance, as demonstrated in Figure |ZI To ad-
dress this issue, we propose a novel estimation method of Wasserstein distance, which introduces
a restricted isometric dimensionality reduction technique, and design a Lagrange regularization to
enhance robustness to the semantic disturbance during dimensionality reduction. This approach em-
powers us to omit the partial sampling strategy and the nonlinear neural network, thus achieving
distribution cohering effectively with limited computational complexity. The empirical evidence in
Figure 2] verifies our statement.

Figure 2: On the MVSA-Single dataset, we leverage three
methods to estimate Wasserstein distance and record the av-
erage time cost per 50 batches. The ground truth Wasser-
stein distance is obtained by applying the Sinkhorn algo-
rithm to all high-dimensional features in each batch. The
results show that directly computing Wasserstein distance is
impracticable because of the high time complexity. From
the left column of the figure, it can be observed that com-
pared to sampling-based Sinkhorn and RTN, our method
achieves a more accurate Wasserstein distance estimation
with a limited increase in time complexity.

In a nutshell, we propose a novel IF-based MML method with solid theoretical supports, namely
Intermediate Fusion with Informatic Constraint and Distribution Coherence (IID). Our major con-
tribution is four-fold:

(1) From a fine-grained dimensional perspective, we rethink the two prevalent fusion types of MML,
i.e., IF and LF. We theoretically demonstrate the superiority of IF-based methods over LF-based
counterparts based on a specific constraint. (2) Based on the K-Lipschitz continuity assumption
on the linear target mapping, we derive the generalization error upper bound of IF-based methods,
which indicates that mitigating the distribution incoherence can improve the generalizability of IF-
based MML models. (3) Adhering to theoretical analyses, we propose a novel IF-based MML
model, encompassing informatic linear target mapping constraint and distribution cohering with
restricted isometric dimensionality reduction. (4) Empirically, we conduct extensive experiments on
representative benchmarks to prove the effectiveness of 1ID.
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2 RELATED WORK

In recent years, the expansion of available data has significantly propelled advancements in the fields
of computer vision Krizhevsky et al.|(2012)); [He et al.|(2016); Huang et al.|(2017); Dosovitskiy et al.
(2021)) and natural language processing |[Pennington et al.| (2014a); [Vaswani et al.| (2017); \Devlin
et al.[(2019b), enabling the development of more robust and sophisticated applications. However,
these models focus on the processing of unimodal data (e.g., images and text). As the semantics ex-
tracted from unimodal data approach its bottleneck, MML has garnered increasing attention from the
research community. By exploring both the modality-shared and modality-specific task-dependent
discriminative knowledge, MML demonstrates its superiority in fields involving various modality
combinations, like audio-video-text [Liu et al.[ (2024); Hazarika et al.| (2020), image-texts [L1 et al.
(2023);Ma et al.| (2024), graph-image-texts Wei et al.| (2023)); |Cao et al.[(2022)) and so on.

Besides the documented empirical success, research endeavoring to understand MML with theoret-
ical justifications has started to emerge. E.g., [Huang et al.| (2021)) rigorously demonstrate that the
reason why MML outperforms unimodal methods lies in its access to a superior latent space repre-
sentation. |Huang et al.|(2022) substantiate the existence of modality competition, which renders the
joint training of multimodal networks challenging, thereby leading to suboptimal performance. Be-
yond the exploration of the intrinsic mechanism of MML, several works develop multimodal models
under the theoretical guidance of generalization error and yield great success. Specifically, QMF
Zhang et al.|(2023b) is designed by the theoretical derivation that the negative correlation between a
specific modality’s fusion weight and empirical error can decrease the generalization error. PDF|Cao
et al.| (2024) is proposed based on the provable elucidation that the reduction of generalization error
primarily stems from the negative covariance between fusion weights and the loss associated with
the current modality, as well as the positive covariance between fusion weights and the loss of other
modalities. Due to the inherent correspondence between the ensemble-like LF framework and the
extensively investigated field of ensemble learning |Qiao & Peng| (2024); Wood et al.|(2023), these
works consistently derive the theoretical findings based on the LF framework, thus resulting in the
sparse theoretical exploration based on IF. In contrast to prior research, we design a comprehensive
MML approach, supported by a complete theoretical analysis across fusion types.

3 THEORETICAL INSIGHTS

This section presents our theoretical insights, and we offer a concise overview of the proposed
theorems with complete proofs deferred to Appendix

We first provide the basic notations of MML. We denote the input space, latent space, and target
space by X, Z and ), respectively. Given a multimodal learning task, the training dataset Dy,
comprises instances of the form (x,y), which are sampled from the distribution D € X x Y. x
is the multimodal sample and y is the corresponding label. Two mappings are defined to assist our
theoretical analysis: (¢) latent mapping h(-) : X — Z, which takes an input from the input space X'
and projects it into the latent space Z; (i%) target mapping g(-) : £ — ), which takes latent features
from the latent space Z and maps them to the target space ). The formula f = goh(x), abbreviated
as [ = gh(x), is a composite function of g(-) and h(-). Our objective is to learn a multimodal model
f that performs well on the unknown test dataset D, which is also drawn from D.

3.1 REVISITING THE IF AND LF PARADIGMS: A FINE-GRAINED DIMENSIONAL PERSPECTIVE

For the sake of simplicity and without loss of generality, we perform the theoretical analysis within
the scenario involving two modalities. Given the input multimodal data @ = {z1, 22}, we employ
latent mappings to obtain the corresponding features by z; = h'(z;) and 2o = h%(z3). Given the

m-th (m € {1,2}) modality-specific fusion weight w™ > 0 and an:l w™ = 1, for LF, the final

prediction logits fir(x) = anzl w™gg' h™(x,,), while for IF, fir(z) = go [Efnzl WA ()]

It can be seen that each modality has its specific target mapping g™ (-) parameterized by 6,,, in LF.
In contrast, IF leverages a common target mapping g(-) parameterized by 6 for multiple modalities.
Being consistent with our major baseline Zhang et al.| (2023a)); |Cao et al.|(2024), we employ a linear
classification layer as our target mapping, which is a widely adopted setting in multimodal learning
task |Anderson et al.|(2018);|/Han et al.| (2021); Cao et al.| (2024).
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Figure 3: On the vision-language dataset MVSA-Single, we perform the mask experiment for each
dimension of latent features from two modalities. Specifically, in the mask experiment, the value of
a given dimension is set to zero while retaining the original values of all other dimensions. Subse-
quently, we record the changes in the average Cross-Entropy loss on the test set. The left and right
subfigures record the results of mask experiment on linguistic and visual features, respectively.

We assume that z; and z, share the same dimension R?, which can be realized easily by a linear
transform in practice. Intuitively, in the image classification task, a specific pixel of a picture either
belongs to the task-dependent foreground or to the task-irrelevant background. Analogously, from
a fine-grained perspective, each dimension of latent features z1, 25 (e.g., 21, and 22.,, 1 < n < d)
is either task-dependent semantics or task-independent noise. We provide the definition of task-
dependent semantic and task-independent noisy dimensions according to the results in Figure [3]

Definition 1 (Semantic and noisy dimensions). If masking a given dimension results in a decrease
of the error between the model’s predictions and the ground truth label, the dimension is classified
as task-dependent semantic dimension, conversely, the dimension is classified as task-independent
noisy dimension.

Thus, there are two partitions corresponding to per latent feature, i.e., 21 = {z1,5,, 21,75, }, 22 =
{22,585, %22,N, }» Where Sy, and N,,, denote the index sets of semantic dimensions and noisy di-
mensions, respectively, corresponding to the m-th modality. Sy N N; = @ and S; " N = ©
since a certain dimension cannot be semantics and noise simultaneously. In LF, the parameters
(61, 0-) of the target mappings also have two partitions corresponding to the input latent features,
ie., 01 = {01,5,,01.n,},02 = {02.5,,602 N, }. Then the prediction logits of LF can be formalized
as

fur(®) = w'(2101) +w*(2202) = w'z1,5, 01,5, +w' 21,5, 01,8, + W 22,5,02 5, + w22 N, 02 N, (1)

While in IF, the multimodal feature is obtained in latent space by z = w'z; + w229, thus each
dimension of z has four possible scenarios:

e Dg, 5, = 51 NS, acombination of the semantic dimensions of z; and z»;

e Dg, n, = 51N Ny, a combination of the semantic dimension of z; and the noisy dimension of z5;
e Dy, 5, = N1NSs, acombination of the noisy dimension of z; and the semantic dimension of z5;
o Dy, v, = N1 N N, a combination of the noisy dimensions of z; and za.

Briefly, z can be partitioned into four components {2pg g, 2Ds, x, s 2Dy, 5,5 2Dy, v, |» and arbi-
trary two sets in {Dg,s,,Ds, o, DN, 5., DN, N, | are disjoint obviously. Corresponding to the
fused multimodal feature z, the parameter @ of the target mapping has four partitions, i.e., 8 =
{Obs, 5,005, vy O, 5, ODn, v, }- Accordingly, the prediction logits of IF is

fIF(CC) =z-0= ZDg, s, 0D31 So + ZDs, N, BDSI Ny + 2Dy, 55 BDNl So + 2D, Ny ODNl Ny (2)
Then, we can derive the following Theoremm
Theorem 1 (Prediction comparisons of IF and LF). For each input multimodal sample (x,y),

there constantly exists a set of parameters A, such that the following equation holds for the linear
target mapping characterized by 0 € A:

E(fB,IF(x)vy) < ‘C(fLF(w)7 y)7 3)

where L(-,-) is Cross-Entropy loss function. Given the Bayes optimal hypothesis f*, which achieves
the infimum of the errors R* on D, i.e, f* = argmin; R(f) = argmin; B,y ~p[L(f(2),y)],
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and for each € € [0, ]| L(f*(x),y) — L(fr(z),y) || | there exists a corresponding 6’ € A s.t.
E(fB’JF(w)a y) = £(fLF(w)7 y) - ¢

The proof of Theorem [I] can be found in Appendix We omit the explicit notation of target
mappings’ parameters in LF-based prediction, since Theorem |I| holds for arbitrary parameters of
target mappings in LF models (This paper follows this notation principle throughout). Theorem
confirms that a simple linear target mapping characterized by the parameters in A can establish
the superiority of IF over LF. Additionally, there theoretically exists a 8’ that allows the IF-based
prediction to be closer to Bayesian optimal prediction compared to those of the LF models.

3.2 ANALYSIS OF THE GENERALIZATION ERROR

Based on Theorem [T} we present our theorem regarding the generalization error of IF and LF. The
generalization error is a metric that measures the generalization performance of the learned multi-
modal model f, which can be defined as: 4 = E(4 ,)~p[L(f(x),y)]. Theorem [2| delineates the
comparison of generalization errors between IF and LF.

Theorem 2 (Generalization errors of IF and LF). With a linear target mapping gg in IF parame-
terized by 0 € A, the following equation holds: Y1pe < Yrr.

Theorem [2]is proven in Appendix [A.2.2] which indicates that IF with linear target mapping gg(+)
can exhibit lower generalization error than LF consistently. We further introduce Assumption [I] to
investigate the factors impacting the generalization error of IF-based MML methods.

various existing works|Arjovsky
& Bottou! (2017); |Arjovsky et al.|(2017); |Cao et al.|(2022)) introduce the constraint of K -Lipschitz
continuity assumption within their theoretical analysis, demonstrating the generality of K -Lipschitz
continuity constraint. Furthermore, relevant studies |[Yoshida & Miyato| (2017); |Gulrajani et al.
(2017) declare that K-Lipschitz continuous function can be easily constructed. The literature in-
dicates that K -Lipschitz continuity constitutes a mild assumption.
Theorem 3 (Generalization error upper bound of IF). Let D, = {x', yi}z*{“"‘ be the train-
ing dataset and Dy be a complete distribution distance metric. Under the constraint condition of
Assumption|l} for any fip with the linear target mapping gg parameterized by 0 € A in hypothesis
space H and 0 < § < 1, with the probability at least 1 — 6, the generalization error of fir holds:

M
Giro <> [KE(wm) Dot (i, 1) +Error (W™, £(ge(2m), y)) ] +E(frr)+Bias [m(%), O(N—W)].
m—1 W—/
Distribution incoherence

C))
The corresponding proof of Theorem [3] can be found in Appendix E(w™) represents the
expectation of multimodal fusion weight, D, is the complete distribution distance metric which
satisfies the three essential properties (non-negativity, symmetry, triangle inequality). p,, is the
distribution that the features of the m-th modality are drawn from, p is the distribution that the
multimodal feature z follows. Distribution incoherence quantifies the discrepancy between the dis-
tributions p and p,, (M € [1, M]). IE‘( fir) is the empirical error of multimodal feature z on Dygp.
Bias[9(H), O(N~1/2)] is the systematic bias with respect to Rademacher complexity 9 of the hy-
pothesis space H and the size of training dataset /N. It’s challenging to eliminate the systematic
bias in MML models. Error[w™, £(ge(zm),y)] is an error term about the fusion weight w™ and
unimodal loss £(ge(zm ), y), which indicates that the calculation method of fusion weight w™ can
affect the predictive performance of MML models. Recent research|Zhang et al.|(2023a)); Cao et al.
(2024) focuses on exploring the effective fusion weights w™ to achieve better performance of MML
models, leaving the diminution of the distribution incoherence term unexplored.

Consequently, inspired by Theorems[I]and 2] we determine to implement our model based on the IF
framework with a linear target mapping characterized by @ € A. According to Eq.(d) in Theorem
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Figure 4: The overall architecture of IID, which is built based on a prevalent IF framework. The
pipeline is illustrated under the scenario of two modalities without loss of generality. The proposed
informatic constraint on linear target mapping and distribution cohering with restricted isometric
dimensionality reduction bridges our theoretical framework and practical methodology seamlessly.

[3] we propose to diminish the value of the distribution incoherence term, thereby further enhancing
the generalizability of our method.

4 METHODOLOGY

Overview of IID. The framework of the proposed IID is illustrated in Figure A Drawing upon
Theorems|[TJand[2] we build our model based on the IF framework. Concretely, given a batch of input

multimodal samples {(93 '), (x2,9%),---, (2™, yN)}, N is the batch size, each instance has M
modalities, i.e., " = {mll, xh, 2l ) (z € [1, N]), and we obtain the corresponding features by
latent mappings, i.e., zi, = h™(x% ), where m € [1, M]. Then we obtain the multimodal feature 2

of =’ in latent space via
M

t=) wlan, ®)
which is a prevalent IF paradigm, and we calculate the prediction logits by fir(z?) = g(2?).

The derivations of Theorems2]and 3|are based on the linear target mapping parameterized by 6 € A.
To actualize such a specific and accessible linear target mapping, we introduce the meticulously
designed informatic constraint, which guarantees that the parameter of the linear target mapping is
restricted to the desired set A and converges towards the theoretically optimal parameter 8* during
the training process. Under the guidance of Theorem 3] we propose the distribution cohering with
restricted isometric dimensionality reduction module to diminish the distribution incoherence term
in Eq.(@), thereby improving the generalizability of the proposed IID.

4.1 LINEAR TARGET MAPPING WITH INFORMATIC CONSTRAINT

In this section, we introduce the informatic constraint to attain the expected linear target mapping.
As delineated in Theorem |1} based on 6 € A, we have L(firo(z?),y") < L(fr(z?),y*), which

equals £(2% - 0,y%) < Z:l W™ L(Z! - O, y'). Therefore, given the initial parameter 6 of the

linear target mapping, we can constrain the parameter 6 in A and approximate it to the optimal
parameter 8* during the optimization process by:

Min L(z'-60,5) = w"L(zh  Om.y). ©)

Nevertheless, 1ID is established based on the IF_framewor_k, which renders the unavailability of
LF-based Cross-Entropy loss function (i.e., £(2!, - O, y")), ultimately leading to incalculable
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Eq.(6). But we note that recent research regarding information theory [Tishby et al.| (2000); [Fed-
erici et al.| (2020); |Li et al.| (2024) maximizes mutual information by minimizing Cross-Entropy
function, which manifests that higher mutual information I(z%;y) indicates lower £(2% - 6, y).
Drawing inspiration from this finding, we inversely implement Eq.(6) by

Max I(z'y") =) I(zmiy'), @)
where I(z%y%) = [ [ p(z%,y)log [%} dz'dy’. Although Eq. is a necessary but not suf-
ficient condition of Eq.(6), achieving the optimization objective through the necessary condition is

practical and general Jiang & Veitch|(2022));[Zhang et al.|(2024)), and the empirical results in Section
[3] confirm the effectiveness of such an implementation.

Compared to Eq.(6), we omit the multimodal fusion weight w™ in Eq.(7) since maximizing
—1(zp;y) equals maximizing —w™I(z,,;y) with w™ > 0. Eventually, we can implement Eq.(7)
by minimizing the loss function:

N

L= < log ao(y'|2") + AKL (Wil IN) = 3 [logao(y'|=},) = AKL (N V) }) .

i=1

8)
The derivation of L, is detailed in Appendix go(-|) is the variational approximation of p(-|-),
which is calculated by the target mapping. A is a trade-off hyper-parameter. K L(-) is Kullback-
Leibler divergence [Van Erven et al.| (2014). NV} (NZ%) is a Gaussian distribution fitted by the mean

and variance of z%(z!,). \ is the standard Gaussian distribution.

4.2 DISTRIBUTION COHERING WITH RESTRICTED ISOMETRIC DIMENSIONALITY REDUCTION

[A2.3 8

Eq.@) indicates that the distribution incoherence term is
bounded by the inter-modality distribution discrepancy, thus we can achieve distribution cohering
by minimizing the right-hand side of Eq.(9). Considering that Wasserstein distance possesses the
requisite properties of complete distribution distance metric, we determine to accomplish Dy by
Wasserstein distance (detailed in Appendix . Sinkhorn algorithm |Cuturi (2013)) can achieve
precise Wasserstein distance calculation. But in practice, performing Sinkhorn algorithm on high-
dimensional features is problematic for its excessive computational complexity.

We ascertain the underlying cause by first restating the operating mechanism of canonical Sinkhorn

algorithm. Given two probability distribution py,p2 with discrete supports u = {u;}71,,v =
{or}2 QCGL uy = Land 3732 ) vy, = 1), Wasserstein distance can be calculated as follows:
. m na . T
W(p1,p2) = min Zj:1 Zk:l TjCjx, subjectto T € R™*™ T1,, = u,T 1, = v. (10)

T is the transport plan and Cj evaluates the distance between u; and uy. During the iterative
computation of the optimal transport plan 7', each element of the matrix C is derived from the
pairwise distance between features. Consequently, a large feature dimensionality incurs a substantial
computational complexity, which renders the Sinkhorn algorithm computationally problematic for
high-dimensional features.

Inspired by the studies|Wright & Ma (2022)); |Radhakrishnan et al.|(2025) indicating that the features
of data from multiple sources (such as signal, image, and so on) are generally sparse in the fre-
quency domain, we opt to transform high-dimensional sparse features into low-dimensional dense
features to accelerate Sinkhorn algorithm. Beyond improving computational efficiency, to mitigate
the degradation of Wasserstein distance estimation precision caused by dimensionality reduction,
we particularly impose a dimensionality reduction matrix with Restricted Isometry Property (RIPﬂ
and can maintain the geometric structure of features during the dimensionality reduction.

?A transform A satisfies RIP if (1 — &') ||| < || Az|]} < (1 +0) [|z||3.
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Table 1: Results on four vision-language datasets. Bold represents the best results. D stands for
dynamic fusion, i.e., the fusion weight w™ is a function of ™. In contrast, the w™ is a constant
in the static fusion (S) method. We obtain the p-value of IID-P by performing the student ¢-test
between IID-P and PDF, the same applies to the p-value of IID-Q and IID-L.

Baseline Type MVSA-Single MVSA-Multiple HFM Food101

M Avg Worst Avg ‘Worst Avg Worst Avg Worst
Bow S 4879 £7.05 3545 6478+0.81 64.18 74.22+0.87 7325 82.50+£0.18 82.32
Img S 64.12 £ 123 62.04 67.04+:049 66.65 7474£038 7436 64.621+040 64.22
BERT S 75.61 £0.53 7476 6939 +037 69.18 8534+046 84.86 86.46+0.05 86.42
Late-fusion S 76.88 £1.30 7476 67.94+£0.56 6741 8551+0.18 8531 90.69+0.12 90.58
C-Bow S 64.08 £ 1.54 62.04 6735+£0.20 67.24 7653+0.23 76.28 70.77 £0.09 70.68
C-BERT S 6559+ 133 6474 67.71+£1.06 6659 8582+1.06 8476 88.20+0.34 87.81
MMBT D 78.50 £ 040 78.04 69.88£0.31 69.71 85394034 8501 91.52+0.10 91.38
T™MC D 74.87+£224 71.10 68.41+0.16 6829 85.18+0.79 8455 89.86+0.07 89.80
DYNMM D 79.07 £0.53 7823 6855+0.20 6832 8532+£042 8496 92.59+0.07 92.50
QMF D 7807 £1.10 7630 68.67+0.27 6841 8587+£023 8566 92924+0.11 92.72
PDF D 7994 +£095 7842 69.54+025 6926 86.03+0.31 8577 9332+022 92.84
IID-L S 7778 £1.09 7589 69.324+0.50 67.84 8594+£042 8541 91.93+0.25 91.21

p-value - 5.47¢73 - 6.67¢73 - 4.34e72 - 9.87¢73 -
1ID-Q D 80.02£040 79.58 71.08+0.30 70.76 86.61 £0.23 8637 93.10+0.03 93.06

p-value - 1.07e=3 - 4.74e=* - 4.97¢=3 - 3.69¢~2 -
IID-P D 81.13 +0.84 7998 71.23+0.44 7081 86.88+0.39 8632 93.73+0.14 93.52

p-value - 3.34e7* - 9.34e~% - 6.72¢73 - 1.51e2 -

Specifically, we first employ fast Fourier transform to transform feature z?, into the frequency do-
main: 2, = F(z!,) = [pa f(t) e72™"Zm dt, where f(t) is the Fourier series expansion of z,,. We
further strengthen the sparsity of 2, by preserve the top-d; (d; < d) principal components by

amn

I - | o
=0, [l <
7 is set to the magnitude of the d;-th largest component of 2%, d; is a hyperparameter, and n € [1, d]
is the dimension index. The enhancement of sparsity not only mitigates the interference of noisy
semantics but also alleviates the risk of mapping two disparate high-dimensional features to an
identical low-dimensional representation during dimensionality reduction.

Then we design a dimensionality reduction matrix with RIP. Let @ denote the Gaussian Random ma-
trix, as the elements sampled from N are highly uncorrelated with the bases of the Fourier transform,
W = ®F ! can be treated as the RIP-preserved dimensionality reduction matrix [Wright & Ma
(2022). Thus we employ a modality-specific ¥,,, for the dimensionality reduction: Efn = \I’mﬁfn,
where 2!, € R%, 20 € C4, and ¥,,, € C?*4, Since d; < d and the RIP of ¥,,,, the upper bound
of distribution incoherence can be accurately measured with limited computation complexity.

Additionally, the loss of semantics derived from dimensionality reduction is inevitable, to enhance
robustness to such an undesirable disturbance, it is plausible to relax the original hard marginal
matching constraints, which allows for a flexible assignment of matching mass. Overall, we intro-
duce a relaxed constraint in the form of the Lagrange multiplier method, and ultimately calculate
Wasserstein distance between modalities m1 and ms in the following manner:

—~ . ny no
W(jts s 1my) = argmin > TGt h [KL(T1n2 | w) + KL(T 1n, || 'u)] . (12

where Cji =|| ¥ (23,) — ¥, (2E) ||2. Then distribution incoherence is bounded by L. =
> my.ms YW (tmy s fim, ), and the final loss function of IID can be formalized as:

Liip = alic+ BLac + Zj\; L {le(ﬂﬁi)’ yz} ; (13)

«, [ are the hyperparameters to control the influence of £;. and L4.. The overall training pipeline
is depicted in Algorithm
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Table 2: The link prediction results on two multimodal knowledge graph datasets.

Model Type FB-IMG WNO-IMG
yp MRR H@l H@3 H@l0 | MRR H@l H@3 H@I10
TransE 0.712 0.618 0.781 0.859 | 0.865 0.765 0.816 0.871
DistMult Unimodal 0.706  0.606 0.742 0.808 | 0.901 0.895 0913 0.925
ComplEx e 0.808 0.757 0.845 0.892 | 0.908 0.903 0.907 0.928
RotatE 0.794 0.744 0.827 0.883 | 0.910 0.901 0915 0.926
TransAE 0.742  0.691 0.785 0.844 | 0.898 0.894 0.908 0.922
IKLR Multimodal 0.755 0.698 0.794 0.857 | 0.901 0.900 0912 0.928
TBKGE “ 10812 0764 0850 0.902 | 0912 0904 0914 0.931
MMKRL 0.827 0.783 0.857 0.906 | 0.913 0905 0917 0.932
OTKGE 0.843 0.799 0.876 0916 | 0.923 0911 0.930 0.947
MMKRL+IID 0.844 0.801 0.876 0917 | 0920 0911 0925 0.945

‘ Multimodal

OTKGE+IID 0.855 0.813 0.887 0.925 | 0.932 0.917 0.938 0.957

5 RESULTS

In this section, we evaluate the performance of IID on three multimodal tasks (i.e., vision-language
classification, link prediction, and scene recognition) involving eight datasets. Based on Equation
[@. the calculation of w™ affects the predictive capability of MML models. For comprehensive and
fair comparisons, we implement one static IID (i.e., IID-L, the w™ in IID-L is identical to vanilla
Late-fusion), and two dynamic IIDs (i.e., IID-P and IID-Q, the w"* in IID-P and IID-Q are identical
to PDF and QMF, respectively) across six datasets involved in vision-language classification and
scene recognition tasks. As for the link prediction task on two multimodal knowledge graph datasets,
we integrate the two proposed modules into competitive IF-based benchmarks. Each experiment is
repeated three times. Due to the limited space, datasets, baselines, implementation details, and
extended experiments are depicted in Appendix[A-3]and [A-q

Quantitative results. The quantitative results of Table 3: Results of scene recognition.
vision-language classification and scene recognition
are depicted in Tables [T]and [3] respectively. All com-

NYU Depth V2 SUN RGB-D

Baseline ‘ Type Avg Worst Avg Worst

1 1 RGB S 62,65+ 122 6254 5299+0.88 56.51
parisons are performed in terms of both the average o S |Soxlm G R0 X
and worst-case accuracy metrics. Under these metrics, Luefosion | § | 9142067 6835 Q2001015 6035

. oncat 70.31 £ 0. X .48 £ 0. 1.1
the proposed IID-Q and IID-P attain the Top-2 perfor- Align S | 70314128 6850 61124061 60.12
: : MMTM D 71.04 £ 041 70.18 61.72+0.67 60.94
mance on all six datgset_s. This outcome underscores TMC | D | 70061076 95 6068+024 6031
the superior generalization capability of our models Léh'/}g R B Ao
in comparison to the chosen benchmarks. Addition- UniCODE | S | 70124037 6874 5921055
. SimMMDG S 71344032 7029 60.54 +£0.50
ally, PDF and IID-P (QMF and HD-Q, Late-fusion lmp])l: D | 7137+£0.76 70.18 (;2.;4i0.43
and IID-L) adopt the identical implementation of fu- DL S | 6987078 6878 6231=021
: : : : p-value - 9.12¢3 - 4.84e2 -
sion weights, thus the comparisons between these pairs o0 D [ TL6l2050 7125 6292013 6218
can further verify the effectiveness of the proposed paie || S e s e o
two modules. According to the quantitative results, pvalie | - | 1893 - 8933 :

the proposed IF-based models consistently outperform

their LF-based counterparts. Furthermore, we conduct the Student ¢-test (2015), in which
p < 0.05 indicates a significant difference between the two groups of accuracy samples. Based
on the results of Student ¢-test in Tables [T] and [3] the p-values are all less than 0.05, thus we can
attribute the performance improvement to the linear target mapping with informatic constraint and
the distribution cohering with restricted isometric dimensionality reduction techniques, rather than
the randomness.

We employ four evaluation metrics to assess the performance on the link prediction task: the Mean
Reciprocal Rank (MRR) of the correct entities, and Hits@F£, defined as the proportion of test in-
stances in which the correct entity is ranked within the top-k predictions, where k& € {1,3,10}. Big
MRR and Hits@F£ indicate a good result. We present the results of the link prediction task in Table
Bl For the two existing IF-based benchmarks, MMKRL and OTKGE [Cao et al.
(2022), we observe that integrating IID further improves their performance. In particular, OTKGE
+ IID achieves state-of-the-art results on both multimodal knowledge graph datasets. The results
indicate that the proposed method can serve as a plug-and-play module to enhance the performance
of approaches based on IF framework. Overall, the quantitative results on eight datasets, covering
three distinct tasks with diverse modality combinations, validate the effectiveness of the proposed
method and further attest to its generalization capability.
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Table 4: The ablation study on six benchmark datasets.

Dataset | w/oD wlol 1ID-L | w/oD wlol 1ID-Q | w/oD wlol 1ID-P
MVSA-Single 7742+0.73 7747+1.10 7778 £1.09 | 7932+ 0.73 7893 +£0.97 80.02 +0.40 | 80.79 +0.80 80.46 +0.73 81.13 + 0.84
MVSA-Multiple | 69.03 +0.41 69.11 +0.76 69.32 +0.50 | 69.59 +1.20 70.67 +0.29 71.08 + 0.30 | 70.13 +£0.52 70.61 +0.45 71.23 + 0.44
HFM 85.77 £0.38 8571 +0.53 85.94 +0.42 | 86.54 £0.25 86.22+0.10 86.61 +0.23 | 86.61 +0.37 86.35+0.59 86.88 £ 0.39
Food101 9143+ 0.11 91.35+034 91.93+£0.25 | 9298 +0.04 93.01 £0.03 93.10 +0.03 | 93.58 +0.07 93.60 + 0.15 93.73 + 0.14
NYU Depth V2 | 6939 £0.70 69.41 £0.91 69.87 +0.78 | 70.95 £ 040 7048 £0.97 71.61 +0.50 | 71.75 +£0.48 71.58 £0.92 72.04 £ 0.55
SUN RGB-D 62.18 £0.17 62.25+0.37 62.31 £0.24 | 62.68 +0.07 62.65=+0.31 62.92£0.13 | 62.77 £0.19 62.53 £0.38 62.99 & 0.24

Ablation study. To investigate the contribution of each ingredient, two variants are trained for
justification: i) w/o D removes the distribution cohering with restricted isometric dimensionality
reduction module; ii) w/o I excludes the informatic constraint on the linear target mapping. The
results of the ablation study are depicted in Table[d It can be seen that the performance of IID drops
regardless of which module is removed, suggesting that each proposed technique has a significant
impact on the predictive capability of IID.

WD (Wasserstein
distance)

Empirical demonstrations of the theo-
retical derivations. The design of IID
is grounded in two theoretical derivations:
(2) L; can restrict the parameter of linear
target mapping in A and render the param-
eter to approximate the optimal parameter

MVSA-Multiple
MVSA-Single

1D-Q
1D-Q

60* during the optimization process; (%)
L 4. reduces the generalization error of IID
by mitigating the distribution incoherence,

Mys, YIH:A
Figure 5: The empirical demonstrations of theoretical
derivations (2/2).

thus enhancing the classification performance. Then, we substantiate the correctness of our theo-
retical derivations with the experimental results. In Figure[6] with informatic constraint £;. on the
linear target mapping, the performance improvement of the IF-based methods compared to the LF-
based methods increases, which indicates that £;. can lead the initial parameter of the linear target
mapping to approach the theoretically optimal 8*. In Figure[5] we present the test classification ac-
curacy of IID-Q and QMEF (the left subfigure of Figure[5), along with the mean Wasserstein distance
between various unimodal features for each batch of samples (the right subfigure of Figure[3). The
results confirm that the classification performance improves as Wasserstein distance decreases. This
demonstrates the validity of our theoretical derivation, specifically that eliminating the distribution
incoherence contributes to enhanced model prediction performance on unknown test sets.

=— QMF and its variants = Vanilla Late-fusion and its variants

MVSA-Single MVSA-Multiple HFM Food101
70.0 0 =0 86.6 . 93.0 3
79.32 69.59 86.5
78.81 69.5 69.02 86.4 925  92.81 92.89 9298
78.07 0.0 6867 ' 86.2 85.9 02.0 o143
9 77.42 - 69.03 86.0 8587 85.77 o 91.10 .
7688 71707 68.5 o =X 015
= - 68.0 i 68.63 oo SS'W o010 90.M
o5 6794 o i ws K
LF IF IF w/ Lie LF IF IF w/ Lic LF IF IF w/ Lic LF II IF w/ Lic

Figure 6: The empirical demonstrations of the theoretical derivations (1/2). In this figure, LF denotes
the LF-based models (e.g., QMF and Late-fusion), IF denotes the LF framework is replaced by the
IF framework, and IF w/ £;. means imposing the informatic constraint on the linear target mapping.

6 CONCLUSION

In this paper, we rethink the prevalent IF and LF paradigms in MML from a fine-grained dimen-
sional perspective. The complete theoretical derivations sufficiently establish the superiority of IF
over LF under a specific constraint. Based on the general K-Lipschitz continuity assumption on
the linear target mapping, we formalize the generalization error upper bound of IF-based methods,
which indicates that the generalization error upper bound can be further decreased by mitigating the
distribution incoherence. Motivated by these theoretical insights, we propose IID, an IF-based ap-
proach which incorporates linear target mapping with informatic constraint and distribution cohering
with restricted isometric dimensionality reduction. Empirical evidence proves that our findings are
solid and IID is generally effective.
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A APPENDIX

A.1 USE OF LLMs

For this manuscript, large language models are utilized exclusively for linguistic polishing. Beyond
this function, large language models make no substantive contributions to the conception, analysis,
or completion of this work.

A.2 THEORETICAL DERIVATION
A.2.1 PROOF OF THEOREM[I]

In this subsection, we demonstrate that a vanilla linear target mapping can establish the superiority
of IF over LF. For the binary classification task, the activation function is Sigmoid function:

1

o(x) = Tre= (14)
and the predicted label is § = {(1)’ inlstile prediction logits > O. We have
OL(f(=),y) _ OL(f(x),y) Oolf(z)]
of () dolf(x)]  Of(x)
_ H{=yho[f(x)] - (A —y)In{l —o[f(@)]}} Io[f(z)]
9o(/ @) o/@) s

1 1
~{vstm O D sty | oV @I - o@D

olf(@)] -y
= olf(@){1 —olf(@)]} = olf(x)] -y,
olf(@){1—olf(2)]}
and o[f(z)] € (0,1). Therefore, the loss function L(-, -) is a monotonically decreasing function for
the samples with the label y = 1, and an increasing function for samples with the label y = 0.

As mentioned in Section |3} the logits of LF can be formalized as
fLF(iL') = wl(z1 . 01) + w2(z2 . 02)

16)
1 1 2 2 (
=w 2,5 01,5, twzi N, 01N, FW 225, 025, + W 22 N, - 02 N,,

which equals to

fir(z) = wt Z 2101 +w' Z 21,5601 + w? Z 29 102 % + w? Z 221021 17

i€, JEN, k€S, hEN,
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The prediction logits of IF can be formalized as

fir(x)=2-6
(18)
= ZDg, s, 0D3132 + ZDs Ny gDsl No + 2D, sy GDNl Sy + ZDN Ny GDNlNQ .
Analogously, Eq.(I8) can be rewritten as
le(w) = Z Zilei’ + Z zj/Gj/ + Z Zk/(gk/ + Z Zhleh/
i/eDSISQ jIEDsl Ny k)’EDlez h'E]D)Nl No
= > Oe(w'agtwing)+ Y Op(w'ay +wian)
i'€Ds, 5y J'€Ds Ny
=+ Z ek’(wlzl,k’ +w222,k/) —+ Z Qh/(wlzl’h/ +w2227h/)
k’e]D)Nl Sy h' €D, Ny
Z 9121 i + Z 9/2,’1] +w Z Gk/zl K+ Z 9h12’1 h’
i'€Ds, 55 J'€Ds) Ny k'€DN, s, h'€DNy Ny
Z 0; il 224! '+ Z ek’ZQ k/ + UJ Z 9 i’ 22,5/ Z eh’ZQJL’)~
1 EDSl So k’ GDNI Sg GD51N2 h' EDNl No
(19)
Given the Bayes optimal hypothesis f*, which achieves the infimum of the errors R* on D, i.e.:
= arg}nin R(f) = arg;nin Ew,y)~p [L(f(2),y)]. (20)

Equation L( fir(x),y) > L(f*(x),y) holds universally. Let A, Ay, Ao, A3, and A4 be five scalars
that are positive correlated with y — d1 (A, A1, Ag, Ag, Ay x y — d1), where § > 0 is an arbitrarily
small positive constant and A = Z?Zl A

Obviously, we have the conclusion: for Ve € [0,|| L(f*(x),y) — L(fur(x),y) ||], there exists
fir(x) + A such that the classification error £(fir(x) + A,y) = L(fur(x),y) — €. Thus core
challenge lies in proving the existence of @ which makes fg s F( )= pr( )+ A.

Considering the following linear equations:

Yo buzp+ X2 Opzy = >0 ziibh+ A
i/EDslsz j/EDSINQ 1€S1
Yo Ozt XY Owziw = Y 2015+ Ao
k’e]D)N152 h’E]D)NlN2 JEN,
2D
Yo Ovzmg+ Y, Opzop = Y, zorbar+ As
i'€Dg, 5y k'€DN, 59 k€S2
Yo Opzpt+ >0 Owzaw = X zonfen+ A4
j/e]D)SlNZ h/EDNlNz he N,
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we treat the parameters of linear target mappings in IF as the coefficients to be determined, and we
denote the i-th element of the set .S by ig, then we have:

1”51 So
: index of Dg, g,
9|D51 S2 |Dsl So
L > 261+ Ay
Dsy Ny 1€S1
index of Dg, ,
0 > 21t + A
IDsy 3y g, v, JEN1
A = , (22)
1 > zokbor + Ag
NySp
. keS>
index of Dy, s,
Oy, | > zanbon + Ay
N1S21DN; s, hEN,
1le N2
index of Dy, w,
_0|DN1 Naloy, ny
where A equals
(11055, """ #LIDsysylng, 5, “Lilng n, * T ALIDs Ny log, 0 0
0 0 Zl"l‘Dleg o .Zl=‘DA’VIS2‘DNlSQ Zl,lleNz o .Z1s|DN1N2‘DN1N2
22,115152 122, |Ds, s, Ios, 5, 0 22Dy sy "7 #2,DNy s, EINN 0
L 0 22105, x, " #2IDs, Ny o, 0 22lby vy 22Dy Ny o,
and augmented matrix A can be formalized as
[ Filog s, T Zl-mslszb‘s] Sa Filog n, Zl-msls\'zhs]wz 0 0 ‘ iGZ_S'] #1301 + A
0 0 oy s, DN s lony s,  Phloag g T ELIDN, N by, v, g #1015 + Dz
™
#21pg, s, * " #2Ds; s, lpg, 5, 0 22.DNys; 2D, sy oy s, 0 ‘ }ceZS #2402,k + Ag
2
0 Z2,1u;SIN2 " 22,Ds, Ny Ibs, ny 0 ZQJu:\NlM T 22, DNy Ny 1Dy g thN. Zo,1n02,n + Ay

Obviously, the rank of A is equal to the rank of A. According to the basic knowledge of Linear

Algebra |Greub| (2012), there must exist a parameter 6 of linear target mapping in IF such that the
following equation holds:

> 21401+ A1
1€57

> 21,5015+ Ar
JEN1
A0 = . (23)
> zoxbok + Ag
kES>

> zonban + A4
| heN

Consequently, for Ve € [0,|| L(f*(x),y) — L(fr(z),y) |),y)], there exists a parameter 6
such that L(fo 1r(x),y) = L(fir(z) + A,y) = L(fur(x),y) — €, which further derives that
L(fo.rr(x),y) < L(fr(z),y). We denote the set of parameters satisfying L(fo 1r(x),y) <
L(fir(z),y) as A. The proof of Theorem [I]is complete.
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A.2.2 PROOF OF THEOREM 2]
Let (x,y) ~ D denote the multimodal samples, the generalization error is defined as

|D|

¢ = E(w,y)ND[ﬁ(f(x%y)} = Zp(mlayl)‘c(f(ml)?yZ% (24)

thus the generalization error of LF and IF can be formalized as:

|D|

Grr = E )~ L(fr(z ZP L(fe(x"),y"), (25)
|D|

Yir = EgyplL(fir(x Zp L(fir(z"),y"). (26)

Due to L(fip(x'),y") > 0, L(flp(m’),y’) > 0, and based on the parameter § € A, we have
L(fie(zh),y") > L(fir.o(z?),y"), therefore the following equation holds:

|D| |D|
ZP (', y")L(fir(x),y") > Zp L(fieo(x),y"), 27)
which equals to
Yrre < Y9Lr. (28)

The proof of Theorem 2] has been completed.

A.2.3 PROOF OF THEOREM[3]

In this subsection, based on Assumption [T} we provide the proof of Theorem 3]

Let z,,,, and z,,, be the latent features of two arbitrary modalities, which respectively fit the distri-
butions i,,, and p,,,. We have:

Elg(2my)] = El0(2ima)] = B, i, [£9(Zm)s 9)] = B i, [£(9(Zma ) 9)]s (29)
According to the Kantorovich-Rubinstein Duality theorem [['hickstun| (2019); [Edwards| (2011}, we

have:
Bz~ [£(9(Zmy )s 9)] = Bz i, [£(9(2ms ), )]
iiH @ HL/'/J /D,\/l(/[/m-/[m_y) (3())
<K- D\/I (//nu 5 ,“m_w)~
where ”/'l(’-) is the emprical error. It’s worth noting that if D, is not a complete distribution distance
metric such as Kullback-Leibler Divergence [Kullback| (1951)), we need to put more discussions on
Elg(zm,)] —Elg(zm,)] < KDat(tbm,, fom, ) because of Kullback-Leibler Divergence’s asymmetry
i~e'~ ly/‘(“/m ) //1//3) a l\yl‘(/lm_u- //l//l )

In Eq.(30), by replacing the feature of j-th modality to the fused multimodal feature z, we have:

Elg(2m, )] — Elg(2)] < KDt (i, » ). 31)

w is the distribution that multimodal feature z follows, and ¢ can be the index of arbitrary modality,
thatis, ¢ € {1,2,---, M}, therefore:

Elg(2m,)] < KDpa(ttmy - 1) + E( fir). (32)

Eq.(32) indicates that the empirical error of a certain unimodal modality can be bound by the em-
pirical error of the fused multimodal feature and the distribution distance between the unimodal and
the fused feature.
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Restating Theorem 1 in[Zhang et al.|(2023a) and combined with Eq.@, we have:

M R M M
Grro < 3 E(w™)Elgo(zm)] + D E@™) R (H) + S Cov(w™, L(go(2m). )
In(1/9)
2N

M M
< EW™) KDz, =) + E(fir)] + D E(w™) R (H)

1 m=1
M
In(1/6
+ 3 Contu™ Elgo(zm). 1) + 4y )
M )
=) [K-E@™) Dz, , =) + Error[w™, L(ge(zm), v)]] + E(fir) + Bias[R(H), O(N~/?)].
m=1
(33)
Thus the proof of Theorem [3]is complete.
A.2.4 DERIVATION IN LINEAR TARGET MAPPING WITH INFORMATIC CONSTRAINT
The objective function is:
M
Max I(zy) = Y I(zm;y). (34)
m=1

According to |Alemi et al.| (2017); [Tishby et al.| (2000); |Xiao et al.| (2024), to avoid the collapsed
representation of z during the learning process of the linear target mapping parameter, we introduce
a regularization term I (x; z) and its trade-off coefficient A, then we have:

M M
I(ziy) = Y H(zmiy) = I(z5y) = M(@;2) + M(x52) = Y H(zmiy)
" M " M
> I(zy) — M(x;2) + A Z Hxm; zm) — Z I(zm;y)
m=1 m=1 (35)
M M
= I(zy) = M(252) = [ Y I(zmiy) =AY 1(@;2m)]
M "
=I(z;y) = M(2;2) = > [I(zmiy) — M (2; 2m)].

In the following, we begin examining each term in Eq. from term I(z;y).

L) = Nog PY:2) 4o o PWIR)
I(z,y)—//p(y, )logp(y)p(z)dyd //p(y, ) log o) dydz. (36)

Let ¢(y|z) be a variational approximation of p(y|z), and we parameterize ¢(y|z) by 6, i.e.,
go(y|z). Based on the fact that the Kullback Leibler (KL) divergence is constantly positive, we
have K'L[p(yl2), e (yl2)] > 0= [ p(y|z)logp(yl|2)dy > [ p(y|2)log ge(yl|2)dy, thus

I(z;y) > //p(y,z) log qe;(yy;)dydz = //p(y,z) logqe(y\Z)dydz—//P(yvz)logp(y)dydz
=//p(y,Z) log go(y|z)dydz + H(Y)

- / / / p(@)p(ylz)p(z|x) log go (y|z)dudydz + H(Y),

(37
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Figure 7: The illustration of the space of probability density functions, in which each point repre-
sents a probability distribution.

where H(Y) is a constant term and can be ignored. As for the term I(z; x), we have

I(z;x) // (z, z) log (l)dd (38)

)
Let r(z) be a variational approximation of p(z )and we setr( )ast he standard Gaussian distribution
N(0,1). Since KL[p(2),7(2)] >0 = [p(z)logp(z)dz > [ p(z)logr(z)dz, thus:
),

I(z;x) // p(z|z) log £(|) ) (39)

As aresult, we have
I(z;y) — M(z;2)

/// p(ylz)p(z|x) log ¢(y|z) dmdydz—)\/// (z|z) log ((|g;)dacdydz

— LB,

(40)
M
LB standards for Lower Bound. Analogously, for the upper bound (UB) of Z [I(zm;y) —

M (x; zp,)], we have

M
[L(zm;y) = M(x; 2n)] <UB

m=1

/\

{/// p(y|)p(zm|x) log g6 (y|zm)dzdydz:,
+A// p(zm|7) logpﬁ(zl))d dzm}

Then maximizing the LB — U B equals to minimizing the following loss function:

(41)

Lic = —logge(y|z) + A - KL (N[N (0, 1)) Z log g6 (yl2m) + A - KL (N, |IN(0,1))] .
m=1
(42)
A.2.5 DERIVATION OF THE UPPER BOUND ON DISTRIBUTION INCOHERENCE

We provide an illustration of the space of probability density functions in Figure [7] to assistant
our theoretical derivation. Then we demonstrate that the Equation [9 l holds for M = {2,3}. Let

LHS = ijﬂ E(w™)Dp(ppm, ) and RHS = 37 D g (fmy s fmsy )-
For M = 2, we have

LHS < ZH m (s 1) = Dag (o1, pt) + Daq (2, 1) = RHS. (43)
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Algorithm 1 The training pseudo code of IID.

Input: The sampled minibatch samples {(z?,y")[i € [1,---,N]} with batchsize N and ' =
{xi, 2%, -+, 2%, }. The latent mappings h™(-), target mapping g(-) and multimodal fusion
weights w™. The hyperparameters « and .

Output: The loss function of IID, i.e., L p.

for i=1to N do

Obtain unimodal features by 2%, = h™(z! ) (m € [1, M]);
Get low-dimensional feature 2!, of 2! ;

Calculate the fused multimodal feature z* = "M wmzi ;
Calculate the loss function £( fir(z?), y%);

end

Calculate the £;. by Eq.(8);

for my,mo € [1, M] and my # msy do

Get the estimated Wasserstein distance between the features of m;-th modality and mo-th
modality by W (ttm, ; fim, );

end

Calculate the loss function Lge =, o W (ki s s )
Return L17p = aLic + BLac + Y1y L(fie(x), y").

3

For M = 3, we have LHS < > 7" Daq(pim, 1) < Daalpa, ) + D (s 1) + Daa(ps, p) and
RHS = D (p1, p12) + Daq(pn, pr3) + Dag(pz, p13). As illustrated in Figure we have
Da(pns pi2) + Daa(pa, pr23) > Daapns pr23) = Daa(pas o) + Daa (s pr23) (44)

and
Da(p, p23) + Dz, p3) > Dag(pe, p3).- (45)
Then the following equation holds:

D (per, p2) + Das(pa, p23) + D, pr23) + D23, 1i3)

> Da(pa, ) + Daalp, pras) + Daalpes pi3), oo
which equals to

Dpm(prs p2) + Daalps, p2) > Daalpa, ) + Daa(ps p3)- 47
Similarly, we have

Da(pa, p2) + Dam(prs p3) > Daalpzs ) + Daalp, p3), 48)

Dalps, n1) + Da(ps, p2) > Daa(pa, 1) + Daa(p, p2)-

Then we have
2% RHS > 2% [Dag(p, 1) + Daa (g, pa2) + Dag (e, pu3)] > 2 % LHS. (49)
As aresult, Equati()nh()lds for M = {2, 3}, which implies that Equuti(mis applicable for almost
all multimodal scenarios according to the recent multimodal learning survey |Xu et al.| (2023)); [Yuan|
[2023) (even the powerful model [Bachmann et al.] (2024)) capable of handling 21 modalities

can handle at most 3 modalities at a single time).

A.3 WASSERSTEIN DISTANCE

Wasserstein distance has its roots in Optimal Transport theory [Villani et al. (2009), which is a
complete distance metric of distribution. Let p be a set of Borel probability measures. Given
Mz, fhze € p, the corresponding support sets o, 04, Wasserstein distance between .~ and fi.0
is

1

P

W (phors pras) = ( inf /dis(mr, xg)Pdy(zr, xg)> ) (50)
’Yer(xrvwg)

where z,. € 0., x4 € 04, dis(-,-) is a distance metric, and p = 1 in this paper. I'(x,., z4) is the set of

all joint distributions (., x4) that satisfies . = [ ~(x,,xq)dzg and poo = [ (2, 2g)d,.
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A.4 ALGORITHM

In this subsection, we elaborate on the pseudo-code of proposed IID in Algorithm T}

A.5 EXPERIMENTAL SETUP
A.5.1 DATASETS

Vision-language classification. We execute experiments on four vision-language classification

datasets, including Food101 (Wang et al.,[2015)), MVSA-Single (Niu et al.,[2016), MVSA-Multiple

2016) and HFM (Cau et al. 2019). Food101 comprises images sourced from Google
Image Search along with corresponding textual descriptions. MVSA-Single, MVSA-Multiple, and

HFM are all derived from Twitter. For Food101, there are 60101 image-text pairs in the training set,
5000 image-text pairs in the validation set, and 21695 image-text pairs in the test set. For MVSA-
Single, there are 1555 image-text pairs in the training set. The validation set contains 518 image-text
pairs, and the test set consists of 519 image-text pairs. For MVSA-Multiple, there are 17024 image-
text pairs, each annotated by three different annotators. The training set contains 13624 image-text
pairs, while both the validation set and the test set contain 1700 image-text pairs. For HFM, the
training set comprises 19816 image-text pairs, while the validation set contains 2410 image-text
pairs, and the test set consists of 2409 image-text pairs.

Link prediction. In terms of the link ])ILdILll()n task, we conduct the experiments and evaluate
with two standard competition benchmarks, i.e., WN9-IMG [Xie et al.| (2017]) and FB-IMG [Sergieh
(2018a). M9-IMG dataset is derived from the subset of WN18 [Bordes et al] (2013), which
embraces structural knowledge as triples, and multimodal knowledge including textual description
and visual images. FB-IMG dataset is derived from the subset of FB15K [Mousselly-Sergieh et al.
2018), which includes structural knowledge consisting of triples extracted from Freebase [Bollacker]
et al] (2008)), and multimodal knowledge embracing textual description and visual images.

Scene recognition. In accordance with the standard split of the NYU Depth V2 dataset, we consol-
idate the original 27 categories into 10 categories, encompassing 9 typical scene categories and one
“other” category. For the SUN RGB-D dataset, we adhere to the categorization scheme employed
by the major baseline methods (QMF (Zhang et al.,[2023a) and TMC 2021)), utilizing

the 19 primary scene categories, each containing a minimum of 80 images.

A.5.2 BASELINES

Baselines of vision-language classification. To comprehensively evaluate the performance of the
proposed IID, both unimodal models and multimodal models are selected as our baselines. Con-
cretely, unimodal models include Bow (Pennington et al., 2014d), Img (Image only, we use ResNet-
152 [2016) to encode the visual data) and BERT (Devlin et all, 2019d). Multimodal
baselines contain Late-fusion, ConcatBow (C-Bow), ConcatBERT (C-BERT), MMBT

2019), TMC (Han et al.| 2021)), DYMM Xue & Marculescu (2023), LCKD|Wang et al.| (2023), QMF

Eang etal[2023a), UniCODE Xia et al.|(2023), SimMMDG Dong et al.| (2023) and PDF Cao et al.

. For Late-fusion and ConcatBERT fusmn we utilize the archltecture of ResNet (He et al.|
2 01§) pretralned on ImageNet (Deng et al.| as the backbone network for the visual modality
and pretrained BERT (Devlin et al., Z?ilga) for the text modality. For ConcatBow, we replace BERT
with Bow. The Late-fusion conducts an average weighted summarization between visual and tex-
tual features, and concat-based fusion concatenates the visual and textual features directly. MMBT
leverages the attention mechanism to execute multimodal fusion. TMC proposes a novel trusted
multimodal algorithm based on the Dempster-Shafer evidence theory. DYMM employs a gating
function to provide modality-level or fusion-level decisions on-the fly based on multimodal features
QMF designs a robust multimodal fusion method, which is connected to uncertainty learning. PDF
derives the multimodal model based on the intra-modal negative and inter-modal positive covariance
between fusion weight and loss function, respectively

Baselines of link prediction. For comprehensive comparison, we select both unimodal methods and
multi-modal methods as our benchmark baselines, including TransE [Bordes et al|(2013])), DistMult

Yang et al| (2015)), ComplEx [Irouillon et al| (2016)), RotatE [Sun et al] (2019), IKRL [Xie et al |
(2020), TBKGE [Sergieh et al.|(2018b)), TransAE [Wang et al|(2019), MMKRL |Lu et al|(2022), and

OTKGE|Cao et al.|(2022)).
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Figure 8: The results of hyperparameters experiments.

Baselines of scene recognition. For the senses recognition task, we evaluate the proposed methods
against various multimodal fusion techniques, including Late-fusion, concatenation-based fusion,
align-based fusion , and the recent state-of-the-art fusion methods, i.e., MMTM
(Vaswani et al.| [20 1 [2021), and QMF [2023a)). For Late-fusion
and concatenation-based fusion, we employ the ResNet architecture [2016), pre-trained on
ImageNet, as the backbone network for each modality. Align-based fusion intensifies the similarity
of various unimodal features to achieve multimodal alignment.

Implementation details. (1) Vision-language classification. In the proposed IID, we employ BERT
and ResNet as the latent mappings for text and image modalities, respectively. In the training pro-
cess, we use BertAdam for the BERT model and regular Adam for the other models. The learning
rate is 5e > with a warmup rate of 0.1. We adopt the early stop strategy based on validation accuracy.
We elaborate on the selection of the hyperparameters « and 3 in Section[A.6] (2) The structured em-
beddings are produced from triples in knowledge graphs, without any external multi-modal sources.
To be specific, unimodal KGE methods such as TransE [Bordes et al] (2013)) and ComplEx [Trouil]
(20T6) can be used to learn structured embeddings. The linguistic embeddings of entities
are learned by adopting the word2vec [Mikolov et al] 2013)) technique. For instance, we learn the
linguistic embeddings of FB-IMG dataset by pre-trained word2vec while we use GloVe [Pennington]
[et al] (2014D) for the WN9-IMG dataset. The visual embeddings of entities are learned by pre-
trained VGG [Simonyan & Zisserman models. To be specific, visual embeddings are learned
by adopting the VGG-m-128CNN [ Jéat;eig et al| 2014) model in FB-IMG datasets. As for the
WNO-IMG dataset, we take the VGG19 [Simonyan & Zisserman| (2013) model to learn visual em-
beddings. (3) Scene recognition. The dimensionalities of unimodal and common representations are
set to 128 and 256, respectively. For align-based fusion, we utilize cosine distance to measure the
similarity of representations. For the MMTM approach, we adhere to the authors’ implementation,
setting the squeeze ratio to 4. Across all compared methods, we use the Adam optimizer with Lo
regularization and dropout, employing a learning rate of 1 x 10~ and a dropout rate of 0.1.

A.6 DEEP-GOING EXPERIMENTAL RESULTS

A.6.1 THE RESEARCH ON THE HYPERPARAMETERS

Two hyper-parameters exist in IID, i.e., « and 5. To understand the impacts of these two hyper-
parameters, we conduct empirical comparisons by using various combinations of « and /3 for the
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NYU Depth V2

QMF Acc: 69.113% ' MMTM Acc: 70.489% i

SUN RGB-D

QMF  Acc: 61.794% i MMTM  Acc: 61.988% 1 IID  Acc: 63.039%

Figure 9: Visualization results of the scene recognition task (the NYU Depth V2 and SUN RGB-D
datasets).

proposed IID. As depicted in Equation [I3] « controls the impact of informatic constraint on the
linear target mapping, and g influences the degree of distribution incoherence.

In practice, we search the optimal 3 in {1710 1e=11 1e712 1e713 1e~ 14} across all six datasets.
As for a, on the NYU Depth V2 and SUN RGB-D datasets, we search « in {1,0.1,0.01,0.001},
while « is searched in {0.1,0.01,0.001} on other four vision-language classification datasets. We
determine the values of « and 3 empirically and depict the results in Figure 8] where the X axis,
Y axis and Z axis represent the value of «, the value of 8 and the recognition or classification ac-
curacy, respectively. As we can observe, the optimal combination of « and /3 varies with respect to
different datasets, which is indicated by red pentagonal markers. For example, the optimal combi-
nations of o and 3 on the MVSA-Single, MVSA-Multiple and NYU Depth V2 are {0.01, le~'?},
{0.1,1e719}, and {1, 1e~'2}, respectively. Therefore, the elaborate assignment of o and 3 can
further help to learn informative features, thereby improving the discriminative performance of the
proposed method.

A.6.2 VISUAL COMPARISON

To intuitively demonstrate that IID is capable of learning informative and discriminative represen-
tations, we present a visualization of the learned embeddings corresponding to the samples. Specif-
ically, we utilize the T-SNE technique (Nkedi-Kizza et al.| [2000) to visualize the feature repre-
sentations of test set samples across multiple datasets (NYU Depth V2, and SUN RGB-D). The
visualization results of the scene recognition task (the NYU Depth V2 and SUN RGB-D datasets)
are illustrated in Figure[0] We denote the distinct ground truth labels of test set samples by different
colors. As we can observe from Figure [0} compared with other multimodal approaches (QMF and
MMTM on the NYU Depth V2 and SUN RGB-D datasets), the boundaries of IID between differ-
ent classes are more distinct, indicating that the IID can better discriminate features across different
classes. Additionally, for proposed IID, data points within the same class tend to cluster more tightly,
suggesting that the features extracted by IID have higher intra-class similarity. These observations
demonstrates that the IID-learned representations facilitate the extraction of more discriminative
features, thereby enhancing performance across various downstream tasks.

A.6.3 TABLE OF NOTATIONS

We list the definitions of main notations from the main text in Table 5.
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Table 5: Main notations used in this paper.

Notation | Definition
Data and Representation
X,z Yy Input space, latent space, and target space
Dirtains Drest Training dataset and test dataset
redk Input sample
ye)y Label
Zm Representation of modality m
z The fused multimodal feature
M Number of modalities
N The batch size
d The dimension of features
Model Components
h(:) : X — Z | Latent mapping
g(-) : Z+— Y | Target mapping
f=gh(") The composite function of g(-) and h(-)
F Intermediate fusion model
fur Late Fusion model
w™ The modality-specific fusion weight
L(-,) Cross-Entropy loss function
Theory-related Symbols
6 The parameter of target mapping g(-)
A The set of parameters
Sy N The index sets of semantic dimensions and noisy dimensions
f Bayes optimal hypothesis
9 The generalization error
D, The definitional domain of g
D The complete distribution distance metric
H Hypothesis space
Lo, The distribution that features of the m-th modality are drawn from
Iz The distribution that the multimodal feature z follows
E(fir) The empirical error of multimodal feature z on Dyip
IID Method
0% The theoretically optimal parameter
(7] The initial parameter of the linear target mapping
I(-,) Mutual information computing
Lic Loss of linear target mapping with informatic constraint
qo(-|") The variational approximation of p(-|-)
A The trade-off hyper-parameter
KL() Kullback-Leibler divergence
N The standard Gaussian distribution
W(,) The analytical form of Wasserstein distance
T The transport plan
C The cost matrix
F(- Fast Fourier transform
n € [1,d] The dimension index
L Gaussian Random matrix
W = ®F ! | The RIP-preserved dimensionality reduction matrix
W(,) The estimation of Wasserstein distance
de Loss of distribution cohering with restricted isometric dimensionality reduction
a, The hyperparameters to control the influence of loss terms
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