

000 SUPPORTING MULTIMODAL INTERMEDIATE FUSION 001 WITH INFORMATIC CONSTRAINT AND DISTRIBUTION 002 COHERENCE 003 004

005

006

007

008

ABSTRACT

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

1 INTRODUCTION

028

029

Given the gradually increasing data from multiple modalities, multimodal representation learning (MML) demonstrates the potential for supporting the comprehension of complex patterns. According to the feature mapping stages Wang et al. (2020), two widely adopted multimodal fusion types exist in recent MML studies, i.e., feature-level *intermediate* fusion (IF) and decision-level *late* fusion (LF)¹. IF integrates features from various modalities in the latent space, whereas LF merges the prediction logits in the target space. MML recently has arisen as a popular area of research in many fields, e.g., knowledge graph Cao et al. (2022); Lu et al. (2022), recommendation Zhou et al. (2023); Wei et al. (2023); Li et al. (2024), sentiment analysis Hazarika et al. (2020); Li et al. (2023); Liu et al. (2024) and so on. Besides the documented empirical success, studies Zhang et al. (2023b); Cao et al. (2024) investigate the inherent mechanisms behind MML from the generalization error perspective, thereby providing theoretical supports for the multimodal models.

040

041

042

043

044

045

046

047

048

049

050

051

052

053

However, thus-far provable works from the generalization error perspective derive theorems based on the LF framework, while the theoretical analysis focusing on the IF framework remains insufficiently explored. Theoretically, according to the theory of data processing inequality Cover & Thomas (2001), IF-based methods may contain more task-dependent information. Empirically, we conduct exploratory experiments by substituting the framework of two representative LF-based methods (PDF Cao et al. (2024) and QMF Zhang et al. (2023b)) with IF. As illustrated in Figure 1, IF-based methods consistently outperform their LF-based counterparts on four multimodal datasets. Despite the theoretical and empirical potentials of IF’s ascendancy over LF, the theoretical supports behind IF-based MML models require further exploration. To this end, we revisit the IF and LF paradigms from a fine-grained dimensional perspective. With rigorous deduction, we demonstrate the superiority of IF over LF under a specific constraint. Therefore, we design our model based on the IF framework, and incorporate a specific informatic constraint. The informatic constraint imposes a regularization on parameters of the linear target mapping in IF-based MML models from the

¹Early fusion aggregates the original data directly, which is impractical in real-world scenarios due to the heterogeneity of multimodal data. Therefore, we remove early fusion from the consideration.

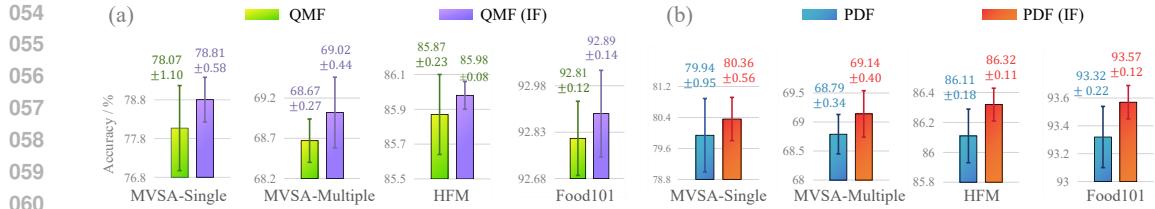


Figure 1: QMF (IF) replaces the LF framework in QMF with the IF, and the same applies to PDF (IF). MVSA-Single, MVSA-Multiple, HFM, and Food101 are four vision-language datasets.

information theory perspective Tishby et al. (2000). Such an informatic constraint can sufficiently guarantee the superiority of IF over LF.

To further explore the inherent mechanism behind IF-based MML models, we formalize the generalization error upper bound of IF-based methods, which is derived by adhering to a general K -Lipschitz continuity assumption on the linear target mapping. Observing the generalization error upper bound, we reveal that eliminating the distribution incoherence can improve the generalization performance of IF-based MML models. Thus, we determine to employ Wasserstein distance to conduct distribution cohering for its favorable properties. Directly calculating Wasserstein distance Cuturi (2013) between high-dimensional features requires huge computational complexity. Accordingly, two main categories of methods are proposed to practically estimate Wasserstein distance: (i) Sampling-based Sinkhorn Cao et al. (2022); Li et al. (2023); (ii) Radon transform-based nonlinear neural network calculation (RTN) Bonneel et al. (2015); Kolouri et al. (2019); Chen et al. (2022); Sugimoto et al. (2024). Nevertheless, due to the incompleteness of the partial sampling strategy in sampling-based Sinkhorn and the inaccuracy of fitted non-linear functions in RTN, current methods suffer from the degraded estimation of Wasserstein distance, as demonstrated in Figure 2. To address this issue, we propose a novel estimation method of Wasserstein distance, which introduces a restricted isometric dimensionality reduction technique, and design a Lagrange regularization to enhance robustness to the semantic disturbance during dimensionality reduction. This approach empowers us to omit the partial sampling strategy and the nonlinear neural network, thus achieving distribution cohering effectively with limited computational complexity. The empirical evidence in Figure 2 verifies our statement.

In a nutshell, we propose a novel IF-based MML method with solid theoretical supports, namely *Intermediate Fusion with Informatic Constraint and Distribution Coherence (IID)*. Our major contribution is four-fold:

(1) From a fine-grained dimensional perspective, we rethink the two prevalent fusion types of MML, i.e., IF and LF. We theoretically demonstrate the superiority of IF-based methods over LF-based counterparts based on a specific constraint. (2) Based on the K -Lipschitz continuity assumption on the linear target mapping, we derive the generalization error upper bound of IF-based methods, which indicates that mitigating the distribution incoherence can improve the generalizability of IF-based MML models. (3) Adhering to theoretical analyses, we propose a novel IF-based MML model, encompassing informatic linear target mapping constraint and distribution cohering with restricted isometric dimensionality reduction. (4) Empirically, we conduct extensive experiments on representative benchmarks to prove the effectiveness of IID.

108 **2 RELATED WORK**

110 In recent years, the expansion of available data has significantly propelled advancements in the fields
 111 of computer vision Krizhevsky et al. (2012); He et al. (2016); Huang et al. (2017); Dosovitskiy et al.
 112 (2021) and natural language processing Pennington et al. (2014a); Vaswani et al. (2017); Devlin
 113 et al. (2019b), enabling the development of more robust and sophisticated applications. However,
 114 these models focus on the processing of unimodal data (e.g., images and text). As the semantics ex-
 115 tracted from unimodal data approach its bottleneck, MML has garnered increasing attention from the
 116 research community. By exploring both the modality-shared and modality-specific task-dependent
 117 discriminative knowledge, MML demonstrates its superiority in fields involving various modality
 118 combinations, like audio-video-text Liu et al. (2024); Hazarika et al. (2020), image-texts Li et al.
 119 (2023); Ma et al. (2024), graph-image-texts Wei et al. (2023); Cao et al. (2022) and so on.

120 Besides the documented empirical success, research endeavoring to understand MML with theore-
 121 ical justifications has started to emerge. E.g., Huang et al. (2021) rigorously demonstrate that the
 122 reason why MML outperforms unimodal methods lies in its access to a superior latent space repre-
 123 sentation. Huang et al. (2022) substantiate the existence of modality competition, which renders the
 124 joint training of multimodal networks challenging, thereby leading to suboptimal performance. Be-
 125 yond the exploration of the intrinsic mechanism of MML, several works develop multimodal models
 126 under the theoretical guidance of generalization error and yield great success. Specifically, QMF
 127 Zhang et al. (2023b) is designed by the theoretical derivation that the negative correlation between a
 128 specific modality’s fusion weight and empirical error can decrease the generalization error. PDF Cao
 129 et al. (2024) is proposed based on the provable elucidation that the reduction of generalization error
 130 primarily stems from the negative covariance between fusion weights and the loss associated with
 131 the current modality, as well as the positive covariance between fusion weights and the loss of other
 132 modalities. Due to the inherent correspondence between the ensemble-like LF framework and the
 133 extensively investigated field of ensemble learning Qiao & Peng (2024); Wood et al. (2023), these
 134 works consistently derive the theoretical findings based on the LF framework, thus resulting in the
 135 sparse theoretical exploration based on IF. In contrast to prior research, we design a comprehensive
 136 MML approach, supported by a complete theoretical analysis across fusion types.

137 **3 THEORETICAL INSIGHTS**

139 This section presents our theoretical insights, and we offer a concise overview of the proposed
 140 theorems with complete proofs deferred to **Appendix A.2**.

142 We first provide the basic notations of MML. We denote the input space, latent space, and target
 143 space by \mathcal{X} , \mathcal{Z} and \mathcal{Y} , respectively. Given a multimodal learning task, the training dataset $\mathcal{D}_{\text{train}}$
 144 comprises instances of the form (\mathbf{x}, y) , which are sampled from the distribution $\mathcal{D} \in \mathcal{X} \times \mathcal{Y}$. \mathbf{x}
 145 is the multimodal sample and y is the corresponding label. Two mappings are defined to assist our
 146 theoretical analysis: *(i)* latent mapping $h(\cdot) : \mathcal{X} \mapsto \mathcal{Z}$, which takes an input from the input space \mathcal{X}
 147 and projects it into the latent space \mathcal{Z} ; *(ii)* target mapping $g(\cdot) : \mathcal{Z} \mapsto \mathcal{Y}$, which takes latent features
 148 from the latent space \mathcal{Z} and maps them to the target space \mathcal{Y} . The formula $f = g \circ h(\mathbf{x})$, abbreviated
 149 as $f = gh(\mathbf{x})$, is a composite function of $g(\cdot)$ and $h(\cdot)$. Our objective is to learn a multimodal model
 150 f that performs well on the unknown test dataset $\mathcal{D}_{\text{test}}$, which is also drawn from \mathcal{D} .

151 **3.1 REVISITING THE IF AND LF PARADIGMS: A FINE-GRAINED DIMENSIONAL PERSPECTIVE**

153 For the sake of simplicity and without loss of generality, we perform the theoretical analysis within
 154 the scenario involving two modalities. Given the input multimodal data $\mathbf{x} = \{x_1, x_2\}$, we employ
 155 latent mappings to obtain the corresponding features by $\mathbf{z}_1 = h^1(x_1)$ and $\mathbf{z}_2 = h^2(x_2)$. Given the
 156 m -th ($m \in \{1, 2\}$) modality-specific fusion weight $w^m > 0$ and $\sum_{m=1}^2 w^m = 1$, for LF, the final
 157 prediction logits $f_{\text{LF}}(\mathbf{x}) = \sum_{m=1}^2 w^m g_{\theta_m}^m h^m(x_m)$, while for IF, $f_{\text{IF}}(\mathbf{x}) = g_{\theta}[\sum_{m=1}^2 w^m h^m(x_m)]$.
 158 It can be seen that each modality has its specific target mapping $g^m(\cdot)$ parameterized by θ_m in LF.
 159 In contrast, IF leverages a common target mapping $g(\cdot)$ parameterized by θ for multiple modalities.
 160 Being consistent with our major baseline Zhang et al. (2023a); Cao et al. (2024), we employ a linear
 161 classification layer as our target mapping, which is a widely adopted setting in multimodal learning
 162 task Anderson et al. (2018); Han et al. (2021); Cao et al. (2024).

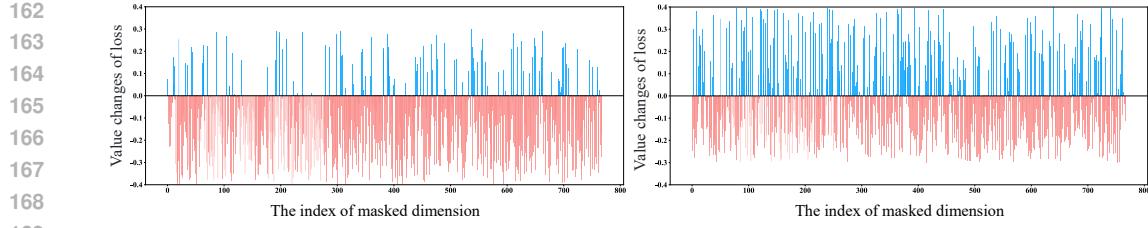


Figure 3: On the vision-language dataset MVSA-Single, we perform the mask experiment for each dimension of latent features from two modalities. Specifically, in the mask experiment, the value of a given dimension is set to zero while retaining the original values of all other dimensions. Subsequently, we record the changes in the average Cross-Entropy loss on the test set. The left and right subfigures record the results of mask experiment on linguistic and visual features, respectively.

We assume that z_1 and z_2 share the same dimension \mathbb{R}^d , which can be realized easily by a linear transform in practice. Intuitively, in the image classification task, a specific pixel of a picture either belongs to the task-dependent foreground or to the task-irrelevant background. Analogously, from a fine-grained perspective, each dimension of latent features z_1, z_2 (e.g., $z_{1,n}$ and $z_{2,n}, 1 \leq n \leq d$) is either task-dependent semantics or task-independent noise. We provide the definition of task-dependent semantic and task-independent noisy dimensions according to the results in Figure 3.

Definition 1 (Semantic and noisy dimensions). *If masking a given dimension results in a decrease of the error between the model’s predictions and the ground truth label, the dimension is classified as task-dependent semantic dimension; conversely, the dimension is classified as task-independent noisy dimension.*

Thus, there are two partitions corresponding to per latent feature, i.e., $z_1 = \{z_{1,S_1}, z_{1,N_1}\}, z_2 = \{z_{2,S_2}, z_{2,N_2}\}$, where S_m and N_m denote the index sets of semantic dimensions and noisy dimensions, respectively, corresponding to the m -th modality. $S_1 \cap N_1 = \emptyset$ and $S_2 \cap N_2 = \emptyset$ since a certain dimension cannot be semantics and noise simultaneously. In LF, the parameters (θ_1, θ_2) of the target mappings also have two partitions corresponding to the input latent features, i.e., $\theta_1 = \{\theta_{1,S_1}, \theta_{1,N_1}\}, \theta_2 = \{\theta_{2,S_2}, \theta_{2,N_2}\}$. Then the prediction logits of LF can be formalized as

$$f_{\text{LF}}(\mathbf{x}) = w^1(z_1\theta_1) + w^2(z_2\theta_2) = w^1z_{1,S_1}\theta_{1,S_1} + w^1z_{1,N_1}\theta_{1,N_1} + w^2z_{2,S_2}\theta_{2,S_2} + w^2z_{2,N_2}\theta_{2,N_2}. \quad (1)$$

While in IF, the multimodal feature is obtained in latent space by $\mathbf{z} = w^1z_1 + w^2z_2$, thus each dimension of \mathbf{z} has four possible scenarios:

- $\mathbb{D}_{S_1 S_2} = S_1 \cap S_2$, a combination of the semantic dimensions of z_1 and z_2 ;
- $\mathbb{D}_{S_1 N_2} = S_1 \cap N_2$, a combination of the semantic dimension of z_1 and the noisy dimension of z_2 ;
- $\mathbb{D}_{N_1 S_2} = N_1 \cap S_2$, a combination of the noisy dimension of z_1 and the semantic dimension of z_2 ;
- $\mathbb{D}_{N_1 N_2} = N_1 \cap N_2$, a combination of the noisy dimensions of z_1 and z_2 .

Briefly, \mathbf{z} can be partitioned into four components $\{z_{\mathbb{D}_{S_1 S_2}}, z_{\mathbb{D}_{S_1 N_2}}, z_{\mathbb{D}_{N_1 S_2}}, z_{\mathbb{D}_{N_1 N_2}}\}$, and arbitrary two sets in $\{\mathbb{D}_{S_1 S_2}, \mathbb{D}_{S_1 N_2}, \mathbb{D}_{N_1 S_2}, \mathbb{D}_{N_1 N_2}\}$ are disjoint obviously. Corresponding to the fused multimodal feature \mathbf{z} , the parameter θ of the target mapping has four partitions, i.e., $\theta = \{\theta_{\mathbb{D}_{S_1 S_2}}, \theta_{\mathbb{D}_{S_1 N_2}}, \theta_{\mathbb{D}_{N_1 S_2}}, \theta_{\mathbb{D}_{N_1 N_2}}\}$. Accordingly, the prediction logits of IF is

$$f_{\text{IF}}(\mathbf{x}) = \mathbf{z} \cdot \theta = z_{\mathbb{D}_{S_1 S_2}}\theta_{\mathbb{D}_{S_1 S_2}} + z_{\mathbb{D}_{S_1 N_2}}\theta_{\mathbb{D}_{S_1 N_2}} + z_{\mathbb{D}_{N_1 S_2}}\theta_{\mathbb{D}_{N_1 S_2}} + z_{\mathbb{D}_{N_1 N_2}}\theta_{\mathbb{D}_{N_1 N_2}}. \quad (2)$$

Then, we can derive the following Theorem 1.

Theorem 1 (Prediction comparisons of IF and LF). *For each input multimodal sample (\mathbf{x}, y) , there constantly exists a set of parameters Λ , such that the following equation holds for the linear target mapping characterized by $\theta \in \Lambda$:*

$$\mathcal{L}(f_{\theta, \text{IF}}(\mathbf{x}), y) \leq \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y), \quad (3)$$

where $\mathcal{L}(\cdot, \cdot)$ is Cross-Entropy loss function. Given the Bayes optimal hypothesis f^* , which achieves the infimum of the errors \mathcal{R}^* on \mathcal{D} , i.e., $f^* = \text{argmin}_f \mathcal{R}(f) = \text{argmin}_f \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f(\mathbf{x}), y)]$,

216 and for each $\epsilon \in [0, \|\mathcal{L}(f^*(\mathbf{x}), y) - \mathcal{L}(f_{LF}(\mathbf{x}), y)\|]$, there exists a corresponding $\theta' \in \Lambda$ s.t.
 217 $\mathcal{L}(f_{\theta',IF}(\mathbf{x}), y) = \mathcal{L}(f_{LF}(\mathbf{x}), y) - \epsilon$.
 218

219 The proof of Theorem 1 can be found in **Appendix A.2.1**. We omit the explicit notation of target
 220 mappings' parameters in LF-based prediction, since Theorem 1 holds for arbitrary parameters of
 221 target mappings in LF models (This paper follows this notation principle throughout). Theorem
 222 1 confirms that a simple linear target mapping characterized by the parameters in Λ can establish
 223 the superiority of IF over LF. Additionally, there theoretically exists a θ' that allows the IF-based
 224 prediction to be closer to Bayesian optimal prediction compared to those of the LF models.
 225

226 3.2 ANALYSIS OF THE GENERALIZATION ERROR

227 Based on Theorem 1, we present our theorem regarding the generalization error of IF and LF. The
 228 generalization error is a metric that measures the generalization performance of the learned multi-
 229 modal model f , which can be defined as: $\mathcal{G} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f(\mathbf{x}), y)]$. Theorem 2 delineates the
 230 comparison of generalization errors between IF and LF.
 231

232 **Theorem 2 (Generalization errors of IF and LF).** *With a linear target mapping g_θ in IF parame-
 233 terized by $\theta \in \Lambda$, the following equation holds: $\mathcal{G}_{IF,\theta} \leq \mathcal{G}_{LF}$.*

234 Theorem 2 is proven in **Appendix A.2.2**, which indicates that IF with linear target mapping $g_\theta(\cdot)$
 235 can exhibit lower generalization error than LF consistently. We further introduce Assumption 1 to
 236 investigate the factors impacting the generalization error of IF-based MML methods.
 237

238 **Assumption 1 (K-Lipschitz continuity).** *Suppose the function $\phi(\mathbf{z}) = \mathcal{L}(g(\mathbf{z}), y)$ is a K-
 239 Lipschitz continuous function in respect to input \mathbf{z} , then for $K > 0$, $\forall a, b \in \mathcal{D}_\phi$ (\mathcal{D}_ϕ is the
 240 definitional domain of ϕ), we have: $\|\phi(a) - \phi(b)\| \leq K \|a - b\|$.*

241 Analogous assumption has also been adopted in Qiao et al. (2025), various existing works Arjovsky
 242 & Bottou (2017); Arjovsky et al. (2017); Cao et al. (2022) introduce the constraint of K -Lipschitz
 243 continuity assumption within their theoretical analysis, demonstrating the generality of K -Lipschitz
 244 continuity constraint. Furthermore, relevant studies Yoshida & Miyato (2017); Gulrajani et al.
 245 (2017) declare that K -Lipschitz continuous function can be easily constructed. The literature in-
 246 dicates that K -Lipschitz continuity constitutes a mild assumption.
 247

248 **Theorem 3 (Generalization error upper bound of IF).** *Let $\mathcal{D}_{train} = \{\mathbf{x}^i, y^i\}_{i=1}^{|\mathcal{D}_{train}|}$ be the train-
 249 ing dataset and \mathcal{D}_M be a complete distribution distance metric. Under the constraint condition of
 250 Assumption 1, for any f_{IF} with the linear target mapping g_θ parameterized by $\theta \in \Lambda$ in hypothesis
 251 space \mathcal{H} and $0 < \delta < 1$, with the probability at least $1 - \delta$, the generalization error of f_{IF} holds:*

$$252 \mathcal{G}_{IF,\theta} \leq \sum_{m=1}^M \left[K \cdot \mathbb{E}(w^m) \underbrace{\mathcal{D}_M(\mu_m, \mu)}_{\text{Distribution incoherence}} + \text{Error}(w^m, \mathcal{L}(g_\theta(\mathbf{z}_m), y)) \right] + \hat{\mathbb{E}}(f_{IF}) + \text{Bias}[\mathfrak{R}(\mathcal{H}), \mathcal{O}(N^{-1/2})]. \quad (4)$$

253 The corresponding proof of Theorem 3 can be found in **Appendix A.2.3**. $\mathbb{E}(w^m)$ represents the
 254 expectation of multimodal fusion weight, \mathcal{D}_M is the complete distribution distance metric which
 255 satisfies the three essential properties (non-negativity, symmetry, triangle inequality). μ_m is the
 256 distribution that the features of the m -th modality are drawn from, μ is the distribution that the
 257 multimodal feature \mathbf{z} follows. Distribution incoherence quantifies the discrepancy between the dis-
 258 tributions μ and μ_m ($m \in [1, M]$). $\hat{\mathbb{E}}(f_{IF})$ is the empirical error of multimodal feature \mathbf{z} on \mathcal{D}_{train} .
 259 Bias $[\mathfrak{R}(\mathcal{H}), \mathcal{O}(N^{-1/2})]$ is the systematic bias with respect to Rademacher complexity \mathfrak{R} of the hy-
 260 pothesis space \mathcal{H} and the size of training dataset N . It's challenging to eliminate the systematic
 261 bias in MML models. $\text{Error}[w^m, \mathcal{L}(g_\theta(\mathbf{z}_m), y)]$ is an error term about the fusion weight w^m and
 262 unimodal loss $\mathcal{L}(g_\theta(\mathbf{z}_m), y)$, which indicates that the calculation method of fusion weight w^m can
 263 affect the predictive performance of MML models. Recent research Zhang et al. (2023a); Cao et al.
 264 (2024) focuses on exploring the effective fusion weights w^m to achieve better performance of MML
 265 models, leaving the diminution of the distribution incoherence term unexplored.
 266

267 Consequently, inspired by Theorems 1 and 2, we determine to implement our model based on the IF
 268 framework with a linear target mapping characterized by $\theta \in \Lambda$. According to Eq.(4) in Theorem
 269

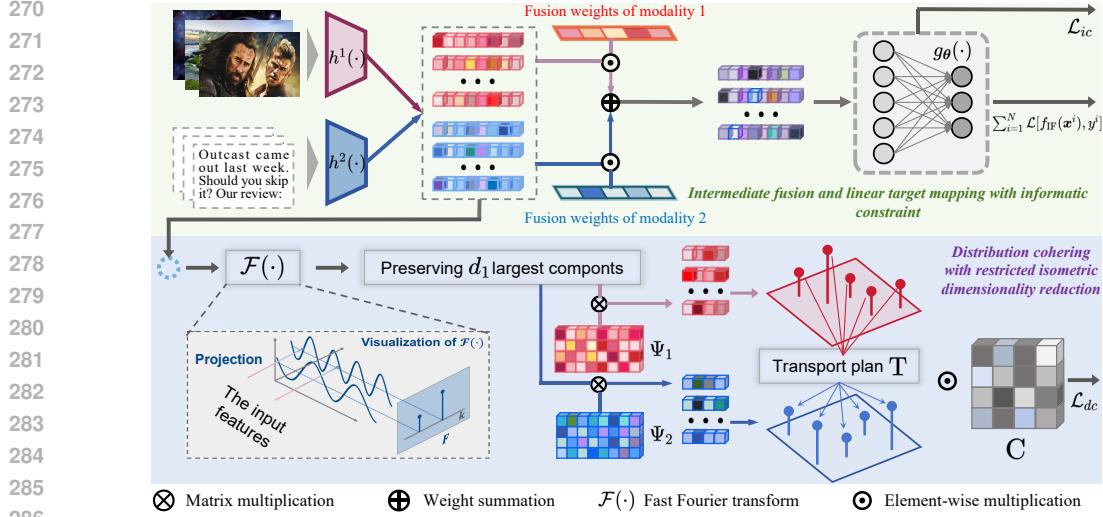


Figure 4: The overall architecture of IID, which is built based on a prevalent IF framework. The pipeline is illustrated under the scenario of two modalities without loss of generality. The proposed informatic constraint on linear target mapping and distribution cohering with restricted isometric dimensionality reduction bridges our theoretical framework and practical methodology seamlessly.

3, we propose to diminish the value of the distribution incoherence term, thereby further enhancing the generalizability of our method.

4 METHODOLOGY

Overview of IID. The framework of the proposed IID is illustrated in Figure 4. Drawing upon Theorems 1 and 2, we build our model based on the IF framework. Concretely, given a batch of input multimodal samples $\{(\mathbf{x}^1, y^1), (\mathbf{x}^2, y^2), \dots, (\mathbf{x}^N, y^N)\}$, N is the batch size, each instance has M modalities, i.e., $\mathbf{x}^i = \{x_1^i, x_2^i, \dots, x_M^i\}$ ($i \in [1, N]$), and we obtain the corresponding features by latent mappings, i.e., $\mathbf{z}_m^i = h^m(x_m^i)$, where $m \in [1, M]$. Then we obtain the multimodal feature \mathbf{z}^i of \mathbf{x}^i in latent space via

$$\mathbf{z}^i = \sum_{m=1}^M w^m \mathbf{z}_m^i, \quad (5)$$

which is a prevalent IF paradigm, and we calculate the prediction logits by $f_{\text{IF}}(\mathbf{x}^i) = g(\mathbf{z}^i)$.

The derivations of Theorems 2 and 3 are based on the linear target mapping parameterized by $\theta \in \Lambda$. To actualize such a specific and accessible linear target mapping, we introduce the meticulously designed informatic constraint, which guarantees that the parameter of the linear target mapping is restricted to the desired set Λ and converges towards the theoretically optimal parameter θ^* during the training process. Under the guidance of Theorem 3, we propose the distribution cohering with restricted isometric dimensionality reduction module to diminish the distribution incoherence term in Eq.(4), thereby improving the generalizability of the proposed IID.

4.1 LINEAR TARGET MAPPING WITH INFORMATIC CONSTRAINT

In this section, we introduce the informatic constraint to attain the expected linear target mapping. As delineated in Theorem 1, based on $\theta \in \Lambda$, we have $\mathcal{L}(f_{\text{IF},\theta}(\mathbf{x}^i), y^i) \leq \mathcal{L}(f_{\text{LF}}(\mathbf{x}^i), y^i)$, which equals $\mathcal{L}(\mathbf{z}^i \cdot \theta, y^i) \leq \sum_{m=1}^M w^m \mathcal{L}(\mathbf{z}_m^i \cdot \theta_m, y^i)$. Therefore, given the initial parameter $\hat{\theta}$ of the linear target mapping, we can constrain the parameter $\hat{\theta}$ in Λ and approximate it to the optimal parameter θ^* during the optimization process by:

$$\text{Min } \mathcal{L}(\mathbf{z}^i \cdot \hat{\theta}, y^i) - \sum_{m=1}^M w^m \mathcal{L}(\mathbf{z}_m^i \cdot \theta_m, y^i). \quad (6)$$

Nevertheless, IID is established based on the IF framework, which renders the unavailability of LF-based Cross-Entropy loss function (i.e., $\mathcal{L}(\mathbf{z}_m^i \cdot \theta_m, y^i)$), ultimately leading to incalculable

Eq.(6). But we note that recent research regarding information theory Tishby et al. (2000); Federici et al. (2020); Li et al. (2024) maximizes mutual information by minimizing Cross-Entropy function, which manifests that higher mutual information $I(\mathbf{z}^i; y^i)$ indicates lower $\mathcal{L}(\mathbf{z}^i \cdot \hat{\theta}, y^i)$. Drawing inspiration from this finding, we inversely implement Eq.(6) by

$$\text{Max } I(\mathbf{z}^i; y^i) - \sum_{m=1}^M I(\mathbf{z}_m^i; y^i), \quad (7)$$

where $I(\mathbf{z}^i; y^i) = \int \int p(\mathbf{z}^i, y^i) \log \left[\frac{p(y^i | \mathbf{z}^i)}{p(y^i)} \right] d\mathbf{z}^i dy^i$. Although Eq.(7) is a necessary but not sufficient condition of Eq.(6), achieving the optimization objective through the necessary condition is practical and general Jiang & Veitch (2022); Zhang et al. (2024), and the empirical results in **Section 5** confirm the effectiveness of such an implementation.

Compared to Eq.(6), we omit the multimodal fusion weight w^m in Eq.(7) since maximizing $-I(\mathbf{z}_m; y)$ equals maximizing $-w^m I(\mathbf{z}_m; y)$ with $w^m > 0$. Eventually, we can implement Eq.(7) by minimizing the loss function:

$$\mathcal{L}_{ic} = \sum_{i=1}^N \left(-\log q_{\theta}(y^i | \mathbf{z}^i) + \lambda KL(\mathcal{N}_{\mathbf{z}^i} || \mathcal{N}) - \sum_{m=1}^M \left[\log q_{\theta}(y^i | \mathbf{z}_m^i) - \lambda KL(\mathcal{N}_{\mathbf{z}_m^i} || \mathcal{N}) \right] \right). \quad (8)$$

The derivation of \mathcal{L}_{ic} is detailed in **Appendix A.2.4**. $q_{\theta}(\cdot | \cdot)$ is the variational approximation of $p(\cdot | \cdot)$, which is calculated by the target mapping. λ is a trade-off hyper-parameter. $KL(\cdot)$ is Kullback-Leibler divergence Van Erven et al. (2014). $\mathcal{N}_{\mathbf{z}^i}$ ($\mathcal{N}_{\mathbf{z}_m^i}$) is a Gaussian distribution fitted by the mean and variance of \mathbf{z}^i (\mathbf{z}_m^i). \mathcal{N} is the standard Gaussian distribution.

4.2 DISTRIBUTION COHERING WITH RESTRICTED ISOMETRIC DIMENSIONALITY REDUCTION

A direct approach to minimize $\sum_{m=1}^M \mathbb{E}(w^m) \mathcal{D}_{\mathcal{M}}(\mu_m, \mu)$ is obtaining the distribution barycenter Aguech & Carlier (2011), but such a strategy is very computationally expensive Nguyen et al. (2025). According to our derivation in **Appendix A.2.5**, utilizing the IF approach specified in Eq.(5) for the integration of unimodal features, the following equation holds for almost all the multimodal scenarios:

$$\sum_{m=1}^M \mathbb{E}(w^m) \mathcal{D}_{\mathcal{M}}(\mu_m, \mu) \leq \sum_{m_1, m_2} \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{m_2}), \quad (9)$$

where $m_1, m_2 \in [1, M]$ and $m_1 \neq m_2$. Eq.(9) indicates that the distribution incoherence term is bounded by the inter-modality distribution discrepancy, thus we can achieve distribution cohering by minimizing the right-hand side of Eq.(9). Considering that Wasserstein distance possesses the requisite properties of complete distribution distance metric, we determine to accomplish $\mathcal{D}_{\mathcal{M}}$ by Wasserstein distance (detailed in **Appendix A.3**). Sinkhorn algorithm Cuturi (2013) can achieve precise Wasserstein distance calculation. But in practice, performing Sinkhorn algorithm on high-dimensional features is problematic for its excessive computational complexity.

We ascertain the underlying cause by first restating the operating mechanism of canonical Sinkhorn algorithm. Given two probability distribution p_1, p_2 with discrete supports $\mathbf{u} = \{u_j\}_{j=1}^{n_1}, \mathbf{v} = \{v_k\}_{k=1}^{n_2} (\sum_{j=1}^{n_1} u_j = 1 \text{ and } \sum_{k=1}^{n_2} v_k = 1)$, Wasserstein distance can be calculated as follows:

$$\mathcal{W}(p_1, p_2) = \min \sum_{j=1}^{n_1} \sum_{k=1}^{n_2} T_{jk} C_{jk}, \text{ subject to } T \in \mathbb{R}_+^{n_1 \times n_2}, T \mathbf{1}_{n_2} = \mathbf{u}, T^\top \mathbf{1}_{n_1} = \mathbf{v}. \quad (10)$$

T is the transport plan and C_{jk} evaluates the distance between u_j and v_k . During the iterative computation of the optimal transport plan T , each element of the matrix C is derived from the pairwise distance between features. Consequently, a large feature dimensionality incurs a substantial computational complexity, which renders the Sinkhorn algorithm computationally problematic for high-dimensional features.

Inspired by the studies Wright & Ma (2022); Radhakrishnan et al. (2025) indicating that the features of data from multiple sources (such as signal, image, and so on) are generally sparse in the frequency domain, we opt to transform high-dimensional sparse features into low-dimensional dense features to accelerate Sinkhorn algorithm. Beyond improving computational efficiency, to mitigate the degradation of Wasserstein distance estimation precision caused by dimensionality reduction, we particularly impose a dimensionality reduction matrix with Restricted Isometry Property (RIP)², and can maintain the geometric structure of features during the dimensionality reduction.

²A transform \mathbf{A} satisfies RIP if $(1 - \delta') \|\mathbf{x}\|_2^2 \leq \|\mathbf{Ax}\|_2^2 \leq (1 + \delta') \|\mathbf{x}\|_2^2$.

378 Table 1: Results on four vision-language datasets. **Bold** represents the best results. D stands for
 379 dynamic fusion, i.e., the fusion weight w^m is a function of x^m . In contrast, the w^m is a constant
 380 in the static fusion (S) method. We obtain the p -value of IID-P by performing the student t -test
 381 between IID-P and PDF, the same applies to the p -value of IID-Q and IID-L.

382 Baseline	383 Type	384 MVSA-Single		385 MVSA-Multiple		386 HFM		387 Food101	
		388 Avg	389 Worst	390 Avg	391 Worst	392 Avg	393 Worst	394 Avg	395 Worst
Bow	S	48.79 \pm 7.05	35.45	64.78 \pm 0.81	64.18	74.22 \pm 0.87	73.25	82.50 \pm 0.18	82.32
Img	S	64.12 \pm 1.23	62.04	67.04 \pm 0.49	66.65	74.74 \pm 0.38	74.36	64.62 \pm 0.40	64.22
BERT	S	75.61 \pm 0.53	74.76	69.39 \pm 0.37	69.18	85.34 \pm 0.46	84.86	86.46 \pm 0.05	86.42
Late-fusion	S	76.88 \pm 1.30	74.76	67.94 \pm 0.56	67.41	85.51 \pm 0.18	85.31	90.69 \pm 0.12	90.58
C-Bow	S	64.08 \pm 1.54	62.04	67.35 \pm 0.20	67.24	76.53 \pm 0.23	76.28	70.77 \pm 0.09	70.68
C-BERT	S	65.59 \pm 1.33	64.74	67.71 \pm 1.06	66.59	85.82 \pm 1.06	84.76	88.20 \pm 0.34	87.81
MMBT	D	78.50 \pm 0.40	78.04	69.88 \pm 0.31	69.71	85.39 \pm 0.34	85.01	91.52 \pm 0.10	91.38
TMC	D	74.87 \pm 2.24	71.10	68.41 \pm 0.16	68.29	85.18 \pm 0.79	84.55	89.86 \pm 0.07	89.80
DYNMM	D	79.07 \pm 0.53	78.23	68.55 \pm 0.20	68.32	85.32 \pm 0.42	84.96	92.59 \pm 0.07	92.50
LCKD	S	62.44 \pm 0.30	62.27	66.02 \pm 0.13	65.93	82.43 \pm 0.53	81.87	85.32 \pm 0.36	84.26
QMF	D	78.07 \pm 1.10	76.30	68.67 \pm 0.27	68.41	85.87 \pm 0.23	85.66	92.92 \pm 0.11	92.72
UniCODE	S	66.97 \pm 0.39	65.94	66.21 \pm 0.32	65.98	83.37 \pm 0.52	82.83	88.39 \pm 0.36	87.21
SimMMDG	S	67.08 \pm 0.35	66.35	66.44 \pm 0.23	66.19	84.13 \pm 0.41	83.85	89.57 \pm 0.38	88.43
PDF	D	79.94 \pm 0.95	78.42	69.54 \pm 0.25	69.26	86.03 \pm 0.31	85.77	93.32 \pm 0.22	92.84
IID-L	S	77.78 \pm 1.09	75.89	69.32 \pm 0.50	67.84	85.94 \pm 0.42	85.41	91.93 \pm 0.25	91.21
<i>p</i> -value	-	$5.47e^{-3}$	-	$6.67e^{-3}$	-	$4.34e^{-2}$	-	$9.87e^{-3}$	-
IID-Q	D	80.02 \pm 0.40	79.58	71.08 \pm 0.30	70.76	86.61 \pm 0.23	86.37	93.10 \pm 0.03	93.06
<i>p</i> -value	-	$1.07e^{-3}$	-	$4.74e^{-4}$	-	$4.97e^{-3}$	-	$3.69e^{-2}$	-
IID-P	D	81.13 \pm 0.84	79.98	71.23 \pm 0.44	70.81	86.88 \pm 0.39	86.32	93.73 \pm 0.14	93.52
<i>p</i> -value	-	$3.34e^{-4}$	-	$9.34e^{-4}$	-	$6.72e^{-3}$	-	$1.51e^{-2}$	-

400 Specifically, we first employ fast Fourier transform to transform feature \mathbf{z}_m^i into the frequency do-
 401 main: $\hat{\mathbf{z}}_m^i = \mathcal{F}(\mathbf{z}_m^i) = \int_{\mathbb{R}^d} f(\mathbf{t}) e^{-2\pi i \cdot \mathbf{z}_m^i} d\mathbf{t}$, where $f(\mathbf{t})$ is the Fourier series expansion of \mathbf{z}_m^i . We
 402 further strengthen the sparsity of $\hat{\mathbf{z}}_m^i$ by preserve the top- d_1 ($d_1 \ll d$) principal components by
 403

$$\hat{z}_{m,n}^i = \begin{cases} \hat{z}_{m,n}^i, & \text{if } |\hat{z}_{m,n}^i| \geq \tau \\ 0, & \text{if } |\hat{z}_{m,n}^i| < \tau \end{cases}. \quad (11)$$

404 τ is set to the magnitude of the d_1 -th largest component of $\hat{\mathbf{z}}_m^i$, d_1 is a hyperparameter, and $n \in [1, d]$
 405 is the dimension index. The enhancement of sparsity not only mitigates the interference of noisy
 406 semantics but also alleviates the risk of mapping two disparate high-dimensional features to an
 407 identical low-dimensional representation during dimensionality reduction.

408 Then we design a dimensionality reduction matrix with RIP. Let Φ denote the Gaussian Random
 409 matrix, as the elements sampled from \mathcal{N} are highly uncorrelated with the bases of the Fourier transform,
 410 $\Psi = \Phi \mathcal{F}^{-1}$ can be treated as the RIP-preserved dimensionality reduction matrix Wright & Ma
 411 (2022). Thus we employ a modality-specific Ψ_m for the dimensionality reduction: $\hat{\mathbf{z}}_m^i = \Psi_m \hat{\mathbf{z}}_m^i$,
 412 where $\hat{\mathbf{z}}_m^i \in \mathbb{R}^{d_1}$, $\hat{\mathbf{z}}_m^i \in \mathbb{C}^d$, and $\Psi_m \in \mathbb{C}^{d_1 \times d}$. Since $d_1 \ll d$ and the RIP of Ψ_m , the upper bound
 413 of distribution incoherence can be accurately measured with limited computation complexity.

414 Additionally, the loss of semantics derived from dimensionality reduction is inevitable, to enhance
 415 robustness to such an undesirable disturbance, it is plausible to relax the original hard marginal
 416 matching constraints, which allows for a flexible assignment of matching mass. Overall, we intro-
 417 duce a relaxed constraint in the form of the Lagrange multiplier method, and ultimately calculate
 418 Wasserstein distance between modalities m_1 and m_2 in the following manner:

$$\widetilde{\mathcal{W}}(\mu_{m_1}, \mu_{m_2}) = \underset{T}{\operatorname{argmin}} \sum_{j=1}^{n_1} \sum_{k=1}^{n_2} T_{jk} C_{jk} + \lambda_1 \left[KL(T \mathbf{1}_{n_2} || \mathbf{u}) + KL(T^\top \mathbf{1}_{n_1} || \mathbf{v}) \right], \quad (12)$$

419 where $C_{jk} = \|\Psi_m(\hat{\mathbf{z}}_m^j) - \Psi_m(\hat{\mathbf{z}}_m^k)\|_2$. Then distribution incoherence is bounded by $\mathcal{L}_{dc} =$
 420 $\sum_{m_1, m_2} \widetilde{\mathcal{W}}(\mu_{m_1}, \mu_{m_2})$, and the final loss function of IID can be formalized as:

$$\mathcal{L}_{IID} = \alpha \mathcal{L}_{ic} + \beta \mathcal{L}_{dc} + \sum_{i=1}^N \mathcal{L} \left[f_{\text{IF}}(\mathbf{x}^i), y^i \right], \quad (13)$$

421 α, β are the hyperparameters to control the influence of \mathcal{L}_{ic} and \mathcal{L}_{dc} . The overall training pipeline
 422 is depicted in **Algorithm 1**.

Table 2: The link prediction results on two multimodal knowledge graph datasets.

Model	Type	FB-IMG				WN9-IMG			
		MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
TransE	Unimodal	0.712	0.618	0.781	0.859	0.865	0.765	0.816	0.871
DistMult		0.706	0.606	0.742	0.808	0.901	0.895	0.913	0.925
ComplEx		0.808	0.757	0.845	0.892	0.908	0.903	0.907	0.928
RotatE		0.794	0.744	0.827	0.883	0.910	0.901	0.915	0.926
TransAE	Multimodal	0.742	0.691	0.785	0.844	0.898	0.894	0.908	0.922
IKLR		0.755	0.698	0.794	0.857	0.901	0.900	0.912	0.928
TBKGE		0.812	0.764	0.850	0.902	0.912	0.904	0.914	0.931
MMKRL		0.827	0.783	0.857	0.906	0.913	0.905	0.917	0.932
OTKGE		0.843	0.799	0.876	0.916	0.923	0.911	0.930	0.947
MMKRL+IID		0.844	0.801	0.876	0.917	0.920	0.911	0.925	0.945
OTKGE+IID	Multimodal	0.855	0.813	0.887	0.925	0.932	0.917	0.938	0.957

5 RESULTS

In this section, we evaluate the performance of IID on three multimodal tasks (i.e., vision-language classification, link prediction, and scene recognition) involving eight datasets. Based on Equation (4), the calculation of w^m affects the predictive capability of MML models. For comprehensive and fair comparisons, we implement one static IID (i.e., IID-L, the w^m in IID-L is identical to vanilla Late-fusion), and two dynamic IIDs (i.e., IID-P and IID-Q, the w^m in IID-P and IID-Q are identical to PDF and QMF, respectively) across six datasets involved in vision-language classification and scene recognition tasks. As for the link prediction task on two multimodal knowledge graph datasets, we integrate the two proposed modules into competitive IF-based benchmarks. Each experiment is repeated three times. Due to the limited space, datasets, baselines, implementation details, and extended experiments are depicted in [Appendix A.5](#) and [A.6](#).

Quantitative results.		The quantitative results of vision-language classification and scene recognition are depicted in Tables 1 and 3, respectively. All comparisons are performed in terms of both the average and worst-case accuracy metrics. Under these metrics, the proposed IID-Q and IID-P attain the Top-2 performance on all six datasets. This outcome underscores the superior generalization capability of our models in comparison to the chosen benchmarks. Additionally, PDF and IID-P (QMF and IID-Q, Late-fusion and IID-L) adopt the identical implementation of fusion weights, thus the comparisons between these pairs can further verify the effectiveness of the proposed two modules. According to the quantitative results, the proposed IF-based models consistently outperform their LF-based counterparts. Furthermore, we conduct the Student t -test Kim (2015), in which $p < 0.05$ indicates a significant difference between the two groups of accuracy samples. Based on the results of Student t -test in Tables 1 and 3, the p -values are all less than 0.05, thus we can attribute the performance improvement to the linear target mapping with informatic constraint and the distribution cohering with restricted isometric dimensionality reduction techniques, rather than the randomness.					
Baseline	Type	NYU Depth V2		SUN RGB-D			
		Avg	Worst	Avg	Worst		
RGB	S	62.65 \pm 1.22	62.54	52.99 \pm 0.88	56.51		
Depth	S	63.30 \pm 0.48	61.01	56.78 \pm 0.19	51.32		
Late-fusion	S	69.14 \pm 0.67	68.35	62.00 \pm 0.15	60.55		
Concat	S	70.31 \pm 0.80	69.42	62.48 \pm 0.50	61.19		
Align	S	70.31 \pm 1.28	68.50	61.12 \pm 0.61	60.12		
MMTM	D	71.04 \pm 0.41	70.18	61.72 \pm 0.67	60.94		
TMC	D	71.06 \pm 0.76	69.57	60.68 \pm 0.24	60.31		
LCKD	S	68.01 \pm 0.31	66.15	56.43 \pm 0.56	56.32		
QMF	D	70.09 \pm 0.97	68.81	62.09 \pm 0.56	61.30		
UniCODE	S	70.12 \pm 0.37	68.74	59.21 \pm 0.55	58.55		
SimMMDG	S	71.34 \pm 0.32	70.29	60.54 \pm 0.50	60.31		
PDF	D	71.37 \pm 0.76	70.18	62.34 \pm 0.43	61.88		
IID-L	S	69.87 \pm 0.78	68.78	62.31 \pm 0.21	60.76		
<i>p</i> -value	-	9.12e ⁻³	-	4.84e ⁻²	-		
IID-Q	D	71.61 \pm 0.50	71.25	62.92 \pm 0.13	62.78		
<i>p</i> -value	-	5.84e ⁻³	-	3.81e ⁻⁴	-		
IID-P	D	72.04 \pm 0.55	71.49	62.99 \pm 0.24	62.71		
<i>p</i> -value	-	1.89e ⁻³	-	8.93e ⁻³	-		

We employ four evaluation metrics to assess the performance on the link prediction task: the Mean Reciprocal Rank (MRR) of the correct entities, and Hits@ k , defined as the proportion of test instances in which the correct entity is ranked within the top- k predictions, where $k \in \{1, 3, 10\}$. Big MRR and Hits@ k indicate a good result. We present the results of the link prediction task in Table 2. For the two existing IF-based benchmarks, MMKRL Lu et al. (2022) and OTKGE Cao et al. (2022), we observe that integrating IID further improves their performance. In particular, OTKGE + IID achieves state-of-the-art results on both multimodal knowledge graph datasets. The results indicate that the proposed method can serve as a plug-and-play module to enhance the performance of approaches based on IF framework. Overall, the quantitative results on eight datasets, covering three distinct tasks with diverse modality combinations, validate the effectiveness of the proposed method and further attest to its generalization capability.

Table 3: Results of scene recognition.

Baseline	Type	NYU Depth V2		SUN RGB-D	
		Avg	Worst	Avg	Worst
Late-fusion	S	62.65 \pm 1.22	62.54	52.99 \pm 0.88	56.51
	S	63.30 \pm 0.48	61.01	56.78 \pm 0.19	51.32
	S	69.14 \pm 0.67	68.35	62.00 \pm 0.15	60.55
	S	70.31 \pm 0.80	69.42	62.48 \pm 0.50	61.19
	S	70.31 \pm 1.28	68.50	61.12 \pm 0.61	60.12
	D	71.04 \pm 0.41	70.18	67.72 \pm 0.67	60.94
TMC	D	71.06 \pm 0.76	69.57	60.68 \pm 0.24	60.31
LCKD	S	68.01 \pm 0.31	66.15	56.43 \pm 0.56	56.32
QMF	D	70.09 \pm 0.97	68.81	62.09 \pm 0.56	61.30
UniCODE	S	70.12 \pm 0.37	68.74	59.21 \pm 0.55	58.55
SimMMDG	S	71.34 \pm 0.32	70.29	60.54 \pm 0.50	60.31
PDF	D	71.37 \pm 0.76	70.18	62.34 \pm 0.43	61.88
IID-L	S	69.87 \pm 0.78	68.78	62.31 \pm 0.21	60.76
<i>p</i> -value	-	9.12e $^{-3}$	-	4.84e $^{-2}$	-
IID-Q	D	71.61 \pm 0.50	71.25	62.92 \pm 0.13	62.78
<i>p</i> -value	-	5.84e $^{-3}$	-	3.81e $^{-4}$	-
IID-P	D	72.04 \pm 0.55	71.49	62.99 \pm 0.24	62.71

Table 4: The ablation study on six benchmark datasets.

Dataset	w/o D	w/o I	IID-L	w/o D	w/o I	IID-Q	w/o D	w/o I	IID-P
MVSA-Single	77.42 \pm 0.73	77.47 \pm 1.10	77.78 \pm 1.09	79.32 \pm 0.73	78.93 \pm 0.97	80.02 \pm 0.40	80.79 \pm 0.80	80.46 \pm 0.73	81.13 \pm 0.84
MVSA-Multiple	69.03 \pm 0.41	69.11 \pm 0.76	69.32 \pm 0.50	69.59 \pm 1.20	70.67 \pm 0.29	71.08 \pm 0.30	70.13 \pm 0.52	70.61 \pm 0.45	71.23 \pm 0.44
HFM	85.77 \pm 0.38	85.71 \pm 0.53	85.94 \pm 0.42	86.54 \pm 0.25	86.22 \pm 0.10	86.61 \pm 0.23	86.61 \pm 0.37	86.35 \pm 0.59	86.88 \pm 0.39
Food101	91.43 \pm 0.11	91.35 \pm 0.34	91.93 \pm 0.25	92.98 \pm 0.04	93.01 \pm 0.03	93.10 \pm 0.03	93.58 \pm 0.07	93.60 \pm 0.15	93.73 \pm 0.14
NYU Depth V2	69.39 \pm 0.70	69.41 \pm 0.91	69.87 \pm 0.78	70.95 \pm 0.40	70.48 \pm 0.97	71.61 \pm 0.50	71.75 \pm 0.48	71.58 \pm 0.92	72.04 \pm 0.55
SUN RGB-D	62.18 \pm 0.17	62.25 \pm 0.37	62.31 \pm 0.24	62.68 \pm 0.07	62.65 \pm 0.31	62.92 \pm 0.13	62.77 \pm 0.19	62.53 \pm 0.38	62.99 \pm 0.24

Ablation study. To investigate the contribution of each ingredient, two variants are trained for justification: i) w/o D removes the distribution cohering with restricted isometric dimensionality reduction module; ii) w/o I excludes the informatic constraint on the linear target mapping. The results of the ablation study are depicted in Table 4. It can be seen that the performance of IID drops regardless of which module is removed, suggesting that each proposed technique has a significant impact on the predictive capability of IID.

Empirical demonstrations of the theoretical derivations.

The design of IID is grounded in two theoretical derivations: (i) \mathcal{L}_{ic} can restrict the parameter of linear target mapping in Λ and render the parameter to approximate the optimal parameter θ^* during the optimization process; (ii) \mathcal{L}_{dc} reduces the generalization error of IID by mitigating the distribution incoherence,

thus enhancing the classification performance. Then, we substantiate the correctness of our theoretical derivations with the experimental results. In Figure 6, with informatic constraint \mathcal{L}_{ic} on the linear target mapping, the performance improvement of the IF-based methods compared to the LF-based methods increases, which indicates that \mathcal{L}_{ic} can lead the initial parameter of the linear target mapping to approach the theoretically optimal θ^* . In Figure 5, we present the test classification accuracy of IID-Q and QMF (the left subfigure of Figure 5), along with the mean Wasserstein distance between various unimodal features for each batch of samples (the right subfigure of Figure 5). The results confirm that the classification performance improves as Wasserstein distance decreases. This demonstrates the validity of our theoretical derivation, specifically that eliminating the distribution incoherence contributes to enhanced model prediction performance on unknown test sets.

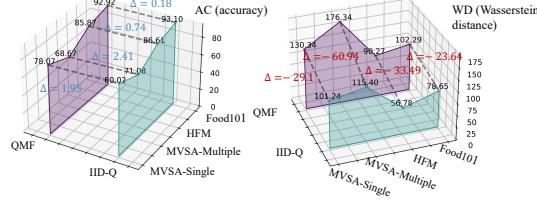


Figure 5: The empirical demonstrations of theoretical derivations (2/2).

Figure 6: The empirical demonstrations of the theoretical derivations (1/2). In this figure, LF denotes the LF-based models (e.g., QMF and Late-fusion), IF denotes the LF framework is replaced by the IF framework, and IF w/ \mathcal{L}_{ic} means imposing the informatic constraint on the linear target mapping.

6 CONCLUSION

In this paper, we rethink the prevalent IF and LF paradigms in MML from a fine-grained dimensional perspective. The complete theoretical derivations sufficiently establish the superiority of IF over LF under a specific constraint. Based on the general K -Lipschitz continuity assumption on the linear target mapping, we formalize the generalization error upper bound of IF-based methods, which indicates that the generalization error upper bound can be further decreased by mitigating the distribution incoherence. Motivated by these theoretical insights, we propose IID, an IF-based approach which incorporates linear target mapping with informatic constraint and distribution cohering with restricted isometric dimensionality reduction. Empirical evidence proves that our findings are solid and IID is generally effective.

540 ETHICS STATEMENT
541

542 All authors have carefully read and fully adhered to the ICLR Code of Ethics. The research presented
543 in this paper is conducted in compliance with the principles of research integrity, fairness, and
544 transparency. Our work does not involve human subjects, personally identifiable information, or
545 other sensitive data, and it does not present foreseeable risks of harm, misuse, or ethical concerns.
546 All experiments are carried out on publicly available datasets or synthetic data, and we have ensured
547 proper documentation and reproducibility. The authors confirm that there are no conflicts of interest
548 or violations of the ICLR Code of Ethics associated with this submission.

549
550 REPRODUCIBILITY STATEMENT
551

552 We ensure reproducibility by detailing experimental settings, datasets, and hyperparameters in both
553 **Section 5** and **Appendix A.5**. The source code is included in the supplementary materials to repro-
554 duce the proposed method.

555
556 REFERENCES
557

558 Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. *SIAM Journal on*
559 *Mathematical Analysis*, 43(2):904–924, 2011.

560 Alexander A. Alemi et al. Deep variational information bottleneck. In *5th International Confer-
561 ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
562 Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=HyxQzBceg>.

563

564 Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
565 Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
566 ing. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
567 6077–6086, 2018.

568

569 Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
570 networks. *arXiv preprint arXiv:1701.04862*, 2017.

571

572 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

573

574 Roman Bachmann, Oğuzhan F Kar, David Mizrahi, Ali Garjani, Mingfei Gao, David Griffiths,
575 Jiaming Hu, Afshin Dehghan, and Amir Zamir. 4m-21: An any-to-any vision model for tens
576 of tasks and modalities. *Advances in Neural Information Processing Systems*, 37:61872–61911,
2024.

577

578 Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
579 a collaboratively created graph database for structuring human knowledge. In Jason Tsong-Li
580 Wang (ed.), *Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008*, pp. 1247–1250. ACM, 2008. doi:
581 10.1145/1376616.1376746. URL <https://doi.org/10.1145/1376616.1376746>.

582

583 Nicolas Bonneel et al. Sliced and radon wasserstein barycenters of measures. *J. Math. Imaging Vis.*,
584 51(1):22–45, 2015. doi: 10.1007/S10851-014-0506-3. URL <https://doi.org/10.1007/s10851-014-0506-3>.

585

586 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
587 Translating embeddings for modeling multi-relational data. *Advances in neural information pro-
588 cessing systems*, 26, 2013.

589

590 Yitao Cai, Huiyu Cai, and Xiaojun Wan. Multi-modal sarcasm detection in twitter with hierarchical
591 fusion model. In Anna Korhonen, David R. Traum, and Lluís Márquez (eds.), *Proceedings of
592 the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
593 July 28- August 2, 2019, Volume 1: Long Papers*, pp. 2506–2515. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/p19-1239. URL <https://doi.org/10.18653/v1/p19-1239>.

594 Bing Cao, Yinan Xia, Yi Ding, Changqing Zhang, and Qinghua Hu. Predictive dynamic fusion. In
 595 *Proceedings of the 41st International Conference on Machine Learning*, pp. 5608–5628, 2024.
 596

597 Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming Huang.
 598 OTKGE: multi-modal knowledge graph embeddings via optimal transport. In *NeurIPS*, 2022.

599 Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil
 600 in the details: Delving deep into convolutional nets. In Michel François Valstar, Andrew P.
 601 French, and Tony P. Pridmore (eds.), *British Machine Vision Conference, BMVC 2014, Notting-
 602 ham, UK, September 1-5, 2014*. BMVA Press, 2014. URL <https://bmva-archive.org.uk/bmvc/2014/papers/paper054/index.html>.

604 Xiongjie Chen et al. Augmented sliced wasserstein distances. In *The Tenth International Conference
 605 on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net,
 606 2022. URL <https://openreview.net/forum?id=iMqTLYfwnOO>.

608 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley, 2001.
 609 ISBN 9780471062592. doi: 10.1002/0471200611. URL <https://doi.org/10.1002/0471200611>.

611 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
 612 Christopher J. C. Burges et al. (eds.), *Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Pro-
 613 ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States*, pp.
 614 2292–2300, 2013. URL <https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html>.

617 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 618 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision and
 619 Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA*, pp. 248–255. IEEE
 620 Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL <https://doi.org/10.1109/CVPR.2009.5206848>.

623 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
 624 bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 625 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 626 the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
 627 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–
 628 4186. Association for Computational Linguistics, 2019a. doi: 10.18653/v1/n19-1423. URL
 629 <https://doi.org/10.18653/v1/n19-1423>.

633 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
 634 bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 635 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 636 the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
 637 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–
 638 4186. Association for Computational Linguistics, 2019b. doi: 10.18653/V1/N19-1423. URL
 639 <https://doi.org/10.18653/v1/n19-1423>.

643 Hao Dong, Ismail Nejjar, Han Sun, Eleni Chatzi, and Olga Fink. Simmmdg: A simple and effective
 644 framework for multi-modal domain generalization. *Advances in Neural Information Processing
 645 Systems*, 36:78674–78695, 2023.

649 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 650 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 651 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 652 scale. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
 653 Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

657 David A Edwards. On the kantorovich–rubinstein theorem. *Expositiones Mathematicae*, 29(4):
 658 387–398, 2011.

648 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
 649 representations via multi-view information bottleneck. In *International Conference on Learning
 650 Representations*, 2020.

651

652 Werner H Greub. *Linear algebra*, volume 23. Springer Science & Business Media, 2012.

653 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
 654 proved training of wasserstein gans. *Advances in neural information processing systems*, 30,
 655 2017.

656

657 Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classifica-
 658 tion. *arXiv preprint arXiv:2102.02051*, 2021.

659 Devamanyu Hazarika et al. MISA: modality-invariant and -specific representations for multimodal
 660 sentiment analysis. In Chang Wen Chen, Rita Cucchiara, Xian-Sheng Hua, Guo-Jun Qi, Elisa
 661 Ricci, Zhengyou Zhang, and Roger Zimmermann (eds.), *MM '20: The 28th ACM International
 662 Conference on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16, 2020*, pp. 1122–
 663 1131. ACM, 2020. doi: 10.1145/3394171.3413678. URL <https://doi.org/10.1145/3394171.3413678>.

664

665 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 666 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
 667 2016, Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016. doi:
 668 10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.

669

670 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 671 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
 672 recognition*, pp. 4700–4708, 2017.

673

674 Yu Huang et al. What makes multi-modal learning better than single (provably). *Advances in Neural
 675 Information Processing Systems*, 34:10944–10956, 2021.

676

677 Yu Huang et al. Modality competition: What makes joint training of multi-modal network fail
 678 in deep learning?(provably). In *International conference on machine learning*, pp. 9226–9259.
 679 PMLR, 2022.

680

681 Yibo Jiang and Victor Veitch. Invariant and transportable representations for anti-causal domain
 682 shifts. *Advances in Neural Information Processing Systems*, 35:20782–20794, 2022.

683

684 Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, and Davide Testuggine. Supervised multimodal
 685 bitransformers for classifying images and text. In *Visually Grounded Interaction and Language
 (ViGIL), NeurIPS 2019 Workshop, Vancouver, Canada, December 13, 2019*, 2019. URL <https://vigilworkshop.github.io/static/papers/40.pdf>.

686

687 Tae Kyun Kim. T test as a parametric statistic. *Korean journal of anesthesiology*, 68(6):540–546,
 688 2015.

689

690 Soheil Kolouri et al. Generalized sliced wasserstein distances. In *Advances in Neural Information
 691 Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
 692 NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp. 261–272, 2019.

693

694 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 695 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

696

697 Solomon Kullback. Kullback-leibler divergence, 1951.

698

699 Yi Li, Qingmeng Zhu, Hao He, Ziyin Gu, and Changwen Zheng. Moc: Multi-modal sentiment
 700 analysis via optimal transport and contrastive interactions. In *International Conference on Neural
 701 Information Processing*, pp. 439–451. Springer, 2023.

702

703 Yi Li, Qingmeng Zhu, Changwen Zheng, and Jiangmeng Li. Msi: Multi-modal recommendation
 704 via superfluous semantics discarding and interaction preserving. In *Proceedings of the 2024
 705 International Conference on Multimedia Retrieval*, pp. 814–823, 2024.

702 Yuanyuan Liu, Haoyu Zhang, Yibing Zhan, Zijing Chen, Guanghao Yin, Lin Wei, and Zhe Chen.
 703 Noise-resistant multimodal transformer for emotion recognition. *International Journal of Com-*
 704 *puter Vision*, pp. 1–21, 2024.

705

706 Xinyu Lu, Lifang Wang, Zejun Jiang, Shichang He, and Shizhong Liu. Mmkrl: A robust embedding
 707 approach for multi-modal knowledge graph representation learning. *Applied Intelligence*, pp.
 708 1–18, 2022.

709

710 Jie Ma, Jun Liu, Qi Chai, Pinghui Wang, and Jing Tao. Diagram perception networks for textbook
 711 question answering via joint optimization. *International Journal of Computer Vision*, 132(5):
 712 1578–1591, 2024.

713

714 Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
 715 tations in vector space. In Yoshua Bengio and Yann LeCun (eds.), *1st International Conference on*
 716 *Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track*
 717 *Proceedings*, 2013. URL <http://arxiv.org/abs/1301.3781>.

718

719 Hatem Mousselly-Sergieh, Teresa Botschen, Iryna Gurevych, and Stefan Roth. A multimodal
 720 translation-based approach for knowledge graph representation learning. In *Proceedings of the*
 721 *Seventh Joint Conference on Lexical and Computational Semantics*, pp. 225–234, 2018.

722

723 Khai Nguyen, Hai Nguyen, and Nhat Ho. Towards marginal fairness sliced wasserstein barycenter.
 724 In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
 725 *April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=NQqJPPCesd>.

726

727 Teng Niu, Shuai Zhu, Lei Pang, and Abdulkotaleb El-Saddik. Sentiment analysis on multi-view
 728 social data. In Qi Tian, Nicu Sebe, Guo-Jun Qi, Benoit Huet, Richang Hong, and Xueliang Liu
 729 (eds.), *MultiMedia Modeling - 22nd International Conference, MMM 2016, Miami, FL, USA,*
 730 *January 4-6, 2016, Proceedings, Part II*, volume 9517 of *Lecture Notes in Computer Science*, pp.
 731 15–27. Springer, 2016. doi: 10.1007/978-3-319-27674-8_2. URL https://doi.org/10.1007/978-3-319-27674-8_2.

732

733 P Nkedi-Kizza et al. Sorption kinetics and equilibria of organic pesticides in carbonatic soils from
 734 south florida. *Journal of environmental quality*, 35(1):268–276, 2006.

735

736 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
 737 representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings*
 738 *of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,*
 739 *October 25-29, 2014, Doha, Qatar; A meeting of SIGDAT, a Special Interest Group of the ACL*,
 740 pp. 1532–1543. ACL, 2014a. doi: 10.3115/V1/D14-1162. URL <https://doi.org/10.3115/v1/d14-1162>.

741

742 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
 743 representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings*
 744 *of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,*
 745 *October 25-29, 2014, Doha, Qatar; A meeting of SIGDAT, a Special Interest Group of the ACL*,
 746 pp. 1532–1543. ACL, 2014b. doi: 10.3115/V1/D14-1162. URL <https://doi.org/10.3115/v1/d14-1162>.

747

748 Fengchun Qiao and Xi Peng. Ensemble pruning for out-of-distribution generalization. In *Forty-first*
 749 *International Conference on Machine Learning*, 2024.

750

751 Ziyue Qiao, Junren Xiao, Qingqiang Sun, Meng Xiao, Xiao Luo, and Hui Xiong. Towards contin-
 752 uous reuse of graph models via holistic memory diversification. In *The Thirteenth International*
 753 *Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenRe-
 754 view.net, 2025. URL <https://openreview.net/forum?id=Pbz4i7B0B4>.

755

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive fea-
 756 ture machines provably recover low-rank matrices. *Proceedings of the National Academy of*
 757 *Sciences*, 122(13):e2411325122, 2025.

756 Hatem Mousselly Sergieh, Teresa Botschen, Iryna Gurevych, and Stefan Roth. A multimodal
 757 translation-based approach for knowledge graph representation learning. In Malvina Nissim,
 758 Jonathan Berant, and Alessandro Lenci (eds.), *Proceedings of the Seventh Joint Conference on*
 759 *Lexical and Computational Semantics, *SEM@NAACL-HLT 2018, New Orleans, Louisiana,*
 760 *USA, June 5-6, 2018*, pp. 225–234. Association for Computational Linguistics, 2018a. doi:
 761 10.18653/V1/S18-2027. URL <https://doi.org/10.18653/v1/s18-2027>.

762 Hatem Mousselly Sergieh, Teresa Botschen, Iryna Gurevych, and Stefan Roth. A multimodal
 763 translation-based approach for knowledge graph representation learning. In *Proceedings of the*
 764 *Seventh Joint Conference on Lexical and Computational Semantics, *SEM@NAACL-HLT 2018,*
 765 *New Orleans, Louisiana, USA, June 5-6, 2018*, pp. 225–234. Association for Computational Lin-
 766 *guistics, 2018b*. doi: 10.18653/v1/s18-2027. URL [https://doi.org/10.18653/v1/](https://doi.org/10.18653/v1/s18-2027)
 767 [s18-2027](https://doi.org/10.18653/v1/s18-2027).

768 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 769 recognition. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning*
 770 *Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
 771 *ings, 2015*. URL <http://arxiv.org/abs/1409.1556>.*

772 Miyu Sugimoto, Ryo Okano, and Masaaki Imaizumi. Augmented projection wasserstein distances:
 773 Multi-dimensional projection with neural surface. *Journal of Statistical Planning and Inference*,
 774 233:106185, 2024.

775 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
 776 by relational rotation in complex space. In *7th International Conference on Learning Repre-
 777 *sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL
 778 <https://openreview.net/forum?id=HkgEQnRqYQ>.*

779 John Thickstun. Kantorovich-rubinstein duality. *Online manuscript available at* https://courses.cs.washington.edu/courses/cse599i/20au/resources/L12_duality.pdf, 2019.

780 Naftali Tishby et al. The information bottleneck method. *arXiv preprint physics/0004057*, 2000.

781 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
 782 plex embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q. Weinberger
 783 (eds.), *Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New*
 784 *York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop and Conference Proceed-
 785 *ings*, pp. 2071–2080. JMLR.org, 2016. URL <http://proceedings.mlr.press/v48/trouillon16.html>.*

786 Tim Van Erven et al. Rényi divergence and kullback-leibler divergence. *IEEE Transactions on*
 787 *Information Theory*, 60(7):3797–3820, 2014.

788 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 789 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
 790 Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
 791 Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on*
 792 *Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 793 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fdb053c1c4a845aa-Abstract.html>.

794 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2009.

795 Hu Wang, Congbo Ma, Jianpeng Zhang, Yuan Zhang, Jodie Avery, Louise Hull, and Gustavo
 796 Carneiro. Learnable cross-modal knowledge distillation for multi-modal learning with missing
 797 modality. In *International Conference on Medical Image Computing and Computer-Assisted In-
 798 *tervention*, pp. 216–226. Springer, 2023.*

799 Jinghua Wang, Zhenhua Wang, Dacheng Tao, Simon See, and Gang Wang. Learning common and
 800 specific features for rgb-d semantic segmentation with deconvolutional networks. In *Computer*
 801 *Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14,*
 802 *2016, Proceedings, Part V 14*, pp. 664–679. Springer, 2016.

810 Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frédéric Precioso. Recipe
 811 recognition with large multimodal food dataset. In *2015 IEEE International Conference on*
 812 *Multimedia & Expo Workshops, ICME Workshops 2015, Turin, Italy, June 29 - July 3, 2015*,
 813 pp. 1–6. IEEE Computer Society, 2015. doi: 10.1109/ICMEW.2015.7169757. URL <https://doi.org/10.1109/ICMEW.2015.7169757>.

814

815 Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, and Junzhou Huang. Deep
 816 multimodal fusion by channel exchanging. *Advances in neural information processing systems*,
 817 33:4835–4845, 2020.

818

819 Zikang Wang, Linjing Li, Qiudan Li, and Daniel Zeng. Multimodal data enhanced representation
 820 learning for knowledge graphs. In *International Joint Conference on Neural Networks, IJCNN*
 821 *2019 Budapest, Hungary, July 14-19, 2019*, pp. 1–8. IEEE, 2019. doi: 10.1109/IJCNN.2019.
 822 8852079. URL <https://doi.org/10.1109/IJCNN.2019.8852079>.

823

824 Wei Wei, Chao Huang, Lianghao Xia, and Chuxu Zhang. Multi-modal self-supervised learning
 825 for recommendation. In Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and
 826 Geert-Jan Houben (eds.), *Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX,*
 827 *USA, 30 April 2023 - 4 May 2023*, pp. 790–800. ACM, 2023. doi: 10.1145/3543507.3583206.
 828 URL <https://doi.org/10.1145/3543507.3583206>.

829

830 Danny Wood, Tingting Mu, Andrew M Webb, Henry WJ Reeve, Mikel Lujan, and Gavin Brown.
 831 A unified theory of diversity in ensemble learning. *Journal of Machine Learning Research*, 24
 832 (359):1–49, 2023.

833

834 John Wright and Yi Ma. *High-dimensional data analysis with low-dimensional models: Principles,*
 835 *computation, and applications*. Cambridge University Press, 2022.

836

837 Yan Xia, Hai Huang, Jieming Zhu, and Zhou Zhao. Achieving cross modal generalization with mul-
 838 timodal unified representation. *Advances in Neural Information Processing Systems*, 36:63529–
 839 63541, 2023.

840

841 Xiongye Xiao, Gengshuo Liu, Gaurav Gupta, Defu Cao, Shixuan Li, Yaxing Li, Tianqing Fang,
 842 Mingxi Cheng, and Paul Bogdan. Neuro-inspired information-theoretic hierarchical perception
 843 for multimodal learning. *arXiv preprint arXiv:2404.09403*, 2024.

844

845 Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Image-embodied knowledge repre-
 846 sentation learning. In Carles Sierra (ed.), *Proceedings of the Twenty-Sixth International Joint*
 847 *Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017*, pp.
 848 3140–3146. ijcai.org, 2017. doi: 10.24963/IJCAI.2017/438. URL <https://doi.org/10.24963/ijcai.2017/438>.

849

850 Ruobing Xie, Stefan Heinrich, Zhiyuan Liu, Cornelius Weber, Yuan Yao, Stefan Wermter, and
 851 Maosong Sun. Integrating image-based and knowledge-based representation learning. *IEEE*
 852 *Trans. Cogn. Dev. Syst.*, 12(2):169–178, 2020. doi: 10.1109/TCDS.2019.2906685. URL
 853 <https://doi.org/10.1109/TCDS.2019.2906685>.

854

855 Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
 856 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(10):12113–12132, 2023.

857

858 Zihui Xue and Radu Marculescu. Dynamic multimodal fusion. In *Proceedings of the IEEE/CVF*
 859 *Conference on Computer Vision and Pattern Recognition*, pp. 2574–2583, 2023.

860

861 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
 862 relations for learning and inference in knowledge bases. In *3rd International Conference on*
 863 *Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track*
 864 *Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6575>.

865

866 Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
 867 of deep learning. *arXiv preprint arXiv:1705.10941*, 2017.

868

869 Yuan Yuan, Zhaojian Li, and Bin Zhao. A survey of multimodal learning: Methods, applications,
 870 and future. *ACM Computing Surveys*, 57(7):1–34, 2025.

864 Jie Zhang, Xiaosong Ma, Song Guo, Peng Li, Wenchao Xu, Xueyang Tang, and Zicong Hong.
 865 Amend to alignment: decoupled prompt tuning for mitigating spurious correlation in vision-
 866 language models. In *Forty-first International Conference on Machine Learning*, 2024.

868 Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou, and
 869 Xi Peng. Provable dynamic fusion for low-quality multimodal data. *CoRR*, abs/2306.02050,
 870 2023a. doi: 10.48550/arXiv.2306.02050. URL <https://doi.org/10.48550/arXiv.2306.02050>.

872 Qingyang Zhang et al. Provable dynamic fusion for low-quality multimodal data. In *International
 873 conference on machine learning*, pp. 41753–41769. PMLR, 2023b.

874 Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang, Yuan You, and
 875 Feijun Jiang. Bootstrap latent representations for multi-modal recommendation. In Ying Ding, Jie
 876 Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (eds.), *Proceedings
 877 of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023*,
 878 pp. 845–854. ACM, 2023. doi: 10.1145/3543507.3583251. URL <https://doi.org/10.1145/3543507.3583251>.

A APPENDIX

A.1 USE OF LLMs

885 For this manuscript, large language models are utilized exclusively for linguistic polishing. Beyond
 886 this function, large language models make no substantive contributions to the conception, analysis,
 887 or completion of this work.

A.2 THEORETICAL DERIVATION

A.2.1 PROOF OF THEOREM 1

893 In this subsection, we demonstrate that a vanilla linear target mapping can establish the superiority
 894 of IF over LF. For the binary classification task, the activation function is Sigmoid function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}, \quad (14)$$

897 and the predicted label is $\hat{y} = \begin{cases} 1, & \text{if the prediction logits} > 0 \\ 0, & \text{else} \end{cases}$. We have

$$\begin{aligned} \frac{\partial \mathcal{L}(f(\mathbf{x}), y)}{\partial f(\mathbf{x})} &= \frac{\partial \mathcal{L}(f(\mathbf{x}), y)}{\partial \sigma[f(\mathbf{x})]} \cdot \frac{\partial \sigma[f(\mathbf{x})]}{\partial f(\mathbf{x})} \\ &= \frac{\partial \{-y \ln \sigma[f(\mathbf{x})] - (1-y) \ln \{1 - \sigma[f(\mathbf{x})]\}\}}{\partial \sigma[f(\mathbf{x})]} \cdot \frac{\partial \sigma[f(\mathbf{x})]}{\partial f(\mathbf{x})} \\ &= \left\{ -y \frac{1}{\sigma[f(\mathbf{x})]} + (1-y) \frac{1}{\{1 - \sigma[f(\mathbf{x})]\}} \right\} \cdot \sigma[f(\mathbf{x})] \{1 - \sigma[f(\mathbf{x})]\} \\ &= \frac{\sigma[f(\mathbf{x})] - y}{\sigma[f(\mathbf{x})] \{1 - \sigma[f(\mathbf{x})]\}} \cdot \sigma[f(\mathbf{x})] \{1 - \sigma[f(\mathbf{x})]\} = \sigma[f(\mathbf{x})] - y, \end{aligned} \quad (15)$$

909 and $\sigma[f(\mathbf{x})] \in (0, 1)$. Therefore, the loss function $\mathcal{L}(\cdot, \cdot)$ is a monotonically decreasing function for
 910 the samples with the label $y = 1$, and an increasing function for samples with the label $y = 0$.

911 As mentioned in **Section 3**, the logits of LF can be formalized as

$$\begin{aligned} f_{\text{LF}}(\mathbf{x}) &= w^1(\mathbf{z}_1 \cdot \boldsymbol{\theta}_1) + w^2(\mathbf{z}_2 \cdot \boldsymbol{\theta}_2) \\ &= w^1 \mathbf{z}_{1,S_1} \cdot \boldsymbol{\theta}_{1,S_1} + w^1 \mathbf{z}_{1,N_1} \cdot \boldsymbol{\theta}_{1,N_1} + w^2 \mathbf{z}_{2,S_2} \cdot \boldsymbol{\theta}_{2,S_2} + w^2 \mathbf{z}_{2,N_2} \cdot \boldsymbol{\theta}_{2,N_2}, \end{aligned} \quad (16)$$

915 which equals to

$$f_{\text{LF}}(\mathbf{x}) = w^1 \sum_{i \in S_1} z_{1,i} \theta_{1,i} + w^1 \sum_{j \in N_1} z_{1,j} \theta_{1,j} + w^2 \sum_{k \in S_2} z_{2,k} \theta_{2,k} + w^2 \sum_{h \in N_2} z_{2,h} \theta_{2,h}. \quad (17)$$

918 The prediction logits of IF can be formalized as
 919
 920
 921

$$922 \quad f_{\text{IF}}(\mathbf{x}) = \mathbf{z} \cdot \boldsymbol{\theta} \\ 923 \quad = \mathbf{z}_{\mathbb{D}_{S_1 S_2}} \cdot \boldsymbol{\theta}_{\mathbb{D}_{S_1 S_2}} + \mathbf{z}_{\mathbb{D}_{S_1 N_2}} \cdot \boldsymbol{\theta}_{\mathbb{D}_{S_1 N_2}} + \mathbf{z}_{\mathbb{D}_{N_1 S_2}} \cdot \boldsymbol{\theta}_{\mathbb{D}_{N_1 S_2}} + \mathbf{z}_{\mathbb{D}_{N_1 N_2}} \cdot \boldsymbol{\theta}_{\mathbb{D}_{N_1 N_2}}. \quad (18)$$

925
 926
 927 Analogously, Eq.(18) can be rewritten as
 928
 929
 930

$$931 \quad f_{\text{IF}}(\mathbf{x}) = \sum_{i' \in \mathbb{D}_{S_1 S_2}} z_{i'} \theta_{i'} + \sum_{j' \in \mathbb{D}_{S_1 N_2}} z_{j'} \theta_{j'} + \sum_{k' \in \mathbb{D}_{N_1 S_2}} z_{k'} \theta_{k'} + \sum_{h' \in \mathbb{D}_{N_1 N_2}} z_{h'} \theta_{h'} \\ 932 \\ 933 \\ 934 \quad = \sum_{i' \in \mathbb{D}_{S_1 S_2}} \theta_{i'} (w^1 z_{1,i'} + w^2 z_{2,i'}) + \sum_{j' \in \mathbb{D}_{S_1 N_2}} \theta_{j'} (w^1 z_{1,j'} + w^2 z_{2,j'}) \\ 935 \\ 936 \quad + \sum_{k' \in \mathbb{D}_{N_1 S_2}} \theta_{k'} (w^1 z_{1,k'} + w^2 z_{2,k'}) + \sum_{h' \in \mathbb{D}_{N_1 N_2}} \theta_{h'} (w^1 z_{1,h'} + w^2 z_{2,h'}) \\ 937 \\ 938 \\ 939 \quad = w^1 \left(\sum_{i' \in \mathbb{D}_{S_1 S_2}} \theta_{i'} z_{1,i'} + \sum_{j' \in \mathbb{D}_{S_1 N_2}} \theta_{j'} z_{1,j'} \right) + w^1 \left(\sum_{k' \in \mathbb{D}_{N_1 S_2}} \theta_{k'} z_{1,k'} + \sum_{h' \in \mathbb{D}_{N_1 N_2}} \theta_{h'} z_{1,h'} \right) \\ 940 \\ 941 \\ 942 \quad + w^2 \left(\sum_{i' \in \mathbb{D}_{S_1 S_2}} \theta_{i'} z_{2,i'} + \sum_{k' \in \mathbb{D}_{N_1 S_2}} \theta_{k'} z_{2,k'} \right) + w^2 \left(\sum_{j' \in \mathbb{D}_{S_1 N_2}} \theta_{j'} z_{2,j'} + \sum_{h' \in \mathbb{D}_{N_1 N_2}} \theta_{h'} z_{2,h'} \right). \\ 943 \quad (19)$$

944 Given the Bayes optimal hypothesis f^* , which achieves the infimum of the errors \mathcal{R}^* on \mathcal{D} , i.e.:
 945
 946
 947

$$948 \quad f^* = \underset{f}{\operatorname{argmin}} \mathcal{R}(f) = \underset{f}{\operatorname{argmin}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f(\mathbf{x}), y)]. \quad (20)$$

951
 952
 953 Equation $\mathcal{L}(f_{\text{LF}}(\mathbf{x}), y) \geq \mathcal{L}(f^*(\mathbf{x}), y)$ holds universally. Let $\Delta, \Delta_1, \Delta_2, \Delta_3$, and Δ_4 be five scalars
 954 that are positive correlated with $y - \delta_1$ ($\Delta, \Delta_1, \Delta_2, \Delta_3, \Delta_4 \propto y - \delta_1$), where $\delta > 0$ is an arbitrarily
 955 small positive constant and $\Delta = \sum_{i=1}^4 \Delta_i$.

956 Obviously, we have the conclusion: for $\forall \epsilon \in [0, ||\mathcal{L}(f^*(\mathbf{x}), y) - \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y)||]$, there exists
 957 $f_{\text{LF}}(\mathbf{x}) + \Delta$ such that the classification error $\mathcal{L}(f_{\text{LF}}(\mathbf{x}) + \Delta, y) = \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y) - \epsilon$. Thus core
 958 challenge lies in proving the existence of $\boldsymbol{\theta}$ which makes $f_{\boldsymbol{\theta}, \text{IF}}(\mathbf{x}) = f_{\text{LF}}(\mathbf{x}) + \Delta$.

959 Considering the following linear equations:
 960
 961
 962

$$963 \quad \left\{ \begin{array}{l} \sum_{i' \in \mathbb{D}_{S_1 S_2}} \theta_{i'} z_{1,i'} + \sum_{j' \in \mathbb{D}_{S_1 N_2}} \theta_{j'} z_{1,j'} = \sum_{i \in S_1} z_{1,i} \theta_{1,i} + \Delta_1 \\ 964 \\ 965 \\ 966 \quad \sum_{k' \in \mathbb{D}_{N_1 S_2}} \theta_{k'} z + \sum_{h' \in \mathbb{D}_{N_1 N_2}} \theta_{h'} z_{1,h'} = \sum_{j \in N_1} z_{1,j} \theta_{1,j} + \Delta_2 \\ 967 \\ 968 \\ 969 \quad \sum_{i' \in \mathbb{D}_{S_1 S_2}} \theta_{i'} z_{2,i'} + \sum_{k' \in \mathbb{D}_{N_1 S_2}} \theta_{k'} z_{2,k'} = \sum_{k \in S_2} z_{2,k} \theta_{2,k} + \Delta_3 \\ 970 \\ 971 \quad \sum_{j' \in \mathbb{D}_{S_1 N_2}} \theta_{j'} z_{2,j'} + \sum_{h' \in \mathbb{D}_{N_1 N_2}} \theta_{h'} z_{2,h'} = \sum_{h \in N_2} z_{2,h} \theta_{2,h} + \Delta_4 \end{array} \right. , \quad (21)$$

we treat the parameters of linear target mappings in IF as the coefficients to be determined, and we denote the i -th element of the set S by i_S , then we have:

$$\begin{aligned}
 & \left. \begin{array}{c} \theta_{1_{\mathbb{D}_{S_1 S_2}}} \\ \vdots \\ \theta_{|\mathbb{D}_{S_1 S_2}|_{\mathbb{D}_{S_1 S_2}}} \end{array} \right\} \text{index of } \mathbb{D}_{S_1 S_2} \\
 & \left. \begin{array}{c} \theta_{1_{\mathbb{D}_{S_1 N_2}}} \\ \vdots \\ \theta_{|\mathbb{D}_{S_1 N_2}|_{\mathbb{D}_{S_1 N_2}}} \end{array} \right\} \text{index of } \mathbb{D}_{S_1 N_2} = \begin{bmatrix} \sum_{i \in S_1} z_{1,i} \theta_{1,i} + \Delta_1 \\ \sum_{j \in N_1} z_{1,j} \theta_{1,j} + \Delta_2 \end{bmatrix}, \\
 & \left. \begin{array}{c} \theta_{1_{\mathbb{D}_{N_1 S_2}}} \\ \vdots \\ \theta_{|\mathbb{D}_{N_1 S_2}|_{\mathbb{D}_{N_1 S_2}}} \end{array} \right\} \text{index of } \mathbb{D}_{N_1 S_2} = \begin{bmatrix} \sum_{k \in S_2} z_{2,k} \theta_{2,k} + \Delta_3 \\ \sum_{h \in N_2} z_{2,h} \theta_{2,h} + \Delta_4 \end{bmatrix}, \\
 & \left. \begin{array}{c} \theta_{1_{\mathbb{D}_{N_1 N_2}}} \\ \vdots \\ \theta_{|\mathbb{D}_{N_1 N_2}|_{\mathbb{D}_{N_1 N_2}}} \end{array} \right\} \text{index of } \mathbb{D}_{N_1 N_2}
 \end{aligned} \tag{22}$$

where \mathbf{A} equals

$$\begin{bmatrix} z_{1,1_{\mathbb{D}_{S_1 S_2}}} \cdots z_{1,|\mathbb{D}_{S_1 S_2}|_{\mathbb{D}_{S_1 S_2}}} & z_{1,1_{\mathbb{D}_{S_1 N_2}}} \cdots z_{1,|\mathbb{D}_{S_1 N_2}|_{\mathbb{D}_{S_1 N_2}}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & z_{1,1_{\mathbb{D}_{N_1 S_2}}} \cdots z_{1,|\mathbb{D}_{N_1 S_2}|_{\mathbb{D}_{N_1 S_2}}} & z_{1,1_{\mathbb{D}_{N_1 N_2}}} \cdots z_{1,|\mathbb{D}_{N_1 N_2}|_{\mathbb{D}_{N_1 N_2}}} \\ z_{2,1_{\mathbb{D}_{S_1 S_2}}} \cdots z_{2,|\mathbb{D}_{S_1 S_2}|_{\mathbb{D}_{S_1 S_2}}} & \mathbf{0} & z_{2,1_{\mathbb{D}_{N_1 S_2}}} \cdots z_{2,|\mathbb{D}_{N_1 S_2}|_{\mathbb{D}_{N_1 S_2}}} & \mathbf{0} \\ \mathbf{0} & z_{2,1_{\mathbb{D}_{S_1 N_2}}} \cdots z_{2,|\mathbb{D}_{S_1 N_2}|_{\mathbb{D}_{S_1 N_2}}} & \mathbf{0} & z_{2,1_{\mathbb{D}_{N_1 N_2}}} \cdots z_{2,|\mathbb{D}_{N_1 N_2}|_{\mathbb{D}_{N_1 N_2}}} \end{bmatrix}$$

and augmented matrix $\tilde{\mathbf{A}}$ can be formalized as

$$\begin{bmatrix} z_{1,1_{\mathbb{D}_{S_1 S_2}}} \cdots z_{1,|\mathbb{D}_{S_1 S_2}|_{\mathbb{D}_{S_1 S_2}}} & z_{1,1_{\mathbb{D}_{S_1 N_2}}} \cdots z_{1,|\mathbb{D}_{S_1 N_2}|_{\mathbb{D}_{S_1 N_2}}} & \mathbf{0} & \mathbf{0} & \left| \sum_{i \in S_1} z_{1,i} \theta_{1,i} + \Delta_1 \right. \\ \mathbf{0} & \mathbf{0} & z_{1,1_{\mathbb{D}_{N_1 S_2}}} \cdots z_{1,|\mathbb{D}_{N_1 S_2}|_{\mathbb{D}_{N_1 S_2}}} & z_{1,1_{\mathbb{D}_{N_1 N_2}}} \cdots z_{1,|\mathbb{D}_{N_1 N_2}|_{\mathbb{D}_{N_1 N_2}}} & \left| \sum_{j \in N_1} z_{1,j} \theta_{1,j} + \Delta_2 \right. \\ z_{2,1_{\mathbb{D}_{S_1 S_2}}} \cdots z_{2,|\mathbb{D}_{S_1 S_2}|_{\mathbb{D}_{S_1 S_2}}} & \mathbf{0} & z_{2,1_{\mathbb{D}_{N_1 S_2}}} \cdots z_{2,|\mathbb{D}_{N_1 S_2}|_{\mathbb{D}_{N_1 S_2}}} & \mathbf{0} & \left| \sum_{k \in S_2} z_{2,k} \theta_{2,k} + \Delta_3 \right. \\ \mathbf{0} & z_{2,1_{\mathbb{D}_{S_1 N_2}}} \cdots z_{2,|\mathbb{D}_{S_1 N_2}|_{\mathbb{D}_{S_1 N_2}}} & \mathbf{0} & z_{2,1_{\mathbb{D}_{N_1 N_2}}} \cdots z_{2,|\mathbb{D}_{N_1 N_2}|_{\mathbb{D}_{N_1 N_2}}} & \left| \sum_{h \in N_2} z_{2,h} \theta_{2,h} + \Delta_4 \right. \end{bmatrix}.$$

Obviously, the rank of \mathbf{A} is equal to the rank of $\tilde{\mathbf{A}}$. According to the basic knowledge of Linear Algebra Greub (2012), there must exist a parameter θ of linear target mapping in IF such that the following equation holds:

$$\mathbf{A}\theta = \begin{bmatrix} \sum_{i \in S_1} z_{1,i} \theta_{1,i} + \Delta_1 \\ \sum_{j \in N_1} z_{1,j} \theta_{1,j} + \Delta_2 \\ \sum_{k \in S_2} z_{2,k} \theta_{2,k} + \Delta_3 \\ \sum_{h \in N_2} z_{2,h} \theta_{2,h} + \Delta_4 \end{bmatrix}. \tag{23}$$

Consequently, for $\forall \epsilon \in [0, \|\mathcal{L}(f^*(\mathbf{x}), y) - \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y)\|],$ there exists a parameter θ such that $\mathcal{L}(f_{\theta, \text{IF}}(\mathbf{x}), y) = \mathcal{L}(f_{\text{LF}}(\mathbf{x}) + \Delta, y) = \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y) - \epsilon$, which further derives that $\mathcal{L}(f_{\theta, \text{IF}}(\mathbf{x}), y) < \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y)$. We denote the set of parameters satisfying $\mathcal{L}(f_{\theta, \text{IF}}(\mathbf{x}), y) < \mathcal{L}(f_{\text{LF}}(\mathbf{x}), y)$ as Λ . The proof of Theorem 1 is complete.

1026 A.2.2 PROOF OF THEOREM 2
10271028 Let $(\mathbf{x}, y) \sim \mathcal{D}$ denote the multimodal samples, the generalization error is defined as
1029

1030
$$\mathcal{G} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f(\mathbf{x}), y)] = \sum_{i=1}^{|\mathcal{D}|} p(\mathbf{x}^i, y^i) \mathcal{L}(f(\mathbf{x}^i), y^i), \quad (24)$$

1031

1032 thus the generalization error of LF and IF can be formalized as:
1033

1034
$$\mathcal{G}_{LF} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f_{LF}(\mathbf{x}), y)] = \sum_{i=1}^{|\mathcal{D}|} p(\mathbf{x}^i, y^i) \mathcal{L}(f_{LF}(\mathbf{x}^i), y^i), \quad (25)$$

1035

1036
$$\mathcal{G}_{IF} = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\mathcal{L}(f_{IF}(\mathbf{x}), y)] = \sum_{i=1}^{|\mathcal{D}|} p(\mathbf{x}^i, y^i) \mathcal{L}(f_{IF}(\mathbf{x}^i), y^i). \quad (26)$$

1037

1038 Due to $\mathcal{L}(f_{LF}(\mathbf{x}^i), y^i) \geq 0$, $\mathcal{L}(f_{IF}(\mathbf{x}^i), y^i) \geq 0$, and based on the parameter $\theta \in \Lambda$, we have
1039 $\mathcal{L}(f_{LF}(\mathbf{x}^i), y^i) \geq \mathcal{L}(f_{IF, \theta}(\mathbf{x}^i), y^i)$, therefore the following equation holds:
1040

1041
$$\sum_{i=1}^{|\mathcal{D}|} p(\mathbf{x}^i, y^i) \mathcal{L}(f_{LF}(\mathbf{x}^i), y^i) \geq \sum_{i=1}^{|\mathcal{D}|} p(\mathbf{x}^i, y^i) \mathcal{L}(f_{IF, \theta}(\mathbf{x}^i), y^i), \quad (27)$$

1042

1043 which equals to
1044

1045
$$\mathcal{G}_{IF, \theta} \leq \mathcal{G}_{LF}. \quad (28)$$

1046

1047 The proof of Theorem 2 has been completed.
10481049 A.2.3 PROOF OF THEOREM 3
10501051 In this subsection, based on Assumption 1, we provide the proof of Theorem 3.
10521053 Let \mathbf{z}_{m_1} and \mathbf{z}_{m_2} be the latent features of two arbitrary modalities, which respectively fit the distributions μ_{m_1} and μ_{m_2} . We have:
1054

1055
$$\hat{\mathbb{E}}[g(\mathbf{z}_{m_1})] - \hat{\mathbb{E}}[g(\mathbf{z}_{m_2})] = \mathbb{E}_{\mathbf{z}_{m_1} \sim \mu_{m_1}} [\mathcal{L}(g(\mathbf{z}_{m_1}), y)] - \mathbb{E}_{\mathbf{z}_{m_2} \sim \mu_{m_2}} [\mathcal{L}(g(\mathbf{z}_{m_2}), y)], \quad (29)$$

1056

1057 According to the Kantorovich-Rubinstein Duality theorem Thickstun (2019); Edwards (2011), we
1058 have:
1059

1060
$$\begin{aligned} & \mathbb{E}_{\mathbf{z}_{m_1} \sim \mu_{m_1}} [\mathcal{L}(g(\mathbf{z}_{m_1}), y)] - \mathbb{E}_{\mathbf{z}_{m_2} \sim \mu_{m_2}} [\mathcal{L}(g(\mathbf{z}_{m_2}), y)] \\ & \leq \|\phi\|_{Lip} \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{m_2}) \\ & \leq K \cdot \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{m_2}), \end{aligned} \quad (30)$$

1061

1062 where $\hat{\mathbb{E}}(\cdot)$ is the empirical error. It's worth noting that if $\mathcal{D}_{\mathcal{M}}$ is not a complete distribution distance
1063 metric such as Kullback-Leibler Divergence Kullback (1951), we need to put more discussions on
1064 $\hat{\mathbb{E}}[g(\mathbf{z}_{m_1})] - \hat{\mathbb{E}}[g(\mathbf{z}_{m_2})] \leq K \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{m_2})$ because of Kullback-Leibler Divergence's asymmetry
1065 i.e., $KL(\mu_{m_1}, \mu_{m_2}) \neq KL(\mu_{m_2}, \mu_{m_1})$.
10661067 In Eq.(30), by replacing the feature of j -th modality to the fused multimodal feature \mathbf{z} , we have:
1068

1069
$$\hat{\mathbb{E}}[g(\mathbf{z}_{m_1})] - \hat{\mathbb{E}}[g(\mathbf{z})] \leq K \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{\mathbf{z}}). \quad (31)$$

1070

1071 μ is the distribution that multimodal feature \mathbf{z} follows, and i can be the index of arbitrary modality,
1072 that is, $i \in \{1, 2, \dots, M\}$, therefore:
1073

1074
$$\hat{\mathbb{E}}[g(\mathbf{z}_{m_1})] \leq K \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu) + \hat{\mathbb{E}}(f_{IF}). \quad (32)$$

1075

1076 Eq.(32) indicates that the empirical error of a certain unimodal modality can be bound by the empirical
1077 error of the fused multimodal feature and the distribution distance between the unimodal and
1078 the fused feature.
1079

1080 Restating Theorem 1 in Zhang et al. (2023a) and combined with Eq.(32), we have:
1081

$$\begin{aligned}
1082 \mathcal{G}_{IF,\theta} &\leq \sum_{m=1}^M \mathbb{E}(w^m) \hat{\mathbb{E}}[g_\theta(z_m)] + \sum_{m=1}^M \mathbb{E}(w^m) \mathfrak{R}_m(\mathcal{H}) + \sum_{m=1}^M \text{Cov}(w^m, \mathcal{L}(g_\theta(z_m), y)) \\
1083 &\quad + M \sqrt{\frac{\ln(1/\delta)}{2N}} \\
1084 &\leq \sum_{m=1}^M \mathbb{E}(w^m) [K \mathcal{D}_M(\mu_{z_m}, \mu_z) + \hat{\mathbb{E}}(f_{IF})] + \sum_{m=1}^M \mathbb{E}(w^m) \mathfrak{R}_m(\mathcal{H}) \\
1085 &\quad + \sum_{m=1}^M \text{Cov}(w^m, \mathcal{L}(g_\theta(z_m), y)) + M \sqrt{\frac{\ln(1/\delta)}{2N}}. \\
1086 &= \sum_{m=1}^M [K \cdot \mathbb{E}(w^m) \mathcal{D}_M(\mu_{z_m}, \mu_z) + \text{Error}[w^m, \mathcal{L}(g_\theta(z_m), y)]] + \hat{\mathbb{E}}(f_{IF}) + \text{Bias}[\mathfrak{R}(\mathcal{H}), \mathcal{O}(N^{-1/2})].
\end{aligned} \tag{33}$$

1093 Thus the proof of Theorem 3 is complete.
1094

1095 A.2.4 DERIVATION IN LINEAR TARGET MAPPING WITH INFORMATIC CONSTRAINT

1100 The objective function is:

$$\text{Max } I(\mathbf{z}; y) - \sum_{m=1}^M I(\mathbf{z}_m; y). \tag{34}$$

1104 According to Alemi et al. (2017); Tishby et al. (2000); Xiao et al. (2024), to avoid the collapsed
1105 representation of \mathbf{z} during the learning process of the linear target mapping parameter, we introduce
1106 a regularization term $I(\mathbf{x}; \mathbf{z})$ and its trade-off coefficient λ , then we have:

$$\begin{aligned}
1107 I(\mathbf{z}; y) - \sum_{m=1}^M I(\mathbf{z}_m; y) &= I(\mathbf{z}; y) - \lambda I(\mathbf{x}; \mathbf{z}) + \lambda I(\mathbf{x}; \mathbf{z}) - \sum_{m=1}^M I(\mathbf{z}_m; y) \\
1108 &\geq I(\mathbf{z}; y) - \lambda I(\mathbf{x}; \mathbf{z}) + \lambda \sum_{m=1}^M I(\mathbf{x}_m; \mathbf{z}_m) - \sum_{m=1}^M I(\mathbf{z}_m; y) \\
1109 &= I(\mathbf{z}; y) - \lambda I(\mathbf{x}; \mathbf{z}) - \left[\sum_{m=1}^M I(\mathbf{z}_m; y) - \lambda \sum_{m=1}^M I(\mathbf{x}; \mathbf{z}_m) \right] \\
1110 &= I(\mathbf{z}; y) - \lambda I(\mathbf{x}; \mathbf{z}) - \sum_{m=1}^M [I(\mathbf{z}_m; y) - \lambda I(\mathbf{x}; \mathbf{z}_m)].
\end{aligned} \tag{35}$$

1119 In the following, we begin examining each term in Eq.(35) from term $I(\mathbf{z}; y)$.
1120

$$I(\mathbf{z}; y) = \int \int p(y, \mathbf{z}) \log \frac{p(y, \mathbf{z})}{p(y)p(\mathbf{z})} dy d\mathbf{z} = \int \int p(y, \mathbf{z}) \log \frac{p(y|\mathbf{z})}{p(y)} dy d\mathbf{z}. \tag{36}$$

1124 Let $q(y|\mathbf{z})$ be a variational approximation of $p(y|\mathbf{z})$, and we parameterize $q(y|\mathbf{z})$ by θ , i.e.,
1125 $q_\theta(y|\mathbf{z})$. Based on the fact that the Kullback Leibler (KL) divergence is constantly positive, we
1126 have $KL[p(y|\mathbf{z}), q_\theta(y|\mathbf{z})] \geq 0 \Rightarrow \int p(y|\mathbf{z}) \log p(y|\mathbf{z}) dy \geq \int p(y|\mathbf{z}) \log q_\theta(y|\mathbf{z}) dy$, thus

$$\begin{aligned}
1127 I(\mathbf{z}; y) &\geq \int \int p(y, \mathbf{z}) \log \frac{q_\theta(y|\mathbf{z})}{p(y)} dy d\mathbf{z} = \int \int p(y, \mathbf{z}) \log q_\theta(y|\mathbf{z}) dy d\mathbf{z} - \int \int p(y, \mathbf{z}) \log p(y) dy d\mathbf{z} \\
1128 &= \int \int p(y, \mathbf{z}) \log q_\theta(y|\mathbf{z}) dy d\mathbf{z} + H(Y) \\
1129 &= \int \int \int p(\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{z}|\mathbf{x}) \log q_\theta(y|\mathbf{z}) dx dy d\mathbf{z} + H(Y),
\end{aligned} \tag{37}$$

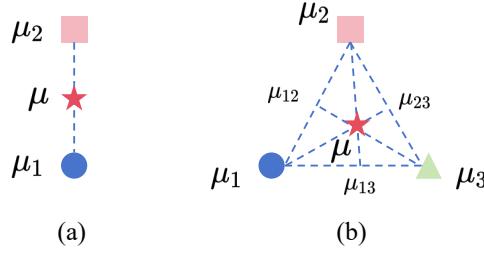


Figure 7: The illustration of the space of probability density functions, in which each point represents a probability distribution.

where $H(Y)$ is a constant term and can be ignored. As for the term $I(\mathbf{z}; \mathbf{x})$, we have

$$I(\mathbf{z}; \mathbf{x}) = \int \int p(\mathbf{x}, \mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} d\mathbf{z} d\mathbf{x}. \quad (38)$$

Let $r(\mathbf{z})$ be a variational approximation of $p(\mathbf{z})$ and we set $r(\mathbf{z})$ as the standard Gaussian distribution $\mathcal{N}(0, I)$. Since $KL[p(\mathbf{z}), r(\mathbf{z})] \geq 0 \implies \int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z} \geq \int p(\mathbf{z}) \log r(\mathbf{z}) d\mathbf{z}$, thus:

$$I(\mathbf{z}; \mathbf{x}) \leq \int \int p(\mathbf{x}) p(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{z}|\mathbf{x})}{r(\mathbf{z})} d\mathbf{x} d\mathbf{z}. \quad (39)$$

As a result, we have

$$\begin{aligned} & I(\mathbf{z}; y) - \lambda I(\mathbf{z}; \mathbf{x}) \\ & \geq \int \int \int p(\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{z}|\mathbf{x}) \log q(y|\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} - \lambda \int \int \int p(\mathbf{x}) p(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{z}|\mathbf{x})}{r(\mathbf{z})} d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ & = LB, \end{aligned} \quad (40)$$

LB standards for Lower Bound. Analogously, for the upper bound (UB) of $\sum_{m=1}^M [I(\mathbf{z}_m; y) - \lambda I(\mathbf{x}; \mathbf{z}_m)]$, we have

$$\begin{aligned} & \sum_{m=1}^M [I(\mathbf{z}_m; y) - \lambda I(\mathbf{x}; \mathbf{z}_m)] \leq UB \\ & \leq - \sum_{m=1}^M \left\{ \int \int \int p(\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{z}_m|\mathbf{x}) \log q_{\theta}(y|\mathbf{z}_m) d\mathbf{x} d\mathbf{y} d\mathbf{z}_m \right. \\ & \quad \left. + \lambda \int \int p(\mathbf{x}) p(\mathbf{z}_m|\mathbf{x}) \log \frac{p(\mathbf{z}_m|\mathbf{x})}{r(\mathbf{z}_m)} d\mathbf{x} d\mathbf{z}_m \right\}. \end{aligned} \quad (41)$$

Then maximizing the $LB - UB$ equals to minimizing the following loss function:

$$\mathcal{L}_{ic} = -\log q_{\theta}(y|\mathbf{z}) + \lambda \cdot KL(\mathcal{N}_{\mathbf{z}} || \mathcal{N}(0, I)) - \sum_{m=1}^M [\log q_{\theta}(y|\mathbf{z}_m) + \lambda \cdot KL(\mathcal{N}_{\mathbf{z}_m} || \mathcal{N}(0, I))]. \quad (42)$$

A.2.5 DERIVATION OF THE UPPER BOUND ON DISTRIBUTION INCOHERENCE

We provide an illustration of the space of probability density functions in Figure 7 to assist our theoretical derivation. Then we demonstrate that the Equation 9 holds for $M = \{2, 3\}$. Let $LHS = \sum_{m=1}^M \mathbb{E}(w^m) \mathcal{D}_{\mathcal{M}}(\mu_m, \mu)$ and $RHS = \sum_{m_1, m_2} \mathcal{D}_{\mathcal{M}}(\mu_{m_1}, \mu_{m_2})$.

For $M = 2$, we have

$$LHS \leq \sum_{m=1}^2 \mathcal{D}_{\mathcal{M}}(\mu_m, \mu) = \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu) = RHS. \quad (43)$$

1188 **Algorithm 1** The training pseudo code of IID.
1189
1190 **Input:** The sampled minibatch samples $\{(\mathbf{x}^i, y^i) | i \in [1, \dots, N]\}$ with batchsize N and $\mathbf{x}^i = \{x_1^i, x_2^i, \dots, x_M^i\}$. The latent mappings $h^m(\cdot)$, target mapping $g(\cdot)$ and multimodal fusion
1191 weights w^m . The hyperparameters α and β .
1192
1193 **Output:** The loss function of IID, i.e., \mathcal{L}_{IID} .
1194 **for** $i=1$ to N **do**
1195 Obtain unimodal features by $\mathbf{z}_m^i = h^m(x_m^i)$ ($m \in [1, M]$);
1196 Get low-dimensional feature $\tilde{\mathbf{z}}_m^i$ of \mathbf{z}_m^i ;
1197 Calculate the fused multimodal feature $\mathbf{z}^i = \sum_{m=1}^M w^m \mathbf{z}_m^i$;
1198 Calculate the loss function $\mathcal{L}(f_{IF}(\mathbf{x}^i), y^i)$;
1199 **end**
1200 Calculate the \mathcal{L}_{ic} by Eq.(8);
1201 **for** $m_1, m_2 \in [1, M]$ and $m_1 \neq m_2$ **do**
1202 Get the estimated Wasserstein distance between the features of m_1 -th modality and m_2 -th
1203 modality by $\tilde{\mathcal{W}}(\mu_{m_1}, \mu_{m_2})$;
1204 **end**
1205 Calculate the loss function $\mathcal{L}_{dc} = \sum_{m_1, m_2} \tilde{\mathcal{W}}(\mu_{m_1}, \mu_{m_2})$;
1206
1207
1208
1209 For $M = 3$, we have LHS $\leq \sum_{m=1}^3 \mathcal{D}_{\mathcal{M}}(\mu_m, \mu) \leq \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu) + \mathcal{D}_{\mathcal{M}}(\mu_3, \mu)$ and
1210 RHS $= \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_3) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu_3)$. As illustrated in Figure 7, we have
1211
1212
$$\mathcal{D}_{\mathcal{M}}(\mu_1, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu_3) > \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_3) = \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_3) \quad (44)$$

1213 and
1214
$$\mathcal{D}_{\mathcal{M}}(\mu, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu_3) > \mathcal{D}_{\mathcal{M}}(\mu, \mu_3). \quad (45)$$

1215 Then the following equation holds:
1216
1217
$$\begin{aligned} & \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu_3) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_2, \mu_3) \\ & > \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_3), \end{aligned} \quad (46)$$

1218 which equals to
1219
1220
$$\mathcal{D}_{\mathcal{M}}(\mu_1, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_3, \mu_2) > \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_3). \quad (47)$$

1221
1222 Similarly, we have
1223
1224
$$\begin{aligned} & \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_2) + \mathcal{D}_{\mathcal{M}}(\mu_1, \mu_3) > \mathcal{D}_{\mathcal{M}}(\mu_2, \mu) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_3), \\ & \mathcal{D}_{\mathcal{M}}(\mu_3, \mu_1) + \mathcal{D}_{\mathcal{M}}(\mu_3, \mu_2) > \mathcal{D}_{\mathcal{M}}(\mu_1, \mu) + \mathcal{D}_{\mathcal{M}}(\mu, \mu_2). \end{aligned} \quad (48)$$

1225
1226 Then we have
1227
1228 As a result, Equation 9 holds for $M = \{2, 3\}$, which implies that Equation 9 is applicable for almost
1229 all multimodal scenarios according to the recent multimodal learning survey Xu et al. (2023); Yuan
1230 et al. (2025) (even the powerful model Bachmann et al. (2024) capable of handling 21 modalities
1231 can handle at most 3 modalities at a single time).
1232
1233

A.3 WASSERSTEIN DISTANCE

1234
1235 Wasserstein distance has its roots in Optimal Transport theory Villani et al. (2009), which is a
1236 complete distance metric of distribution. Let μ be a set of Borel probability measures. Given
1237 $\mu_{z^r}, \mu_{z^g} \in \mu$, the corresponding support sets σ_r, σ_g , Wasserstein distance between μ_{z^r} and μ_{z^g}
1238 is
1239
1240
$$\mathcal{W}(\mu_{z^r}, \mu_{z^g}) = \left(\inf_{\gamma \in \Gamma(x_r, x_g)} \int dis(x_r, x_g)^p d\gamma(x_r, x_g) \right)^{\frac{1}{p}}, \quad (50)$$

1241 where $x_r \in \sigma_r, x_g \in \sigma_g$, $dis(\cdot, \cdot)$ is a distance metric, and $p = 1$ in this paper. $\Gamma(x_r, x_g)$ is the set of
1242 all joint distributions $\gamma(x_r, x_g)$ that satisfies $\mu_{z^r} = \int_{x_g} \gamma(x_r, x_g) dx_g$ and $\mu_{z^g} = \int_{x_r} \gamma(x_r, x_g) dx_r$.

1242 A.4 ALGORITHM
12431244 In this subsection, we elaborate on the pseudo-code of proposed IID in Algorithm 1.
12451246 A.5 EXPERIMENTAL SETUP
1247

1248 A.5.1 DATASETS

1249 **Vision-language classification.** We execute experiments on four vision-language classification
1250 datasets, including Food101 (Wang et al., 2015), MVSA-Single (Niu et al., 2016), MVSA-Multiple
1251 (Niu et al., 2016) and HFM (Cai et al., 2019). Food101 comprises images sourced from Google
1252 Image Search along with corresponding textual descriptions. MVSA-Single, MVSA-Multiple, and
1253 HFM are all derived from Twitter. For Food101, there are 60101 image-text pairs in the training set,
1254 5000 image-text pairs in the validation set, and 21695 image-text pairs in the test set. For MVSA-
1255 Single, there are 1555 image-text pairs in the training set. The validation set contains 518 image-text
1256 pairs, and the test set consists of 519 image-text pairs. For MVSA-Multiple, there are 17024 image-text
1257 pairs, while both the validation set and the test set contain 1700 image-text pairs. For HFM, the
1258 training set comprises 19816 image-text pairs, while the validation set contains 2410 image-text
1259 pairs, and the test set consists of 2409 image-text pairs.
12601261 **Link prediction.** In terms of the link prediction task, we conduct the experiments and evaluate
1262 with two standard competition benchmarks, i.e., WN9-IMG Xie et al. (2017) and FB-IMG Sergieh
1263 et al. (2018a). M9-IMG dataset is derived from the subset of WN18 Bordes et al. (2013), which
1264 embraces structural knowledge as triples, and multimodal knowledge including textual description
1265 and visual images. FB-IMG dataset is derived from the subset of FB15K Mousselly-Sergieh et al.
1266 (2018), which includes structural knowledge consisting of triples extracted from Freebase Bollacker
1267 et al. (2008), and multimodal knowledge embracing textual description and visual images.
12681269 **Scene recognition.** In accordance with the standard split of the NYU Depth V2 dataset, we consol-
1270 idate the original 27 categories into 10 categories, encompassing 9 typical scene categories and one
1271 “other” category. For the SUN RGB-D dataset, we adhere to the categorization scheme employed
1272 by the major baseline methods (QMF (Zhang et al., 2023a) and TMC (Han et al., 2021)), utilizing
1273 the 19 primary scene categories, each containing a minimum of 80 images.
1274

A.5.2 BASELINES

1275 **Baselines of vision-language classification.** To comprehensively evaluate the performance of the
1276 proposed IID, both unimodal models and multimodal models are selected as our baselines. Con-
1277 cretely, unimodal models include Bow (Pennington et al., 2014a), Img (Image only, we use ResNet-
1278 152 (He et al., 2016) to encode the visual data) and BERT (Devlin et al., 2019a). Multimodal
1279 baselines contain Late-fusion, ConcatBow (C-Bow), ConcatBERT (C-BERT), MMBT (Kiela et al.,
1280 2019), TMC (Han et al., 2021), DYMM Xue & Marculescu (2023), LCKD Wang et al. (2023), QMF
1281 (Zhang et al., 2023a), UniCODE Xia et al. (2023), SimMMDG Dong et al. (2023) and PDF Cao et al.
1282 (2024). For Late-fusion and ConcatBERT fusion, we utilize the architecture of ResNet (He et al.,
1283 2016) pretrained on ImageNet (Deng et al., 2009) as the backbone network for the visual modality
1284 and pretrained BERT (Devlin et al., 2019a) for the text modality. For ConcatBow, we replace BERT
1285 with Bow. The Late-fusion conducts an average weighted summarization between visual and tex-
1286 tual features, and concat-based fusion concatenates the visual and textual features directly. MMBT
1287 leverages the attention mechanism to execute multimodal fusion. TMC proposes a novel trusted
1288 multimodal algorithm based on the Dempster-Shafer evidence theory. DYMM employs a gating
1289 function to provide modality-level or fusion-level decisions on-the fly based on multimodal features.
1290 QMF designs a robust multimodal fusion method, which is connected to uncertainty learning. PDF
1291 derives the multimodal model based on the intra-modal negative and inter-modal positive covariance
1292 between fusion weight and loss function, respectively1293 **Baselines of link prediction.** For comprehensive comparison, we select both unimodal methods and
1294 multi-modal methods as our benchmark baselines, including TransE Bordes et al. (2013), DistMult
1295 Yang et al. (2015), ComplEx Trouillon et al. (2016), RotatE Sun et al. (2019), IKRL Xie et al.
1296 (2020), TBKGE Sergieh et al. (2018b), TransAE Wang et al. (2019), MMKRL Lu et al. (2022), and
1297 OTKGE Cao et al. (2022).

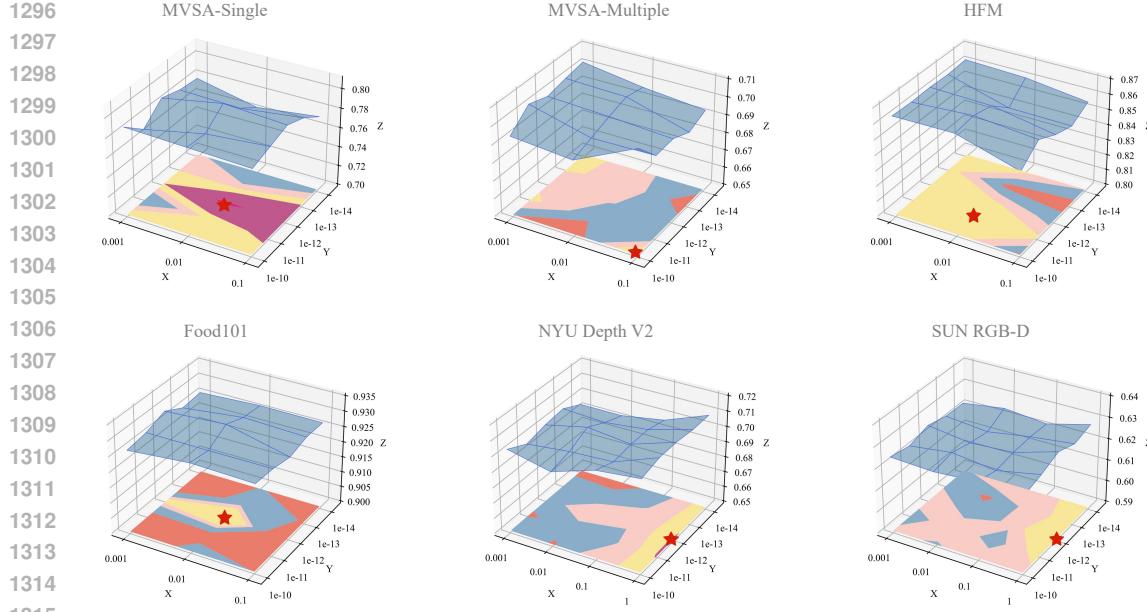


Figure 8: The results of hyperparameters experiments.

Baselines of scene recognition. For the scene recognition task, we evaluate the proposed methods against various multimodal fusion techniques, including Late-fusion, concatenation-based fusion, align-based fusion (Wang et al., 2016), and the recent state-of-the-art fusion methods, i.e., MMTM (Vaswani et al., 2017), TMC (Han et al., 2021), and QMF (Zhang et al., 2023a). For Late-fusion and concatenation-based fusion, we employ the ResNet architecture (He et al., 2016), pre-trained on ImageNet, as the backbone network for each modality. Align-based fusion intensifies the similarity of various unimodal features to achieve multimodal alignment.

Implementation details. (1) Vision-language classification. In the proposed IID, we employ BERT and ResNet as the latent mappings for text and image modalities, respectively. In the training process, we use BertAdam for the BERT model and regular Adam for the other models. The learning rate is $5e^{-5}$ with a warmup rate of 0.1. We adopt the early stop strategy based on validation accuracy. We elaborate on the selection of the hyperparameters α and β in Section A.6. (2) The structured embeddings are produced from triples in knowledge graphs, without any external multi-modal sources. To be specific, unimodal KGE methods such as TransE Bordes et al. (2013) and ComplEx Trouillon et al. (2016) can be used to learn structured embeddings. The linguistic embeddings of entities are learned by adopting the word2vec Mikolov et al. (2013) technique. For instance, we learn the linguistic embeddings of FB-IMG dataset by pre-trained word2vec while we use GloVe Pennington et al. (2014b) for the WN9-IMG dataset. The visual embeddings of entities are learned by pre-trained VGG Simonyan & Zisserman (2015) models. To be specific, visual embeddings are learned by adopting the VGG-m-128CNN Chatfield et al. (2014) model in FB-IMG datasets. As for the WN9-IMG dataset, we take the VGG19 Simonyan & Zisserman (2015) model to learn visual embeddings. (3) Scene recognition. The dimensionalities of unimodal and common representations are set to 128 and 256, respectively. For align-based fusion, we utilize cosine distance to measure the similarity of representations. For the MMTM approach, we adhere to the authors' implementation, setting the squeeze ratio to 4. Across all compared methods, we use the Adam optimizer with L_2 regularization and dropout, employing a learning rate of 1×10^{-4} and a dropout rate of 0.1.

A.6 DEEP-GOING EXPERIMENTAL RESULTS

A.6.1 THE RESEARCH ON THE HYPERPARAMETERS

Two hyper-parameters exist in IID, i.e., α and β . To understand the impacts of these two hyperparameters, we conduct empirical comparisons by using various combinations of α and β for the

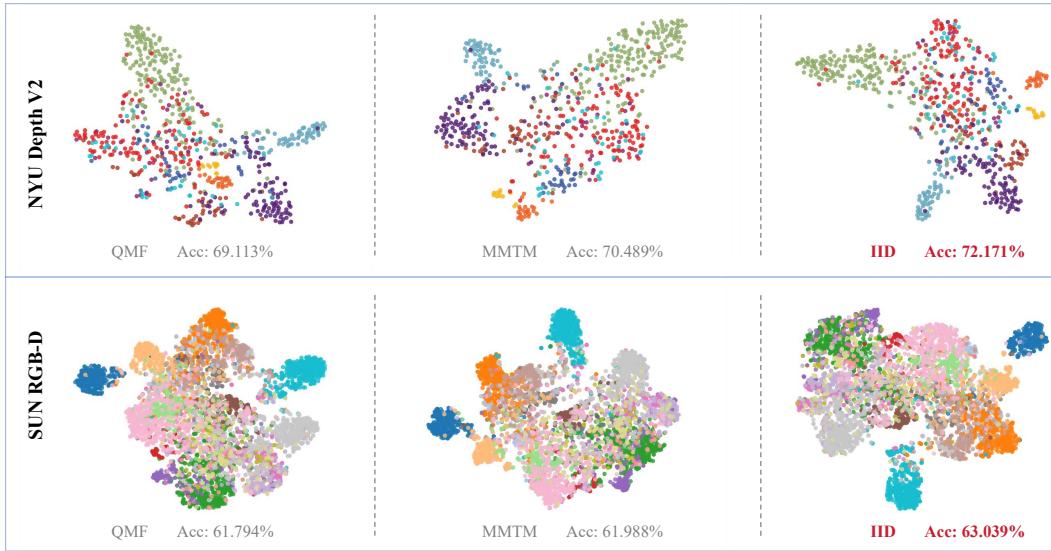


Figure 9: Visualization results of the scene recognition task (the NYU Depth V2 and SUN RGB-D datasets).

proposed IID. As depicted in Equation 13, α controls the impact of informatic constraint on the linear target mapping, and β influences the degree of distribution incoherence.

In practice, we search the optimal β in $\{1e^{-10}, 1e^{-11}, 1e^{-12}, 1e^{-13}, 1e^{-14}\}$ across all six datasets. As for α , on the NYU Depth V2 and SUN RGB-D datasets, we search α in $\{1, 0.1, 0.01, 0.001\}$, while α is searched in $\{0.1, 0.01, 0.001\}$ on other four vision-language classification datasets. We determine the values of α and β empirically and depict the results in Figure 8, where the X axis, Y axis and Z axis represent the value of α , the value of β and the recognition or classification accuracy, respectively. As we can observe, the optimal combination of α and β varies with respect to different datasets, which is indicated by red pentagonal markers. For example, the optimal combinations of α and β on the MVSA-Single, MVSA-Multiple and NYU Depth V2 are $\{0.01, 1e^{-12}\}$, $\{0.1, 1e^{-10}\}$, and $\{1, 1e^{-12}\}$, respectively. Therefore, the elaborate assignment of α and β can further help to learn informative features, thereby improving the discriminative performance of the proposed method.

A.6.2 VISUAL COMPARISON

To intuitively demonstrate that IID is capable of learning informative and discriminative representations, we present a visualization of the learned embeddings corresponding to the samples. Specifically, we utilize the T -SNE technique (Nkedi-Kizza et al., 2006) to visualize the feature representations of test set samples across multiple datasets (NYU Depth V2, and SUN RGB-D). The visualization results of the scene recognition task (the NYU Depth V2 and SUN RGB-D datasets) are illustrated in Figure 9. We denote the distinct ground truth labels of test set samples by different colors. As we can observe from Figure 9, compared with other multimodal approaches (QMF and MMTM on the NYU Depth V2 and SUN RGB-D datasets), the boundaries of IID between different classes are more distinct, indicating that the IID can better discriminate features across different classes. Additionally, for proposed IID, data points within the same class tend to cluster more tightly, suggesting that the features extracted by IID have higher intra-class similarity. These observations demonstrate that the IID-learned representations facilitate the extraction of more discriminative features, thereby enhancing performance across various downstream tasks.

A.6.3 TABLE OF NOTATIONS

We list the definitions of main notations from the main text in Table 5.

1404

1405

1406

Table 5: Main notations used in this paper.

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Notation	Definition
Data and Representation	
$\mathcal{X}, \mathcal{Z}, \mathcal{Y}$	Input space, latent space, and target space
$\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{test}}$	Training dataset and test dataset
$x \in \mathcal{X}$	Input sample
$y \in \mathcal{Y}$	Label
z_m	Representation of modality m
z	The fused multimodal feature
M	Number of modalities
N	The batch size
d	The dimension of features
Model Components	
$h(\cdot) : \mathcal{X} \mapsto \mathcal{Z}$	Latent mapping
$g(\cdot) : \mathcal{Z} \mapsto \mathcal{Y}$	Target mapping
$f = gh(\cdot)$	The composite function of $g(\cdot)$ and $h(\cdot)$
f_{IF}	Intermediate fusion model
f_{LF}	Late Fusion model
w^m	The modality-specific fusion weight
$\mathcal{L}(\cdot, \cdot)$	Cross-Entropy loss function
Theory-related Symbols	
θ	The parameter of target mapping $g(\cdot)$
Λ	The set of parameters
S_m, N_m	The index sets of semantic dimensions and noisy dimensions
f^*	Bayes optimal hypothesis
\mathcal{G}	The generalization error
\mathcal{D}_g	The definitional domain of g
$\mathcal{D}_{\mathcal{M}}$	The complete distribution distance metric
\mathcal{H}	Hypothesis space
μ_m	The distribution that features of the m -th modality are drawn from
μ	The distribution that the multimodal feature z follows
$\hat{\mathbb{E}}(f_{\text{IF}})$	The empirical error of multimodal feature z on $\mathcal{D}_{\text{train}}$
IID Method	
θ^*	The theoretically optimal parameter
$\hat{\theta}$	The initial parameter of the linear target mapping
$I(\cdot, \cdot)$	Mutual information computing
\mathcal{L}_{ic}	Loss of linear target mapping with informatic constraint
$q_{\theta}(\cdot \cdot)$	The variational approximation of $p(\cdot \cdot)$
λ	The trade-off hyper-parameter
$KL(\cdot)$	Kullback-Leibler divergence
\mathcal{N}	The standard Gaussian distribution
$\mathcal{W}(\cdot, \cdot)$	The analytical form of Wasserstein distance
T	The transport plan
C	The cost matrix
$\mathcal{F}(\cdot)$	Fast Fourier transform
$n \in [1, d]$	The dimension index
Φ	Gaussian Random matrix
$\Psi = \Phi \mathcal{F}^{-1}$	The RIP-preserved dimensionality reduction matrix
$\tilde{\mathcal{W}}(\cdot, \cdot)$	The estimation of Wasserstein distance
\mathcal{L}_{dc}	Loss of distribution cohering with restricted isometric dimensionality reduction
α, β	The hyperparameters to control the influence of loss terms