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Abstract001

The abstractive summarization is a natural002
language processing(NLP) task that involves003
generating concise summaries of longer docu-004
ments while preserving key information. Cur-005
rently, state-of-art summarization methods are006
dominated by large language models (LLMs),007
their strong understandings, and generaliza-008
tions have reshaped summarization research.009
Unlike those works, we focus on developing a010
light yet efficient abstractive summarizer target-011
ing for edge-device applications. The primary012
challenge lies in the limited context understand-013
ing and paraphrasing abilities of lightweight014
models, constrained by their smaller capacity015
and vocabulary size. To address this, we intro-016
duce a novel framework integrating an online017
feedback mechanism. This system incorporates018
improvement suggestions to dynamically ad-019
just the model’s outputs, enhancing its learning020
capabilities. Our approach achieves state-of-021
the-art (SOTA) results on CNN/DailyMail and022
XSum, outperforming backbones by 19.3% and023
12.9%, respectively.024

1 Introduction025

Abstractive summarization, which produces suc-026

cinct, novel summaries, has surpassed extractive027

techniques by enabling more human-like outputs.028

This shift is largely attributed to advancements in029

Large Language Models (LLMs), such as GPT-4030

(OpenAI et al., 2024) and LLaMA (Touvron et al.,031

2023). However, these models are often compu-032

tationally expensive, exceeding the capabilities of033

edge hardware thus limiting their deployment in034

resource-constrained environments. (Tan et al.,035

2024) utilized quantization techniques to balance036

the model size and performance while (Ge et al.,037

2022) focusing on cost-effective parameterization038

methods for edge-device deployment. To address039

the challenges of deploying summarization models040

on resource-constrained devices, a common strat-041

egy involves using lightweight models. However,042
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Figure 1: DPO Pipeline Comparison. The traditional
DPO pipeline shows it upper part (a) that requires
to build a preference data forehand, while our DPO
pipeline showing in the bottom (b) targeting for dy-
namic preference pair generation to avoid such data
preparation. x(i), y

(i)
− , y

(i)
+ represent prompt/input, dis-

like response, preference response, respectively, where
i ∈ N , N is number of samples. πθ0 , πref , πθ represent
base model, reference model, and aligned model.

these models often struggle with complex linguis- 043

tic patterns due to their limited capacity, leading 044

to suboptimal performance when trained via direct 045

supervised learning. Several studies (Jung et al., 046

2024; Jiang et al., 2024; Pham et al., 2023; Xu 047

et al., 2023) have focused on enhancing lightweight 048

models through advanced knowledge distillation 049

techniques, leveraging the generalization power of 050

LLMs. Despite these efforts, distilled models may 051

still fail to retain critical long-range dependencies 052

and contextual nuances, resulting in generic or fac- 053

tually inconsistent summaries. To mitigate this, 054

researchers have turned to Reinforcement Learning 055

(RL) with human feedback (Paulus et al., 2017; 056

Stiennon et al., 2020), enabling models to make 057

sequence-level decisions that improve coherence 058

and relevance. Additionally, Direct Preference Op- 059

timization (DPO) (Choi et al., 2024) has emerged 060

as a cost-effective alternative, bypassing the need 061

for dense reward signals and human feedback. 062

To enhance the learning and generation capabil- 063

ities of lightweight models for on-device applica- 064

tions, we introduce a novel framework integrating 065

Direct Preference Optimization (DPO). Traditional 066
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DPO training, as depicted in Figure 1 (a), relies on067

a preference dataset requiring extensive annotations068

for each input. This approach has limitations: 1)069

generating multiple preference per input increases070

labeling costs; 2) Preferences are pre-generated071

and fixed, becoming outdated as the model evolves,072

reducing adaptability. To address these challenges,073

we propose an online feedback mechanism with074

dynamic DPO training strategy (see Figure 1 (b)):075

1) an automatic scoring module evaluates current076

responses y
(i)
− in real-time; 2) a LLM generates077

updated preference y
(i)
+ conditioned on the scor-078

ing feedback, enabling dynamic adjustment as the079

model improves.This approach reduces annotation080

requirements and ensures preferences remain rele-081

vant, aligning with the model’s latest state. Further082

details are provided in the subsequent sections.083

In summary, our proposed method has following084

contributions:085

1. We propose a novel framework that unifies086

the text summary generation, scoring mechanism,087

feedback mechanism, and summary re-generation088

into a one-stage learning process, significantly en-089

hance the generation and learning capability for090

lightweight models.091

2. To our best knoweledge, this is the first work092

to introduce dynamic DPO training concept where093

the preference response is adaptively generated ac-094

cording to the real-time feedback, that significantly095

improving the model performance by enforcing the096

generated response to timely align with its prefer-097

ence.098

2 Related Work099

Abstractive summarization, which requires gen-100

erating novel sentences, was initially tackled us-101

ing encoder-decoder models with attention (Nal-102

lapati et al., 2016a). The pointer-generator net-103

work (See et al., 2017) improved factual consis-104

tency by enabling token copying from the source.105

Subsequent models like BART (Lewis et al., 2020)106

and PEGASUS (Zhang et al., 2020) demonstrated107

strong performance across benchmarks such as108

CNN/DailyMail and XSum. From 2022 onward,109

research emphasized LLM-based summarization.110

ChatGPT and GPT-3.5 were applied using prompt-111

based methods, as seen in SummIt (Zhang et al.,112

2023), where iterative summarization improved co-113

herence. Zhang et al. benchmarked several LLMs114

on summarization tasks (Zhang et al., 2024), show-115

ing that while LLMs are fluent, they often lack116

factual accuracy. To improve factuality, methods 117

such as textual entailment reward modeling during 118

RLHF (Roit and Reichart, 2023) and structured 119

preference learning via DPO (Rafailov et al., 2023) 120

have emerged. Recent research has also focused 121

on summarization in specialized domains. Balde 122

et al. addressed biomedical summarization with a 123

vocabulary-controlled model (Balde et al., 2024), 124

while Zaman et al. proposed SATSUM for scien- 125

tific texts (Zaman et al., 2024). 126

3 Approach 127

The overview is described in Figure 2. The pro- 128

posed framework integrates generation, scoring, 129

feedback, and re-generation into a unified one- 130

stage learning process, where an automatic scoring 131

mechanism evaluates generated summaries based 132

on customer-defined criteria, leveraging a Large 133

Language Model (LLM)-based judgement process 134

for precise assessments. Additionally, an online 135

feedback mechanism is designed to provide real- 136

time feedback on current summaries according to 137

the improvement suggestions from scoring module, 138

and dynamically adjust preferences as the model 139

updates. This mechanism incorporates an expert 140

preference generator for creating adaptive prefer- 141

ences and a reward system to optimize the model 142

in alignment with these preferences. 143

3.1 Automatic Scoring Mechanism 144

This mechanism is designed to identify areas for 145

improvement in the current response relative to the 146

input text. The output, in the form of improvement 147

suggestions, is fed into the online feedback sys- 148

tem to generate dynamic preferences. To ensure 149

precision, we replace generic prompts with a de- 150

tailed scoring rubric that guides the LLM-based 151

judger to evaluate the response progressively. This 152

structured approach ensures that the feedback ac- 153

curately reflects the quality of the current response, 154

enabling more targeted and effective model updates. 155

As demonstrated in Figure 2 bottom left, "whether 156

the given summary refers..., whether the given sum- 157

mary is..." are example rubrics introduced in sys- 158

tem prompt to specify the role and task for this 159

LLM judger. 160

3.2 Online Feedback Mechanism 161

In this mechanism, an LLM-based preference gen- 162

erator creates an improved summary (preference 163

response) based on improvement suggestions from 164

the scoring module. However, dynamically updat- 165

ing preferences over time introduces challenges: 1) 166
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System prompt: “You are a helpful assistant who will 
evaluate the quality of summary. The user will provide 
the summary from with the corresponding text. Your 
task is to evaluate whether the given summary refers 
correctly to the characters present in the text, whether 
the given summary is completely capturing the accurate 
and primary plot of the given text.  Output a JSON 
format with one keys :'Improvement Suggestions'(Your 
justification)”

User prompt:  “user’s summary:”+ <generated 
summary> + ‘\n’ + “input text:” + <input text> 

LLM Judger Prompt : 

Preference Generator Prompt:

System prompt:  “You are a helpful assistant to 
generate summaries based on preference. The 
preference is given as improvement suggestions. Based 
on the content provided, attempt to provide a new 
summary. “

User prompt:  “current response:”+ <generated 
summary> + ‘\n’ + “The suggestion to improve the 
summary is given as:” + <improvement suggestion> 

Input 
text  

Light-weighted 
Language 

Model

Generated 
Summary

LLM-judger Improvement 
suggestion

Scoring Rubrics 

I. Summary Generation II. Automatic Scoring 

prompt

Expert Preference 
Generator

Prompt

Prompt

Reward 
System

Update

Dynamic 
Preference

III. Online Feedback

Reward System

𝐿𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐿𝑑𝑦𝑛−𝐷𝑃𝑂 𝜋𝜃, 𝜋𝑟𝑒𝑓

= − log 𝜎(𝛽𝑙𝑜𝑔
𝜋𝜃 𝑦+ 𝑥

𝜋𝑟𝑒𝑓 𝑦+ 𝑥
 − 𝛽𝑙𝑜𝑔

𝜋𝜃 𝑦− 𝑥

𝜋𝑟𝑒𝑓 𝑦− 𝑥
)

▪ 𝜋𝜃 : Target model

▪ 𝜋𝑟𝑒𝑓: Reference model

▪ 𝑥: Input text

▪ 𝑦+: Dynamic Preference

▪ 𝑦−: Generated Summary

▪ 𝛽 : Hyper-parameter 

Figure 2: Details of Our Proposed Framework. The entire framework shows on the upper right, it includes three
modules: summary generation, automatic scoring and online feedback mechanism. The summarizer is the target
light-weighted language model which is compatible to the edge-device applications, while our judger and preference
generator are LLM-based models. On the bottom left, it demonstrates how is reward system incorporated with
dynamic preference. In addition, the prompt template of both LLM judger and preference generator are presented
on the right side.

Oscillations: the model may struggle to converge167

due to frequent preference changes; 2) Lack of168

Long-Term Consistency: older feedback might be169

overlooked, hindering the model’s ability to learn170

consistent behaviors. To address these issues, as171

illustrated in Figure 2 (upper right), the preference172

generator is guided by three inputs: 1) Current Re-173

sponse: Ensures alignment with the model’s latest174

output; 2) Original Input Text: maintains focus on175

the primary content, reducing the risk of training os-176

cillations; 3) Improvement Suggestions: Provides177

specific guidance to address the current response’s178

shortcomings. For instance, if the scoring module179

identifies missing information, the preference gen-180

erator incorporates these details into the updated181

preference, ensuring precision and relevance. This182

approach balances dynamic updates with long-term183

consistency, enabling stable and effective learning.184

Dynamic DPO Training We utilize DPO training185

loss in the reward procedure, defined in the below:186

LdynDPO = −logσ(βlog
πθ(y

(i)
+ |x(i))

πref (y
(i)
+ |x(i))

− βlog
πθ(y

(i)
− |x(i))

πref (y
(i)
− |x(i))

)

(1)187

here, we considee all preference pairs188

(y
(i)
+ , y

(i)
− ), i ∈ N are dynamically generated.189

Specifically, preference responses are produced by190

expert preference generator while dis-preferred is191

the current response. Besides, πref is initialized as 192

the same as πθ, but keep frozen during the training. 193

β controls the amount of divergence from πref and 194

we use 0.5 for following experiments. 195

4 Experiments 196

To demonstrate the effectiveness of our method, 197

we evaluated on two popular datasets:CNN- 198

DailyMaill(CNNDM) v3.0.0 (Nallapati et al., 199

2016b) and XSUM (Narayan et al., 2018). The 200

detailed descriptions of CNNDM and XSUM can 201

be found in A.1. In later experiments, we firstly 202

conduct conduct ablation studies to analyze the 203

contribution of each key component and then com- 204

pare our method against state-of-arts (SOTA) using 205

ROUGE scores. 206

4.1 Experiment setup 207

Training In our experiments, we use Qwen-2.5 208

(Team, 2024) as both the LLM-based Judger and 209

Preference Generator, guided by distinct prompts 210

(examples in Figure 2). For CNNDM and XSum, 211

we adopt BART-large fine-tuned on these datasets 212

as backbones. As per Equation 1, πref is initial- 213

ized to match the backbone but remains frozen 214

during training, while πθ is updated. We set 215

β = 0.5 across all experiments and train models us- 216

ing 4 NVIDIA RTX A6000 GPUs. Inference Dur- 217

ing the inference, automatic scoring and feedback 218

mechanism are all eliminated so that only target 219

model(lightweight model) will be adopted. Then, 220

followed by previous works, we use the ROUGE- 221
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F1 which measures the overlap of n-grams between222

generated summaries and the reference summary.223

4.2 Ablation Study224

In this section, we conduct various experiments on225

CNNDM dataset to validate the effectiveness of226

each components in our framework.227

DPO Training Strategy We compare our dy-228

namic DPO training with traditional DPO. For tra-229

ditional DPO, we pre-collected preference pairs230

using Qwen2.5-72B and trained the model with231

Equation 1. In contrast, our dynamic DPO gen-232

erates preference pairs on-the-fly: the preferred233

response is created by an expert preference genera-234

tor, while the dis-preferred response is the current235

model output. As shown in Table 1, our method236

outperforms both traditional DPO and baselines237

across all metrics, achieving significant ROUGE238

score improvements, demonstrating its effective-239

ness for lightweight summarization models.240

CNN/DailyMail
Method R-1 R-2 R-L

Bartlarge(baseline)(Lewis et al., 2019) 44.0 21.1 40.6
Original DPO 45.4 24.4 40.0

Ours-dynDPO 48.1 25.8 45.5

Table 1: Comparison on DPO Training Method. Note
that, preference dataset are prepared by using Qwen2.5-
72B forehand for original DPO training.

Backbone Variations To show the flexibility and241

efficiency of our method for lightweight model242

training, we utilize various backbones (e.g., BART243
1 and T5 2), which fine-tuned on CNNDM. Besides,244

for BART-base, we fine-tuned the original check-245

point ourselves official checkpoint on CNNDM is246

not provided. As shown in Table 2, our method con-247

sistently improves performance across backbones,248

enabling smaller models (e.g., T5-small) to surpass249

larger counterparts (e.g., T5-base) in key metrics.250

This highlights its scalability and effectiveness for251

edge device applications.252

4.3 Compare Against SOTA253

Table 3 presents an in-depth analysis, illustrating254

that our approach outperforms various baseline255

methods across multiple datasets, underscoring its256

robustness and effectiveness. The core of DPO lies257

in aligning the model with human preferences, mak-258

ing the quality of preference responses pivotal. To259

thoroughly evaluate our method, we employed two260

LLM scales: Qwen2.5-7B and Qwen2.5-72B (the261

1https://huggingface.co/facebook/bart-large-cnn
2https://huggingface.co/google-t5

CNN/DailyMail
Backbone Model R-1 R-2 R-L

BartLarge(406M)(Lewis et al., 2019)
Baseline 44.0 21.1 40.6
Ours-dynDPO 46.3 27.1 41.4

Bartbase(139M)(Lewis et al., 2019)
Baseline* 40.2 18.2 32.7
Ours-dynDPO 43.9 24.9 38.2

T5base(220M)(Raffel et al., 2020)
Baseline 42.0 20.3 39.4
Ours-dynDPO 44.3 25.1 41.3

T5small(60M)(Raffel et al., 2020)
Baseline 41.2 19.6 38.1
Ours-dynDPO 43.5 22.5 40.0

Table 2: Comparison on Various Backbone. Note, ’*’
indicates that we fine-tuned the model on CNNDM by
our own to obtain the results, then utilized the check-
point as the backbone for our framework.

CNN/DailyMail XSUM
R-1 R-2 R-L R-1 R-2 R-L

T5large (Raffel et al., 2020) 42.4 20.8 39.9 40.1 17.2 32.3
BARTlarge (Lewis et al., 2019) 44.0 21.1 40.6 45.4 22.3 37.3
PEGASUS (Zhang et al., 2020) 44.2 21.6 41.3 46.7 24.4 38.9
GSum (Dou et al., 2021) 45.5 22.3 42.1 45.1 21.5 36.6
SimCLS (Liu and Liu, 2021) 45.6 21.9 41.0 46.6 24.2 39.1
SeqCo (Xu et al., 2022) 45.0 21.8 41.8 45.6 22.4 37.0
TriSum-J (Jiang et al., 2024) 45.9 22.8 42.3 47.4 24.8 39.4
GECSum (Xie et al., 2024) 48.4 24.4 45.1 48.9 25.9 41.5
Ours-dynDPO(w.Qwen2.5-7B) 48.1 25.8 45.5 47.8 25.4 39.0
Ours-dynDPO(w.Qwen2.5-72B) 51.0 27.5 47.5 50.0 26.2 42.2

Table 3: Evaluations on CNNDM and XSUM dataset.
’w.Qwen2.5-7B’ indicates our LLM-judger and prefer-
ence generator are utilized 7B LLM during the training
while ’w.Qwen2.5-72B’ means we adopt 72B LLM. Be-
sides, all results are obtained by utilizing BARTlarge

as backbone which is bold in gray.

largest feasible due to computational limits). Identi- 262

cal prompt templates were used for both models to 263

minimize variability and ensure fair comparisons. 264

Results indicate that with Qwen2.5-7B, our method 265

achieves second-best performance, while switch- 266

ing to Qwen2.5-72B yields state-of-the-art (SOTA) 267

results. Notably, the result emphasis the contribu- 268

tions of our approach that integration of real-time 269

feedback enhances the model’s adaptive alignment 270

with preferences, enabling timely adjustments and 271

superior performance, further demonstrating the 272

scalability of our approach. 273

5 Conclusion 274

We introduce a novel framework integrating an au- 275

tomatic scoring module and online feedback mech- 276

anism to enhance lightweight models for edge de- 277

vices. By dynamically updating preferences, our 278

method ensures training flexibility and scalability 279

while eliminating the need for extensive annota- 280

tions. Experiments demonstrate its superiority over 281

existing methods, showcasing its effectiveness. Fu- 282

ture work could explore generating stylish sum- 283

maries aligned with personal preferences and ad- 284

dressing ethical constraints in this process. 285
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Limitations286

One of the limitations of proposed method is that287

it requires two LLMs, LLM-judger and preference288

generator, in the framework at the same time, so it289

would limit the usage for constrained computation290

resources. On the other hand, dynamic DPO train-291

ing causes more training hours since both LLM-292

judger and preference generator need to generate293

related responses, therefore, additional prompts are294

needed to instruct the LLM to preciesely generate295

responses within reasonable length.296
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A Appendix 475

A.1 Dataset Descriptions 476

CNNDM a large-scale benchmark for abstractive 477

text summarization, featuring news articles paired 478

with multi-sentence summaries. It contains approx- 479

imately 300,000 articles with an average article 480

length of 781 words and summary length of 56 481

words. The dataset is split into 287,227 training, 482

13,368 validation, and 11,490 test samples, follow- 483

ing standard evaluation protocols for summariza- 484

tion tasks. 485

XSUM dataset is specifically designed for single- 486
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cisely captures the core point of the source arti- 488

cle. It comprises 226,711 BBC news articles, di- 489

vided into 204,045 training, 11,332 validation, and 490

11,334 test samples. On average, articles contain 491

431 words, while summaries are 23 words long, em- 492

phasizing the dataset’s focus on high compression 493

and precision. 494

6

https://doi.org/10.18653/v1/2023.emnlp-main.753
https://doi.org/10.18653/v1/2023.emnlp-main.753
https://doi.org/10.18653/v1/2023.emnlp-main.753
https://doi.org/10.18653/v1/2023.emnlp-main.753
https://doi.org/10.18653/v1/2023.emnlp-main.753
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2408.13933
https://arxiv.org/abs/2408.13933
https://arxiv.org/abs/2408.13933
https://arxiv.org/abs/2408.13933
https://arxiv.org/abs/2408.13933
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2024.lrec-main.670/
https://aclanthology.org/2024.lrec-main.670/
https://aclanthology.org/2024.lrec-main.670/
https://aclanthology.org/2024.lrec-main.670/
https://aclanthology.org/2024.lrec-main.670/
https://arxiv.org/abs/2109.03481
https://arxiv.org/abs/2109.03481
https://arxiv.org/abs/2109.03481
https://doi.org/10.18653/v1/2023.findings-emnlp.927
https://doi.org/10.18653/v1/2023.findings-emnlp.927
https://doi.org/10.18653/v1/2023.findings-emnlp.927

	Introduction
	Related Work
	Approach
	Automatic Scoring Mechanism
	Online Feedback Mechanism

	Experiments
	Experiment setup
	Ablation Study
	Compare Against SOTA

	Conclusion
	Appendix
	Dataset Descriptions


