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Abstract

The abstractive summarization is a natural
language processing(NLP) task that involves
generating concise summaries of longer docu-
ments while preserving key information. Cur-
rently, state-of-art summarization methods are
dominated by large language models (LLMs),
their strong understandings, and generaliza-
tions have reshaped summarization research.
Unlike those works, we focus on developing a
light yet efficient abstractive summarizer target-
ing for edge-device applications. The primary
challenge lies in the limited context understand-
ing and paraphrasing abilities of lightweight
models, constrained by their smaller capacity
and vocabulary size. To address this, we intro-
duce a novel framework integrating an online
feedback mechanism. This system incorporates
improvement suggestions to dynamically ad-
just the model’s outputs, enhancing its learning
capabilities. Our approach achieves state-of-
the-art (SOTA) results on CNN/DailyMail and
XSum, outperforming backbones by 19.3% and
12.9%, respectively.

1 Introduction

Abstractive summarization, which produces suc-
cinct, novel summaries, has surpassed extractive
techniques by enabling more human-like outputs.
This shift is largely attributed to advancements in
Large Language Models (LLMs), such as GPT-4
(OpenAl et al., 2024) and LLaMA (Touvron et al.,
2023). However, these models are often compu-
tationally expensive, exceeding the capabilities of
edge hardware thus limiting their deployment in
resource-constrained environments. (Tan et al.,
2024) utilized quantization techniques to balance
the model size and performance while (Ge et al.,
2022) focusing on cost-effective parameterization
methods for edge-device deployment. To address
the challenges of deploying summarization models
on resource-constrained devices, a common strat-
egy involves using lightweight models. However,
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(b) Dynamic DPO Pipeline(Ours)

Figure 1: DPO Pipeline Comparison. The traditional
DPO pipeline shows it upper part (a) that requires
to build a preference data forehand, while our DPO
pipeline showing in the bottom (b) targeting for dy-
namic preference pair generation to avoid such data
preparation. (%), y(j), y(j) represent prompt/input, dis-
like response, preference response, respectively, where
i € N, N is number of samples. g, 7 f, To represent
base model, reference model, and aligned model.

these models often struggle with complex linguis-
tic patterns due to their limited capacity, leading
to suboptimal performance when trained via direct
supervised learning. Several studies (Jung et al.,
2024; Jiang et al., 2024; Pham et al., 2023; Xu
et al., 2023) have focused on enhancing lightweight
models through advanced knowledge distillation
techniques, leveraging the generalization power of
LLMs. Despite these efforts, distilled models may
still fail to retain critical long-range dependencies
and contextual nuances, resulting in generic or fac-
tually inconsistent summaries. To mitigate this,
researchers have turned to Reinforcement Learning
(RL) with human feedback (Paulus et al., 2017;
Stiennon et al., 2020), enabling models to make
sequence-level decisions that improve coherence
and relevance. Additionally, Direct Preference Op-
timization (DPO) (Choi et al., 2024) has emerged
as a cost-effective alternative, bypassing the need
for dense reward signals and human feedback.

To enhance the learning and generation capabil-
ities of lightweight models for on-device applica-
tions, we introduce a novel framework integrating
Direct Preference Optimization (DPO). Traditional



DPO training, as depicted in Figure 1 (a), relies on
a preference dataset requiring extensive annotations
for each input. This approach has limitations: 1)
generating multiple preference per input increases
labeling costs; 2) Preferences are pre-generated
and fixed, becoming outdated as the model evolves,
reducing adaptability. To address these challenges,
we propose an online feedback mechanism with
dynamic DPO training strategy (see Figure 1 (b)):
1) an automatic scoring module evaluates current
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responses y_~ in real-time; 2) a LLM generates

updated preference y(j) conditioned on the scor-
ing feedback, enabling dynamic adjustment as the
model improves.This approach reduces annotation
requirements and ensures preferences remain rele-
vant, aligning with the model’s latest state. Further
details are provided in the subsequent sections.

In summary, our proposed method has following
contributions:
1. We propose a novel framework that unifies
the text summary generation, scoring mechanism,
feedback mechanism, and summary re-generation
into a one-stage learning process, significantly en-
hance the generation and learning capability for
lightweight models.
2. To our best knoweledge, this is the first work
to introduce dynamic DPO training concept where
the preference response is adaptively generated ac-
cording to the real-time feedback, that significantly
improving the model performance by enforcing the
generated response to timely align with its prefer-
ence.

2 Related Work

Abstractive summarization, which requires gen-
erating novel sentences, was initially tackled us-
ing encoder-decoder models with attention (Nal-
lapati et al., 2016a). The pointer-generator net-
work (See et al., 2017) improved factual consis-
tency by enabling token copying from the source.
Subsequent models like BART (Lewis et al., 2020)
and PEGASUS (Zhang et al., 2020) demonstrated
strong performance across benchmarks such as
CNN/DailyMail and XSum. From 2022 onward,
research emphasized LLM-based summarization.
ChatGPT and GPT-3.5 were applied using prompt-
based methods, as seen in Summlt (Zhang et al.,
2023), where iterative summarization improved co-
herence. Zhang et al. benchmarked several LLMs
on summarization tasks (Zhang et al., 2024), show-
ing that while LLMs are fluent, they often lack

factual accuracy. To improve factuality, methods
such as textual entailment reward modeling during
RLHF (Roit and Reichart, 2023) and structured
preference learning via DPO (Rafailov et al., 2023)
have emerged. Recent research has also focused
on summarization in specialized domains. Balde
et al. addressed biomedical summarization with a
vocabulary-controlled model (Balde et al., 2024),
while Zaman et al. proposed SATSUM for scien-
tific texts (Zaman et al., 2024).

3 Approach

The overview is described in Figure 2. The pro-
posed framework integrates generation, scoring,
feedback, and re-generation into a unified one-
stage learning process, where an automatic scoring
mechanism evaluates generated summaries based
on customer-defined criteria, leveraging a Large
Language Model (LLM)-based judgement process
for precise assessments. Additionally, an online
feedback mechanism is designed to provide real-
time feedback on current summaries according to
the improvement suggestions from scoring module,
and dynamically adjust preferences as the model
updates. This mechanism incorporates an expert
preference generator for creating adaptive prefer-
ences and a reward system to optimize the model
in alignment with these preferences.

3.1 Automatic Scoring Mechanism

This mechanism is designed to identify areas for
improvement in the current response relative to the
input text. The output, in the form of improvement
suggestions, is fed into the online feedback sys-
tem to generate dynamic preferences. To ensure
precision, we replace generic prompts with a de-
tailed scoring rubric that guides the LLM-based
judger to evaluate the response progressively. This
structured approach ensures that the feedback ac-
curately reflects the quality of the current response,
enabling more targeted and effective model updates.
As demonstrated in Figure 2 bottom left, "whether
the given summary refers..., whether the given sum-
mary is..." are example rubrics introduced in sys-
tem prompt to specify the role and task for this
LLM judger.

3.2 Online Feedback Mechanism

In this mechanism, an LLM-based preference gen-
erator creates an improved summary (preference
response) based on improvement suggestions from
the scoring module. However, dynamically updat-
ing preferences over time introduces challenges: 1)
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Figure 2: Details of Our Proposed Framework. The entire framework shows on the upper right, it includes three
modules: summary generation, automatic scoring and online feedback mechanism. The summarizer is the target
light-weighted language model which is compatible to the edge-device applications, while our judger and preference
generator are LLM-based models. On the bottom left, it demonstrates how is reward system incorporated with
dynamic preference. In addition, the prompt template of both LLM judger and preference generator are presented

on the right side.

Oscillations: the model may struggle to converge
due to frequent preference changes; 2) Lack of
Long-Term Consistency: older feedback might be
overlooked, hindering the model’s ability to learn
consistent behaviors. To address these issues, as
illustrated in Figure 2 (upper right), the preference
generator is guided by three inputs: 1) Current Re-
sponse: Ensures alignment with the model’s latest
output; 2) Original Input Text: maintains focus on
the primary content, reducing the risk of training os-
cillations; 3) Improvement Suggestions: Provides
specific guidance to address the current response’s
shortcomings. For instance, if the scoring module
identifies missing information, the preference gen-
erator incorporates these details into the updated
preference, ensuring precision and relevance. This
approach balances dynamic updates with long-term
consistency, enabling stable and effective learning.
Dynamic DPO Training We utilize DPO training
loss in the reward procedure, defined in the below:
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Specifically, preference responses are produced by
expert preference generator while dis-preferred is

the current response. Besides, ;.. s 18 initialized as
the same as 7y, but keep frozen during the training.
{3 controls the amount of divergence from 7. and
we use 0.5 for following experiments.

4 Experiments

To demonstrate the effectiveness of our method,
we evaluated on two popular datasets:CNN-
DailyMaill(CNNDM) v3.0.0 (Nallapati et al.,
2016b) and XSUM (Narayan et al., 2018). The
detailed descriptions of CNNDM and XSUM can
be found in A.l. In later experiments, we firstly
conduct conduct ablation studies to analyze the
contribution of each key component and then com-
pare our method against state-of-arts (SOTA) using
ROUGE scores.

4.1 Experiment setup

Training In our experiments, we use Qwen-2.5
(Team, 2024) as both the LL.M-based Judger and
Preference Generator, guided by distinct prompts
(examples in Figure 2). For CNNDM and XSum,
we adopt BART-large fine-tuned on these datasets
as backbones. As per Equation 1, 7, is initial-
ized to match the backbone but remains frozen
during training, while 7y is updated. We set
B = 0.5 across all experiments and train models us-
ing 4 NVIDIA RTX A6000 GPUs. Inference Dur-
ing the inference, automatic scoring and feedback
mechanism are all eliminated so that only target
model(lightweight model) will be adopted. Then,
followed by previous works, we use the ROUGE-



F1 which measures the overlap of n-grams between
generated summaries and the reference summary.

4.2 Ablation Study

In this section, we conduct various experiments on
CNNDM dataset to validate the effectiveness of
each components in our framework.

DPO Training Strategy We compare our dy-
namic DPO training with traditional DPO. For tra-
ditional DPO, we pre-collected preference pairs
using Qwen2.5-72B and trained the model with
Equation 1. In contrast, our dynamic DPO gen-
erates preference pairs on-the-fly: the preferred
response is created by an expert preference genera-
tor, while the dis-preferred response is the current
model output. As shown in Table 1, our method
outperforms both traditional DPO and baselines
across all metrics, achieving significant ROUGE
score improvements, demonstrating its effective-
ness for lightweight summarization models.

CNN/DailyMail
Method R-1 | R2 | R-L
Bart;q4c(baseline)(Lewis et al., 2019) | 44.0 | 21.1 | 40.6
Original DPO 454 | 244 | 40.0

\ Ours-dynDPO [48.1 [ 258455 ]

Table 1: Comparison on DPO Training Method. Note
that, preference dataset are prepared by using Qwen?2.5-
72B forehand for original DPO training.

Backbone Variations To show the flexibility and
efficiency of our method for lightweight model
training, we utilize various backbones (e.g., BART
Uand T5 2), which fine-tuned on CNNDM. Besides,
for BART-base, we fine-tuned the original check-
point ourselves official checkpoint on CNNDM is
not provided. As shown in Table 2, our method con-
sistently improves performance across backbones,
enabling smaller models (e.g., T5-small) to surpass
larger counterparts (e.g., T5-base) in key metrics.
This highlights its scalability and effectiveness for
edge device applications.

4.3 Compare Against SOTA

Table 3 presents an in-depth analysis, illustrating
that our approach outperforms various baseline
methods across multiple datasets, underscoring its
robustness and effectiveness. The core of DPO lies
in aligning the model with human preferences, mak-
ing the quality of preference responses pivotal. To
thoroughly evaluate our method, we employed two
LLM scales: Qwen2.5-7B and Qwen2.5-72B (the

'https://huggingface.co/facebook/bart-large-cnn
Zhttps://huggingface.co/google-t5

CNN/DailyMail

Backbone Model R-1 |R-2 |R-L
T LR
Bartyqsc(139M)(Lewis et al., 2019) gf:ﬁg;imo :gj ;ﬁ ;;;
NI — e
YT s e

Table 2: Comparison on Various Backbone. Note, **’
indicates that we fine-tuned the model on CNNDM by
our own to obtain the results, then utilized the check-
point as the backbone for our framework.

CNN/DailyMail XSUM

R-1 | R2 | RL | R-1|R2| R-L

TSlarge (Raffel et al., 2020) 424 [ 208|399 [40.1 | 172 | 323

BART}qrg, (Lewis etal, 2019) | 44.0 | 21.1 | 40.6 | 454 223 | 373

PEGASUS (Zhang et al., 2020) 442 | 21.6 | 41.3 | 46.7 | 244 | 389

GSum (Dou et al., 2021) 455 1223|421 | 451 | 21.5 | 36.6
SimCLS (Liu and Liu, 2021) 456 | 219 | 41.0 | 46.6 | 24.2 | 39.1
SeqCo (Xu et al., 2022) 450 | 21.8 | 41.8 | 45.6 | 224 | 37.0
TriSum-J (Jiang et al., 2024) 459 | 22.8 | 423 | 474|248 | 394
GECSum (Xie et al., 2024) 484 | 244 | 451 | 489 | 259 | 415

Ours-dynDPO(w.Qwen2.5-7B) | 48.1 | 25.8 | 45.5 | 47.8 | 254 | 39.0

Ours-dynDPO(w.Qwen2.5-72B) | 51.0 | 27.5 | 47.5 | 50.0 | 26.2 | 42.2

Table 3: Evaluations on CNNDM and XSUM dataset.
"w.Qwen2.5-7B’ indicates our LLM-judger and prefer-
ence generator are utilized 7B LLM during the training
while *w.Qwen2.5-72B’ means we adopt 72B LLM. Be-
sides, all results are obtained by utilizing BART 4 ge
as backbone which is bold in gray.

largest feasible due to computational limits). Identi-
cal prompt templates were used for both models to
minimize variability and ensure fair comparisons.
Results indicate that with Qwen2.5-7B, our method
achieves second-best performance, while switch-
ing to Qwen2.5-72B yields state-of-the-art (SOTA)
results. Notably, the result emphasis the contribu-
tions of our approach that integration of real-time
feedback enhances the model’s adaptive alignment
with preferences, enabling timely adjustments and
superior performance, further demonstrating the
scalability of our approach.

5 Conclusion

We introduce a novel framework integrating an au-
tomatic scoring module and online feedback mech-
anism to enhance lightweight models for edge de-
vices. By dynamically updating preferences, our
method ensures training flexibility and scalability
while eliminating the need for extensive annota-
tions. Experiments demonstrate its superiority over
existing methods, showcasing its effectiveness. Fu-
ture work could explore generating stylish sum-
maries aligned with personal preferences and ad-
dressing ethical constraints in this process.



Limitations

One of the limitations of proposed method is that
it requires two LLMs, LLM-judger and preference
generator, in the framework at the same time, so it
would limit the usage for constrained computation
resources. On the other hand, dynamic DPO train-
ing causes more training hours since both LLM-
judger and preference generator need to generate
related responses, therefore, additional prompts are
needed to instruct the LLM to preciesely generate
responses within reasonable length.
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A Appendix

A.1 Dataset Descriptions

CNNDM a large-scale benchmark for abstractive
text summarization, featuring news articles paired
with multi-sentence summaries. It contains approx-
imately 300,000 articles with an average article
length of 781 words and summary length of 56
words. The dataset is split into 287,227 training,
13,368 validation, and 11,490 test samples, follow-
ing standard evaluation protocols for summariza-
tion tasks.

XSUM dataset is specifically designed for single-
sentence summarization, where each summary con-
cisely captures the core point of the source arti-
cle. It comprises 226,711 BBC news articles, di-
vided into 204,045 training, 11,332 validation, and
11,334 test samples. On average, articles contain
431 words, while summaries are 23 words long, em-
phasizing the dataset’s focus on high compression
and precision.
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