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Abstract

Large Language Models (LLMs) have emerged as powerful tools for generating data across
various modalities. By transforming data from a scarce resource into a controllable asset,
LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for
model training, evaluation, and system iteration. However, ensuring the high quality of
LLM-generated synthetic data remains a critical challenge. Existing research primarily
focuses on generation methodologies, with limited direct attention to the quality of the
resulting data. Furthermore, most studies are restricted to single modalities, lacking a
unified perspective across different data types. To bridge this gap, we propose the LLM
Data Auditor framework. In this framework, we first describe how LLMs are utilized
to generate data across six distinct modalities. More importantly, we systematically cat-
egorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and



trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on
downstream task performance, to the inherent properties of the data itself. Using this
evaluation system, we analyze the experimental evaluations of representative generation
methods for each modality and identify substantial deficiencies in current evaluation practices.
Based on these findings, we offer concrete recommendations for the community to improve
the evaluation of data generation. Finally, the framework outlines methodologies for the
practical application of synthetic data across different modalities. Our repository has been
released: |https://anonymous.4open.science/r/Awesome-LLM-Data-Generation-6457.

1 Introduction

Data serves as the cornerstone of modern Al development. As real-world data sources are gradually being
depleted, synthetic data have become increasingly favored by the research community, with model-based data
generation emerging as a new paradigm. Consequently, Large Language Models (LLMs), with their powerful
generative capabilities, play a pivotal role in this process. Numerous studies have already utilized LLMs
for data generation in various dimensions. For scenarios with existing data but no annotations, [Martorana,
et al.| (2024)) proposed a method to support metadata enrichment using LLM-generated topic annotations.
LLMs can also be used to control or compose existing corpora (Penedo et al. 2025} [Soldaini et al., |2024).
Furthermore, LLMs are capable of generating diverse data types, including text and code (Wang et al.| [2024e;
Nadas et al., 2025)), tabular data (Fang et al |2025), and graph data (Ji et al.| [2025). They are also applied in
specific practical domains, such as generating clinical records (Barr et al., |2025) and designing safety-critical
scenarios for autonomous driving (Adekanye| [2024). Clearly, leveraging LLMs for data generation is becoming
a crucial strategy to address the challenge of data scarcity.

However, the quality and rigorous evaluation of LLM-generated data is of paramount importance. It is
well-known that high-quality data significantly enhance LLM performance; for example, enforcing simple
correctness criteria on synthetic examples can be as vital as increasing dataset size for downstream performance
(Iskander et al., [2024). In contrast, low-quality data can severely degrade model performance and impact
real-world applications. At the model level, theory and large-scale experiments on repeated training over
generated corpora reveal that uncontrolled reliance on synthetic data can distort scaling laws, leading to
"model collapse," where models gradually lose skills and degenerate when exposed to their own outputs
across generations (Dohmatob et al.| |2024). In parallel, studies on undesirable memorization and privacy
leakage highlight the risk that synthetic data pipelines may endanger personally identifiable or proprietary
content (Satvaty et all [2025; |Aditya et al., 2024} |Shanmugarasa et al., |2025)). While these issues are receiving
increasing attention, many current evaluation methods rely heavily on LLMs for scoring or filtering, which
introduces significant model-specific biases (Gu et al |2025). Consequently, data quality profoundly influences
both model development and practical applications, highlighting the urgent need for a more systematic
organization of data evaluation methodologies.

Current research on LLM-based data generation primarily focuses on the models themselves or the generation
process, often overlooking the evaluation of the generated data. For instance, [Long et al.|(2024) structures
the literature around the generic workflow of generation and curation in natural language processing, but
only briefly mentions evaluation concepts. Similarly, Wang et al.| (2024a) focuses on the lifecycle of synthetic
data usage, dividing it into stages such as pre-training, supervised fine-tuning, and alignment. While some
surveys do introduce evaluation methods, they are often restricted to a single modality, such as healthcare
or tabular data (Pezoulas et al. 2024} Fang et al., |2024). Furthermore, most evaluations of generated data
are extrinsic, which means they only measure improvements in model downstream tasks’ performance. We
summarize some representative works and comparisons in Table @ In contrast, intrinsic evaluation, which
assesses data quality directly, remains underdeveloped. Although works like Dataflow (Liang et al., 2025))
have formalized a "generate-evaluate-filter-refine" paradigm, the literature still lacks a unified framework to
audit synthetic data before it enters the training loop.

To ensure that LLM-generated data fulfills its true potential, the research focus must shift from generation
techniques to evaluation methodologies. In this survey, we adopt a data-based perspective and establish
metrics as our primary organizing principle. Unlike existing surveys oriented toward workflows, lifecycles,
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or generation reviews (Long et al.l [2024; Wang et al., 2024a} |Goyal & Mahmoud), [2024), we introduce the
LLM Data Auditor framework, as shown in Figure[l|and 2 This framework organizes various data types
through a unified structure encompassing 5 core components: LLM-based data generation methods, quality
metrics, trustworthy metrics, evaluation gaps, and data usage. Specifically, quality metrics focus on validity,
fidelity, and utility to measure fundamental usability, while trustworthy metrics assess safety and faithfulness
to identify potential risks. Applying this framework, we analyze the representative literature to identify
existing evaluation gaps and discuss practical usages. Ultimately, our framework provides the community
with a comprehensive guide for generating and evaluating high-quality, multi-modal data using LLMs.
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Figure 1: Overview of the LLM Data Auditor Framework. Stage 1: LLM-Driven data generation methods

(Section [7.1)). Stage 2a: Data Quality Metrics (Section [72).
Stage 2b: Data Trustworthy Metrics (Section [2.3] 7.3)). Stage 3: Evaluation Gap Analysis

(Section . Stage 4: Data Usage (Section 3.5, .
Finally, we summarize the main contributions of this survey as follows:

« Shifting to a Data Perspective for Comprehensive Evaluation Unlike existing literature that
primarily focuses on the model perspective, our work distinguishes itself by directly adopting a data
perspective, which we term LLIM Data Auditor. This survey is structured around data, starting with
data generation using LLMs, followed by an introduction to the evaluation system. We further analyze
the deficiencies of current research within our evaluation system and conclude by discussing how these
data are utilized in various methods.

¢ A Systematic Metrics Taxonomy. Our framework provides a systematic approach to data evaluation
by directly classifying metrics according to their utility. We first categorize metrics into two major pillars:
Quality and Trustworthiness. We then offer a more detailed breakdown into sub-categories, such as validity
and fidelity for quality, and fairness, robustness, and privacy for trustworthiness. This contribution offers
a clear roadmap for the community to evaluate the quality of synthetic data directly.

e A Unified Cross-Modal Coverage. LLM Data Auditor goes beyond a single modality by organizing
six mainstream data modalities and evaluating them under a unified framework. By observing different
modalities through this consistent perspective, our work provides the community with systematic guidance
on how to generate, evaluate, and utilize data across various modalities.

o Evaluation Gap Analysis. Guided by our framework, we conduct a systematic analysis of representative
works in LLM-generated data. By auditing the experimental evaluations of these studies, we identify
critical evaluation dimensions that are currently overlooked. Our analysis highlights specific evaluation
gaps for the community to address in future research, providing actionable guidance for more rigorous
data assessment.

2 Text Data

Text data is the primary modality for LLMs. Within the field of generative artificial intelligence, researchers
increasingly use synthetic text to augment or replace real-world datasets in settings characterized by limited
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Note. For modalities with multiple data types (e.g., semi-structured, vision—language), The “Evaluation / Metrics” column

instantiates representative metrics for the first data type (graphs, image-text pairs); metrics for the remaining data types

(JSON/logs, video—text) follow the same structure and are detailed in Sections

@

Table 1: LLM-driven data generation across modalities, strategies, methods, and evaluation metrics.
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Figure 2: Overview of LLM-driven synthetic data generation across six modalities. We discuss text data
(Section , symbolic and logical reasoning data (Section , tabular data (Section 7 semi-structured graph,
JSON and log data (Section , vision-language data (Section @, and agent data (Section @

resources or privacy concerns. This is achieved by creating artificial yet relevant training examples through
pipelines that rely on specific prompts. As discussed by [Nadas et al.| (2025), modern techniques for synthetic
text generation are largely prompt-conditioned and prioritize controllability. These methods focus on specific
attributes, styles, and edge cases while ensuring that the generated text remains realistic and relevant to the
task. In terms of structure, common formats for synthetic text include instruction and output pairs. In this
format, a directive is matched with a target response to support the training of models to follow instructions.
Another common format involves multi-turn instruction sequences that represent interactions across multiple
exchanges where the content depends on the previous context.

2.1 Generation Methods

Methods for controlling text data generation can be taxonomized by the locus of intervention: Source Control
and Composition, Prompt-Driven Generation and Refinement, Parameter-Efficient and Alignment-Based
Control, and Inference-Time Steering and Verification.

Source Corpus Control and Composition. For text data, control is often achieved by processing
existing corpora into a trainable mixture with explicit and auditable signals rather than by generating
new samples. Modern curation pipelines follow a standard sequence that begins with normalization and
language identification. This is followed by the removal of near-duplicate content through approximate
matching techniques such as Jaccard or MinHash deduplication across different crawl snapshots. Finally,
document-level filtering is performed based on descriptors structured by metadata that are attached to each
document (Penedo et al.l 2024} 2025)). LLMs are increasingly employed as scalable annotators to transform
nuanced, abstract attributes—such as educational quality—into operational labels or calibrated scores. By
distilling these high-level judgments into lightweight classifiers, researchers can convert subjective criteria
into systematic signals. This pipeline enables the efficient filtering and reweighting of massive data mixtures
(HuggingFaceF W/, [2024)).

Composition is treated as a primary control method. Composition refers to the combination of different
sources and domains as well as their relative amounts. In practice, mixture policies are put into use through



three main strategies. The first strategy involves mixing and weighting across various data streams. The
second strategy involves selecting data at the level of individual documents by using quality signals. The
third strategy involves the removal of specific parts of the collection that carry high risk. At the mixture
level, transparent mixture design and reproducible tools such as Dolma allow practitioners to adjust domain
coverage and data budgets without confusing a larger quantity of data with higher quality data (Soldaini et al.l
2024). At the selection level, to enable the customization of downstream policies, some releases separate raw
documents from quality signals. For example, RedPajama-V2 provides web text together with quality-related
metadata for a subset of the corpus. This allows users to apply their own selection thresholds without the need
to crawl the data again (Weber et al.| [2024} |Together Computer}, 2023). At the exclusion level, safety-oriented
processing can be performed earlier in the pipeline. Rather than relying only on refusal mechanisms after
training, pretraining data filtering removes documents identified as enabling harmful capabilities. This
includes content that provides significant support for misuse related to chemical, biological, radiological,
and nuclear materials. This strategy targets measurable reductions in harmful capabilities while minimizing
negative impacts on performance for standard tasks (Anthropic, [2025).

Prompt-Driven Generation and Refinement. When model parameters are frozen, control is managed
through in-context bootstrapping and instruction design. Self-Instruct (Wang et al. 2023b) established
the approach of extracting the internal knowledge of a model into labeled datasets by prompting it to
generate diverse instances from seed tasks. To address the challenge of increasing the complexity of generated
data, evolutionary strategies such as Evol-Instruct from the WizardLM project (Xu et al., |2024al) use
mutation operators that systematically rewrite instructions to increase constraints and reasoning depth.
These generation methods are often integrated into pipelines that follow a sequence of generation, ranking,
and selection. In these workflows, an auxiliary LLM serves as a judge to evaluate candidate outputs against
specific rubrics. For instance, the UltraFeedback framework (Cui et al., |2024) evaluates outputs based on
criteria such as helpfulness and honesty. This feedback loop effectively shifts the control mechanism from
manual prompt engineering to scalable and automated preference filtering (Gu et al., 2025)).

Parameter-Efficient and Alignment-Based Control. To fundamentally alter the output distribution,
parameter updates are required. While Supervised Fine-Tuning sets the behavioral baseline, recent advances
have shifted toward iterative self-play mechanisms. Methods such as Self-Play Fine-Tuning, also known as
SPIN (Chen et al., |2024b), allow the generator to improve by contrasting its own generated responses with
human demonstrations in an iterative self-play loop. This approach effectively breaks the ceiling of static
supervision without the need for extra annotations.

For preference alignment, the field is moving beyond the complex two-stage Reinforcement Learning from
Human Feedback pipeline. New reference-free objectives eliminate the memory-heavy reference model and
integrate instruction following directly into the alignment loss. Notable examples include Simple Preference
Optimization (Meng et al., 2024) and Odds Ratio Preference Optimization (Hong et al [2024). These methods
help mitigate length bias, such as verbosity, without requiring separate reward modeling.

Furthermore, specialized objectives now target efficient group-level dynamics. Group Relative Policy Opti-
mization (DeepSeek-Al et al., |2024)), for instance, normalizes rewards across a group of generated outputs
rather than using a critic model. This technique enables scalable preference optimization that has been used
to improve reasoning and mathematical performance. Once equipped with these parameterized controls, the
model effectively transitions from a generic predictor into a specialized data synthesizer. In this role, it is
capable of autonomously producing vast quantities of high-fidelity samples that strictly adhere to target
formats and reasoning protocols.

Inference-Time Steering and Verification. The final layer of control modulates the decoding process
at runtime. Stochastic decoding strategies such as Nucleus Sampling (Holtzman et al., [2020) balance the
trade-off between diversity and plausibility. Similarly, diversity-promoting penalties in beam search, such as
Diverse Beam Search (Vijayakumar et al., |2018)), are used to prevent redundancy. More recently, latent space
interventions have emerged as a precise steering mechanism. Methods such as JAM (Huang et al., 2025b) edit
activation vectors during the forward pass to adjust attributes such as sentiment or safety without retraining.



To ensure reliability, post-hoc verification mechanisms act as a quality filter. Systems such as Chain-of-
Verification, which is also known as CoVe (Dhuliawala et al., 2024)), prompt the model to cross-check its
own outputs. At the same time, the RARR framework (Gao et all 2023al) revises drafts by comparing them
against retrieved evidence. Furthermore, SelfCheckGPT (Manakul et al., |2023)) utilizes consistency sampling
to detect and flag or filter likely hallucinated content. This process ensures that only verified samples are
retained in the final dataset.

2.2  Quality Metrics for Text

We unify the evaluation of plain text and multi-turn dialogue under three complementary dimensions:
Validity, Fidelity, and Diversity.

Validity. Validity requires generations to be structurally well-formed under explicit constraints as well
as linguistically acceptable.Beyond structural considerations, we evaluate linguistic well-formedness using a
CoLA-style grammatical acceptability scorer. Following prior work, we adopt a sentence-level acceptability
classifier to assign acceptability scores to generated sentences (Raman & Shah| 2023). For this purpose,
we use a RoBERTa-large model fine-tuned on the CoLLA benchmark.Building on this practice, we report a
Grammatical Acceptability Rate, also referred to as GAR, as the proportion of generated sentences whose
acceptability score exceeds a fixed threshold:

|71 m;
GAR = ZTl'm O 1 Clace(uij) = 7],

i=1"M =1 j=1

where the i-th generation ¢; is segmented into m; sentences {u;;}7";. The term Cacc(u) € [0, 1] denotes the
acceptability score or the probability output by the CoLA-trained classifier. The variable 7 is a pre-specified
decision threshold such as 0.5, and I[-] is the indicator function.

In conversational domains, validity extends to the area of social pragmatics. We adopt the hierarchical USL-H
metric (Phy et all 2020)). This metric suggests that a response must satisfy three criteria in a specific order.
We denote sy, sg, and sy, for scores of understandability, sensibleness, and likability , respectively, and sy,
can be comprised of one or more qualities g;, i.e., specificity or empathy. The concept is in the following
equation:

SUSL—H(t) = alsU(t) + OéQSU(ﬁ)Ss@) + a3SU(t)Ss(t)SL(t).

sL=>_Big.
J

In these formulations, the variables sy, sg, s, and g; are continuous values that range from 0 to 1. The
coeflicients c; and ; represent the weights assigned to each quality and are defined such that their respective
sums equal 1. These methods are suitable for calculating scores in both automatic and human evaluation
settings.

Fidelity. Fidelity measures how faithfully generations preserve semantic content and adhere to source
materials. To quantify the semantic proximity between synthetic and real data at the corpus level, we adopt
an embedding-based similarity method. This approach compares mean normalized embedding vectors using
cosine similarity, which follows previous analyses that calculate the similarity between the average normalized
embeddings of different groups or corpora (Hamaélainen et al., [2023).Specifically, we use a sentence encoder
such as a SentenceTransformer to map a text instance to an embedding vector. We report the Embedding
Distribution Similarity, also referred to as EDS, as follows:
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In this formulation, Xy, and Ajeal represent the synthetic and real corpora respectively. And the mean
embedding €, for a dataset X, (where x € {syn,real}) is normalized using the ¢5 norm prior to averaging.
f(-) denotes the embedding function used to map raw data points into a high-dimensional feature space.
Finally, the cosine similarity between two vectors a and b is defined as the dot product of the vectors divided
by the product of their magnitudes.

For instruction following tasks, we measure instructional fidelity using the strict prompt level accuracy in
IFEval. This metric evaluates verifiable constraints specified in the prompt through automatic checkers (Zhou
et al., 2023)). Specifically, the prompt level strict accuracy requires that all verifiable instructions are satisfied
and is defined as follows:

1P|

AcChiompr = |7>|Z[ A Wit =1,

i=1  k€Z(p:)

where P represents the set of prompts and p; is the i-th prompt. The term Z(p;) denotes the subset of verifiable
instructions in p;. Each function Vi (-) € {0, 1} serves as an automatic checker for the k-th instruction, such

as length, keyword count, or constrained formatting. We define Fidj g, as being equivalent to Acc;trf)ifrfpt.

In dialogue settings, fidelity requires grounding in the dialogue history or external evidence. We adopt
RUBER (Tao et al., |2018), which blends a referenced score and an unreferenced score. Following Tao et al.
(2018)), we first normalize each component score to the range between 0 and 1 via min max normalization:

s — min(s)

S =

max(s) — min(s)’

We then compute the RUBER score by heuristic aggregation. In this work, we use arithmetic averaging:

1/, -
SRUBER(C7 r, Trcf) = 5 (Srcf(ra Trcf) + sunrcf(c7 T’)) )

where §.of measures candidate reference similarity and §un.er evaluates context response appropriateness.

When references are unavailable, we employ USR (Mehri & Eskenazi, 2020)), which is a reference free dialogue
evaluation framework. This framework provides interpretable sub metrics aligned with five dialogue qualities
such as understandability, naturalness, context maintenance, interestingness, and knowledge usage. Following
the original formulation, these sub scores are aggregated into an overall quality estimate via a regression
model trained to reproduce human overall ratings (Mehri & Eskenazi, [2020)). Finally, to detect hallucinations
in document grounded generation, we use PMI-FAITH (Nandwani et al.| [2023]):

PMI-FAITH(d, h,r) = log P(r | d,h) — log P(r | h).

This differential captures the information gain from response r contributed specifically by the document d
beyond the dialogue history h.

Diversity. To detect mode collapse and repetition, we evaluate diversity across semantic and lexical
dimensions. For semantic diversity, we adopt Self Cosine Similarity. This metric represents the average
pairwise cosine similarity between embeddings of all generated texts. A lower Self Cosine Similarity indicates
a broader semantic spread (Zhang et al., |2024d)):
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where h; is the embedding of the i-th generated text and M is the number of generations.

For lexical diversity, we report the Type Token Ratio (Treffers-Daller et al.,|2018)) and Distinct N (Li et al.l
2016). These metrics are defined as follows:

T
TTR = 1P| pictinet v = .
| Tokens| |Total n-grams|

|Unique n-grams|

Higher values indicate richer vocabulary usage and reduced n gram repetition. Finally, we compute n gram
Response Entropy to quantify how evenly the model utilizes the vocabulary space (Zhang et al., 2024d]):

Ent-n = — Y pr(g)logpr(9),
9€Gn

where G,, is the set of all n grams in the generated corpus 7 and py(g) is the empirical corpus level n gram
distribution.

2.3 Trustworthy Metrics for Text Data

We assess the trustworthiness of generated text through two primary lenses. These include faithfulness to
evidence and persona as well as safety against adversarial or organic toxicity.

Faithfulness and Consistency. We evaluate faithfulness from two coupled aspects. The first aspect
involves evidence selection when gold supporting evidence is available. The second aspect focuses on the
attribution of the generated content to the provided sources.

When gold supporting evidence is available, we first evaluate evidence selection by comparing the predicted
evidence set Eprea against the gold set Eyoq at the evidence unit level such as supporting fact sentences.
Following the standard supporting fact protocol in multi hop QA tasks like HotpotQA (Yang et al., |2018),
we compute instance wise precision, recall, and F1 score:

o |5pred N ggoldl

‘gpred n Egold‘ 2PreceyiReceyi
Prece,;i = _ 1“pred | | @gold]

,  Receyi = , Fleyj==——"7"—7"7.
|5pred| e |ggold| e Precevi + Recevi
In this context, the vertical bars denote set cardinality and the intersection term counts correctly selected

evidence units.

Beyond selecting the correct evidence, we evaluate whether the generated content is supported by the provided
sources using the Attributable to Identified Sources framework (Rashkin et al., [2023|). This approach defines
attribution through the According to A, y test. A passage or sentence is considered attributable if a reader
can verify it from the source set A instead of relying on external knowledge (Rashkin et al.l|2023). Following
the sentence level formulation in Retrofit Attribution using Research and Revision (RARR) (Gao et al.,
2023a)), we compute the average attributable rate across sentences:

1
AttrAIS(y,A):m > AIS(s, A),
s€S(y)

where y is the generated passage and S(y) denotes the set of sentences in y. The term A represents the set of
provided evidence snippets and the function AIS(s, A) indicates whether sentence s is fully supported by one
or more snippets in A under the AIS guideline (Gao et al., [2023a)).



To enable scalable evaluation, we also use auto AIS proposed in RARR (Gao et al., |2023a)). This approach
approximates human attribution judgments using a factual consistency model based on natural language
inference as surveyed in TRUE (Honovich et al., [2022)). We let NLI(e, s) represent the entailment probability
of evidence snippet e entailing sentence s. The auto AIS metric identifies the best supporting snippet for
each sentence and computes the average score as follows:

Attrauto(y, 4) = L max NLI(e, s).

1S (y)] €A

s€S(y)

To quantify how much a revised passage A remains faithful to the original passage A beyond factual fixes, we
adopt the preservation metrics from RARR (Gao et al., |2023al). These metrics evaluate preservation from
two complementary perspectives. The first perspective is intent preservation, which determines whether the
revision maintains the original intent. This is typically judged by human annotators according to a specific
rubric. The second perspective is edit minimality, which measures the extent of changes to the surface form.
This metric is used to penalize excessive rewrites such as stylistic paraphrasing, reordering, or unnecessary
additions (Gao et al., [2023al). Formally, given N paired instances, we define Precision Intent as a binary
score. This score assigns a value of 1 if the revision completely preserves the intent of the original and 0
otherwise. This is represented by an intent violation indicator u(/L-, A;) as follows:

N
1 ~
Presintent = N E H[V(A“AZ) = 0]
=1

To discourage unnecessary edits when intent is preserved, we use Precision Levenshtein. This metric is based
on the character level Levenshtein distance normalized by the original length and clipped at zero:

N ~
1 dlev(Ai7 Al)
PreSLeV = N E max (1 - m, 0]).
i=1

To prioritize semantics, we define Precision Combined by zeroing out surface similarity when intent is
violated (Gao et al., [2023a)):

Prescomb = Presintent - Prespey-

Finally, we summarize the trade off between attribution and preservation using their harmonic mean (Gao
et al., 2023al):

2 - Attr - Prescomp

F1 =
AP Attr + Prescomb

where the term Attr can be instantiated by the human based AttraIS or the automatic version Attr,uto.

Safety. We evaluate safety by measuring the propensity of the model to generate toxic content under both
single turn and multi turn settings.

In single turn prompted generation, we follow RealToxicityPrompts (Gehman et al., [2020) and quantify the
propensity of a model to degenerate into toxic continuations along two complementary axes. The first axis
measures how toxic the worst case sampled continuation can be. The second axis measures how frequently
toxicity appears across repeated sampling. For each prompt j, we sample K continuations and score each
generation with a toxicity function ¢(-) such as Perspective API. We treat a span as toxic when t(-) is greater
than or equal to a threshold 7. Following RealToxicityPrompts, we set the threshold 7 to 0.5 for the toxicity
score (Gehman et al., [2020).
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Generation method Validity Fidelity Diversity Faithfulness Safety

FineWeb2 (Penedo et all, [2025] X A A X X
Dolma (Soldaini et al.l 2024) X A A X v
RedPajama (Weber et al., [2024)) A A A X A
Self-Instruct (Wang et al., [2023b) A A A X X
RARR (Gao et al.l [2023a) X X X v X
PMI-FAITH (Nandwani et al.| [2023) X v X v X

Table 2: Whether representative text control/data-construction/alignment methods explicitly evaluate each
dimension. v': explicitly evaluated; A: partially /indirectly covered; x: not reported or not applicable.

We then report the Toxicity Probability and the Expected Maximum Toxicity. The Toxicity Probability is
defined as the empirical probability that at least one of the K samples crosses the threshold. The Expected
Maximum Toxicity is defined as the average worst case toxicity across prompts (Gehman et al.l [2020):

N N
NZ: L%JMZT’ EMT = & Zzlz (95.6)

In multi turn interactions, we adopt dialogue level safety measurements from ToxicChat (Chen et al., [20234)).
These measurements define risk over an entire conversation rather than an isolated response. Let Dgjs be a
set of dialogues. For each dialogue d in the set Dqi, we let Rq denote the set of all chatbot responses and let
g4 and rq; represent the query response pair at turn i. We compute the Toxic Sentence Generation rate,
which we refer to as TSG, as the percentage of conversations in which the chatbot generates at least one
toxic response during the interaction (Chen et al., |2023a)):

1
TSG = —— E I|maxt(r) > 7].
|Dd1g| 4D |:r€Rd ( )_ :|

dlg

To isolate cases where toxicity is elicited even with non toxic user inputs, we report the Non Toxic to Toxic
rate, which we refer to as NT2T. This metric represents the percentage of conversations in which the chatbot
produces at least one toxic response at any point during the interaction while the corresponding user query is
non toxic (Chen et al., [2023a)):

NT2T = I3 : t(qas) < T A t(ras) >7].

|Daie| , 552

This dialogue level NT2T definition is consistent with prior turn level toxicity categorization of query response
pairs into NT2T, NT2NT, T2T, or T2NT. Within this classification, NT2T specifically denotes a non toxic
query that elicits a toxic response (Si et al., [2022)).

Finally, to ensure safety interventions do not degrade linguistic quality, we report Perplexity and Distinct
N (Liang et al.| [2024} |Jozefowicz et al.l |2016; [Li et al.l [2016).

2.4 Evaluation Practice Gap

We analyze representative methods from Section and categorize their reported evaluation protocols in
Table

Validity. As shown in Table [2] validity is rarely evaluated using explicit or reproducible metrics across text
generation methods. Most studies overlook specific scores for grammatical acceptability or dialogue quality.
Instead, they rely on downstream benchmarks or human judgments as general proxies for quality. However,
these external signals often fail to identify specific validity errors. Even with improved models, large-scale
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automated pipelines can still suffer from basic structural breakdowns, including encoding noise, formatting
violations, and truncation. Therefore, explicit monitoring of validity remains a practical necessity.

Faithfulness. Faithfulness describes how the output of LLLMs matches the original source material. This
property is one of the most important factors in solving the problem of hallucinations. When the ability of
LLMs to find exact evidence is improved, the models are much less likely to produce fabricated information.
However, Table [2| shows that some studies do not evaluate this dimension. We provide several metrics that
can be used to measure faithfulness in these models.

Safety. Safety reporting is largely absent in the surveyed methods. Few studies adopt standardized protocols,
such as Perspective API or Toxic List, to measure toxicity score or banned words. Consequently, future work
on synthetic text should incorporate safety evaluation as a standard reporting component. By analyzing
safety alongside quality indicators, researchers can better manage the trade-off between safety and utility.
This approach is essential to prevent safety regressions even as performance improves.

2.5 Usages

In this section, we shift our focus from the methods of text and dialogue generation to the practical applications
of the resulting synthetic corpora. We focus on offline uses, which refer to settings where model outputs are
treated as static artifacts for training and evaluation. This approach is distinct from online prompting or
control during the decoding process. Synthetic corpora are most effective when they are carefully curated and
aligned with target deployment distributions. These corpora should also be explicitly stress tested according
to the quality and trustworthiness dimensions of our taxonomy. We first discuss training time uses such as
data augmentation, alignment, and adaptation, and then we describe evaluation uses.

Supervised Data Augmentation and Task Transfer. A primary use case is to augment supervised
training data in low or no resource regimes. For machine reading comprehension, synthetic question answer
pairs generated from unlabeled passages can substantially improve downstream accuracy when filtered rather
than used wholesale. Early work showed that LLMs can produce synthetic QA corpora that, by themselves,
support competitive models on benchmarks such as SQuAD (Puri et al., [2020)). Additionally, end to end
synthetic QA generation can further enable domain adaptation when paired with filtering and validation
(Shakeri et al.| [2020).

More recent approaches integrate LLM based rewards or selectors to identify high value examples. For
instance, [Jin & Wang| (2024) treat a generative LLM as a reward model to score synthetic QA pairs and
retain only those predicted to be most useful for training. Survey evidence on data selection for instruction
tuning suggests diminishing returns from scaling instruction corpora alone. This motivates data-efficient
selection based on utility signals such as quality, diversity, difficulty, and complexity. Empirically, highly
curated small sets such as LIMA with 1000 instances and large-scale human Al collaboration corpora such
as OpenAssistant conversations can be competitive. Furthermore, automated selectors improve efficiency
through model-based filtering and strong LLM scoring using models such as GPT 4 to remove low quality or
incorrect examples and retain diverse and high utility instances (Albalak et al., |2024; Kopf et al., 2023)).

Instruction Tuning and Alignment Corpora. Beyond task labels, synthetic text and dialogue are
widely used to construct instruction following and preference datasets for alignment. Large-scale instruction
tuning corpora routinely mix human-written and LLM-written instructions, demonstrations, and task variants.
The synthetic components expand coverage over skills, formats, and domains, while human labor focuses
on seeding and spot checking. Preference and critique datasets such as UltraFeedback use a strong LLM
like GPT 4 to provide multi-dimensional scores and natural language feedback on candidate responses. This
yields large synthetic preference corpora for reward modeling and preference-based finetuning (Cui et al.}
2024). In practice, synthetic instructions, responses, and Al-generated feedback are often combined into
pipelines where models both propose and evaluate data. This process blurs the line between augmentation
and alignment.

Domain Adaptation and Retrieval Grounded Systems. In domain-specific applications, synthetic
corpora support both task adaptation and retrieval augmented generation. For question answering in
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specialized domains such as biomedical, practitioners often synthesize in-domain questions and answers
from domain passages or corpora. They then filter low-quality generations to improve robustness under
domain shift (Shakeri et al., |2020). These synthetic examples are then used to finetune general purpose
language models. This process simplifies earlier multi-stage synthetic question answering pipelines for domain
adaptation (Shakeri et al [2020). In retrieval grounded setups, model generated query document or query
identifier pairs can be used to train domain specific retrievers. This approach improves ranking through hard
negative mining and preference learning on distributions that better match deployment scenarios (Wen et al.
2025)). Because synthetic queries can be controlled through granularity and domain specific constraints, they
provide controllable testbeds for measuring retrieval faithfulness and downstream task gains.

Synthetic Evaluation Sets and Judge Labeled Benchmarks. Once models are trained or adapted,
synthetic text and dialogue are increasingly treated as evaluation artifacts. Instead of relying solely on static
human written benchmarks, practitioners construct synthetic test suites that probe specific failure modes
under controlled distributions. These modes include compositional reasoning, long context consistency, and
safety constraints.

The LLM as a judge pipeline can score large pools of model outputs using fine-grained criteria such as
helpfulness, safety, and faithfulness. This approach supports the rapid construction of synthetic evaluation
sets as well as public leaderboards and meta evaluation benchmarks such as MT-Bench and Chatbot Arena
(Gu et al.| [2025; [Zheng et al., |2023)). Self-verification methods such as Chain-of-Verification explicitly generate
verification questions and independent checks to reduce hallucination(Dhuliawala et al., [2024]). At the same
time, sampling-based approaches like SelfCheckGPT produce alternative generations whose consistency can
be logged as a black box signal for hallucination and robustness (Manakul et al., 2023).

Safety Testing and Privacy Preserving Surrogates. Finally, synthetic corpora play a growing role
in risk management. Privacy studies exploit LLM generated variants of sensitive text as surrogates that
retain statistical utility while reducing direct exposure of personally identifiable information. Memorization
and extraction attacks demonstrate that models can regurgitate rare training examples, including personally
identifiable information. This motivates careful deduplication and privacy-aware data handling (Carlini
et al., [2021). SRD (Zhang et al.| [2026) framework utilizes LLMs to generate toxic and good text and uses
this contrast dataset to detoxify the model. For provenance and attribution, organizations increasingly
embed watermarks or content credentials into synthetic corpora to support downstream detection and policy
enforcement. Keyed statistical watermarks allow reliable statistical detection of model-generated text and
are commonly evaluated under robustness and security considerations (Kirchenbauer et al., 2023} |Coalition
for Content Provenance and Authenticity, [2025). By framing fingerprint injection as a knowledge-editing
problem over fingerprint text pairs, RFEdit enables efficient and robust injection with minimal impact on
unrelated knowledge (Li et al.l [2025¢). Synthetic safety and red teaming corpora are likewise used to stress
test models and safety filters. These corpora consist of adversarial prompts, toxic continuations, or jailbreak
dialogues generated by or with LLMs.

Overall, LLM generated text and dialogue serve as flexible building blocks for training, adapting, evaluating,
and governing language technologies. Their benefits are most pronounced when synthetic corpora are aligned
with target tasks and distributions. Furthermore, these corpora should be coupled with strong selection and
verification mechanisms and instrumented with provenance and privacy safeguards that make their quality
and trust properties measurable.

3 Symbolic and Logical Data

Symbolic and logical data generation has gained significant attention with the development of large reasoning
models. These models emphasize multi-step inference and structured intermediate reasoning which are often
produced through chain-of-thought prompting (Wei et al., [2023; |Kojima et al., [2023; [Wang et al., [2023a;
Liu et al., 2025b} [Morishita et al., |2024; |Toshniwal et al.l [2024). Unlike general data augmentation, this
field focuses on creating instances that are intrinsically checkable. Each example typically consists of a
well-specified problem, a structured reasoning trace or intermediate artifacts, and an explicit verification
signal. These signals include exact keywords (Li et al., 2025d) or answer matching in mathematics word
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problems such as tasks in the GSM8K dataset (Cobbe et al., [2021) . They also include compilation and unit
tests in code generation or logical validity under symbolic rules (Tafjord et al., |2021}; Morishita et al., [2024;
Liu et al., [2025b]).

In practice, modern pipelines based on LLMs do more than generate diverse problem and solution pairs.
They also propose intermediate steps, critique and revise candidate solutions, and filter outputs using
self-consistency (Wang et all [2023a)) or external tools (Ahmad et all |2025). These pipelines help scale
reasoning supervision beyond datasets written entirely by humans. They produce large quantities of verified
or partially verified trajectories for distillation and post-training. Recent examples of this approach include
reasoning models trained with reinforcement learning or augmented by tools and verifiers (OpenAl et al.|
2024; [DeepSeek-All 2025)).

3.1 Generation Methods

In this section, we introduce how to generate symbolic and logic data by using LLMs.

Heuristic Evolution Methods for Expanding Reasoning Tasks. A primary category of reasoning
data generation driven by LLMs relies on the iterative evolution of seed tasks. In this approach, strong
models repeatedly rewrite problems to increase structural diversity and difficulty while attempting to preserve
the validity of the solutions. This pattern originates from the rewriting techniques used in Evol-Instruct
(Xu et al., [2024a) and has been adapted to domains such as mathematics and programming. For example,
WizardMath applies a mathematics-specific evolution pipeline combined with reinforcement learning from
evolution feedback to strengthen step-by-step reasoning (Luo et al., |2025a). Similarly, MetaMath scales up
mathematics corpora by generating and diversifying data in the form of questions, answers, and rationales
(Yu et al., |2024a)).

In the field of programming, WizardCoder adapts instruction evolution to coding tasks by generating
progressively harder instructions and responses from simpler seeds (Luo et al. 2025b)). Across these studies,
the core idea remains the same. The process starts from existing benchmarks or seed instructions and
then applies controlled mutations such as paraphrasing, adding constraints, or making the problems more
compositional. Finally, the process uses lightweight heuristics to maintain semantic accuracy. These heuristics
often involve checking the agreement of answers, verifying basic formats, or screening for consistency.

Tool-Verified Generation Methods with Solvers, Executors, and Provers. A second approach
combines synthesis from LLMs with programmatic verification. This method uses executors, compilers, unit
tests, or symbolic checkers as reliable oracles. In mathematical reasoning, OpenMathInstruct-1 synthesizes
large-scale problem and solution pairs by generating solutions in the style of a code interpreter. It retains
instances where the computations are executable and consistent (Toshniwal et all 2024).

In the field of programming, OpenCodelnstruct assembles large instruction tuning corpora with execution
feedback and unit test signals. This strengthens acceptance criteria beyond surface plausibility (Ahmad et al.,
2025)). For formal logical reasoning, datasets and generators such as ProofWriter and ALT-FLDx2 construct
instances where the validity is grounded in formal rules. This enables the deterministic checking of entailment
or proof steps under symbolic constraints (Tafjord et al., 2021} Morishita et al., [2024). SynLogic further
advances scalable and verifiable logic synthesis by generating diverse logical tasks whose correctness can be
verified by simple rule-based checkers (Liu et al.l |2025b)). In all these cases, the models propose candidates
while external tools act as gatekeepers that filter for correctness and logical structure.

Trajectory Harvesting via Rewarded Rollouts and Distillation. A third category of methods
generates reasoning data by collecting trajectories from strong teacher models or reasoners trained through
reinforcement learning. These models interact with tasks that allow for verification. In this context, trajectories
serve as more than just explanations. They are the results of a policy exploring solution spaces guided by
reward and verification signals. These trajectories are then distilled into student models.

Recent reasoning model pipelines follow this approach by collecting large volumes of partially verified rollouts.
These rollouts are filtered using automated verifiers and learned judges and are then used as signals for
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downstream post-training. Similarly, public releases such as SYNTHETIC-2 provide large-scale datasets
that are the results of reasoning agents working with verifiers across various task families (Prime Intellect
Team), [2025)). This approach produces verified reasoning traces that are suitable for distillation. The key
difference in this method lies in the nature of the data. The data are policy traces generated during search
and optimization processes instead of static and one-shot synthetic question and answer pairs.

Preference-Curated Generation via LLM as a Judge. Finally, in scenarios where rigid programmatic
checks are incomplete or unavailable, many pipelines rely on preference curation and supervision using LLMs
as judge mechanisms. UltraFeedback constructs large scale preference signals by sampling multiple candidate
responses and scoring them using a superior model. These scores are based on dimensions such as helpfulness,
truthfulness, and instruction adherence (Cui et al., |2024]).

CodeUltraFeedback applies a similar concept to the programming domain. In this context, judges assess
candidate solutions based on coding preferences such as readability and adherence to instructions (Weyssow
et al., |2024). Related self training approaches, such as STaR, create rationales through generate and filter
loops where correctness serves as a general acceptance signal (Zelikman et al., 2022). Collectively, these
methods emphasize model driven evaluation. Reasoning data are generated at scale and then organized
by judge models into ranked or preference annotated corpora. This process supports alignment, preference
optimization, and self improvement.

3.2 Quality Metrics for Symbolic and Reasoning Data

The fundamental criterion for evaluating the quality of reasoning data generated by LLMs is objective
correctness. This requires that both intermediate reasoning steps and final conclusions serve as logically
valid and empirically verifiable results. Given that reasoning data encompass mathematical, symbolic,
programmatic, and open-domain contexts, the specific verification protocols vary by domain. However, these
protocols share a unified objective. They validate that generated reasoning traces adhere strictly to ground
truth logic or executable truth conditions.

Validity. For mathematical and code based reasoning, correctness can often be validated algorithmically
through domain verifiers. Let R = {(q;, ¢;,y:)}Y; denote reasoning examples, where ¢; is the problem, ¢;
is the generated rationale such as a chain of thought or a code interpreter trace, and y; is the final answer.
When a reference answer y or an executable specification is available, we define a domain specific checker
Seheck as follows:

1, if the candidate is verified as correct for ¢;;

0, otherwise.

Jeneek (s i, yi) = {

We then report the overall verification accuracy as

N
1
ACCverify = ﬁ Z fcheck(qi; Ci, yi)

i=1

In MetaMath, the answer augmentation stage uses rejection sampling. In this process, diverse reasoning paths
are generated and only those yielding correct answers are retained. This method ensures validity through
answer level verification (Yu et al., 2024al).

In OpenMathlInstruct-1, solutions are represented in a code interpreter style format. Correctness is enforced
by keeping only solutions that lead to the ground truth answer. The paper also uses training set coverage
measured as pass at k. This metric identifies whether any of k sampled solutions reaches the ground truth
(Toshniwal et al., [2024)).

For program synthesis and code reasoning, validity is commonly measured by unit test execution. Let 7; be
the test suite for example 7. The unit test pass rate for a candidate solution is defined as follows:
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1
PassRate; = 7 Z I(exec(y;, t) = pass),
et

The dataset level pass rate is calculated as PassRate = % Zfil PassRate;. This approach aligns with
OpenCodelnstruct, which executes solutions on generated unit tests and records pass rates as metadata

(Ahmad et al., 2025]).

For logical and deductive reasoning with explicit proofs such as proof graphs, validity requires correct
entailment prediction and a correct proof. Following ProofWriter, proof correctness is evaluated using a strict
metric called Full Accuracy. In this metric, the predicted proof graph must exactly match a gold proof. If the
graphs do not match, the proof scores zero (Tafjord et al. 2021)).

Accordingly, let y be the gold entailment or answer label and let ¢ be a gold proof representation. The
strict proof accuracy can be summarized as

N
Accproof Z Yi = yz ( = C;)

Finally, for robustness style validity checks, FAIRR (Sanyal et al.,[2022)) defines consistency over an equivalence
set of perturbed inputs. For a theory and statement pair (7 s) and its equivalence set E(T, s) = {(T}, s}.)}_,,
consistency is defined by the following equation:

K
Z (lesk))

k:

This value is averaged over the dataset. FAIRR reports entailment accuracy, strict proof accuracy, and
consistency (Sanyal et al., 2022).

Fidelity. Fidelity measures the alignment between proxy evaluation signals and actual quality standards.
Unlike validity which assesses the objective correctness of a solution against a ground truth, fidelity evaluates
the reliability of the tools or models used to judge the data. This metric ensures that automated evaluations
reflect true human reasoning or logical consistency when direct verification is not possible.

Following the self consistency decoding paradigm, multiple reasoning paths are sampled and the most
consistent answer is selected (Wang et al., 2023a)). For each question g;, we sample K chains {c¢; x}2_, and
extract their final answers {y; x}+_,. We define the majority vote answer as follows:

K

Ui —argmaxz (yik = ).
k=1

To measure the alignment between the consensus proxy and the reference label, we compute the self consistency
accuracy:

ACCSC = —

—
=
—
<>

To further quantify the internal consistency of sampled answers for the same question, we use the average
pairwise answer agreement:

1
Agree(qi) = KE-1) Z [(yik = Yikr)-
KAk
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For open ended natural language reasoning where executable checking is often not possible, judges based on

LLMs provide automated scoring signals. For example, GPT 4 is frequently used to provide these evaluations.
(LLM)

To evaluate how faithfully these judge signals reflect human judgments, let u; and ughuman) denote scalar

scores from a model judge and a human annotator for the i-th example.

We measure the rank association between these scores using the Spearman rho correlation or the Pearson
correlation. This follows established evaluation methods for alignment in model judges (Lai et al., [2025)):

(U(LLM) u(human) ) )

PLLM-human — CorrSpearman )

When the judge outputs M rubric dimensions such as coherence, faithfulness, and factuality, we can aggregate
them into an overall proxy quality score:

M
1
Qreason = M E SCOre€; .

m=1

The reliability of model judge signals is commonly validated on benchmarks such as JudgeLM and MT Bench
or the Chatbot Arena. These benchmarks report the agreement between model judges and human preferences
(Zhu et al| 2025; |Zheng et al., 2023).

Preference datasets based on AI feedback such as UltraFeedback (Cui et al., [2024]) and pipelines using
reinforcement learning from AI feedback provide training signals for preference modeling and downstream
alignment. These pipelines replace expensive human labels with preferences generated by LLMs (Lee et al.|
2024). On pairs labeled with preferences, a reward model Ry can be evaluated by whether it ranks the
preferred output higher.

We consider a pair (¢; q,¢ip) with a binary preference label z; that is either zero or one. For example, z;
equals one if ¢; 4 is preferred. We define the label implied by the model as follows:

Z; = H(R(b(Ci,a) > R¢(Ci7b)).

We then compute the pairwise preference accuracy:

1 N
ACCRM = N Z]I(éz = Zz)
i=1

This metric evaluates reward models on pairwise preference data used in training and benchmarking for
reinforcement learning from human feedback (Bai et al. 2022; [Frick et al., [2024).

3.3 Trustworthy Metrics for Symbolic and Reasoning Data

Even when a generated reasoning trace yields a correct final answer, the logical coherence and faithfulness of
intermediate steps are critical. A model that reaches the right answer without valid reasoning introduces
spurious patterns and unreliable supervision.

Faithfulness. Let ¢; =[c;1,...,c¢; 1] be the chain of thought for example i. A step verifier fgep checks

each step. This verifier could be a symbolic executor in formal domains or an inference based entailment
checker for natural language. It evaluates each step as follows:

1, if ¢;; is a valid transformation,

0, otherwise.

fexec (Ci,t) = {

The step validity rate is defined by the following equation:
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T;
Valstep == Z% Z Z fexec(ci,t)~
3 =1

it

This metric measures how often intermediate steps obey mathematical, logical, or semantic rules. Correctness
metrics at the step level have been explored in reasoning evaluation frameworks such as ReCEval. This
framework scores the quality of steps and chains through textual entailment and informativeness (Prasad
et al [2023). Furthermore, causal faithfulness analyses such as FRODO test whether the content of a chain of
thought has a causal influence on the final answer rather than simply correlating with it (Paul et al., |2024)).

Besides executable step verification, entailment models can provide a proxy for step support in natural
language. For each pair of adjacent steps ¢;:—1 and c; ¢, an entailment scorer gentaii provides an output as
follows:

Dit = gentail(ci,tfl = Ci,t)a

We calculate the average entailment alignment to represent the support within the chain:

T
. 1 -

Ahgnentail = Z (T — 1) Zzpi;t'
AN —9

it

Higher values indicate that the reasoning progresses through steps supported by semantics and logic instead of
abrupt or contradictory jumps. Evaluation methods using entailment have been used to assess the correctness
and informativeness of reasoning chains (Prasad et al., 2023). These methods have also been applied to assign
partial credit based on textual entailment (Yao & Barbosa) 2024)).

Robustness. To study generalization under a shift in distribution, we compare the pairwise accuracy of
reward models on in domain evaluations and out of domain evaluations. This difference is defined as follows:

out

Aoop = Accly — Acchyy.

Recent evaluations report these comparisons by measuring in domain accuracy on preference data such as
UltraFeedback. They also measure out of domain accuracy on benchmarks such as RewardBench (Mahan
et al.| [2024; [Lambert et all |2024). A smaller difference indicates more stable preference ranking across
different domains.

3.4 Evaluation Practice Gap

We analyze representative methods from Section [3.I and categorize their reported evaluation protocols in
Table 3

highlights a significant disparity in the evaluation landscape for symbolic and logical data generation.
Specifically, dimensions that assess process quality are covered substantially less than those measuring simple
answer-level correctness.

Faithfulness. Explicit evaluation of faithfulness is mainly limited to benchmarks that contain structured
proof annotations. In these benchmarks, strict proof correctness can be directly measured. For example,
ProofWriter reports full proof accuracy based on exact proof graph matching (Tafjord et al.,|2021). Similarly,
FaiRR includes strict proof accuracy as a core part of its protocol (Sanyal et al., |2022). In contrast, many
generation pipelines that rely on answer verification or filtering based on execution prioritize the correctness
of the final answer. Notable examples include MetaMath (Yu et al., [2024a), OpenMathInstruct 1 (Toshniwal
et al., 2024)), and OpenCodelnstruct (Ahmad et al., [2025)). As a result, the validity of intermediate reasoning
steps and the question of whether they truly support the conclusion often remain under evaluated.
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Generation method Validity Fidelity Robustness Faithfulness

MetaMath (Yu et al.l [2024a) v X X X
OpenMathlInstruct-1 (Toshniwal et al., [2024) v v X X
OpenCodelnstruct (Ahmad et al., 2025) v A X X
UltraFeedback (Cui et al. [2024) X v X X
ProofWriter (Tafjord et al., [2021) v X A v
FaiRR (Sanyal et al.| [2022]) v X A VAN

Table 3: Whether representative Symbolic and Logical Data generation methods explicitly evaluate each
dimension in their experimental sections. v': explicitly evaluated; A: partially/indirectly covered; x: not
reported or not applicable.

Robustness. Robustness is reported in fewer studies. When researchers address this property, it appears in
different forms that are not directly comparable. For instance, ProofWriter evaluates out of domain transfer
across rule sets (Tafjord et all[2021). In another case, FaiRR reports consistency based on perturbations
alongside entailment and accuracy (Sanyal et al.,|2022)). Beyond these specific examples, most research related
to generation focuses mainly on performance within the same domain. These studies rarely treat changes in
data distribution or stability under perturbations as their main evaluation goals. This lack of standardization
shows that there is a need to define specific robustness metrics that are suitable for symbolic and logical
generation. Researchers should avoid relying only on general proxies for robustness.

Collectively, these gaps suggest that evaluations focused on correctness may obscure the true quality of
reasoning when the goal is to generate data with reliable intermediate structures. Therefore, adding
measurements centered on faithfulness and robustness to standard validity metrics is very important for
symbolic and logical reasoning. In this domain, the desired behavior is not just arriving at the correct answer
but doing so through stable and interpretable reasoning processes.

3.5 Usage

Pre Training and Continual Pre Training with Synthetic Corpora. A primary application of
synthetic reasoning data involves integrating reasoning trajectories directly into the foundation model stage.
In this paradigm, synthetic corpora are integrated during pretraining or continual pretraining to provide
models with structured and multiple step reasoning capabilities prior to instruction tuning (Yang et al.,
2024a; |Ying et al.| |2024]). This approach views reasoning as a fundamental skill. In this context, symbolic,
arithmetic, and procedural inference patterns are acquired alongside natural language. This process helps the
internal representations of the model move toward compositional reasoning.

Recent advancements in large scale reasoning models such as DeepSeek R1 and OpenAl ol confirm the
effectiveness of optimization after pretraining. These frameworks build upon pretrained base models and
use large scale reinforcement learning to produce long horizon and step wise problem solving behaviors.
This process creates models specialized in reasoning instead of relying on superficial post hoc fine tuning
(DeepSeek-All 2025} |OpenAl et al.l [2024)). Specifically, DeepSeek R1 uses rule based and verifiable outcome
rewards to provide precise feedback for domains such as mathematics and coding. This enables scalable
improvements through automatic correctness signals (DeepSeek-Al, 2025). Similarly, OpenAl ol emphasizes
large scale reinforcement learning to enhance careful reasoning and the effective use of chain of thought
methods. This achieves strong performance across benchmarks in mathematics, coding, and science (OpenAl
et al.l [2024)).

In parallel, families specialized in mathematics such as Qwen Math and InternLM Math adopt a strategy of
continued pretraining derived from strong base models. These methods incorporate math focused corpora
followed by downstream post training. This is typically followed by downstream post-training, e.g., supervised
fine-tuning with chain-of-thought data and tool-augmented /verifier-guided supervision, as well as reward-
model-based reranking or filtering of multi-step solutions. Together, this continued-pretraining post-training
pipeline improves mathematical reasoning through specialization (Yang et all [2024a; [Ying et al.l 2024)).
Furthermore, related data pipelines synthesize new problems and solutions at scale while using screening based

19



on correctness to retain only solutions where the final answer matches a ground truth. This methodology is
shown by MetaMathQA and OpenMathInstruct-1. These systems use strong LLMSs to generate candidate
solutions while using verification based on execution to validate reliability (Yu et al., [2024a; [Toshniwal et al.|
2024)). Early pipelines often used closed source models while later work uses increasingly strong open models.
Collectively, these efforts treat synthetic reasoning corpora as primary components of the training distribution.
By exposing the underlying language model to step wise mathematical and logical derivations, these methods
improve data efficiency during later specialization stages.

Supervised Fine Tuning on Verified Reasoning Traces. A distinct application of reasoning data
generated by LLMs involves explicitly providing chain of thought capabilities through supervised fine tuning.
This process uses verified reasoning triplets consisting of an input, a reasoning trace, and a final answer.
Unlike pretraining which primarily shapes inductive biases, supervised fine tuning aligns model outputs with
concrete multiple step examples. This encourages the model to internalize intermediate problem solving
procedures.

In the domain of mathematical reasoning, synthetic datasets fine tune open models using explicit verification
signals although the specific mechanisms vary. MetaMathQA scales data production through bootstrapped
question generation and uses rejection sampling to filter reasoning traces based on the correctness of the
final answer (Yu et al.| [2024a)). OpenMathInstruct 1 emphasizes verification based on execution by allowing
solutions to combine natural language reasoning with executable code. This method uses execution by an
interpreter as a validation signal (Toshniwal et al., 2024). Similarly, releases such as the synthetic GSM8K
dataset by Gretel include structured reflection style instances paired with automated validation. Other
variants incorporate rigorous automated checks including model judge evaluations and symbolic verification
through tools such as sympy to screen and refine candidates (Al [2024). WizardMath extends beyond
conventional supervised fine tuning by synthesizing complex instructions and applying reinforcement learning
from evolved instructions feedback to strengthen reasoning behaviors beyond simple imitation (Luo et al.,
2025a).

In the programming domain, corpora such as CodeAlpaca and Magicoder provide instruction and solution
pairs for code generation. Magicoder further anchors synthesis in open source code snippets to better
reflect realistic development scenarios (Chaudhary), 2023; [Wei et al., [2024). OpenCodelnstruct improves this
paradigm with explicit test suites and execution outcomes along with quality assessments based on models.
This provides verifiable signals that support data curation during training with synthetic programs (Ahmad
et al., 2025).

Regarding logical and symbolic reasoning, frameworks such as ALT construct principled synthetic logic
corpora. These corpora consist of multiple step deductive instances generated by programs and grounded in
formal logic. This data facilitates supplementary training to improve entailment and inference patterns. In
parallel, SynLogic synthesizes diverse logic tasks paired with rule based verifiers to enable scalable training
with verifiable feedback (Morishita et al.| [2024; [Liu et al., [2025b).

In summary, supervised fine tuning on verified reasoning traces offers a controllable method for using synthetic
data. Generation pipelines propose candidate problems and explanations while external verifiers provide
correctness signals. The resulting validated instances are then used to train models that are capable of
explaining and justifying their reasoning step by step.

Optimization via Preference Modeling and Reinforcement Learning. A significant application of
synthetic reasoning data lies in providing evaluative feedback rather than direct supervision. This process
encourages robust reasoning behaviors through preference modeling and reinforcement learning. In this
context, reasoning traces generated by LLMs or evaluated by verifiers function as inputs to reward models
or policy optimization objectives. These objectives explicitly prioritize logical consistency, correctness, and
clarity within multiple step inference.

For instance, UltraFeedback constructs multiple domain preference datasets by sampling candidate responses
from diverse models and employing a superior LLM judge to rank them according to specific criteria. These
criteria include instruction adherence and truthfulness. This process yields large scale Al feedback signals
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suitable for reward model training and optimization styles similar to reinforcement learning from human
feedback (Cui et al., 2024). Approaches such as reinforcement learning from Al feedback extend this
methodology by substituting human preference labels with comparisons judged by LLMs. This substantially
enhances the scalability of preference data collection across tasks and domains (Lee et al. 2024]).

Within the reasoning domain, contemporary systems increasingly integrate reinforcement learning with
programmatically verifiable feedback for mathematical, coding, and logical problems. Specifically, DeepSeek
R1 uses rule based rewards and executable feedback to score reasoning trajectories during training. This
feedback includes actions such as compiling and executing code to enable policy updates that reinforce
verifiable correctness (DeepSeek-All 2025). OpenAl ol incorporates large scale reinforcement learning to
refine multiple step reasoning behaviors, although the specific implementation details of the reward and
verifier mechanisms remain undisclosed (OpenAl et al., 2024)). Furthermore, the SYNTHETIC-2 corpus
provides millions of reasoning traces including reinforcement learning rollouts accompanied by reward signals.
These signals facilitate downstream distillation and offline reinforcement learning research (Prime Intellect
Team, 2025). Consequently, reasoning data evolve from static training examples into dynamic evaluative
signals. Synthetic traces combined with judge or verifier outputs define a reward landscape that guides
iterative model refinement.

Knowledge Distillation and Implicit Reasoning Transfer. A complementary application of reasoning
data generated by LLMs involves the compression of explicit reasoning into implicit internal representations.
This process distills detailed chain of thought traces from complex teacher models into compact student
models. These student models are capable of performing robust reasoning without generating extensive
explanations during inference. In this paradigm, reasoning traces function as latent supervision that guides
representation learning rather than serving only as textual targets.

Methods for implicit chain of thought distillation such as those proposed by |Deng et al.| (2023)) train a teacher
model using explicit supervision. They subsequently distill its reasoning competence into a student model
through hidden state learning signals. This enables the creation of efficient models that reason implicitly
without producing lengthy traces. In symbolic and deductive contexts, ProofWriter provides structured
supervision over natural language proofs. This approach offers process level signals that support the training
and potential distillation of lightweight models capable of following proof like reasoning patterns with minimal
explicit rationales (Tafjord et al., [2021)).

More broadly, large scale reasoners trained with reinforcement learning and trajectory corpora such as
DeepSeek R1 and SYNTHETIC-2 provide rich multiple step rollouts that serve as distillation targets. These
resources enable compact models to inherit high level reasoning behaviors from computationally intensive
teacher models (DeepSeek-All 2025} [Prime Intellect Team), [2025]). Therefore, synthetic reasoning data facilitate
not only explicit chain of thought generation but also implicit reasoning transfer. The goal is to embed process
level competence into models that yield correct answers without necessarily explaining every intermediate
step.

Evaluation, Benchmarking, and Generalization Testing. Finally, synthetic and programmatically
structured reasoning corpora increasingly serve as evaluation instruments. These corpora offer diverse and
automatically verifiable tasks to test generalization capabilities beyond static benchmarks curated by humans.
The primary objective is the construction of dynamic benchmarks that evolve alongside model capabilities
while maintaining rigorous and verifiable scoring protocols.

In the domain of mathematics, GSM-HARD extends the GSM8K dataset by systematically substituting
numerical values with larger or more complex alternatives. This process creates a stress test suite generated
by programs to evaluate arithmetic robustness. When integrated with programmatic execution solvers, model
outputs can be verified automatically at scale (Gao et al., [2023b). Although not generated by LLMs, SciBench
aggregates scientific problems at the college level in physics, chemistry, and mathematics. This enables
systematic evaluation and detailed error analysis of scientific problem solving skills (Wang et al., [2024b)).

In the fields of causal and logical reasoning, CREPE introduces a benchmark for assessing causal reasoning
regarding event plausibility and entity states. This benchmark uses human judgments to identify discrepancies
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between model behavior and human reasoning (Zhang et al.| 2023). Additionally, SynLogic provides held
out validation splits for synthetic logical tasks. It reports performance using variance reducing metrics such
as the average at eight (Liu et al.l 2025b]). Collectively, these evaluation frameworks demonstrate the dual
utility of synthetic and programmatically structured reasoning datasets. They not only provide training and
reinforcement learning signals but also support benchmarks for monitoring reasoning robustness, distribution
shifts, and cross domain generalization as models advance.

4 Tabular Data

Tabular data consists of structured records organized according to a fixed schema of heterogeneous features
that include rows and columns. As described in the survey by [Shi et al.| (2025b)), the generative modeling of
this data requires the joint representation of mixed type attributes including both numerical and categorical
domains as well as complex dependencies between columns. At the same time, the model must preserve
statistical fidelity to the original source distribution. Validity in this context is defined by a data point
representing a row vector that follows schema level constraints and intrinsic functional dependencies. Failure to
enforce these constraints results in synthetic tables that might appear statistically plausible but actually violate
domain logic or structural rules (Shi et al.| [2025b; |Xu et al.,|2025)). In applied settings such as healthcare, |Barr
et al.| (2025) demonstrated the effectiveness of zero shot prompting with LLMs to produce clinically plausible
perioperative datasets. They validated the fidelity of this data through statistical comparison with real world
reference data. More broadly, the field treats synthetic tabular data generation as an optimization problem
that balances data utility and fidelity against privacy preservation. Consequently, evaluation protocols are
organized around these two dimensions of data quality and privacy protection (Shi et al., 2025b)).

4.1 Generation Methods

Prompt-Based and In-Context Tabular Synthesis A prominent category of methods leverages prompt
engineering or in context learning to synthesize tabular records without requiring full model fine tuning.
These methods typically prioritize schema validity and coverage of long tail distributions. Within this
paradigm, CLLM addresses low data regimes by utilizing LLM priors and introducing a curation pipeline
based on learning dynamics to filter synthetic rows using confidence and uncertainty metrics (Seedat et al.,
2024). A distinct subset of approaches explicitly steers generation toward minority or under represented
data segments. For instance, EPIC and LITO employ class conditioned or group conditioned prompting
strategies including self authentication mechanisms to bias sampling toward rare classes. This enhances
both schema compliance and the representativeness of the long tail (Kim et al., [2025} Yang et al.l [2024b)).
In a complementary approach, TabGen-ICL improves fidelity through the adaptive selection of in context
exemplars. It iteratively retrieves real samples that represent the residual between generated and authentic
distributions to refine the exemplar pool for a fixed base model (Fang et al., 2025). Beyond direct row
synthesis, Nam et al.| (2024]) incorporate decision tree feedback to guide LLMs in generating new features.
This extends prompting methodologies into the domain of feature engineering. Despite these advancements,
empirical analyses indicate that unconstrained row wise prompting and arbitrary feature ordering often
induce violations of functional dependencies. Furthermore, standard univariate or correlation based metrics
frequently fail to detect these constraint failures. This necessitates the development of strictly schema aware
and constraint aware prompting and evaluation strategies (Xu et al., [2025)).

Fine Tuning and Specialized Tabular Generation A distinct category of methodologies involves fine
tuning LLMs specifically for table synthesis. These approaches aim to model structural constraints and
distributional dependencies more accurately to enhance both validity and fidelity. For example, GReaT fine
tunes an autoregressive language model on serialized tabular rows to enable fully conditional sampling across
arbitrary feature subsets. This mechanism improves sample realism and reduces the occurrence of implausible
cross feature combinations (Borisov et al., [2023). Extending this architecture, Nguyen et al.| (2024]) introduce
permutation based training combined with feature conditional sampling to preserve feature label correlations
and further enhance sample realism. REaLTabFormer targets relational tabular synthesis by generating a
parent table autoregressively and conditioning child table generation on the sampled keys (Solatorio & Dupriez,
2023). To address memorization risks and capture inter row structural nuances, HARMONIC incorporates
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k-nearest neighbor-based instructional signals that emphasize neighborhood relations across records (Wang
et al.} [2024d). Other frameworks integrate explicit self correction mechanisms. Table-LLM-Specialist proposes
an iterative generator validator self training paradigm where candidate supervision is generated by models and
validated via table specific consistency signals such as permutation and execution invariance. This approach
facilitates specialist fine tuning without reliance on manual annotations (Xing et al., [2024). Furthermore,
adaptive methods such as TableDreamer progressively synthesize instances that expose model weaknesses
by targeting observed failure modes to improve data efficiency and downstream utility (Zheng et al., 2025)).
Collectively, these approaches directly address challenges identified in recent empirical analyses, specifically
constraint and functional dependency violations, by incorporating structural awareness during both training
and sampling phases (Xu et al.l [2025)).

Hybrid Architectures and Structured Synthesis Hybrid architectures integrate LLMs with external
structure or distribution aware components. Alternatively, they reformulate table synthesis as structured
question answering to jointly address gaps in validity, fidelity, and utility. In these designs, LLMs typically
function as engines for schema reasoning, constraint handling, and consistency checking, while auxiliary
modules ensure structural control and statistical alignment. For instance, AIGT leverages table metadata
and long token partitioning to facilitate the generation of wide tables while maintaining quality at scale
(Zhang et al., [2024c)). Regarding text to table transformation, gTBLS formulates cell filling as a conditional
question answering task. This approach explicitly targets syntactic validity to reduce the reliance on extensive
corrections after the generation process (Sundar et al., [2024). Motivated by findings regarding constraint
violations and distributional mismatches (Xu et al., [2025), these systems explicitly combine reasoning based
on LLLMs with external components. This combination optimizes end-to-end table realism and downstream
applicability (Zhang et al.l 2024c; [Sundar et al.| [2024]).

4.2 Quality Metrics for Tabular Data

Validity. We assess validity from both marginal and structural perspectives.

For categorical marginals, we additionally report the column wise Chi-squared test as a sanity check criterion.
This metric is used in TabSyn as a quality indicator and typically requires passing at a high threshold such
as p > 0.95 (Zhang et al., |2024a)). The calculation is defined as follows:

O. - E.)?
I L EEY]
ceQ ¢

where O, and E. represent the observed synthetic counts and the expected real counts for category ¢ within
the set Q2. A larger p value indicates closer marginal agreement, which signifies that the test fails to reject
the hypothesis that the distributions are similar.

To measure structural validity, we report the violation rate, which we denote as VR. This rate is defined as
the fraction of integrity checks that fail:
iolations
VR — #£violations
#£checks

The checks include functional dependencies, range limits, uniqueness, geographic consistency, and other
schema constraints. A lower violation rate indicates higher validity.

Fidelity. Fidelity measures how closely the synthetic data distribution matches the real data distribution.
Following the low order statistics protocol used in TabSyn, we evaluate fidelity at the marginal, pairwise, and
global or sample levels (Zhang et al., [2024a)).

Marginal fidelity is evaluated with the Kolmogorov Smirnov Test statistic for numerical columns and the
Total Variation Distance for categorical columns (Zhang et all |2024a)). The formulas are defined as follows:

KST = sup ’Freal(x) - Fsyn (ZL‘)

)

TVD =1 ) |R(w) - S(w)],
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23



where R and S denote the real and synthetic empirical frequencies of a category w within the set Q.

Pairwise fidelity is captured by the Pearson Score for numerical pairs and the Contingency Score, also known
as ContSim, for categorical pairs. These metrics follow the methodology described in the TabSyn Appendix
E.3 (Zhang et al.; 2024a). For a numerical pair consisting of variables z and y, the Pearson correlation is
calculated as follows:
Cov(z,y)
P(x, y) = 773
020y
The Pearson Score aggregates correlation gaps using a normalization factor of one half because the correlation
coefficient p ranges from negative one to one (Zhang et al., 2024a)):
1 L

PearsonScore = 3 e Z ’ pgi’ajl) — pg;r{)‘
(4,3)

For categorical pairs consisting of variables A and B, the contingency table discrepancy is defined by the
following equation:

ContingencyScore = % Z Z {Raﬁ - Sa75|.
ac€A pBeB

For mixed type pairs involving both numerical and categorical data, TabSyn buckets numerical values into
categorical bins before computing the corresponding contingency score (Zhang et al.| [2024a).

Global realism and detectability are assessed by applying a classifier two sample test in the same spirit as
TabSyn (Lopez-Paz & Oquabl [2018]). This approach utilizes the SDMetrics detection score based on logistic
regression (Zhang et al., [2024a; DataCebol, |2024). In this context, we define the area under the curve as
the mean receiver operating characteristic area under the curve of the discriminator when distinguishing
between real and synthetic data over cross validation splits. SDMetrics defines the detection score as follows
DataCebo| (2024]):

DetScore = 1 — (max(AUC, 0.5) x 2 — 1).

This formula maps an area under the curve of zero point five, which indicates that the data is indistinguishable,
to a detection score of one. Similarly, an area under the curve of one, which indicates that the data is perfectly
distinguishable, is mapped to a detection score of zero. Therefore, a higher detection score suggests higher
fidelity from the perspective of global detectability (DataCebo, 2024; |[Zhang et al., [2024a)).

Sample level fidelity and a-precision are reported using the support based definition of |Alaa et al.| (2022)),
which is also adopted by the TabSyn framework (Zhang et al., |2024al). In this evaluation, let P, and P,
denote the real and synthetic distributions where S, is the support of the real distribution and Sy is the
support of the synthetic distribution. Following the work of |Alaa et al.| (2022), the a-support of the real
distribution is defined as the minimum volume subset of .S, that contains a probability mass equal to «:

a A s < —
S, = arg min Vol(S) s.t. P.(S) =a,

r

In this context, the volume function represents the Lebesgue volume measure. The corresponding a-precision
is defined as the probability that a synthetic sample lies within the real a-support (Alaa et al.; [2022):

P, = Pr (z€57).

Py

In practice, we estimate the alpha support from finite samples and compute the empirical a-precision by
averaging binary membership indicators over the set of synthetic samples (Alaa et al.| 2022]):

S 1 N
a-Prec = — 1 [ﬁ € Sﬁ} ,
% 2

eX

where X represents the set of synthetic samples and §$‘ is an estimated a-support of the real distribution.
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Diversity. The diversity of the generated data is evaluated to measure the coverage of the real distribution.
We use (-Recall as proposed by |Alaa et al.| (2022), which is also used in the TabSyn framework (Zhang et al.,
2024a). The p-support for the synthetic distribution is defined in a similar way as follows:

syn

S8 =arg mgn |S] subject to Pr(Xgyn € 5)=5.

Based on this definition, S-Recall is expressed by the following equation |Alaa et al.| (2022)):

Rg= _Pr(Xea€S55,).

Xreal™~Preal

The sample-level estimator for this metric follows the same approach as the one used for a-Precision:

P T alre )

A high 5-Recall value indicates that the synthetic data provides broad coverage of the original distribution
and serves as a complement to the Alpha-Precision metric |Alaa et al.| (2022); |Zhang et al.| (2024al).

Utility. We evaluate downstream utility using the Train-on-Synthetic Test-on-Real protocol, which is also
referred to as Machine Learning Efficiency in the TabSyn framework [Zhang et al. (2024a)). Following the
evaluation methodology of TabSyn, we report the Area Under the Curve for classification tasks and the Root
Mean Square Error for regression tasks (Zhang et al.| [2024a):

n

1
AUC = / TPR(FPR)dFPR, MSE = %Z(gi — )%, RMSE = vMSE.
0

i=1

4.3 Trustworthy Metrics for Tabular Data

Privacy. We quantify privacy risks from three complementary perspectives including geometric memorization
through nearest neighbor proximity, empirical inference leakage through membership or attribute inference,
and formal privacy guarantees such as differential privacy.

To assess geometric memorization and potential record replication, we analyze the distance to the closest
record. Following prior work on tabular synthesis based on LLMs, for each synthetic record s € D we compute
its distance to the nearest training record (Borisov et al., [2023; [Fang et al., [2024):

DCRtrain—)gen(S) = xe%in d(& .’13),
train

where systematically low values indicate a warning signal of potential copying. Because absolute values for the
distance to the closest record depend on the choice of distance d and feature scaling, we recommend comparing
the distribution of these values against a real baseline. This baseline is defined as DCRyrain—test () =
ming ep,,.., d(x,z") for hold out real records, which is a common practice in tabular synthesis evaluations
(Borisov et al., |2023)). Conversely, to assess whether the generator covers the support of the real distribution
instead of collapsing to a few modes, we compute the real to synthetic proximity on hold out data:

DCRreal%syn(x) = ml{ld(.’li, 8)7
seD

where a distribution comparable to real baselines suggests realistic coverage rather than a degenerate generator
(Borisov et al.l [2023).

Beyond geometric metrics, we evaluate empirical inference leakage through adversarial attacks. We quantify
membership inference risk in the standard setting where an attacker is given a candidate record x and some
access to the released model or synthesizer. The attacker aims to decide whether x was part of the training
data (Shokri et al. [2017). We define g(z) as an attack score where larger values indicate higher confidence
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that x is a member of the training set. We summarize this risk using the Area Under the Receiver Operating
Characteristic Curve and the membership advantage:

AUCMIA = Pr[g(xtrain) > g(xholdout)]a AdVMIA = mﬁx (TPR(T) — FPR(T)) .

Values for the Area Under the Curve significantly above 0.5 or advantage values significantly above 0 indicate
non-trivial leakage. The advantage form matches the standard notion based on the difference between the
True Positive Rate and the False Positive Rate used to quantify inference leakage (Yeom et al.| |2018]).

We similarly evaluate attribute inference for a sensitive attribute A. In this setting, an attacker predicts
the value of A from the remaining attributes and any access granted by the released model (Yeom et al.,
2018). In addition to reporting standard predictive metrics such as accuracy or the Area Under the Curve,
we optionally report a simple gain over majority summary as an implementation level diagnostic:

Gainpga = Pr[a = A] — max Pr[A = d],

a

where larger values indicate stronger recoverability of the attribute beyond a trivial majority baseline.

We report the differential privacy parameters € and §, which represent the privacy budget, together with
downstream utility. This approach allows us to contextualize the trade off between privacy and utility under
the standard differential privacy framework (Dwork & Roth) 2014).

Fairness. We evaluate fairness in a train on synthetic and test on real setting. This is necessary because
downstream models trained on synthetic data may inherit or even amplify disparities when they are deployed
on real populations. This setting is a commonly used evaluation protocol for tabular generation. Fairness
considerations are concerns that exist across the entire pipeline starting from data through the model and
ending at deployment (Barocas et al., |2023]).

For outcome fairness including demographic parity and disparate impact, we consider a protected attribute
A € {a,b} and a binary decision Y. We report the Statistical Parity Difference and the Disparate Impact
Ratio:

Ason = [Pr(¥ = 1] A—a)—Pr(¥ =1 a—p)|, DR= DT =1I4=0a)

Ideally, the Statistical Parity Difference should approach 0 and the Disparate Impact Ratio should approach
1. The Disparate Impact Ratio is widely used in the literature concerning disparate impact as a rate ratio
criterion such as the eighty percent rule (Feldman et al., |2015; Barocas et al., [2023)).

To account for the trade offs regarding accuracy, we evaluate error rate fairness through equalized odds and
equal opportunity disparities. These metrics measure the gaps between groups in the True Positive Rate and
the False Positive Rate by conditioning on the true label (Hardt et al.; [2016):

(JATPR| + |AFPR|), Agop = |TPR, — TPRy|.

N =

Ago =

Because parity degradations in the train on synthetic and test on real setting can come from representational
mismatches between synthetic and real data, we also report two simple diagnostics. The subgroup coverage
gap measures shifts in group proportions, and the label conditional shift captures label distortion within
specific groups:

1
CovGap = 5 D _ [peyn(A=0) — Preai(4=g)|,  CondShift =
geA

Z Tv(psyn(Y | A:g), preal(Y | Azg)).
geA

1
Al

Large values in these representational diagnostics often help explain why parity metrics degrade after the
evaluation. This observation is consistent with broader discussions of fairness as a property of the entire
pipeline starting from data through the model and ending at deployment (Barocas et al. 2023]).
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Generation method Validity Fidelity Diversity Utility Privacy Fairness

AN

GReaT (Borisov et al., 2023])
REaLTabFormer (Solatorio & Dupriez, [2023) A
EPIC (Kim et al.| [2025) A
HARMONIC (Wang et al., [2024d) X
TabSyn (Zhang et al.| [2024a)) v

NN
<X DX X
RN N NN
AN SR NN
X X X X X

Table 4: Whether representative Tabular Data generation methods explicitly evaluate each dimension in
their experimental sections. v': explicitly evaluated; A: partially/indirectly covered; x: not reported or not
applicable.

4.4 Evaluation Practice Gap

We analyze representative methods from Section and categorize their reported evaluation protocols in
Table [

Diversity. Our analysis shows that diversity is not evaluated enough in tabular synthesis. This happens
because specific measures focused on coverage such as -Recall are rarely reported in experimental settings.
This gap is very important for generators driven by LLMs. In these models, standard training goals based on
likelihood and decoding procedures often show behavior that focuses on the most common patterns. Thus,
synthetic distributions tend to over represent frequent patterns while failing to capture long tail values and
rare combinations of features. Although synthetic datasets may seem realistic within dominant patterns, they
often lack enough support for areas with low frequency. We therefore recommend reporting coverage metrics
such as §-Recall and diagnostics at the subgroup level alongside standard measures of fidelity and utility.

Fairness. Our review suggests that fairness evaluation is mostly missing from current studies on tabular
generation. This is a significant gap because fairness is very important for the Train on Synthetic and Test
on Real (TSTR) protocol. When synthetic data are used to train downstream models for deployment on real
populations, representational mismatches can lead directly to disparities in outcome fairness and error rate
fairness. These mismatches include shifts in subgroup proportions or label conditional distributions. For
example, outcome fairness can be measured by statistical parity, and error rate fairness can be measured
by equalized odds. Moreover, improved diversity does not always mean improved fairness. Expanding the
coverage of the data may accidentally increase disparities if minority subgroups are created with lower fidelity
or if the conditional distributions are distorted. Accordingly, we recommend adding group fairness metrics
such as the statistical parity difference and equalized odds to the results of the train on synthetic and test on
real protocol. We also suggest using representational diagnostics to clearly describe the possible trade offs
between diversity, fairness, and downstream performance.

4.5 Usage

Data Sharing. Synthetic tabular data based on LLMs is increasingly used to facilitate safe data sharing
and privacy aware anonymization. By producing records that maintain statistical fidelity to the source
distribution while differing from original data points, organizations can release or exchange datasets without
compromising sensitive or personally identifiable information. This capability is especially important in
regulated domains such as healthcare and finance. In these fields, synthetic data serves as a compliant
mechanism for collaboration between different institutions (Miletic & Sariyar [2024; [Barr et al., 2025 Long
et al., 2025).

In this context, Miletic & Sariyar| (2024) benchmark LLMs based on the Transformer architecture against
baseline models such as CTGAN (Xu et al., [2019). They show that larger language models yield superior
downstream classification utility and maintain competitive performance even at smaller scales. Furthermore,
Barr et al.| (2025)) show that GPT-4o is capable of generating clinical tabular data in a zero shot manner
and achieving high fidelity in terms of the statistical properties within each column. This performance is
especially high when the model is guided by descriptive statistics. However, the authors did not directly
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evaluate downstream utility or the risks of duplication and memorization. They highlighted these areas as
important directions for further study.

Beyond the imitation of individual rows, frameworks such as LLM-TabFlow use the reasoning capabilities
of LLMs to capture logical relationships between columns and synthesize data within a latent space. This
approach helps to optimize the trade off between fidelity, utility, and privacy (Long et al., 2025)). Together,
these findings indicate that synthesis driven by LLMs is becoming a practical way to share sensitive tables
under strict regulatory constraints.

Data Augmentation. In situations characterized by data scarcity or a lack of rare feature combinations,
generation driven by LLMs provides a way to increase training distributions. This approach helps to improve
class balance and the ability of models to generalize to new data (Seedat et al., [2024; [Tran & Xiong, [2024;
Kim et al.| |2025; |Yang et al., [2024Db).

Recent research is moving beyond simple oversampling methods toward more controllable ways of creating
tabular data. In some cases, these methods include formal privacy guarantees. For instance, DP-LLMTGen
ensures differential privacy by using a two stage fine tuning pipeline. This process first involves learning
the data format and then performing fine tuning with differential privacy using a loss function designed for
tabular data, and finally samples the private model to create synthetic tables (Tran & Xiong} [2024]).

In a related direction, P-TA uses an optimization scheme based on Proximal Policy Optimization to include
feedback from a discriminator. This improves the alignment between the generated data and the real tabular
distributions (Yang et al.,2025). As a result, approaches in this field are transitioning from basic oversampling
techniques to generation frameworks that are both controllable and aware of privacy. These developments
make generators based on LLMs flexible tools for improving the performance of downstream models in difficult
data environments.

5 Semi-structured

Semi-structured data can be thought as an intermediate modality between rigid relational schemas and
unstructured text. This modality is characterized by flexible schemas and hierarchical organization. In this
survey, we unify Graph, JSON, and Log data under this category.

Graph data consists of nodes and edges that define topological relationships. Recent literature demonstrates
that LLMs can synthesize such structures by serializing them into text formats such as edge lists (Yao et al.l
2024]).

JSON data represents nested structures of objects consisting of name-value pairs and arrays (Bray, 2017).
However, reliable JSON generation requires strict schema adherence and syntax verification to ensure the
output is executable by downstream tools (Agarwal et al., 2025al).

Log data consists of sequential event messages where each entry typically combines a timestamp with a log
template and variable parameters. This format allows for automatic parsing into structured templates (He
et al., 2017).

5.1 Generation Methods

5.1.1 Graph Data

Recent advancements in LLM-driven graph synthesis can be classified based on the necessity of parameter
updates into training-free generation versus learning-based generation.

Training-free Graph Generation. A growing body of work explores the capability of LLMs to produce
syntactically valid and structurally plausible graphs without gradient-based tuning. |Yao et al.| (2024)) introduce
LLM4GraphGen, demonstrating that models such as GPT-4 can generate graph structures directly from
natural language prompts. This work covers both rule-based and distribution-based tasks. While direct
prompting offers a domain-agnostic and deployment-friendly approach, existing evaluations indicate limitations
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in structural fidelity. This is particularly evident when targeting complex distributional parameters such
as specific motif counts (Yao et all [2024)). To move beyond naive prompting, Generate-on-Graph tackles
Incomplete Knowledge Graph Question Answering through a training-free exploration procedure. This
method retrieves Knowledge Graph evidence and generates additional factual triples dynamically when crucial
triples are missing (Xu et al.|[2024b)). In parallel, ontology-grounded Knowledge Graph construction leverages
a Wikidata-schema-aligned ontology to ground relation extraction and improve interoperability with existing
ontologies (Feng et al.| 2024]).

Learning-Based and Multi-Agent Generation. Alternative approaches enhance the quality of graph
construction through supervised fine-tuning or multi-agent collaboration frameworks (Huang et al.,|2025a; Le
et al.}|2024). GraphJudge (Huang et al.,|2025a)) employs supervised fine-tuning to train LLMs as discriminators
for graph quality. This approach significantly reduces noise during Knowledge Graph enrichment by filtering
generated triples. Beyond the use of individual models, multi-agent systems such as GAG and GraphMaster
leverage collaborative refinement to improve global consistency. GAG formulates graph synthesis as a scalable
and simulation-based multi-agent process. This method enables the generation of large text-attributed
graphs that adhere to macroscopic network properties (Ji et al., [2025). Similarly, GraphMaster introduces an
evaluation-driven iterative loop among agents. This system is specifically designed to enhance the structural
integrity and semantic coherence of the synthesized graphs (Du et al., [2025).

5.1.2 JSON Data

LLMs have been adapted to generate schema-compliant JSON through two representative methodological
classes. These include inference time constraint control, often referred to as guided decoding, and learning
based alignment such as reinforcement learning to improve schema adherence (vLLM Project} [2024; [Lu et al.|
2025; |Agarwal et al., [2025a)).

Constrained Decoding for JSON Generation. In this regime, model parameters remain unchanged
and structural compliance is enforced at inference time using decoding time constraints. These constraints
include token filtering guided by schemas or regular expressions (vLLM Project), |2024; |Gat], 2025} (dottxt-ail
2025). As a complementary step, LLMs can also be used to infer and enrich JSON Schemas from existing
corpora. This can be achieved by generating natural language descriptions for schema elements and identifying
potentially noisy properties (Mior, [2024]). Once a target schema is available, practical frameworks such as
vLLM structured outputs and toolkits like Outlines and LM Format Enforcer implement constrained decoding
by masking invalid tokens. These systems ensure that the final output conforms to the target schema and
prevent malformed JSON that may arise under unconstrained prompting. Furthermore, JSONSchemaBench
provides large scale evidence and analysis of compliance, coverage, and efficiency for these constrained
decoding systems across 10,000 real world JSON schemas (vLLM Project), [2024; [dottxt-ai, [2025; |Gat), [2025;
Geng et al., 2025)). However, while these approaches excel at enforcing surface form validity, satisfying stricter
requirements may still require additional validation, post processing, or learning based alignment. Such
requirements include fine grained field typing and cross field semantic consistency (Lu et al., |2025)).

Learning-Based Generation. When stricter schema adherence is required, reinforcement learning based
methods optimize the model policy with reward signals tied to schema correctness. These rewards are
typically provided via schema validators or verifier style rewards (Lu et al., |2025; |Agarwal et al., [2025a)). For
instance, [Lu et al.| (2025) introduce SchemaBench which contains approximately 40,000 JSON schemas. They
improve structured generation by incorporating reinforcement learning with a fine grained schema validator.
This approach outperforms standard supervised fine-tuning baselines (Lu et al., |2025). Meanwhile, |Agarwal
et al| (2025a)) apply Group Relative Policy Optimization to train smaller models with custom rewards for
strict schema adherence. This work demonstrates effective improvements in enforcing schema consistency.

5.1.3 Log Data

Research in log generation highlights a discrepancy between the semantic prediction of log components and
the syntactic realization of the final log message. These components include log levels and variables. |Li
et al.| (2024d)) observe that while LLMs can accurately determine necessary logging attributes, they often
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fail to produce full log statements that mimic human-written code. On their benchmark, LogBench, the
best-performing models achieved a BLEU score of only 0.249. This indicates limited surface-form similarity
(Li et al, [2024d)). Furthermore, evaluations on semantically equivalent but transformed code contexts, referred
to as LogBench-T, show consistent performance degradation. This is especially true for variable prediction
and log-text generation, suggesting that general-purpose LLMs remain brittle under semantics-preserving
code transformations (Li et al., [2024d).

To bridge this performance gap, recent studies advocate for model specialization via post-training on domain-
specific corpora. |Zhang et al.| (2025a)) propose AUCAD, which is a framework that automatically constructs
an alignment dataset called AucadLog derived from log-related software issues. By leveraging this dataset to
post-train open-source LLMs, the authors demonstrate that the resulting specialized models significantly
outperform existing model-based solutions in log statement generation. These results are confirmed by both
human evaluation and quantitative metrics (Zhang et al.; [2025a)).

5.2 Quality Metrics for Semi-structured Data

5.2.1 Graph Data

Validity. Validity represents the proportion of generated graphs that comply with specific task rules or
logical constraints. This metric reflects whether the output of the model is effective in a topological or
physical sense. We measure the fraction of generated graphs that satisfy task specific rule-based constraints:

1

Valid,ye = ——
|Genl

Z I{passes_rules(G)}.

GEGgen

where Ggen denotes the set of generated graphs where Ggen C G. The function passes_rules is a task defined
rule checker that returns 1 if G satisfies the rules and 0 otherwise. These rules may include constraints
specified by the generation task (Yao et al., |[2024)).

Fidelity. Fidelity measures the structural similarity between generated graphs and reference data. We assess
how closely generated graphs match reference structures using kernel based Maximum Mean Discrepancy
computed on graph descriptor features:

MMD?(X,Y) = QZk (i, i) sz (5, y5) Zk i Yj),

i3/

where X' = {z;}i~, and Y = {y;}}_, are descriptor sets extracted from generated and real graphs respectively,
and k is a chosen kernel (You et al., [2018; [Liao et al., |2020). Typical descriptors include degree distributions,
clustering coefficient distributions, orbit or motif counts, and spectral statistics such as Laplacian eigenvalue
histograms (You et al.l 2018} [Liao et al.| [2020).

For molecular graphs, we include the Frechet ChemNet Distance (Preuer et al., [2018]):
1/2
FCD = a1 — pal3 + Te(S1 + 55 — 2(51%5) %),

This metric measures the distance between embedding distributions of generated and reference molecules.
© and X represent the mean and covariance of these distributions where embeddings are obtained from a
pretrained ChemNet model (Preuer et al.l 2018]).

Diversity. Diversity evaluates the variety and originality among the generated graphs. This includes the
novelty of the graphs relative to the prompt and the non-repetition within the generated set. To evaluate
variety, we compute Novelty. A generated graph is considered novel if it is different from every example graph
provided in the prompt for the same task:

Novelty =

Y HG#Gud,

GEGgen

1
|Ggenl
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where Gox C G denotes the set of example graphs in the prompt. The condition G # G« means G is not
identical to any example graph under the same equality criterion used by the evaluation pipeline (Yao et al.,
2024).

We also compute Uniqueness as the fraction of valid generated graphs that are not duplicates:

Uniq = w, Gualid = {G € Ggen : passes_rules(G)},

|Gvalid|

where the function unique removes duplicates under the same equality criterion used in evaluation (Yao et al.,
2024)).

Utility. Utility assesses the practical value of the generated data for downstream applications. This is
typically measured by how much the synthetic data contributes to the performance of a model on a real
world task. When a Graph Neural Network is trained on enhanced graphs and evaluated on a fixed split, we
report Accuracy and F1 Score. Higher values for Accuracy and F1 indicate greater utility of the synthetic
graphs for downstream tasks (Du et al., 2025)).

5.2.2 JSON Data

For semi-structured outputs such as JSON responses, quality metrics commonly focus on three aspects. These
dimensions include validity, fidelity, and utility.

Validity. Validity represents the requirement that outputs are machine-parseable and conform to the
expected schema. This ensures that the generated data is effective for automated processing. Let J =
{J1,...,Jn} be the set of generated JSON objects and S be the target schema.

We define the Correctness Indicator for a generated object J under schema S as follows:
V(J,S) = I[parsable(J) A schema(J, S)].

In this equation, I[-] is the indicator function that returns 1 if J is syntactically valid and schema-compliant,
and 0 otherwise.

We then report the average Correctness Rate:

CorrectnessRate = L Z V(J.S).
|71 JeT

In addition, we report a purely syntactic metric called the Valid JSON rate or parsability rate. This metric
measures whether the output is parseable as JSON while ignoring specific schema constraints:

|{J € J | IsParsable(J) = true}|

ValidJSONRate =
|7

Therefore, we report two distinct measures. The first is a purely syntactic parsability metric referred to as the
ValidJSONRate. The second is a schema level validity metric referred to as the CorrectnessRate. Parsability
metrics are explicitly reported in strict structured output evaluations |Agarwal et al.|(2025al). At the same
time, schema validation protocols are commonly used in settings involving schema constrained generation |[Lu
et al.| (2025)).

Fidelity. Fidelity measures how closely the generated content matches the semantic information and
distribution of the target data. This dimension reflects the quality of the content within the structured JSON
framework. Fidelity metrics evaluate whether the model produces the correct fields, values, and semantics
beyond simple syntactic validity.
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For structured JSON where ground truth instances denoted as th are aligned to generated instances J;, the
Mean Match Percentage compares generated fields against the ground truth instantiations:

N
vmp— L 3 |fields(J;) N ﬁeltds(Jigt)| .
N i=1 |fields(JF")|
This metric can be extended to checks at the level of values or constraints when ground truth values and
constraints are available (Agarwal et al.| |2025a).

Schema focused evaluations also examine whether the schema itself is meaningful. For example, researchers may
assess the quality of generated definitions and names through similarity based on embeddings. Additionally,
property selection is evaluated as a classification problem between useful and noisy properties. This is
typically reported using accuracy Mior| (2024).

Utility. Utility evaluates the practical effectiveness of the generated JSON data in solving a specific task or
its usefulness as an input for downstream processes. To evaluate the utility of generated JavaScript Object
Notation responses for later use, we require each response to follow a predefined schema so that the data can
be read reliably. We measure the success of the task by calculating the exact match accuracy between the
extracted answer and the ground truth. Let the set of generated responses be denoted as {J;}¥; and the
reference answers be denoted as Ag ;. We define Task Accuracy as the average rate at which the extracted
answer matches the reference:

N
1
TaskAcc = N Z I (ExtractAnswer(J;) = Agt ;) -

i=1

This measurement reflects how well the synthetic data supports the successful completion of the target
application. This methodology aligns with evaluations based on task accuracy for schema constrained
structured outputs (Geng et al., [2025).

5.2.3 Log Data

Logs are typically semi-structured in nature. Each message consists of a fixed template combined with
runtime variables or parameters, which may also be accompanied by metadata such as severity levels and
components. Accordingly, evaluation should separately address two distinct aspects. The first is structural
validity under a log parser, which involves template and variable extraction as well as grouping. The second
is the content fidelity of the generated text, variables, and metadata.

Validity. For log data, validity depends not only on surface well-formedness but also on whether the logs
can be correctly structured into templates and variables by a parser. A common message-level metric used
for this purpose is Parsing Accuracy, which measures the fraction of log messages that are parsed exactly into
the correct template and variables: | |
Ecorrect
PA izl
where L represents the set of all log messages {¢;}, and Lcorrect refers to the subset whose predicted template,

consisting of static tokens, and variable spans, consisting of dynamic tokens, match the ground truth
exactly (Khan et all|2022; [Jiang et al., [2024a; Ma et al.l |2024b]).

Beyond per-message correctness, Grouping Accuracy evaluates whether messages are assigned to the correct
template group: | |

Egrouped

GA izl

where Lgrouped denotes messages whose predicted grouping is consistent with the ground-truth template
partition. This means that messages belonging to the same true template are grouped together and those from
different templates are separated (Khan et al., |2022; Ma et al.l |2024b)). Grouping Accuracy is particularly
important when downstream pipelines rely on template clusters rather than individual parses.
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Since Parsing Accuracy and Grouping Accuracy are based on message counts, they can be overly influenced
by highly frequent templates, such as heartbeat messages. This motivates the use of template-level eval-
uation (Khan et all 2022; |Jiang et al., [2024al). Let 75 and 7, be the sets of ground-truth and predicted
templates, and let Tomecy be the set of correctly identified templates. This is often reported with oracle
template correction following common evaluation guidelines (Khan et all [2022)). Define template-level
precision and recall as

|7;0rrect | |7;0rrect |
Pry = ———, Roa = ——7
|5 [Tt
The Fl-score of Template Accuracy is defined as
Pra -
FTA — 9. LraFra
Pra + Rta

which complements Parsing Accuracy and Grouping Accuracy by emphasizing template coverage and
uniqueness (Khan et all 2022; |Jiang et al., [2024a). Recent large-scale benchmarks further recommend
additional template-level grouping measures, such as the Fl-score of Group Accuracy, to mitigate the
sensitivity of message-level grouping metrics when template frequencies are imbalanced (Jiang et al., |2024b)).
Overall, these metrics capture whether generated logs support faithful structural parsing beyond mere
syntactic correctness.

Fidelity. For logs, fidelity emphasizes how well generated templates, variables, and metadata preserve
linguistic realism and operational plausibility. When models generate or reconstruct variables, Variable
Precision, Variable Recall, and the Variable F1-score assess whether the bound runtime variables are correct:
AN V,n Vi VP-VR

VP=-2__""" VR=-2_" VF1=2.- ——————,
Vol A VP + VR

where V, and V; are the predicted and true variable sets (Li et al., 2024d]).

For template and text realism, overlap-based metrics such as BLEU and ROUGE can be used between
generated and reference log templates or texts. In addition, embedding-based semantic similarity is often
reported to reduce sensitivity to paraphrases and mixed natural language or code phrasing (Li et al.l [2024d)).

Metadata fidelity is also crucial. For example, Log Level Accuracy measures the fraction of logs with exactly
correct severity levels:

Ncorrcct level
L-ACC = ——
N )

Furthermore, the Average Ordinal Distance captures how far predicted levels deviate on an ordinal severity

scale: @ @
N . % %
AOD = - Sl1- Dislrca lat')
N &~ MaxDis ’
where Dis(-) is the ordinal distance between levels, such as the ranking from error to trace, and MaxDis is
the maximum possible distance on the chosen scale (Li et al.| [2024d).

Utility. For logs, downstream utility reflects their contribution to system understanding and diagnosis.
A common evaluation approach is to determine whether synthetic or augmented logs improve or preserve
performance on downstream log analysis tasks, such as parsing or anomaly detection, under standard pipelines
and fixed test sets (Huo et al., 2023).

A direct way to quantify utility is the change in downstream model performance when synthetic logs are used
for training or augmentation:

AM = M(f(Dreal U Dsyn)) - M(f(Dreal))a

where M is a task metric, such as the F1 score or accuracy, and f is the downstream model or procedure
evaluated on a fixed test set.

In human-centered evaluations, developers may additionally rate the usefulness and readability of generated
logs and explanations on Likert scales to capture practical diagnostic value (Liu et al., [2024d)).
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5.3 Trustworthy Metrics for Semi-structured Data
5.3.1 Graph Data

Privacy. Graph-structured data raises distinct privacy risks because nodes and edges often correspond
to individual users and their relationships. These risks are formalized using differential privacy notions
specialized to graph adjacency (Kasiviswanathan et al., [2013)).

The formal definition of privacy in graph generation is based on the framework of differential privacy, which
is characterized by two key parameters, ¢ and §. A randomized mechanism M satisfies the (g, §)- differential
privacy inequality if for any two neighboring datasets D and D’ that differ by a single record, and for any
possible output set S, the probability that the mechanism produces an output in S for dataset D is bounded
by the following condition:

Pr[M (D) € S| < e Pr[M(D’) € S] + 4.

In this mathematical framework, e represents the privacy budget or privacy loss, which quantifies the maximum
allowable change in the output probability distribution when one individual’s information is modified. A
smaller € value indicates a stronger privacy guarantee because it ensures that the outputs are more similar
regardless of whether a specific record is present. The parameter § represents the probability that the privacy
constraint might be violated, and it is typically required to be a very small value to ensure that the guarantee
remains robust (Dwork & Roth) 2014]).

When this definition is applied to graph structured data, the concept of neighboring datasets is specialized to
either node or edge adjacency (Kasiviswanathan et al., [2013). Node level differential privacy defines neighbors
as two graphs where one is obtained from the other by removing a single node along with all its incident
edges. In contrast, edge level differential privacy considers graphs to be neighbors if they differ by exactly
one edge. Under these adjacency notions, the parameters € and § serve as quantitative metrics for the risk
that a specific user or relationship could be inferred from the generated graph (Kasiviswanathan et al.l 2013;
Dwork & Roth| [2014)).

Similarly, edge-level central differential privacy treats neighboring graphs as those differing by exactly one
edge, a concept known as edge adjacency (Kasiviswanathan et al., |2013)). Under this adjacency notion, the
same (e, d)-differential privacy inequality applies (Dwork & Roth} 2014):

Pr[M(G) € S] < 5 Pr[M(G’) € S] + 6, VS C O.

In this case, the presence or absence of any single relationship or edge is protected.

For more granular protection without a trusted curator, we can work in the local model of differential privacy,
where each participant randomizes their contribution before sharing. A standard formalization of local
differential privacy is given via a likelihood-ratio bound on the per-user privatization channel (Duchi et al.|
2014)). Instantiating this standard definition for per-edge reports, such as an edge indicator or local adjacency
information, we use the following notion of edge-level local differential privacy. A mechanism M is e-edge-level
local differential privacy if for any two possible edge values e and €’ and any output set S C O, the following
holds:
Pr[M(e) € S] <e*Pr[M(¢') € S] Ve, e,SCO.

In many local differential privacy settings, one focuses on the pure case described above (Duchi et al 2014).
One can also consider an (g, 0) extension by adding a § term as in approximate differential privacy (Dwork &
Roth, [2014)), but we maintain the common pure form for clarity.

A common implementation in the central model uses global sensitivity and Laplace noise (Dwork & Roth),
2014)):
Af = max [1(G) ~ S(@)h.

Af
n ~ Lap (0, 7) ,

where f is a numeric query, such as degree-histogram bins. The Laplace mechanism yields pure e-differential
privacy, which means § is equal to zero, under the chosen adjacency notion (Dwork & Roth, [2014). In graph
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settings, Af can be very large for degree-related queries under node adjacency, since adding or removing a
node can affect many incident edges and consequently many degree counts. Practical approaches therefore
impose bounded-degree assumptions or apply degree clipping and projection to a bounded-degree graph
family. These techniques keep A f and the required noise level manageable (Kasiviswanathan et al., [2013).

In our evaluation, the privacy parameters € and § for central differential privacy, and e for pure local
differential privacy, serve as quantitative privacy metrics. A smaller ¢ and a smaller ¢ indicate stronger
privacy protection, which typically comes at the cost of utility (Dwork & Roth, [2014)).

Finally, it is common to require ¢ to be negligible in an appropriate problem or security parameter. It is
important to avoid regimes where § is non-trivially large, such as on the order of one over n for population
size n (Dwork & Roth} 2014). In graph settings where nodes correspond to protected individuals, a practical
heuristic is to select § to be far smaller than one over the number of vertices in the graph when using
approximate differential privacy. The exact choice remains dependent on the specific application and threat
model.

Robustness. Beyond privacy, graph generation must be robust to structural hallucinations, which refers to
the production of plausible but incorrect graphs (Richardeau et al., [2025). We use complementary checks to
capture this risk.

The Syntactic Correctness Rate is defined as the fraction of generated outputs that can be parsed into valid
graph structures under the required grammar or format:

1{PARSEOK(G) = 1}.
GE€Ggen

OSCR =

1
|Ggenl

A low value of ogc g indicates format-breaking outputs and sensitivity to changes in prompting or decoding.
This is particularly relevant when the generator is prompted to output a concrete graph representation, such
as edge lists, which must be parsed into a graph object for downstream evaluation. Such generate-then-parse
pipelines are common in research involving graph generation with LLMs (Richardeau et al.l [2025]).

The Graph Atlas Distance is employed to directly measure topological deviation for well-specified targets,
such as canonical atlas graphs. Following the methodology proposed in (Richardeau et al.l [2025), this metric
is defined as follows:

k
1
GAD = Z Z dcep(Gi, ai),
i=1
where (1, ..., Gy represent the outputs generated from a fixed set of prompts whose ground-truth targets
are the corresponding canonical atlas graphs aq,...,ax. In this formulation, dggp denotes the graph edit
distance as described in (Richardeau et al., [2025). A larger value for the Graph Atlas Distance implies more
severe structural hallucination in the generated results.

To reduce sensitivity to rare and extreme edit distances which might otherwise dominate the mean, we
additionally report a capped version of the Graph Atlas Distance known as robust aggregation. This metric
is calculated as follows:

k
1
cap _ : .
GADP = A ;mm{ deep (Gi, a;), C},
where C' caps extreme values. In this context, the uncapped average corresponds to the standard definition of

the Graph Atlas Distance proposed in (Richardeau et al.l 2025), while the cap serves as a robustification
measure during the evaluation process.

The Degree-distribution Deviation captures distributional drift by measuring a lightweight deviation between
normalized degree histograms. This metric is defined by the following expression:

DL2 (G) = then(G) - href‘

27

where hgen(G) represents the normalized degree histogram of the generated graph G and hys is the target
histogram. This target may be derived from the ground-truth graph or a reference dataset. A higher value
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of this deviation indicates that the generated graphs may appear reasonable but diverge statistically from
the reference model. Comparing degree-based statistics through distributional distances, such as Maximum
Mean Discrepancy, Kullback Leibler divergence, or Kolmogorov Smirnov tests, is standard practice in the
evaluation of graph generation (Liao et al., 2020; |Liu et al. [2024b). In this study, we utilize an Lo histogram
deviation for simplicity. We emphasize that degree-based deviations provide useful although not sufficient
auxiliary signals. Consequently, they should be interpreted alongside topology-sensitive measures such as the
Graph Atlas Distance or the graph edit distance (Richardeau et al., [2025)).

5.3.2 JSON Data

Privacy. Privacy is a critical concern for generated JSON data, such as electronic health record resources
in JSON format, that contains personally identifiable information or other sensitive data. In pipelines based
on sanitization, privacy can be evaluated through established de-identification methods. Furthermore, the
quality of privacy-enhancing post-processing is essential. This includes techniques like entity relexicalization,
which ensures consistent surrogate substitutions to maintain coherence for downstream applications (Singh
et al., 2025).

These document-level and corpus-level scores measure the accuracy of sensitive entity detection and removal.
Since even a single leak of sensitive data can lead to a major privacy breach, researchers often adopt stricter
definitions of recall (Singh et al., 2025). All-or-Nothing Recall represents this strictness by treating the
completeness of detection within a document as a binary outcome. The value is 1 only if no instance of the
target entity type is missed and it is 0 otherwise (Scaiano et al., [2016} Singh et al., |2025)).

Recallpon(t,d) = ]I<Et,d C Et,d) = H(EM \ Bra = @)-

In this equation, for an entity type ¢ and document d, E 4 represents the set of ground-truth sensitive entity
instances of type t. Additionally, Et,d denotes the set of instances that are correctly detected and redacted,
and I(+) is the indicator function. This document-level definition reflects the fact that a single missed instance
can invalidate privacy protection for that specific entity type.

Clinical Model Consistency measures whether relexicalized data avoids introducing systematic biases when it
is used in clinical decision-making models. These biases may include factors such as race, ethnicity, region,
or age group. This metric also assesses whether the data preserves real-world model behavior (Singh et al.,
2025). Specifically, if a clinical model achieves a performance metric value X when trained and evaluated on
real data, poor relexicalization may result in a metric of X + dx:

|6X| = ‘Xrelex - Xreal’-

A smaller value of |dx| indicates higher-quality relexicalization. This ensures that the downstream clinical
utility and behavior remain close to those of models that are trained and evaluated on real data.

5.3.3 Log Data

Privacy. We recommend evaluating privacy in logs by explicitly capturing the residual disclosure risk that
remains in the released log text and the utility loss induced by anonymization. This approach reflects the
practical trade-off between privacy and utility that is widely observed in log anonymization and task-aware
anonymization benchmarking (Aghili et al. 2025, Loiseau et al.| |2025]). Inspired by evaluation practices in
text anonymization, we organize privacy evaluation for logs along three complementary axes. These axes
include exposure-oriented privacy risk, downstream utility degradation, and human-centered effectiveness
(Pilan et al., |2022; Ren et al., 2025; |Loiseau et al., [2025). Logs are naturally related to text anonymization
because they are categorized as semi-structured text.

Sensitive Attribute Exposure measures an observable indicator of privacy risk by counting the number of
sensitive attribute instances that remain in a log message after anonymization. Let S be a predefined set
of sensitive attribute types, such as IP addresses and MAC addresses. This set is derived from regulations,
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empirical analysis, or industry consensus for software logs (Aghili et al., [2025). Let 1(¢) be a sensitive-
information detector that extracts a multiset of spans from the log message £, and let type(z) return the
attribute type of span x. We define the exposure as follows:

Exposure(¢; Sg, ) = Z I(type(z) € Ss).
zey(f)

Optionally, a dataset-level exposure score can be computed by averaging over a log subset D C L:

Exposure(D; Sg,v) = DI Z Exposure(¢; Ss, ).

1
Pl
Exposure provides a lightweight and annotation-free signal of remaining identifiable spans. This aligns with
identifier-removal effectiveness measures commonly used in the evaluation of anonymized text. When token
or span-level ground truth annotations exist, researchers may further report precision, recall, and F1 scores
for sensitive-span removal (Ren et al., [2025; Pilan et all 2022). Note that Exposure is dependent on the
detector. That is, it reflects both the quality of anonymization and the quality of detection, and it should be
interpreted accordingly.

To quantify the utility cost of anonymization, we measure the performance drop on a downstream task
Downstream Model Performance Degradation. Such tasks include anomaly detection, failure diagnosis, and
log parsing. Let A be a fixed learning algorithm and M be a task metric, such as F1 or Accuracy. A
task-aware evaluation can be conducted by training the downstream model once on original training logs
and then swapping the original and anonymized inputs at evaluation time. This follows the task-sensitivity
perspective in anonymization benchmarking (Loiseau et al., 2025):

g = Train(A, D)

orig

A./\/l = M(97 Dtest, 0rig> - M(g, Dtest, anon) .

Optionally, one may also evaluate a retraining-oriented setting by training on anonymized logs and comparing
the results against the original training baseline, depending on specific deployment constraints.

The Qualitative Effectiveness Score captures expert judgment on how well anonymization protects privacy
while keeping logs usable in practice. Examples of usability include readability for debugging and sufficiency
for incident response. Such human-centered assessments are commonly collected through Likert-scale surveys
in log-privacy studies (Aghili et al., |2025)). The average score is calculated as:

1 |R|
ScoreQualitative = § T,
B =

where R is the set of responses for a question, such as perceived privacy effectiveness or perceived utility
preservation, and r; is the numerical value of response i, such as a value from 1 to 5.

5.4 Evaluation Practice Gap

We analyze representative methods from Section [5.1] and categorize their reported evaluation protocols in
Table

Our coverage analysis identifies two systematic gaps in semi-structured data evaluation—Privacy and Utility.
These gaps appear to stem primarily from how existing studies scope and design their experiments, rather
than from fundamental shortcomings in the available metric frameworks.
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Generation method Validity Fidelity Utility Privacy
Graph data

LLM4GraphGen (Yao et al., |2024)) v A X X
Generate-on-Graph (GoG) (Xu et al.} 2024b) X X AN X
Ontology-grounded constrained decoding (Feng et al., 2024) A A A X
GraphJudge (Huang et al.| |2025al) A A AN X
GAG (Ji et al.l 2025) v v v X
GraphMaster (Du et al., [2025)) A v v X
PrivGraph (Yuan et al., |2023]) X A A v
JSON B

JSON Schema discovery (Miorl, [2024) X v A X
JSONSchemaBench (Geng et al.| |2025)) v X v X
Schema Reinforcement Learning (Lu et al. 2025) v X v X
ThinkJSON (Agarwal et al., [2025a) v v X X
RedactOR (Singh et al.| [2025) VAN A v v
Log data

LogBench (Li et al., [2024d) X v X X
AUCAD (Zhang et al., |2025a)) A A A X
Protecting Privacy in Software Logs (Aghili et al., 2025) A A v v

Table 5: Whether representative semi-structured generation methods explicitly evaluate each dimension in
their experimental sections. v: explicitly evaluated; A: partially /indirectly covered; x: not reported or not
applicable.

Privacy. Across the graph, JSON, and log generation methods that were reviewed, privacy is rarely treated
as a primary evaluation dimension. This property is typically measured only in studies where the main
contribution is explicitly focused on preserving privacy. For example, this includes graph generation based
on differential privacy or clinical de identification. This pattern shows that most papers on general purpose
generation prioritize demonstrating feasibility and fidelity while leaving privacy risks unmeasured. A likely
explanation is that rigorous privacy evaluation requires specific experimental commitments that many authors
consider to be outside the scope of their work. These commitments include an explicit threat model as well as
a concrete and reproducible protocol such as the use of differential privacy budgets with € and § parameters.
As a result, privacy measurement remains an optional feature that is limited to literature focused on privacy
rather than becoming a standard reporting dimension for semi structured generation.

Utility. While utility evaluation appears more frequently than privacy, its use in practice remains very
inconsistent across the methods we reviewed. Graph synthesis papers typically measure utility through
downstream learning performance such as training graph neural networks. Similarly, methods related to
knowledge graph question answering treat end task accuracy as the main evidence. In contrast, research
on generating JSON and log data often emphasizes structural correctness or semantic similarity without
systematically showing improvements in downstream applications. This variety shows that utility is naturally
difficult to standardize because it depends on the task and requires complex experimental controls. These
controls include data mixing strategies, fixed training and testing splits, and specific downstream models
to allow for fair comparisons. As a result, many studies choose to use validity or fidelity measures that are
easier to calculate instead of using a consistent and complete utility protocol. This leads to evidence that is
fragmented and can only be compared partially across different research areas.

5.5 Usages

Graph Construction and Analysis. LLM-guided graph synthesis supports four main applications and
an emerging evaluation method.

First, in validator-in-the-loop knowledge graph curation, candidate triples such as facts proposed by extraction
pipelines or completion models are verified by validators based on LLMs. These systems perform consistency
checks and use retrieval to verify information against external sources. This process filters noisy statements
and reduces the need for large-scale human validation (Boylan et al., [2024).
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Second, for text-conditioned graph simulation, frameworks such as the GraphAgent-Generator, which is also
known as GAG, use large-scale agent simulations based on LLMs to create dynamic social graphs with text
attributes. These approaches improve structural accuracy at both small and large scales and can handle large
networks through parallel processing (Ji et al., 2025).

Third, synthetic graphs and latent structures derived from LLMs serve as data augmentation for downstream
graph neural networks, which are often called GNNs. For example, DemoGraph uses black-box LLMs to
generate latent knowledge graphs from text prompts. It integrates these structures into the original training
graph to solve problems with limited data and noise in real-world applications. The value of this augmentation
is usually measured using performance metrics from downstream tasks such as node classification (Feng et al.,
2025b; Ji et al., [2025]).

Finally, graph-structured hallucination analysis examines the reliability of LLMs when they produce structured
outputs. A study by Richardeau et al.| (2025) prompts these models to reproduce standard real-world networks
such as Zachary’s karate club and Les Miserables. The study also asks models to generate random graphs
like Erdos Renyi graphs. Researchers measure graph hallucinations using structural metrics including degree
sequence statistics, spectral distances, and the Graph Atlas Distance which is based on graph edits. This
work connects structural differences with external leaderboards for hallucinations.

JSON for Tool Use and Schema Automation. LLMs frequently generate JSON as a structured
interface for tool invocation, workflow automation, and data exchange between different services. These
are contexts where outputs must strictly follow predefined schemas. Constrained decoding is also known
as grammar-constrained generation or schema-constrained generation. This process enforces adherence to
specifications such as JSON Schema, regular expressions, or context-free grammars during the decoding
stage. This mechanism reduces parse failures and improves the reliability of outputs that are consumable
by machines in agent pipelines. Recent benchmarks on real-world schemas further describe the trade-offs
between efficiency, coverage, and quality in these systems for constrained decoding (Geng et al., [2025)).

JavaScript Object Notation is widely used for data interchange across application programming interfaces
and data integration workflows. When schemas are missing or incomplete, large language models can improve
automatically discovered schemas for this format. These models generate natural language descriptions and
assign meaningful names to components that are reusable. They also filter properties that were inferred but
are not useful. This process helps with validation and the use of the data in later stages (Mior, [2024).

Log for Observability and Developer Assistance. Semi structured log generation is used to create
realistic and parsable telemetry for incident drills and anomaly benchmarks. This technology also assists
developers with automatic logging tasks such as decisions about placement, logging levels, and message
content. Furthermore, it helps share exemplars that preserve privacy. However, recent benchmarks reveal
critical limitations. While LLMs often produce log messages that seem correct semantically, they frequently
fail to meet strict quality requirements and project conventions at a large scale. LogBench organizes the
evaluation of log statement generation and identifies significant gaps under common automatic metrics and
generalization settings (Li et al.| [2024d)). Similarly, AL Bench emphasizes real-world constraints through
dynamic evaluation. It demonstrates that code containing generated log statements often fails to compile and
that log outputs at runtime can differ significantly from the ground truth (Tan et al., 2025).

These findings encourage adaptation for specific domains instead of using generic prompting. To address this,
research on the AUCAD framework shows that training on alignment datasets created specifically for log
generation can perform much better than generic solutions based on LLMs. This provides a practical path
for adoption in software engineering (Zhang et al., |2025a).

6 Vision—Language Data

Vision-Language data consists of multimodal artifacts where visual signals are naturally paired with linguistic
descriptions. This category forms the foundational training corpus for modern Vision-Language Models and
Multimodal LLMs. Recent methodologies increasingly use both real and synthetic data to reduce costs,
privacy concerns, and the scarcity associated with large-scale aligned corpora (Mohammadkhani et al., 2025)).
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Specifically, Vision-Language corpora include image-text pairs, interleaved documents such as webpages
containing mixed images and text, and video-text sequences. All of these formats provide paired visual
content and textual descriptions (Sun et al., 2024).

In the context of LLMs, multimodal models such as Emu (Sun et al., 2024) encode visual signals into
continuous embeddings and interleave them with text tokens. These models then train a single transformer
using a unified autoregressive objective, which involves predicting the next text token or regressing the next
visual embedding within the multimodal sequence (Sun et al, [2024]). Recent architectures such as Emu3
further advance this paradigm by tokenizing images, text, and videos into a shared discrete token space. This
approach applies pure next-token prediction over the mixed multimodal stream (Wang et al., |2024c]).

Cross-modal alignment operates at multiple levels of granularity. Fundamentally, Vision-Language data
provides weak or global pairing between a visual unit such as an image or video clip and a textual unit such
as a caption, transcript, or surrounding narrative. Beyond this global alignment, certain datasets encode
fine-grained grounding signals that connect specific regions or spatio-temporal segments to linguistic entities.
This allows models to connect localized perception with compositional semantic reasoning. Representative
examples include region-to-phrase correspondences with bounding boxes in Flickr30k Entities (Plummer et al.)
2015)), dense region descriptions and object-level grounding in Visual Genome (Krishna et al.l 2016)), and
spatio-temporal tube grounding within the VidSTG benchmark for the Spatio-Temporal Video Grounding
task (Zhang et al.l |2020]).

6.1 Generation Methods
6.1.1 Image-Text Data

LLM-based image-text generation can be broadly categorized into two paradigms based on the generation
mechanism. The first paradigm is native autoregressive generation. In this approach, the multimodal model
produces visual representations within a unified token or embedding stream. This includes methods such
as continuous visual-embedding regression in Emu or discrete multimodal token prediction in Emu3 (Sun
et al., |2024; Wang et al., 2024c|). The second paradigm is external diffusion control. In this setup, the LLM
functions as a controller for a separate diffusion backbone. The model iteratively diagnoses mismatches and
guides edits to improve how well the output follows the prompt (Wu et al., 2023)).

Native Autoregressive Generation. This paradigm treats multimodal generation as a sequence modeling
task using mixed visual and textual representations. In this framework, images and other data types are
represented as continuous embeddings or discrete tokens. These elements are combined with text within a
single autoregressive stream (Sun et al.l [2024; [Wang et al.| 2024c; (Team) 2025)).

For example, Emu encodes images into visual embeddings that are mixed with text tokens. The model uses a
transformer to predict the next text token or estimate the next visual embedding in a unified sequence (Sun
et al., 2024). Emu3 further develops this approach by converting images, text, and videos into a shared space
of discrete tokens. This allows the model to work entirely through next-token prediction over the mixed
sequence (Wang et al., 2024c).

These unified designs support both multimodal understanding and generation within one autoregressive
model. By starting with different multimodal prefixes, a single model can perform various tasks such as
image captioning, visual question answering, and image generation (Sun et al.l 2024; |Wang et al.l 2024c).
Team! (2025) also shows the effectiveness of early-fusion modeling when applied directly to long sequences of
interleaved image and text tokens.

External Diffusion Control. In contrast to generating visual representations directly within the LLM,
this paradigm uses the model as a high-level controller. This controller routes intent and conditioning signals
to specialized generative tools such as diffusion models (Pan et all 2024} Koh et al.| |2023)).

Systems such as Kosmos-G (Pan et al.| 2024)) first align the outputs of a multimodal model to a CLIP-anchored
conditioning interface through supervised alignment. They then apply score-distillation instruction tuning
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where a frozen diffusion decoder provides training signals. This process enables the controller to produce
representations that guide high-fidelity image synthesis.

Similarly, GILL (Koh et al.l 2023) connects a frozen text-only LLM with pretrained image generation
backbones using lightweight mapping modules. These modules translate the hidden representations of the
model into the embedding space of the generator. This allows downstream decoders such as diffusion-based
generators to render the requested images.

This modular design separates intent understanding and planning from high-fidelity rendering. In this setup,
the LLM manages the planning while a diffusion backbone executes the rendering. This separation enables
precise control through an explicit conditioning interface. In systems like Kosmos-G, the visual generator can
be upgraded or replaced while the controller remains largely the same. In mapping-based designs such as
GILL, replacing the generator typically requires retraining the bridging module rather than the entire LLM
(Pan et al., |2024; [Koh et al., 2023]).

In summary, while native autoregressive generation provides a unified space for both reasoning and rendering,
external diffusion control makes better use of specialized vision models and established generation tools.

6.1.2 Video-Text Modeling

Video-text generation extends the scope of LLM synthesis from static visual domains to spatiotemporal
media. Similar to the image domain, contemporary methodologies generally fall into two distinct paradigms.
The first is native spatiotemporal generation, where the model directly synthesizes video and often audio
representations within a unified multimodal sequence. The second is planner-based diffusion control, where
the LLM manages high-level video structure for execution by a separate rendering engine.

Native Spatiotemporal Generation. Approaches such as VideoPoet (Kondratyuk et al [2024) and Emu3
(Wang et al. 2024c)) treat video generation as a native language modeling task over spatiotemporal tokens.
In the case of VideoPoet, this also includes audio. VideoPoet uses a decoder-only transformer to process
multimodal inputs including images, video clips, text, and audio. The model is trained using multimodal
generative objectives in an autoregressive manner (Kondratyuk et al.l |2024). Similarly, Emu3 converts video
frames into a discrete latent space and learns to predict the next token. This approach effectively unifies
video understanding and generation under a single backbone (Wang et al., [2024c).

By representing video and sometimes audio as discrete tokens and training a decoder-only transformer with
autoregressive next-token objectives, these methods unify multimodal conditioning and generation within a
language-model style backbone. This strategy avoids the use of diffusion-based generation heads. In practice,
these systems still rely on specific tokenizers or decoders and sometimes use additional modules such as
token-space super-resolution. Understanding capabilities such as captioning depend on the mixture of tasks
and the post-training setup. Furthermore, the models learn long-range temporal dependencies, such as motion
coherence and scene continuity, end-to-end through sequence modeling.

Planner-based Diffusion Control. In planner-based architectures such as FlowZero (Lu et al., [2023),
LVD (Lian et al., 2024, and VideoDirectorGPT (Lin et al.| [2024), the LLM functions as a director rather
than a renderer. It translates natural language prompts into structured and interpretable intermediate
representations. These representations include dynamic scene syntaxes or spatiotemporal layouts such as
per-frame scene descriptions, object layouts, bounding-box trajectories, and background motion patterns.
These plans then condition a separate diffusion-based video generator.

For instance, FlowZero uses a dynamic scene syntax generated by a LLM to guide frame-wise diffusion and
improve temporal smoothness. This includes coherent object motion as well as controllable background
and camera motion patterns (Lu et al., |2023). LVD similarly uses the LLM as a spatiotemporal planner
that outputs dynamic scene layouts, which are typically frame-consistent bounding-box sequences. These
layouts are injected into the video diffusion model to enforce spatial relations and motion consistency (Lian
et al., [2024). VideoDirectorGPT further decomposes long prompts into editable multi-scene video plans and
consistency groupings. It generates scene-level and frame-level layouts before invoking downstream diffusion
modules, which enables multi-scene narrative structure and character consistency (Lin et al.| 2024).
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By separating high-level planning from low-level frame synthesis, planner-based control provides transparent
and editable handles over visual content and motion dynamics. This paradigm also offers natural anchor
points for integrating external constraints such as timeline editing, user edits, or guardrails at the planning
stage before invoking the diffusion generator.

Across both paradigms, there is a converging trend to treat structural integrity and provenance as native
components of the generation pipeline rather than retroactive additions. First, temporal alignment and
long-horizon consistency are increasingly treated as primary objectives in long-form video generation. Second,
to address generative authenticity, researchers are integrating provenance mechanisms such as Content
Credentials with cryptographically signed metadata following the C2PA standard (Coalition for Content
Provenance and Authenticityl 2025). They are also including robust invisible watermarking for video. This
involves watermarking designed for latent video diffusion models (Jang et al., |2025)) as well as visual-audio
watermarking for manipulation localization and copyright protection (Zhang et al., [2024e)). These tools
enable machine-checkable attribution and manipulation tracing. Consequently, modern video-text systems are
evolving from loosely coupled toolchains into more integrated frameworks that jointly optimize expressivity,
structural consistency, and governance.

6.2 Quality Metrics for Vision-Language Data

6.2.1 Image-Text

Validity. Validity ensures that generated vision-language content is both well-formed and verifiable. This
means that the content can be parsed under a predefined machine-readable structure and checked for basic
consistency constraints. In practice, a valid output must follow the target schema and maintain consistent
internal references. This includes features such as stable identifiers or pointers between turns when the format
requires them. Common structural failures such as malformed schemas can be reduced through formally
constrained decoding. For instance, grammar-based engines such as DOMINO align grammatical constraints
with the subword vocabulary of the model to guarantee the structural correctness of machine-readable outputs
(Beurer-Kellner et al., [2024)).

Given a set of vision-language generations Mgen = {m1, ..., my} and a schema S, we define the Well-Formed

Rate as:
1

WFR = ——
[Mgen|

V(m,S),
MmEMgen

where V(m, S) € {0,1} indicates whether m conforms to S.

Fidelity. Semantic-level fidelity measures the logical and contextual alignment between text and non-text
modalities within a generated interleaved sequence m = {(ts,v)}%,. In this notation, ¢ represents the
individual steps within a single vision-language sample. A common approach is to score each pair using an
alignment function Saign. In practice, this function is often implemented in one of two ways. The first way
uses a strong multimodal judge model such as GPT-40. The second way uses embedding-space alignment
such as cosine similarity between CLIP text and image features, which is also known as text alignment (Ham
et al.l |2024)). We aggregate step-wise alignment as follows:

L
1
ITA(m) = 7 Z Salign(tg, V).
=1

The CoMM evaluation framework also reports an Image-Text Alignment score using strong judge models for
a similar purpose(Chen et al., |2025b)).

Beyond global alignment, instance-level fidelity measures how accurately specific attributes are preserved.
Following standard protocols for evaluating subject-driven generation (Ruiz et al., |2023)), we compute Subject
Fidelity between a source subject image Viupj and a generated image Vgen. This is calculated using an image
embedding extractor Eimg(-) such as the CLIP image encoder or DINO:

Fidelitysubj - Sim(Eimg(‘/gen); Eimg(‘/subj))a
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In this equation, sim(-,-) is typically cosine similarity. We capture Prompt Fidelity, which refers to how well
the model follows the prompt, using CLIP-style alignment between text and images (Ruiz et al., 2023):

Fidelitypmmpt = Sim(Eimg(Vgen)7 Etext (Tprompt))'

When reference data is available, we also report standard text metrics such as ROUGE and METEOR. For
image evaluation, we use metrics such as the Frechet Inception Distance and the Inception Score to measure
image quality. We also use the Structural Similarity Index for style consistency and the Peak Signal-to-Noise
Ratio for reconstruction when applicable. These metrics are measured against a reference text Tyef or a
reference image Vier (Chen et al.l 2025D)).

We use the Caption Hallucination Assessment with Image Relevance (CHAIR) metric to measure how often
models mention objects that are not in the image (Rohrbach et all|2019). We extract mentions from captions
and compare them to eighty object categories from the Microsoft Common Objects in Context dataset. A
mention is a hallucination if it does not appear in the ground truth labels.

The metric provides two scores. The object level rate is the fraction of all mentions that are hallucinated.
The sentence level rate is the fraction of all sentences with at least one hallucination. Lower scores indicate
higher grounded fidelity.

Number of hallucinated objects

CHAIR; =
Total object mentions

CHAIR, — Number of sentences with hallucinations

Total number of sentences

Utility. Utility measures the value of a model for downstream tasks such as image captioning and visual
question answering. It also applies to tool-augmented workflows. This is typically assessed through performance
on downstream tasks and evaluations by automatic or human judges. Unified early-fusion models such as
Chameleon demonstrate interleaved reasoning and generation over mixed-modal sequences (Team) 2025]).
Similarly, Anole provides an open-source autoregressive model along with a training framework (Chern et al.,
2024). Interleaved image and text training data such as CoMM (Chen et al., |2025b) and instruction-driven
multi-turn dialogues such as InterSyn (Feng et al., [2025a) further support supervised instruction tuning and
evaluation.

Let D = {(gi,a;)}; denote a benchmark dataset consisting of N question and answer pairs where ¢; is the
ith question and a; is its corresponding ground truth answer. We use the notation |D| to represent the size of
the dataset which is equal to V. Let M be the model or the inference function that maps an input question
¢; to a predicted answer.

We use the indicator function which equals one if its argument is true and zero otherwise. The equality
predicate M (gq;) = a; indicates an exact match comparison between the predicted answer and the reference
answer. This process is optionally performed after applying a standard normalization procedure such as
lowercasing and punctuation stripping when the task is open ended. The accuracy for question answering is
computed as the average indicator value over all samples in the dataset:

N
1
ACCQuestionAnswering = N Z ]I(M(qz) = ai)
i=1

For human evaluation of utility, we adopt a pairwise preference protocol following the relative evaluation
setting in Chameleon (Team), 2025). Given the same input, annotators are shown two anonymized responses
from our model M and a baseline B in a randomized order. The annotators then select one of the following
options: M is better, B is better, or about the same. We define a win as the case where annotators prefer
the output of M due to better task fulfillment and usefulness. Similarly, a loss occurs when B is preferred
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and a tie occurs when the two outputs are judged to be comparable. We compute the win rate by awarding
one point for a win and half a point for a tie (Team) 2025):

W +05xT

Witkee = G5

where W, T, and L denote the number of wins, ties, and losses of M against B respectively.

Diversity. Diversity measures the range of entities, attributes, styles, and layouts while preserving the
agreement between text and images. We measure diversity at three different levels. The first level is
distributional diversity over the entire set. The second level is intra-sequence diversity within a single sample.
The third level is judge-based diversity over multimodal outputs.

From an architectural perspective, MM-Interleaved improves multi-image interleaved generation by syn-
chronizing access to detailed visual features during the generation process (Tian et all 2024). Chameleon
uses a unified token space (Team), [2025). InterSyn increases coverage with multi-turn dialogues driven by
instructions. These dialogues are created through a process known as iterative refinement during data creation
(Feng et al., 2025a).

Let V be the set of generated images. Following [Salimans et al.| (2016]), we evaluate sample quality and
diversity using the Inception Score. Specifically, we apply a pretrained Inception classifier to each generated
image v € V to obtain a conditional label distribution p(y | v).

Images that contain meaningful and recognizable objects tend to yield low entropy conditional label distribu-
tions where the classifier shows high confidence. In contrast, a generator that avoids mode collapse should
produce varied images such that the marginal label distribution p(y) = E,ecy[p(y | v)] has high entropy. This
ensures that predictions are spread across many different classes (Salimans et al 2016). Combining these
two goals, the Inception Score is defined as:

IS(V) = exp (Evev [DKL(p(?J | v) || p(?J))])

Equivalently, logIS(V) = H(p(y)) — Evev[H(p(y | v))]. The second term encourages sharpness and
recognizability through low conditional entropy. The first term encourages diversity by rewarding marginal
distributions with high entropy and D means KL Divergence. This represents broad coverage over the
semantic categories predicted by the Inception classifier (Salimans et al., 2016]).

Let m, = {U@}£=1 be a visual sequence such as a series of generated images or video frames. In this sequence
vp is the visual element at position ¢ and L represents the total length of the sequence. Let E be a feature
extractor that transforms a visual input into an embedding vector. This extractor can be an image encoder
such as Contrastive Language Image Pretraining or Self Distillation with no Labels. The term sim refers to a
similarity function between embeddings and this value is typically determined by cosine similarity.

We define the Intra-Sequence Diversity as one minus the average pairwise similarity among all unordered
pairs in the sequence as follows:

L L
Diveeq(my,) = 1 — _z > sim(E(v), E(vr)).

Let Mgenerations be a set of multimodal generations and let | Mgenerations| represent the total number of items
in that set. For each generated sample m in the set of generations the term 7, represents the diversity score.
This score is assigned by a judge model or a human rater or an automatic rater to evaluate the diversity of
the output. We calculate the aggregated judge based diversity by taking the average of these scores over the
entire set of generations to obtain the final diversity score.

1
Scorediversity = T E jm

‘M 'enerations|
& meMgenerations
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6.2.2 Video-Text

Validity. For video-text samples, we define validity using a set of verifiable sub-properties. These properties
include schema-level well-formedness, temporal correctness, and cross-modal binding consistency. Let M be
the set of N generated video and text samples where the size of the set is N. Each sample m; consists of a
video v; and a paired text ¢; and the number of modalities is two.

Let S denote a machine readable schema such as a typed JavaScript Object Notation or Yet Another Markup
Language schema with field constraints used to validate structured outputs. The function denoted by the
term conforms checks whether sample m; adheres to schema S and returns true or false. Let I be the indicator
function which returns one if its argument is true and zero otherwise. We define the Schema Adherence Rate
as the fraction of generated samples that pass the schema validation:

1
SchemaAdherenceRate = ™M Z I[conforms(m;, S) = true]
m;EM

In the evaluation of temporal correctness, we follow the established protocols used in temporal language
grounding such as TALL (Gao et al.; |2017). We measure correctness using recall at various Intersection over

Union thresholds. In this framework, Téigd , represents the j-th ranked predicted interval for sample ¢ based
on the model score, and Ty ; represents the ground truth interval. We define the Recall @ K metric for a

given Intersection over Union threshold § as follows:

1 .
RAKE) = o 3 ]I<1r<1§_a<xKIoU(TIEQd7i,
m; EM -

Tyi,i) > 6> )
In practice, we report this metric for standard choices such as K values of 1, 5, or 10 and threshold values of
0.3, 0.5, or 0.7. Additionally, a comprehensive temporal score can be calculated by taking the average across

a specific set of thresholds A:

RGK-Avg — ﬁ 3" ROK(5).

[ J<PAN

Regarding cross-modal binding consistency, we treat cross-modal binding as a validity property that can be
verified through representation agreement. Let fr and fi be text and video encoders, and let ¢giy, represent
cosine similarity. For each sample, we assume that a grounded video segment v;® is referenced by text ;.
The Cross-Modal Consistency score is then defined as follows:

1 se
CMC = W m;M ¢sim(fT(ti)7 fV (Ui g))

This equation naturally extends to aligned speech or text regions by using automatic speech recognition
transcripts or optical character recognition snippets when they are available.

Fidelity. Regarding video fidelity, this property reflects both spatio-temporal coherence and visual realism.
Let F be the number of frames in v; and let 7 represent the frame indices. To evaluate object identity
consistency over tracked object regions {o; -}, we use a visual feature extractor fg such as CLIP and a
similarity function ¢g;,. The identity consistency score is defined as follows:

F-1
Fip(m;) = ﬁ > bim(f2(0i7), fE(0ir11)).
T=1

Holistic realism and distributional faithfulness are often summarized by the Frechet Video Distance. This
metric was originally proposed for the evaluation of generative video models (Unterthiner et al., [2019). It is
now widely reported in modern text-to-video evaluations including VideoPoet and various planner-based
systems (Kondratyuk et al., |2024; [Lin et al., [2024).
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Additionally, we can aggregate frame-level or clip-level quality scores from specialized predictors to define a
general video quality metric:

]:Vsz = Z\I]Uz‘r

In this equation, ¥ represents one or more automated evaluators that target dimensions such as imaging and
aesthetics. These evaluators are typically organized in standardized suites such as VBench (Huang et al.
2024b)).

Utility. Utility represents how reliably synthetic video and text data supports controllable generation
and downstream usage. For planner style pipelines that generate structured plans or prompts such as
VideoDirectorGPT (Lin et al. [2024)), we let P represent a set of plans or prompts and v((m)t be the output
video conditioned on a specific plan p;. Inspired by planner-based pipelines such as VideoDirectorGPT, we

define a controllability oriented Task Success Rate as follows:
Ucontrol = Z (evalgask (v O) pi) = true),
|P| p;EP

In this formulation, the task evaluation function can be implemented through automatic checkers, learned
judges, or human evaluation. The choice of method depends on the controllability constraints that are
encoded by the plan p;.

For cases involving specific styles or functions, we use an embedding-based proxy for usefulness:

Z/[Func = (bsim(fT (tstyle) 5 fV (Uout)> 5

This metric measures whether the generated video matches a target style or condition within a shared
representation space.

Diversity. Regarding video diversity, this metric reflects both motion variety and semantic breadth. We
define V = {v | (v,t) € M} as the set of generated videos.

To evaluate dynamic variety, we measure motion magnitude using a motion score based on optical flow(Teed
& Deng, [2020). This score is calculated using the following equation:

motion_score(v Z |Q| Z 17— rt1(%)]]

xeN

In this formulation, f._,,4+1 represents the optical flow field from frame 7 to frame t 4+ 1 over the pixel
domain €2, and T represents the number of frames. In practice, we calculate optical flow using methods such
as RAFT and aggregate the average flow magnitude over all frames to determine the motion score for each
video (Liao et al., [2024)).

In terms of semantic diversity, we use a metric similar to the Inception Score over videos. This approach is
widely adopted in the evaluation of video generation. Following the standard Inception Score formulation
(Salimans et al. 2016]), we define the metric as follows:

Dyemn = exp(Evny [Drcr (p(ylv) | p(y))]) .

In this definition, p(y|v) is the label distribution predicted by a pretrained classifier(Saito et al.| |2017). The
term p(y) represents the marginal label distribution.

6.3 Trustworthy Metrics for Vision-Language Data

6.3.1 Image-Text

Safety. Safety aims to prevent the generation of harmful content across different modalities. It also focuses
on reducing multimodal attack surfaces such as image-based prompt attacks and jailbreaking conditioned
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on images (Liu et al.| [2024c). The MM-SafetyBench framework investigates these prompt attacks and
demonstrates that images relevant to a query can significantly increase the success rate of an attack. This
finding supports the hypothesis that query-relevant images activate the alignment module for vision and
language. Since this module is often trained without specific safety constraints, its activation can weaken the
ability of the model to identify harmful requests (Liu et al., [2024c]).

Furthermore, the benchmark notes that a low attack success rate is not always clear. It might indicate that
the model is properly aligned for safety, or it could simply mean that the model fails to understand the
malicious query. To address this uncertainty, MM-SafetyBench emphasizes refusal behavior. This approach
helps to distinguish between a model that recognizes and refuses a harmful request and one that simply fails
to comply because of a lack of understanding. In practice, achieving a low attack success rate while keeping
the expected refusal behavior remains a difficult task (Liu et al., [2024c]).

The benchmark also shows that adding a safety prompt can significantly lower attack success rates for models
that are better at following instructions. For other models, these improvements are smaller. The authors
suggest that the effectiveness of safety prompts depends on how well the underlying model follows instructions
(Liu et al., [2024c).

Following MM-SafetyBench, we report Attack Success Rate (ASR) and Refusal Rate (RR) on a query set D:

> qen 1(a) >_qep R()
ASR ==L~ RR= =1
1D |D|
Here I(q) = 1 if and only if the model engages with the disallowed request under query ¢, for example
by providing prohibited content or actionable instructions; otherwise I(q) = 0 (Liu et al., 2024c|). We set

R(g) = 1if and only if the model begins with a refusal to satisfy the unsafe query, using the refusal definition
in MM-SafetyBench; otherwise R(q) = 0 (Liu et al., [2024c]).

In implementation, refusal detection can be instantiated with a predefined refusal-pattern matcher, and it can
be strengthened with a judge ®g for more robust refusal identification. We report RR over all queries in D.
To quantify over-sensitivity at the system level, we additionally evaluate a benign subset Dyenign constructed
separately, and report RRpenign, the refusal rate on benign queries. This serves as a practical system-level
proxy inspired by safety-awareness benchmarks such as MMSafeAware (Wang et al.l 2025), which include
benign subsets to capture harmless requests that are mistakenly treated as unsafe. MMSafeAware focuses on
safety awareness and recognition, whereas RRycnign Operationalizes the downstream refusal behavior under
benign inputs.

Provenance. Regarding provenance, this property tracks the verifiable origin, attribution claims, and
modification history for multimodal outputs. C2PA version 2.2 provides signed content credentials that
support an auditable provenance chain (Coalition for Content Provenance and Authenticity], |2025). In
addition, SynthID-Image enables invisible watermarking for imagery generated by artificial intelligence to
facilitate detection and traceability (Gowal et al., [2025; [Google DeepMind), 2025). We define the credential
validation rate over the set of generated multimodal samples as follows:

Ratevalidatc = E ‘/;2pa
|Mgen|

mEMgen

In this definition, the indicator function Vop, results in a value of either zero or one. The value is zero when
no C2PA manifest or credentials are present. The value is one when the validator returns a manifest state
that is at least Valid, or Trusted under a stricter setting, depending on the chosen trust model. To clarify,
the manifest states of Well-Formed, Valid, and Trusted reflect three distinct properties. These include the
well-formedness and cryptographic integrity of the manifest, the verification of the signature, and the trust
status of the signing credential under the adopted trust configuration (Coalition for Content Provenance and
Authenticity, [2025).
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6.3.2 Video-Text

Safety. The Harmful Content Rate measures the failure to prevent video generation that violates policies
during adversarial evaluation. This approach is inspired by T2V SafetyBench, which creates malicious prompts
such as real-world prompts, prompts generated by GPT-4, and prompts based on jailbreak attacks. That
framework evaluates videos using a GPT-4 based assessment together with manual review for validation. We
define the Harmful Content Rate using a safety evaluation pipeline ®g. This pipeline may involve judging by
LLMs along with optional human review and detector-based checks (Miao et al., 2024)).

We define this metric as follows:

HCR =

[{v € Vaay | is_unsafe(v, @g) = true}|
|Vadv‘ 7

In this equation, V.4, represents the set of all successfully generated videos under adversarial prompts.
Beyond measuring the number of unsafe generations, T2VSafetyBench provides three findings that are useful
for system-level safety evaluation. First, no single model performs well across all safety aspects. Second,
assessments by GPT-4 correlate well with manual reviews, which supports the use of large-scale automatic
judging. Finally, a trade-off exists between model capability and safety. This suggests that safety risks may
increase as video generation technology improves (Miao et al.l [2024)).

Provenance. Watermark-based provenance evaluates the robustness and the trade-off between payload
and quality for generated videos. When using an original watermark w that consists of L bits, an attack
A, and a recovery procedure R, we measure robustness using bit accuracy. For a generated video v, this is
defined as follows:
da(w, R(A(v)))

7 .
We define the payload and fidelity cost using the following equations:

Prob =1 —

PLoaa = L, Pcost = A(Vvoriv U)-

In these expressions, Pro.q represents the payload per video in bits. The variable V,,; represents the
corresponding baseline video that was generated without a watermark using the same prompt and seed. The
term A measures the perceptual distortion that is introduced by the process of embedding the watermark.
For example, this can be calculated by averaging the frame-wise Learned Perceptual Image Patch Similarity
over sampled frames to measure frame-level distortion. One can also use the Frechet Video Distance to
evaluate quality degradation at the level of the distribution.

These estimates can be used together with signed credentials and invisible watermarking for video content.
Specific examples include LVMark for latent video diffusion model watermarking and V2A-Mark for visual and
audio watermarking with tamper localization. These tools support traceability and detection in downstream
tasks. Furthermore, they can complement provenance mechanisms that are cryptographically verifiable such
as C2PA (Coalition for Content Provenance and Authenticity, [2025} |Jang et al., [2025; |Zhang et al., |2024€]).

6.4 Evaluation Practice Gap

We analyze representative methods from Section [6.1] and categorize their reported evaluation protocols in
Table

Diversity. Compared with fidelity, diversity is less consistently evaluated in research related to vision and
language generation. A practical reason is that commonly reported diversity proxies such as the Inception
Score combine quality and coverage. However, stronger measures such as intra sequence embedding diversity,
judge based diversity, or video diversity based on motion entropy require additional modeling choices. These
measures also require reliable feature extractors or judges and careful control of prompt distributions. In
addition, diversity is closely linked with alignment. Increasing variety in a simple way can reduce the
agreement between text and images. For this reason, many papers choose to prioritize faithful rendering over
broad coverage. As a result, diversity is frequently treated as a qualitative claim or a secondary proxy. This
leaves a gap for standardized and reproducible diversity panels that separate breadth from alignment.
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Generation method Validity Fidelity Diversity Utility Safety Provenance

Kosmos-G (Pan et al., [2024) X v X A X X
GILL (Koh et al.l [2023) X v X v X X
LVD (Lian et al., 2024]) A v X v X X
FlowZero (Lu et al., 2023) A v X A X X
VideoDirectorGPT (Lin et al., |2024) v v v v X X
SynthID-Image (Gowal et al. 2025) X v X X X v

Table 6: Whether representative vision-language methods explicitly evaluate each dimension in their
experimental sections. v': explicitly evaluated; A: partially /indirectly covered; x: not reported or not
applicable.

Safety. Although vision-language models are becoming widely used, most evaluations still focus mainly on
fidelity metrics such as realism and alignment. In contrast, safety is often treated as a secondary concern. It is
usually addressed only through indirect measures such as brief qualitative discussions or data filtering rather
than being measured in a systematic way. One major challenge is that multimodal safety involves a wide
range of potential attacks. Examples include visual prompt injections and jailbreaks that are conditioned on
images. Furthermore, a low success rate for attacks can be difficult to interpret. This result might mean that
the model is safe or it might simply mean that the model failed to understand the malicious query. Finally,
safety evaluation has two goals. These include stopping harmful responses and avoiding the refusal of safe
requests. This balance makes it both difficult and costly to standardize safety reports.

Provenance. Provenance metrics are rarely reported in standard generation papers. This is mainly because
measuring provenance requires additional infrastructure such as cryptographic credentials or watermarking
systems. It also requires testing the model against changes in the real world such as compression, cropping, re
encoding, or editing. However, as generative models become more capable and synthetic content spreads more
widely, establishing verifiable provenance through robust and measurable watermarks is becoming essential
for tracking content, ensuring accountability, and building trust.

6.5 Usages

Recent methodologies increasingly use synthetic vision and language data across four primary functional
paradigms. This trend is largely independent of the underlying generation backbone. These paradigms include
supervised finetuning, preference based alignment and reward modeling, data curation and remediation for
weak supervision, and evaluation centered on safety or structure. In these contexts, synthetic image and text,
video and text, and document vision and language samples serve not only as supplementary data but also as
scalable supervision sources, explicit alignment signals, and controllable probes for assessing robustness and
safety.

Supervised Finetuning. Significant research effort has been directed toward constructing large-scale and
structured multimodal instruction datasets through synthetic captioning and automated prompt curation
to drive supervised finetuning. Broadly speaking, these initiatives scale supervised finetuning along two
principal axes. The first axis is modality coverage, which extends from static images to video. The
second axis is semantic granularity, which progresses from generic captions to instance-level and OCR-aware
instructions. Advancements along both of these axes have demonstrated strong correlations with improvements
in downstream performance.

In the video domain, LLaVA-Video-178K introduces a largely synthetic instruction-following corpus that was
assisted by GPT-40 and included human involvement in the pipeline. This dataset comprises detailed captions,
open-ended question answering, and multiple-choice tasks, which yields consistent improvements in video
large multimodal model training (Zhang et al., |2025¢). To address text-rich imagery, TextSquare, also known
as Square-10M, leverages closed-source multimodal LLMs to scale synthetic image and text instructions to
the order of tens of millions. When this approach is utilized for large-scale supervised finetuning, it exhibits
near-monotonic performance gains relative to the scale of the data (Tang et al., 2025)).
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Similarly, LLaVAR-2 integrates human-annotated captions with filtered instructions generated by GPT-4o0 to
curate a high-quality and text-centric supervised fine-tuning dataset (Zhou et al., 2024). For the purpose of
targeting instance-level grounding, Inst-IT synthesizes explicit visual-prompted instructions for continuous
supervised fine-tuning. This method enhances instance-grounded understanding and demonstrates effective
transfer to generic benchmarks (Peng et all 2024). Concurrently, dense and high-fidelity synthetic captions
have proven effective for supervision. For example, ShareGPT4V and ShareGPT4Video demonstrate that
large-scale synthetic captioning directly benefits both supervised finetuning and unified large vision-language
model pre-training (Chen et al.| [2023b; |2024al).

Preference alignment and reward modeling. Beyond standard Supervised Finetuning, synthetic data
plays a pivotal role in constructing pairwise preferences and training reward models. For video generation,
VideoDPO proposes an automatic pipeline that generates multiple videos for each prompt and scores them
using a multi-dimensional metric called OmniScore. This pipeline forms score-ranked preference pairs
consisting of the best and worst samples. These pairs are further re-weighted during Direct Preference
Optimization to prioritize distinctive and high-impact samples (Liu et al., [2024a)).

Similarly, the work titled Improving Video Generation with Human Feedback leverages multi-dimensional
human preferences regarding synthetic videos to train a VideoReward model. This reward model then guides
generators through both Direct Preference Optimization objectives and reward-weighted inference (Liu et al.|
2025a)). In the domain of vision and language, VLFeedback provides more than 82,000 feedback instances
annotated by artificial intelligence. These instances include preference labels and rationales across helpfulness,
visual faithfulness, and ethical and safety aspects. Applying Direct Preference Optimization to VLFeedback
to train the Silkie model improves helpfulness, visual faithfulness, and safety-related metrics. Experimental
results show that applying this optimization method to such feedback significantly enhances the helpfulness,
visual faithfulness, and safety of the models (Li et al.| [2024b)).

Data curation, error correction, and failure-targeted synthesis. Synthetic data is also instrumental
in refining noisy real-world data, repairing weak labels, and generating hard negatives to expose model failures.
For example, CapFusion leverages a LLM to consolidate and refine information from both noisy web-based
image and text pairs and model-generated synthetic captions. This process produces higher-quality and more
scalable supervision for multimodal pre-training (Yu et al., [2024b)).

In the area of structured graphics, CHOCOLATE provides a human-annotated benchmark and a typology
of factual errors in chart captions. This work also establishes the task of factual error correction for chart
captions. It further introduces ChartVE, which is a reference-free visual entailment metric for chart and
caption factuality. Additionally, the authors propose C2TFec, an interpretable two-stage framework that
converts charts into tables before using a LLM to rectify factual inconsistencies (Huang et al., |[2024a).

For document understanding, SynthDoc synthesizes bilingual document images containing text, tables, and
charts. This study demonstrates that training OCR-free parsers similar to the Donut model on such data
improves pre-training read tasks and downstream robustness, even when language inconsistencies are present
(Ding et al., 2024).

Safety alighment and evaluation. Beyond general capabilities, synthetic data is essential for red teaming
techniques. These techniques involve generating harmful and helpful responses along with preference pairs to
stress-test the safety of vision and language models. For instance, SPA-VL creates 100,000 image-instruction
quadruples that feature chosen and rejected responses across six specific harm domains. This dataset is
designed to support safety training based on Proximal Policy Optimization or Direct Preference Optimization
(Zhang et all 2025d)). Beyond alignment based on preferences red teaming also requires stress testing failure
modes that could lead to behavior that is not safe in an indirect manner. This includes visual scenes containing
a large amount of text where optical character recognition and misunderstandings of the layout can result
in interpretations that are harmful. Regarding evaluation, OCRBench v2 extends text-rich scenarios with
human-verified questions to strictly examine the optical character recognition and structure understanding
capabilities of large multimodal models (Fu et al.| [2025).
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Based on the discussion above, combining these distinct roles reveals that synthetic vision and language
data has evolved into a fundamental infrastructure for post-training. This data not only scales supervised
instruction learning but also provides explicit signals for alignment. Furthermore, it enables the repair of
weak cross-modal supervision and supports rigorous safety and structural evaluations within an ecosystem
driven by LLMs.

7 Agent Data

Within the framework of digital twins and embodied artificial intelligence, we analyze agent data generated
by LLMs from the perspective of the final data product utilized in practical applications. This approach is
motivated by the perspective that world models function as internal simulators that capture environment
dynamics and enable forward as well as counterfactual rollouts to support perception, prediction, and decision
making (Li et al., 2025b)).

We classify the practical data products used in digital twins and embodied artificial intelligence into three
primary categories. The first category is environment and task data, which describes world setups and
task-oriented scenario configurations (Ruan et all |2025). The second category consists of control and decision
data, which captures policies, action traces, and other control decisions for steering agents and simulations.
This includes LLM multi-agent parametrization trajectories and sequential control plans in digital twin
simulations (Xia et al.l [2024). The third category is perception and telemetry data, which focuses on observed
sensor streams and logs.

A key feature of this taxonomy is that it classifies data based on its primary use. For instance, mixed artifacts
such as trajectory logs are assigned to a category based on whether they primarily serve to design testbeds,
train agent behaviors, or monitor system health. Based on this data-product perspective, egocentric streams
that are typical of embodied agents and exocentric telemetry common in digital twins can be integrated
into a single taxonomy according to their main application. This classification remains compatible with the
broader world model perspective that connects perception, dynamics, and control across different domains
(Li et all 2025b)).

7.1 Generation Methods

Environment and task data. Environment and task data include the specifications required to initialize
an episode. These specifications define the appearance of the environment, the entities or agents that are
present, and the goals and constraints that constitute a valid simulation run.

In urban traffic simulation settings, LLMs parse free-form requests into structured keywords such as a
dictionary of scenario fields. These keywords then drive the generation of scriptable configurations and
parameters for urban mobility testing (Li et al., 2024¢). Multimodal pipelines extend this concept to rare
and difficult situations by generating realistic corner cases along with runnable tests that target the long tail
of driving scenarios (Lu et al.| [2024)). Other complementary pipelines convert operational design domain
descriptions into scripts compatible with ScenarioRunner for simulation-based testing (Danso & Biiker) 2025)).

Beyond traffic applications, semantic digital twins use LLMs to connect domain concepts to mission-level
plans and recovery strategies. In these systems, the digital twin provides the domain concepts and interaction
rules, while the LLMs generate structured action descriptions and recovery behaviors that can be executed
and monitored within the twin (Naeem et al.| 2025)). At the enterprise level, work oriented toward Industry 5.0
proposes an Interactive-DT framework. In this framework, LLMs act as interactive interfaces and intelligent
agents across the edge, digital twin, and service layers. This supports the construction and operation of
digital twins, collaboration between cloud and edge systems, and advanced data analytics. This research also
identifies integration challenges such as unreliability driven by hallucinations which may have safety impacts,
as well as bias, inference speed constraints, interoperability, and secure deployment according to standards
(Chen et all 2025a)).

In the area of embodied artificial intelligence, long-horizon planners such as L3M+P generate PDDL problems
and maintain world-state graphs that can be instantiated into many concrete tasks and goals (Agarwal
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et al |2025b). Safety-focused planners such as SELP translate natural language tasks into temporal logic
specifications and use equivalence voting to improve the robustness and consistency of the mapping from
natural language to logic. Following this, constrained planning enforces the resulting safety constraints
during execution (Wu et all [2025)). Self-correcting frameworks such as the T3 Planner verify plans against
spatio-temporal logic and repair them when needed. This process produces verified plan and trajectory traces
that can be recorded as supervision for evaluation or learning under explicit constraints (Li & Zhaol [2025)).
Large-scale multi-agent benchmarks such as PARTNR also belong to this category. In these benchmarks,
LLMs help design and decompose collaboration tasks, ground them into simulators, and export them as
standard task collections together with planner baselines (Chang et al. |2024]).

Control and decision data. Control and decision data describe how agents act once an environment
and task have been fixed. In digital twin settings, LLM agents can operate in a closed loop with the
simulator. These agents read simulation data through a data interface and output parameterized application
programming interface or function calls, which are often serialized as JSON, through a control interface to
adjust simulation parameters. They then iteratively summarize outcomes for the next cycle.

Running such agents yields cycle-level traces that include simulation data, control parameters, and agent
summaries. These traces are recorded as simulation logs and can be compiled into a concise sequential
control or parametrization plan for offline analysis and what-if evaluation (Xia et al.| [2024). In safety-
critical infrastructures such as power grids, control policies coordinated by LLMs are executed inside digital
twin sandboxes where numerical solvers validate stability and safety. The resulting control sequences and
trajectories support stress tests and control studies without affecting the real system (Zhang et al.| [2025¢)).

For human-centered digital twins, persona simulations based on LLMs can act as silicon samples for digital
experimentation. Academics may use them for pilot experiments to identify impactful stimuli, while firms
may explore strategies for customer insight and product development (Toubia et all 2025). Persona-based
behavior-chain benchmarks such as BehaviorChain quantify the extent to which current LLMs can faithfully
simulate continuous human behavior (Li et al., |2025al).

In embodied artificial intelligence, LLMs can also augment demonstration and trajectory data more directly.
For instance, LLM Trainer performs offline demonstration annotation and online keypose retargeting to
adapt demonstrations to new scenes and generate additional imitation trajectories with minimal human
input (George & Farimani, [2025)). Frameworks such as ELLMER integrate high-level language-driven task
decomposition with low-level execution using vision or force feedback and retrieval-augmented code examples
to solve long-horizon tasks. The resulting executions naturally produce rich interaction traces that can be
recorded for analysis (Mon-Williams et al, 2025)). Program-structured approaches such as Instruct2Act and
ProgPrompt leverage executable or program-like representations to ground instructions in available actions
as well as perception and planning loops in some systems. This enables a more modular analysis of which
components are necessary (Huang et al.l |2023} Singh et al., 2022). When execution logs contain both actions
and rich observations, we treat them as control and decision data in this survey if their main use is to study
or improve behavior rather than perception.

Perception and telemetry data. Perception and telemetry data focus on what is observed and recorded
in digital twin and embodied environments, as well as on how these observations are generated and labeled.
In digital twin pipelines for defect inspection, Defect Twin integrates a LLM driven multimodal pipeline to
analyze multimodal inputs such as images. This system generates detailed defect descriptions and utilizes
user interaction and feedback loops to support defect analysis and maintenance workflows (Ferdousi et al.l
2024)). In digital twins for autonomous driving based on camera and LiDAR sensors, a LLM interface enables
online scenario editing through natural language prompts. These prompts allow for actions such as adding or
removing assets, changing positions, or modifying appearances. This supports photorealistic and physically
interactive simulations with sensor visualization and real-time interfacing with autonomous driving software
stacks (Samak et al., 2025)).

Similar workflows support egocentric data categories for embodied agents. LLM agents can produce Python
scripts executable in Blender that retrieve and arrange 3D assets under spatial constraints derived from scene
graphs. These agents render images and iteratively refine scenes through feedback from vision language
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models (Hu et al.| [2024). LLMs can also be trained to generate Blender scripts for programmatic 3D object
creation. The pipeline can render multiple views such as several images from different angles to increase
visual diversity without manual modeling effort (Du et al., |2024). End-to-end pipelines based on mobile
LiDAR enable rapid reconstruction of digital twin assets and can incorporate semantic enhancement guided
by large vision language models into the reconstructed 3D representation. The resulting twins can be exported
through formats such as OpenUSD for immersive inspection and downstream editing in platforms such as
NVIDIA Omniverse (Gholizadeh HamlAbadi et al., 2025)).

Across these examples, perception and telemetry data are primarily used for transfer learning, domain adap-
tation, and scalable evaluation using methods such as language-conditioned scoring or anomaly descriptions.
In embodied setups, data consist of interaction traces in which observations are explicitly paired with agent
actions, often following a partially observable Markov decision process formulation (Li et al.l |2025b). In
contrast, exocentric telemetry in digital twins is often structured for tracking past behaviors, monitoring
current behaviors, and predicting future behaviors to support decision making as well as operations and
maintenance (Deng et al.| [2021} Bofill et al.| [2023)).

7.2 Quality Metrics for Agent Data

This section formalizes four metric families for agent data, which include validity, fidelity, diversity, and
utility, and provides explicit definitions for each. We draw evaluation semantics from multi-agent embodied
benchmarks such as PARTNR, text-to-traffic-scene evaluation on CARLA (Dosovitskiy et al. 2017)), and
world model or video assessments (Chang et al., |2024; [Ruan et al., 2025; [Li et all [2025b]). We consider
trajectories defined as:

T = (80,00,71,81,--+,47—1,7T, 5T)

and a dataset of generated trajectories denoted by:
Agen = {m}y,  m= (a0 r 80, ) el s)

In this formulation, s; represents the state or observation at step ¢, a; represents the action including tool
or application programming interface calls, and r;y; denotes the reward or feedback associated with the
transition from (s¢, at) t0 Sty1.

Validity. Validity measures whether generated agent data respect basic syntax, structural constraints, and
executable preconditions. The action executability rate over all generated trajectories is defined as follows:
N Ti—1 ‘
ExecRate = Z Z {actlon ay () executes without error in sgl)} .
1 Ti 73 =0

Task success is a binary indicator of whether all goal predicates are satisfied at the end of an episode. Over
N episodes, the success rate is calculated by the following formula:

N
1 . . . .
SRyalid = N g 1{all task goals satisfied in episode i} .

=1

To capture partial completion, the percent complete metric reports the achieved fraction of goal predicates at
termination. For a goal set G and an achieved subset G(7;), the metric is defined as:

Gl

PC(r;) = i

The PARTNR benchmark defines task evaluation functions using propositions together with dependencies and
constraints such as temporal constraints. It computes percent completion as the ratio of satisfied propositions.
Success is achieved when the percent completion value equals 1.0 (Chang et al.| [2024). In text-to-traffic-scene
generation for CARLA, generation correctness is evaluated through text matching. This method uses a
binary matched or unmatched criterion between the input prompt and the rendered scene, and the results
are averaged over repeated generations (Ruan et al., 2025).
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Fidelity. Fidelity measures the degree to which synthetic observations match reference distributions and
structures. This metric is widely used in evaluations related to world models and video prediction (Li et al.,
2025b)).

The Frechet Inception Distance compares Gaussian fits of real and generated feature embeddings (Heusel
et al.l [2018)). We let px and X x represent the mean and covariance of embeddings for real samples, Tr(+)
denotes the matrix trace and we let py and Xy represent the mean and covariance for synthetic samples.
The distance is calculated as follows:

FID = ||ux — py|2 + Tr(ZX F Yy — 2(2%22@;{2)1”).
The Frechet Video(FVD) applies the same mathematical form to video embeddings that capture temporal
dynamics, where lower values indicate higher fidelity (Unterthiner et al., |2019)).

Structural Similarity compares luminance, contrast, and structure between an image x and a reference image
y (Wang et al 2004). The metric is defined by the following equation:

(2papty + C1)(200, + Co)
(,Ug% + M?/ + 01)(0'3 + 0',52/ + 02)

SSIM(z, y) =

where C7 and Cy are small positive constants introduced to avoid numerical instability when the denominators
are close to zero.

Mean Squared Error and Peak Signal-to-Noise Ratio are expressed as:
LM
MSE - M ;:1(3:1 yZ) 9
PSNR = 101, MAX®
s\ sE )

In these formulas, M represents the number of pixels or dimensions, and MAX denotes the maximum possible
value of the signal.

Learned Perceptual Image Patch Similarity computes a perceptual distance between deep feature activations
(Zhang et al., 2018). For layer-wise normalized features f}ll,w,z and f,llvw_y as well as learned weights w;, the
distance is calculated as:

1 R N 2
LPIPS(x,y) = Z H[W[ Z le © (f}lL,w,fc - filL,w,y)
l h,w

‘2'

where the symbol ® denotes the Hadamard element wise product. This operation represents channel wise
scaling performed by the learned weight vector w;.

The evaluation metrics mentioned above assume either distributional access to real samples, as in the cases
of Frechet Inception Distance and Frechet Video Distance, or the availability of paired references such as
Structural Similarity, Mean Squared Error, Peak Signal-to-Noise Ratio, and Learned Perceptual Image Patch
Similarity. However, in many conditional generation settings, paired pixel-level ground truth is not available.
In these situations, we utilize semantic prompt and outcome alignment as a reference-free proxy.

When pixel-level ground truth is unavailable, we use prompt—outcome semantic alignment as a reference-free
fidelity proxy that is widely applicable when pixel-level ground truth is unavailable is prompt and outcome
semantic alignment. This metric measures whether a synthesized outcome is consistent with the conditioning
prompt at the level of high-level semantics. Given a textual prompt or specification p and a generated
outcome o, such as a rendered image or keyframe produced from a generated scenario, we obtain cross-modal
embeddings using a pretrained vision and language model such as CLIP (Radford et al.l [2021)).

We let fr(-) and fy () denote the text and vision encoders, and we let

ep = fr(p), eo = fv (o)
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be the resulting embeddings. We define the prompt and outcome semantic alignment score by cosine
similarity:

. e; €o
SemAlign(p,0) = —————,
lepllz lleoll2
where || - ||2 is the ¢3 norm and higher values indicate stronger semantic agreement. Over N prompt and

outcome pairs {(p;,0;)}¥;, the mean semantic fidelity is calculated as:
1N
SemFid = N ; SemAlign(p;, 0;).

The mean semantic fidelity summarizes the semantic consistency between conditions and synthesized outcomes
without requiring a reference image for each prompt. This approach is closely related to CLIP-based and
reference-free evaluation metrics used in vision and language generation (Hessel et al.l [2022]). When a discrete
correctness signal is preferred, such as a matched or unmatched criterion, one may threshold the semantic
alignment score and report the resulting match rate:

N
1
MatchRate(7) = N Z 1{SemAlign(p;,0;) > 7},

i=1

where 7 is a similarity threshold and 1{-} is the indicator function.

Diversity. Diversity captures the coverage of modes, long-tail concepts, and non-templated variety within
the generated data. In the context of text-to-traffic-scene generation, diversity can be quantified using agent
diversity(AD) and road diversity(RD). Both of these metrics are computed as the ratio of unique elements to
total elements across repeated generations. Specifically, agent diversity accounts for variations in agent type,
action, and relative position, while road diversity is calculated based on unique road identifiers (Ruan et al.|
2025)).

For observation-level evaluation of generated videos or world model rollouts, the VBench framework decomposes
video generation assessment into complementary axes such as subject consistency and temporal Quality. An
example of temporal Quality is motion smoothness. This framework also separately evaluates the consistency
between the video and the condition, which refers to how well the output adheres to the given conditions or
prompts. These axis-wise scores provide fine-grained evidence regarding strengths and weaknesses across the
prompt and condition space (Huang et al., [2024b; |Li et al. |2025b)).

Utility. Utility measures downstream effectiveness during training or evaluation with synthetic agent data.
The success rate over N evaluation episodes with binary success indicators s; taking values of zero or one is
defined by the following equation:

1 N
SReval = N Z Sq-
=1

To quantify efficiency, we define L; as the number of environment steps used in episode i:
1
SimSteps = N Zl L;.
1=

In collaborative settings, task offloading measures the division of labor. We let ngr) be the number of sub-tasks

or propositions completed by the robot in episode ¢ and n; be the total number of completed sub-tasks. The
metric is expressed as:
1 N n(r)
A i
Offloading = — E

i=1

%
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For partial task completion at the episode level, we reuse the percent complete metric:

PC(Ti) — |é(7-1)|

In SafeBench-style CARLA driving evaluation, the collision rate (CR) is defined as the expected collision
indicator (or count) over evaluation scenarios 7:

CR =E,~plc(1)],

where ¢(7) denotes the collision signal in scenario 7. In many episodic driving setups where an episode
terminates upon the first collision (or collisions are binarized), ¢(7) € {0,1} and CR can be interpreted as
the proportion of episodes that contain at least one collision. Lower values indicate better safety performance
(Xu et al.| [2022; |Zhang et al., 2024b|). The overall score is a composite metric that aggregates driving metrics
related to safety, functionality, and etiquette by using weights specified by the benchmark. In practice, the
overall score is commonly interpreted as a measure of ego-vehicle driving performance where higher values
are preferred. Conversely, adversarial scenario generation or selection may instead aim to reduce the overall
score by constructing more challenging conditions.

Reinforcement learning studies also report the discounted return per episode:
o0
Gy = Z’Yk Tt+k+1,
k=0

This return, as well as the average return across episodes, is used to assess whether synthetic data improves
policy performance or sample efficiency.

7.3 Trustworthy Metrics for Agent Data

In practice, the evaluation of agent data generated by LLMs has primarily focused on safety. This focus
examines whether trajectories, scenarios, and plans avoid dangerous states and behaviors that break established
rules. Other dimensions of trustworthiness, such as fairness and privacy, are significantly less developed
in current benchmarks for embodied agents and digital twins. Therefore, we treat these aspects as open
directions for future research and focus our current discussion on safety metrics.

Safety. Safety measures whether trajectories, scenarios, and plans generated by LLMs avoid hazardous
states and rule-breaking behaviors and satisfy explicit safety constraints, independent of task completion. In
practice, safety is often assessed through infraction and collision metrics defined by simulators in driving
benchmarks, such as suites based on CARLA like SafeBench. It is also evaluated through the satisfaction of
formal specifications in pipelines for constraint-enforced planning and motion planning (Xu et al., [2022; [Wu
et al.l [2025; [Li & Zhao, 2025). Systems for text-to-scenario generation further emphasize the production of
standardized scenario files and simulator testing reports that include monitored evaluation indicators (Cai
et al., 2025).

Rule violations include basic traffic infractions such as running red lights, driving the wrong way, lane-keeping
violations, and speeding. A generic per-episode violation rate can be calculated as:

<

i
)
i

&

1 N
RVR:N;

where V; represents the total number of rule violations in episode i, and E; represents an exposure term such
as the number of decision steps T; or the distance traveled.

In practice, CARLA-based benchmarks frequently report specific categories of violation metrics such as
collisions, red-light running, stop-sign running, out-of-road distance, and lane invasion rather than a single
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aggregated count (Xu et al.||2022). An exposure-normalized violation rate for a specific infraction type ¢ can
be defined as follows: "
N t
1 _ iz Vi
RVR(") = ==Lt
> i dist;
where Vi(t) is the number of infractions of type t¢ in episode i. This style of reporting is also used in
CARLA Leaderboard results where multiple infraction types are shown as infractions per kilometer (CARLA
Autonomous Driving Leaderboard, [2025b)). Fine-grained violation counts for each specific type additionally
enable a more detailed diagnosis than aggregate success or return (Cai et al., 2025; | Xu et al.| |2022]).

Route incompleteness measures the extent to which the planned route remains unfinished at the end of a

scenario:

RI—1 distance completed

~ planned route length’

Higher values for this metric indicate early termination or a failure to follow the designated route. In
CARLA-style evaluations, route progress or completion is commonly reported together with violation and
collision metrics. This approach helps to distinguish safe task completion from instances of early stopping or
unsafe driving (Xu et al., [2022).

Speed-related compliance and infractions capture whether an agent drives too slowly or too fast relative to
legal or context-dependent bounds. A simple minimum-speed compliance rate is defined as follows:

T
MSCR — ;;H(U(t) > Uin (1))

where vnin(t) is a context-dependent minimum-speed requirement such as a speed determined by nearby
traffic. The CARLA Leaderboard explicitly penalizes the failure to maintain minimum speed as part of its
evaluation criteria (CARLA Autonomous Driving Leaderboard) |2025a)). More generally, one may also track
speed-limit compliance within specific bounds when such information is available in the simulator or map.

Comfort and smoothness often serve as indicators for aggressive or risky maneuvers. CARLA-based diagnostic
reports may include kinematics-based indicators such as average acceleration and yaw velocity (Xu et al.,
2022)). For example, if a(t) represents the acceleration and w(t) represents the yaw velocity, these can be
quantified as follows:

ACC =E,.placc(r)],

YV =E,.ply(r)].

Furthermore, more sensitive smoothness indicators can be computed, such as root-mean-square jerk and the
hard-braking rate:

a(t+1) — a(t—1)

)
2At

)

1 T-1
JerkRMs = T_9 Z
t=2

1
HardBrakeRate = T

B

I(ag(t) < —7),

o~
I

1

where a,(t) is longitudinal acceleration and 7 is a braking threshold. These smoothness metrics help to
characterize the trade-off between safety and efficiency while complementing collision and completion metrics.

Formal safety satisfaction measures the fraction of executions that satisfy a temporal-logic specification ¢,
such as those defined by Linear Temporal Logic (LTL) or Signal Temporal Logic (STL). If 0(¥) represents the
execution trace for episode i, then the safety satisfaction rate is defined as follows:

N
1 .
= — (@)
SafetySat N ;Zl I(c" = ¢).
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The SELP framework improves the safety rate by mapping natural language to Linear Temporal Logic and
enforcing constrained decoding, while the T3 Planner utilizes Signal Temporal Logic verification in the loop
to increase the satisfaction rates of motion plans (Wu et al. 2025} [Li & Zhao, 2025).

Hazard rejection and risk are safety-specific metrics for embodied LLM agents that capture how these agents
respond to explicitly hazardous tasks. Given a set of labeled hazardous tasks H and a set of safe tasks S, the
hazard rejection rate and risk rate are defined as follows:

1
Rejection = o] Z [(agent refuses h),
e
1
Risk = — Z I(agent executes h).
Il

SafeAgentBench reports a low rejection rate and non-trivial risk for current embodied LLM agents, which
motivates the explicit tracking of these quantities (Yin et al. 2025]).

Time-to-Collision is a widely used proximity-based surrogate safety indicator in traffic safety assessment.
Given the relative longitudinal distance d(t) and closing speed d(t) < 0, the instantaneous Time-to-Collision
and its minimum over an episode are defined as follows:

)
TTCO(t) = { —d(t)’ A =0

+oo, d(t) >0,
minTTC = mtin TTC(t).

Lower values for the minimum Time-to-Collision indicate a higher risk of collision (Ward et al.l [2015; [Sharath
& Mehran| 2021]).

Minimum Distance to Collision is another commonly used proximity-based indicator. It is defined by using
the positions of the ego agent pego(t) and the other agent poner(t) as follows:

MDC = Intin Hpego (t) — Pother (t)H .

Lower values for the Minimum Distance to Collision indicate higher collision risk (Gao et al., |2025).

These proximity measures based on Time-to-Collision and Minimum Distance to Collision have also been
adopted when evaluating traffic scenarios generated or selected with the aid of LLMs (Gao et al. [2025]).

Violation diagnosis accuracy evaluates the reliability of automated detectors, including auditors based on
multimodal LLMs, when used to identify safety violations or accidents from logs, images, or narratives. This
accuracy is typically summarized by standard classification metrics such as precision, recall, and the F1 score
(Skender et al., 2025). Additionally, the SeeUnsafe framework proposes a multimodal LLM agent for traffic
accident analysis and introduces an Information Matching Score to align structured model responses with
ground truth data (Zhang et al.| [2025b)).

7.4 Evaluation Practice Gap

We analyze representative methods from Section and categorize their reported evaluation protocols in
Table

Diversity. Regarding diversity, the scope of evaluation in current agent data generation remains limited. Our
analysis shows that only generation from text to traffic scenes explicitly reports diversity metrics. In contrast,
other representative methods do not provide quantitative measures of coverage or variation that is not based
on templates under repeated sampling. Consequently, although these methods allow for comparisons of
success rates or efficiency, it remains difficult to determine from existing experiments whether the generated
data meaningfully expands the coverage of behavior modes, tasks, or scenarios.
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Generation method Validity Fidelity Diversity Utility Safety

TTSG (Ruan et all[2025) v N v v v
PARTNR (Chang et al., 2024]) v X X v X
SELP (Wu et al., |2025) v X X v v
Grid-Agent (Zhang et al., |2025c¢) v X X v A
T? Planner (Li & Zhao| |2025)) v A X v v

Table 7: Whether representative agent-data generation methods explicitly evaluate each dimension in their
experimental sections. v': explicitly evaluated; A: partially /indirectly covered; x: not reported or not
applicable.

Fidelity. Regarding distribution level fidelity, evaluations are mostly focused on proxies for consistency
and correctness instead of direct tests for distributional alignment. In our representative set, the generation
from text to traffic scenes reports prompt scene matching as a consistency proxy. In contrast, methods
centered on planning and control focus mainly on success rates, completion, and constraint satisfaction.
These methods include SELP(Wu et al., 2025), PARTNR (Chang et al., [2024]), and Grid Agent(Zhang et al.,
2025¢)). These studies generally do not report metrics that compare synthetic trajectories or plans to reference
data distributions. As a result, while consistency proxies are partially covered, the statistical proximity of
synthetic agent data to reference distributions is still mostly unvalidated.

Diagnostic Safety. Concerning the diagnosis of safety issues, current reporting relies heavily on broad
benchmark metrics such as those related to collisions in evaluations using the CARLA simulator. It also relies
on the implicit satisfaction of specifications such as adherence to linear temporal logic or signal temporal
logic. These methods are used instead of detailed and specific diagnostics for different types of violations.
In our representative set, the generation of traffic scenes reports signals related to collisions. Meanwhile,
the SELP(Wu et al.l [2025) and T? Planner (Li & Zhao, [2025) methods mainly focus on the satisfaction of
formal constraints. In contrast, other approaches mainly report success at the task level. This includes the
completion of tasks or the resolution of violations. However, they do not provide an independent breakdown
of safety violations for each specific type. As a result, although current evaluations can show whether safety
constraints are met, they provide limited diagnostic detail for identifying and explaining specific modes of
safety failure.

7.5 Usages

Having discussed the generation of agent data, we now focus on its practical applications. This section
examines how trajectories, task specifications, and telemetry streams are used to train, evaluate, and refine
agents based on LLMs in both embodied and digital twin environments. We follow the same three-part
structure established previously by categorizing these applications into environment and task data for testbeds,
control and decision data for supervision, and perception and telemetry data for evaluation signals.

Environment and task data usages. Environment and task data primarily serve as a rigorous testbed
for reasoning, planning, and safety verification. In the context of lifelong planning, maintaining a persistent
memory of the world through world-state graphs is crucial. This approach enables agents to repeatedly
instantiate and solve PDDL planning problems from natural language tasks as the environment evolves,
which supports the repeatable evaluation of long-horizon symbolic planning (Agarwal et al., |2025b)).

When safety is paramount, these data specifications act as strict constraints. Safety-focused pipelines convert
natural language instructions into formal temporal logic, such as Linear Temporal Logic, and then utilize
constrained decoding guided by automata to ensure that generated plans adhere to these formal constraints
step by step (Wu et al., |2025)).

Beyond static enforcement, this data also drives self-correction. Systems often pair planners based on LLMs
with logic-based verifiers that iteratively reject and repair unsafe actions (Li & Zhao, 2025)). This iterative loop
can be logged to form trial-and-error traces consisting of failed plans, verifier diagnostics such as constraint
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violations or robustness scores, and corrected revisions. These traces are useful for evaluation and may be
repurposed for future training.

For multi-agent systems, collaboration benchmarks provide grounded and simulator-verifiable tasks. These
datasets effectively transform individual environments into collaborative evaluation suites designed to test
how well agents coordinate, track task progress, and recover from errors through language (Chang et al.l
2024)). Similarly, in digital twin settings, formal task descriptions define the distinct operational boundaries
for system controllers. These specifications are used to stress-test governance policies and verify that fallback
strategies function correctly under diverse conditions.

Control and decision data usages. Control and decision data provide direct supervision for language-
driven policies and are reused in both imitation and feedback-based learning. On the demonstration side,
recent frameworks ground decisions from LLMs in collections of trajectories. For example, combining language
understanding with value estimates learned from robot interaction data allows a model to choose actions
that are consistent with successful past behavior (Ahn et al., |2022). Programmatic control follows a related
pattern where natural language is translated into executable policies that can be directly run on robotic
platforms (Liang et al.l |2023)). More generally, executing such policies naturally produces traces including
states, actions, and failures that could be repurposed for analysis, dataset construction, or distillation into
smaller controllers. Large and heterogeneous robot logs have been pooled to train instruction-following
visuomotor policies that generalize across different robots, which enables analyses of how dataset diversity
and composition affect language-conditioned generalization (Collaboration et al.l 2025]).

The same data also drive reinforcement-style updates that are mediated by language. Automated reward
design utilizes LLMs to write and refine reward functions, which are frequently formatted as executable
code. These functions are validated through downstream policy optimization and evaluation in the target
environment, which is typically performed in simulation to enable rapid iteration over reward hypotheses
(Ma et al., 2024a; [Xie et al., [2024).

In offline settings, policies can be conditioned on language embeddings derived from LLMs and trained via
offline reinforcement learning on static logs. This approach enables generalization to unseen commands
without the need for additional interaction (Morad et al., [2024). To reduce the effort required for human
labeling, artificial intelligence feedback protocols use multimodal critics to score trajectories after they occur.
This process converts archived trials into training data for behavior shaping. For example, recent work adapts
video and language models into language-conditioned robotic reward functions that score executions directly
from video (Yang et al.l 2024c). Complementary to critic-based feedback, methods for one-video reward
inference can compute dense rewards from a single demonstration video using methods such as semantic point
correspondence and automated point tracking. This allows for trajectory evaluation and dataset filtering for
downstream policy synthesis (Shi et al., [2025a)).

In digital twins, control logs from simulation play a similar role. These logs can be relabeled, scored, and
reused to refine control policies and to analyze how controllers driven by LLMs behave under distribution
shifts or rare events.

Perception and telemetry data usage. Perception and telemetry data focus less on direct control and
more on evaluation and reward learning. Streams aligned with actions, such as egocentric or first-person
observations from cameras and proprioception, provide raw material for judging behavior and system state.
Similarly, exocentric system events, including third-person logs from external cameras, map-based states, and
simulator records, serve a similar purpose. Methods that utilize LLMs as judges evaluate diverse artifacts
and multimodal inputs along multiple criteria. The reliability of these assessments is supported by careful
design of prompts and inputs as well as strategies for consistency and bias mitigation (Gu et al., [2025; |Li
et al.l [2024a).

Vision and language reward learning can adapt video and language models into language-conditioned reward
functions using successful and failed execution videos. This process produces reward scores and signals
that can guide planning or reinforcement learning (Yang et al. |2024c). Furthermore, LLMs can propose
parameterized reward features and iteratively refine reward parameters using execution feedback. This
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refinement is achieved by minimizing ranking inconsistency between the model and the learned reward
function (Zeng et all 2024)). In the domain of driving evaluation, frameworks based on LLMs can transform
multi-source driving logs, such as surround-view videos and CAN bus signals, into structured driving contexts.
These systems then output structured assessments of driving behaviors across safety, intelligence, and comfort,
which are validated in simulation (You et al., |2025)).

Large and multi-domain observation corpora also support 4D world modeling, including geometric under-
standing and camera-conditioned video generation. These corpora provide temporally aligned video streams
with rich multimodal signals such as depth maps, camera poses, optical flow, and foreground masks. Such
data enables models to learn scene dynamics and generate videos that adhere to specified camera trajectories.
OmniWorld presents a unified resource for 4D world modeling that spans reconstruction and future-oriented
prediction needs. It introduces a benchmark centered on 3D geometric prediction and camera-controlled
video generation, which is built from a newly collected game subset called OmniWorld-Game and curated
public datasets across diverse domains (Zhou et al., [2025)).

8 Open Challenges and Future Directions

While this survey establishes a unified taxonomy for evaluating data generation driven by LLMs across
modalities, the field is rapidly transitioning from static dataset creation to dynamic and self-improving
synthesis ecosystems. Current metrics were largely designed for the era of fixed human-annotated corpora
and they face significant challenges in this new regime. Building on our established framework of quality
and trustworthiness, we highlight directions where methodological advancement is required to ensure the
sustainability and reliability of synthetic data.

8.1 From Static Snapshots to Dynamic Feedback-Loop Evaluation

Most metrics reviewed in this survey, such as diversity measured through self-similarity or fidelity measured
through distributional distance, provide only a static snapshot of a single generation round. However, practical
applications are increasingly moving toward recursive training loops where synthetic data are used to train
models that subsequently generate new data.

The main challenge is that these static snapshots fail to capture long-term system dynamics. A dataset may
achieve high scores for diversity in the first iteration yet still drive model collapse. This is a degenerative
process where distributional tails disappear and modes are over-amplified after several training and generation
cycles.

A key future direction is to move from point-wise evaluation to longitudinal trajectory monitoring. There is
a need for dynamic metrics that track the derivatives of quality over time. Such metrics would detect the
loss of support coverage, the contraction of the feature space, or the drift of error patterns across iterations.
These temporal metrics could serve as early warning signals that trigger interventions, such as mixing in
real data, rebalancing domains, or adjusting sampling strategies, before model collapse becomes irreversible.
More broadly, this shift requires meta-evaluation protocols to test whether existing metrics are sufficiently
sensitive to serve as stability controllers in feedback loops.

8.2 Redefining Fidelity: From Surface Mimicry to Process Verifiability

In our taxonomy, fidelity has traditionally measured how closely generated data match the distribution of real
world human data. For open-ended natural language tasks such as dialogue, this human-centric distributional
similarity remains central. However, for reasoning-intensive domains, this definition is becoming a bottleneck.
As reasoning-oriented LLMs begin to match or surpass average human performance, enforcing strict adherence
to human distributions may penalize correct but novel solutions. In fields such as mathematics, programming,
or symbolic logic, sounding human is less important than being objectively correct.

For such modalities, fidelity metrics must evolve from measuring mimicry, which is the distributional similarity
to human artifacts, toward measuring verifiability. Promising directions include scalable and automated
process-level rewards. These rewards may include execution feedback for code, formal proof checkers for
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mathematics, or logical consistency probes for chain-of-thought traces. The goal is to assess the correctness
and internal coherence of the reasoning process rather than its stylistic resemblance to human baselines.

8.3 Navigating the Trust and Utility Pareto Frontier

Our framework distinguishes between Quality, which includes downstream utility, and Trustworthiness, which
covers privacy, safety, and fairness. While these are often treated as separate pillars in a taxonomy, they
frequently act as competing objectives during deployment.

Mechanisms designed to increase trustworthiness often impose an alignment tax on synthetic corpora. For
instance, aggressive safety filtering may not only remove harmful content but also disproportionately eliminate
rare concepts, which effectively shrinks tail coverage and reduces diversity. Similarly, adding differential
privacy noise to tabular data can improve privacy guarantees but degrade predictive performance. Strict
alignment in conversational agents may also reduce harmful outputs at the cost of elevated refusal rates on
benign queries, which is a phenomenon known as over-refusal.

Future work should move beyond optimizing individual metrics in isolation and instead quantify and navigate
these trade-offs. Concretely, we need frameworks that characterize the Pareto optimal frontier over pipeline
configurations. This is the set of operating points where no trust metric can be improved without degrading
utility or vice versa. This would enable explicit and application dependent choices, such as estimating how
much downstream performance must be sacrificed to attain a target privacy guarantee defined by € and 6,
or how much refusal rate slack is acceptable to achieve a desired safety level. More broadly, this calls for
multi-objective optimization and selection strategies that treat trust and utility as co-dependent variables
rather than independent checkboxes.

9 Conclusion

Current research efforts are predominantly directed toward leveraging Large Language Models (LLMs) for
data generation, while the critical role of the "Data Auditor"—responsible for evaluating the quality of
synthetic data—has been relatively overlooked. Ensuring high data quality is essential for transforming
scarce data into a controllable resource, suitable not only for model training but also for direct real-world
applications.

In this survey, centered on synthetic data, we aim to bridge fragmented progress and provide a systematic
understanding of evaluation methods through our proposed LLM Data Auditor framework. Beyond sum-
marizing typical generation methods across various modalities, we categorize representative metrics into
two primary dimensions: Quality and Trustworthiness. By applying this evaluation system, we identify
significant gaps in current assessment practices. For instance, fairness evaluation in tabular data generation
remains notably underdeveloped. Consequently, our framework serves as both a comprehensive reference and
a diagnostic tool to pinpoint missing evaluation dimensions across different data modalities.

Our findings suggest that, regardless of the modality, there is an urgent need to refine post-generation
evaluation metrics. A holistic assessment is necessary to prevent synthetic data from excelling in one
dimension while failing in others. Furthermore, we highlight inherent trade-offs between certain metrics, such
as the tension between privacy and fidelity in tabular data, which further underscores the necessity of a
multi-dimensional evaluation system.

For future work, the evaluation framework proposed in this survey can serve as a foundation for developing
comprehensive benchmarks to assess existing generation methods. Additionally, exploring the transition from
static to dynamic evaluation systems will be crucial for the continued advancement of data generation. While
we acknowledge that our collection of metrics may not be exhaustive, the Quality-Trustworthiness framework
is designed to be open and extensible, allowing for the integration of new and valuable metrics as the field
evolves.

We hope this survey serves as a foundation for high-quality and trustworthy LLM-based data generation,
enabling the community to develop more robust and reliable data generation systems.
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A Notation Table

In this section, we provide the main notations we used in the survey.

Symbol Meaning

Shared
E() Encoder / embedding function
sim(-, -) Similarity (e.g., cosine)

Text / Dialogue

T Set of generated texts

t; i-th generated text, t; € T
Di Prompt / instruction for ¢;
D Labeled evaluation dataset
Yi, Ui Gold / predicted label

Wi, L m-th token; sequence length
T Acceptability threshold

X Corpus (set of instances)

Symbolic / Reasoning

R Set of reasoning examples (g, ¢, ¥i)

qi Question / problem for example i

c Chain-of-thought / rationale for example i
Ciyt t-th step in chain ¢;

Yi Final answer / conclusion for example 4
Cik k-th sampled chain for the same question g;
Yik Final answer induced by chain c¢; x

K Number of sampled chains per question
Tabular

Xreal, Xsyn  Real / synthetic tables

Zs Row (record) in a table

Yi Label / target for x; (if any)

d Number of features (columns)

Graphs / JSON / Logs

g Set of graphs (real or generated)

G A graph; V(G), E(G): nodes / edges
J Set of JSON / structured records

J A JSON key—value object

L Set of log entries or sequences

l; A log entry or a log sequence
Vision-Language

M Set of multi-modal samples

m; i-th sample, e.g., (vi, ;)

v Visual / audio / video input paired with text
k Number of modalities in m;

Agent / Interaction

A Set of agent trajectories / episodes

Agen Set of generated trajectories {7},

N Number of trajectories / episodes in Agen

T i-th trajectory (so, ao,”r1,S1,...,a1,—1,TT;, ST;)

T; Horizon (number of decision steps) of trajectory ;
St State / observation at step ¢

at Action (incl. tool/APT call) at step t

Tl Reward / feedback for transition (s¢, at, S¢+1)

Table 8: Unified notation for core data objects across modalities.
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B Related Work

We summarize related works and conduct a comparison with LLM Data Auditor across several dimensions,
including Primary Focus, Organization, Quality, Trustworthy Evaluation, and Scope.

Table 9: Comparative Analysis of Surveys in Synthetic Data. While prevailing surveys structure the field
by engineering workflows (Long et al.l |2024]), training lifecycles (Wang et al., [2024al), or specific modalities
(Shi et al., [2025b), this work establishes a metric-centric taxonomy focused on the intrinsic evaluation and
governance of cross-modality data.

Dimension

Long et al. (2024) |Long
et al.| (2024)

Wang et al. (2024) Wang
et al.| (2024a)

Shi et al. (2025) [Shi et al.

(2025D)

This Work

Primary
Focus

The Engineering
Pipeline. Focuses on the
operational workflow of
constructing data, empha-
sizing generation techniques,
curation strategies, and
downstream application.

OrganizationProcedure-Oriented.

Quality
Evaluation

Taxonomy defined by oper-
ational modules including
prompt engineering, task de-
composition, and heuristic
filtering.

Extrinsic Utility. Qual-
ity is frequently judged by
downstream gains, com-
plemented by lightweight
intrinsic proxies.

Trustworthy Challenge-Oriented. Hal-

Evaluation

Scope

lucination and bias are
discussed primarily as open
challenges or limitations.

Text-Dominant. Primarily
covers natural language
processing tasks.

The Model Lifecycle. Fo-
cuses on the utility of syn-
thetic data across distinct
training stages, spanning
pre-training, supervised fine-
tuning, and alignment.

Stage-Oriented. Taxon-
omy structured around the
LLM development lifecycle
and downstream competen-
cies such as reasoning and
coding.

Benchmark-Based. Ef-
fectiveness is assessed via
success rates on capability-
specific evaluation suites
and standard public bench-
marks.
Alignment-Oriented.
Safety is framed within the
context of RLHF alignment.

Broad. This work covers
multiple modalities such as
text, code, and vision.

The Generative Method.
Focuses on methodological
families within the struc-
tured data domain, con-
trasting GANs, Variational
Autoencoders, and Diffusion
models.

Model-Centric. Taxon-
omy categorized by the
underlying generative ar-
chitecture and associated
post-processing techniques
for tabular structures.

Statistical Fidelity. Eval-
uation prioritizes distribu-
tional resemblance to real
data, machine learning ef-
ficacy, and column-wise
statistical alignment.
Privacy-Specific. Analysis
heavily concentrates on
privacy guarantees.

Tabular Data Special-
ized. Addresses the con-
straints inherent to tabular
data.

The Data Artifact. Fo-
cuses on the intrinsic prop-
erties of the generated prod-
uct, prioritizing rigorous
auditing standards and data
governance protocols.

Metric-Oriented. Taxon-
omy defined by a unified
evaluation coordinate sys-
tem separating Quality
dimensions from Trustwor-
thiness dimensions.

Intrinsic Verification.
Quality is defined through
proactive audits of Validity,
Fidelity, Diversity, and Util-
ity prior to model training.

Foundational Pillar. El-
evates mainstream trust-
worthiness to a primary
dimension orthogonal to
utility metrics.

Cross-Modality. Applies
a single framework to intro-
duce 6 modal data.
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