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ABSTRACT

As large language models (LLMs) become increasingly powerful, concerns about their safe
use have also been heightened. Despite the deployment of various alignment mechanisms
to prevent malicious use, these can still be circumvented through well-crafted adversarial
prompts. Here, we introduce an adversarial prompting attack strategy for LLM-based systems:
attack by hiding intent, a generalization of many practical attacks, where a malicious intent is
hidden by composing the application of several skills. We propose a game-theoretic framework
to characterize its interaction with a defense system implementing both prompt and response
filtering. We further derive the equilibrium of the game and highlight structural advantages
for the attacker. We theoretically design and analyze a defense mechanism specifically aimed
at mitigating the proposed attack. Additionally, we empirically demonstrate the effectiveness
of the proposed attack on several real-world LLMs across diverse malicious behaviors by
comparison with existing adversarial prompting methods.

1 INTRODUCTION

Adversarial prompting methods, such as jailbreaking, try to bypass safety and security measures, as well as
ethical guardrails, that are built into large language models (LLMs) (Zhou et al., 2024). A particular focus of
these security measures is preventing content that may increase risks from chemical, biological, radiological,
nuclear (CBRN) weapons, cyberattacks, attacks on the information environment, and attacks more generally on
critical infrastructure (energy, water, transportation, etc.).

LLM remains vulnerable to adversarial prompting attacks, despite significant progress in alignment and safety
research (Wei et al., 2023; Yong et al., 2023; Zhang et al., 2025; Yu et al., 2024b; Luo et al., 2025). To enhance
safety, different defense mechanisms such as prompt and response filtering have been developed (Padhi et al.,
2024). Response filtering is particularly difficult to bypass because it can still be triggered, even if the LLM
has already been tricked to generate a response. Motivated by this, we propose a game-theoretic framework
(detailed in Section 2) to better understand a broad class of adversarial prompting attacks that hide malicious
intent through the use of skills, and to study their interaction with a defender system. In our formulation, the
attacker’s strategy is represented as a conditional distribution pS|I , where I denotes a set of intents and S a set of
skills. We define a skill as the capability to perform a task effectively. Prior work shows that LLMs can learn and
execute skills (Arora and Goyal, 2023; Yu et al., 2024a), enabling an attacker to compose one or more skills to
craft prompts that conceal malicious intent. Many existing attacks can be reinterpreted within our framework as
fixed-skill attacks, wherein a single skill is applied across all intents to evade detection. Concretely, these attacks
correspond to the strategy pS|I(s | i) = 1s=s∗ , where s∗ is a skill such as affirmative instruction (Wei et al.,
2023), low-resource language prompting (Yong et al., 2023), persona or role-play (Zhang et al., 2025; Yu et al.,
2024b), or hypothetical scenarios (Luo et al., 2025). Our framework also accommodates optimization-based
attacks (Chao et al., 2023; Zou et al., 2023), which adaptively search for effective skills through feedback.
These can be expressed as pS|I(s | i) = p(s | i, f), where f denotes feedback obtained during the optimization
process, reflecting the attacker’s attempt to identify vulnerabilities in the defense system. With this formulation,
we propose a generalized attack that searches and mixes multiple skills to hide malicious intent aiming to capture
many alforementioned existing attack methods in order to get insights into them. A single fixed-skill attack and
optimization-based attack could both be viewed as special instances of our proposed one.

In this work, we study this attack from a game-theoretic perspective in order to characterize its interaction with a
defender system to better understand their fundamental limits and to assist us in designing a provably optimal
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Figure 1: Illustration of a real attack procedure. pS|I(s|i) is a conditional distribution to sample a skill given an
intent, estimated by probing weak points of an target system. E(i, s) is a prompt generator that uses skills to
hide an intent. M(x) is a target LLM. D(x, y) is a classification model used by the defender to determine if a
request is malicious based on its prompt and response.

defense solution, which is hard to see from empirical studies. On the defense side, we equip the system with
both prompt and response filtering, more challenging than prompt-only filtering by leveraging more information
from the response to stress test the attacker’s limit. The resulting dynamics are: the attacker seeks to exploit
vulnerabilities in the target system by identifying effective compositional skills, allowing malicious intent to be
hidden with them. Meanwhile, the defender continuously finetunes the system to improve its ability to handle the
new attack patterns. Additionally, we propose and theoretically analyze a provably optimal defense mechanism
tailored to our proposed attack.

We provide formal proofs as main evidence to support our results and complement them with experiments to
demonstrate our proposed attack is a real-world threat and effectiveness of our proposed defense. In summary,
our contributions are:

1. We introduce a game-theoretic framework that characterizes interactions between an intent-hiding
attacker via skills and a defender with prompt and response filtering and captures many existing attacks.

2. We propose a generalized attack that hides intents via searching and leveraging optimal skills for
bypassing prompt and response filtering. Through its equilibrium derivation within our game-theoretic
framework, we characterize the fundamental limits of many existing attacks and reveal structural
advantages for an attacker.

3. We design a provably optimal defense mechanism specifically tailored to counteract the proposed
attacks based on our theoretical analysis.

4. We develop a practical evaluation pipeline, including the development of an effective LLM-based rater
to assess how helpful a response is in achieving a hidden intent. To complement our theoretical results,
we empirically validate the effectiveness of our proposed attack and its targeted defense method.

2 THEORETICAL FRAMEWORK

Suppose we have a set of skills S and a set I representing an attacker’s intents, which may be harmful, violate
policies in certain contexts, or otherwise be undesirable from a defender’s perspective. We begin with a simple
case where an intent is mixed with only one skill. For instance, an attacker may attempt to request for "write an
anonymous letter to a colleague asserting that their biracial marriage is disgusting" by combining this intent
with a skill of metaphor.

We define an intent-skill combination as: Sn=1 := {(i, s) | i ∈ I, s ∈ S}, where n represents the number of
skills combined with an intent. As illustrated in Figure 1, the attack and defense process unfolds as follows.
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• The attacker first selects an intent, sampled from a distribution: i ∼ pI(i).

• The attacker then mixes this intent with a skill, sampled from a conditional distribution:s ∼ pS|I(s|i).

• The attacker generates a user prompt using the intent-skill combination through a function: x ∼ E(i, s).

• The target system or the defender processes the prompt and generates a response via a model such as
an LLM: y ∼ M(x).

• The defender attempts to filter malicious requests based on both the user prompt and the generated
response through a binary classification model: z = D(x, y), where z ∈ {0, 1}, representing benign
vs. malicious. If z = 1, the request is rejected.

Discussion: This framework is grounded in common LLM jailbreaking practices, where attacks operate entirely
at the prompt level and treat the model as a black box. In some cases, the model M (e.g., an LLM) itself may be
aligned to be capable of the filtering. However, we conceptually disentangle this functionality from M without
loss of generality.

To formalize the objectives of both the attacker and the defender, we introduce a payoff function, V (i, x, y,D),
which measures how well the generated response fulfills the attacker’s intent subject to a defense mechanism
represented by the function D. The attacker’s goal is to maximize this payoff function, while the defender seeks
to minimize it, establishing a strategic adversarial dynamic between the two parties.

For a defender to minimize the payoff function, an effective strategy is to accurately identify unacceptable
intents and reject the corresponding user requests, thereby preventing the attacker from benefiting from their
attempt. This process relies on the effectiveness of the classification function, D. If the classification function
performs poorly for a specific intent-skill combination, the defender may fail to reject an unacceptable request
generated based on this combination. This reveals a vulnerability in the defender’s system, which an attacker
can exploit to formulate an attack pattern based on that skill combination.

If the classification function is implemented using a tunable model, such as a neural network, the defender can
enhance its performance on a given skill combination through further tuning, thereby improving its ability to
detect and mitigate attacks leveraging that combination.

From a game-theoretic perspective, given an intent i, an attacker can manipulate the conditional distribution over
skills, pS|I(s|i), to assign higher probabilities to skill combinations that expose weaknesses in the defender’s
system. One approach to identifying such weak points is by probing the defender’s system with various skill
combinations and observing which ones evade detection. On the defender’s side, improving the performance of
the classification function is constrained by model capacity. In reality, models such as neural networks have finite
capacity and may not achieve perfect performance across all possible skill combinations, especially when the
space of combinations is large. In practice, many deployed LLM-based systems rely on small or moderate-sized
models as safety filters due to strict constraints on latency, compute budget, power consumption, memory, and
privacy requirements. This is increasingly common in real-world edge or on-device AI deployments, including
cars (autonomous driving assistants), healthcare devices, medical triage systems, wearables, home assistants,
robotics, and industrial IoT, where privacy or reliability demands require that the model be run locally. In these
settings, the safety component is necessarily smaller. The capacity constraint is therefore a practically relevant
abstraction of real deployments.

Let the accuracy of the classification function D regarding an intent i and a skill s be denoted as: a := { ai,s |
(i, s) ∈ Sn=1, ai,s = α(i, s) }, where α(i, s) : I × S → [0, 1] measures an overall performance of D on
samples produced via the combination (i, s). Note that D doesn’t take the intent and skill as direct inputs; rather,
it serves as a performance measurement from the attacker’s perspective in an attack scenario. We represent
the total capacity of the classification function as: C :=

∑
i,s ai,s. We assume that defender performance

across different intent-skill pairs is uncorrelated, meaning that robustness on one intent-skill neither predicts nor
improves robustness on another. This models a conservative scenario in which the defender cannot benefit from
any positive transfer across skills. This is intentional and consistent with many engineering practices in the real
world to ensure a safety margin to drive the development of more robust defense.
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For analytical simplicity, we assume that other components, including E, M , and V remain fixed. A game
between the attacker and defender can then be formulated as the following minimax optimization problem:

J∗ = min
D

max
pS|I

Ei∼pI(i),s∼pS|I(s|i),x∼E(i,s),y∼M(x)[V (i, x, y,D)]

s.t. C ≤ c
(1)

where c ∈ R represents the capacity limitation on classification. This formulation captures the adversarial
dynamics, where the attacker seeks to maximize the effectiveness of their hidden intent by exploiting weak
points, while the defender aims to minimize the attacker’s success within the constraints of their model’s
capacity.

A natural choice of the payoff function could be formulated as follows:

V (i, x, y,D) := w(i)u(i, y)(1−D(x, y)), (2)

where w(i) is a weighting function for an intent i, representing the importance of achieving the intent from the
attacker’s perspective and u(i, y) is a utility function that quantifies how well the response y fulfills the intent i.
We assume an attacker has a zero gain if the defender identifies the request as undesired.

For analytical convenience and without loss of generality, we simplify the payoff function as Ĵ(i, x, y,D) :=
1−D(x, y).

In this simplified version, we merge the weighting over different intents directly into their probability distribution
pI . We assume a uniform utility of 1 to avoid introducing additional complexity and due to its relative subjectivity.
This assumption also helps us assess risk under a worst-case scenario, ensuring an enough safety margin in
practice when designing defenses. Since the accuracy of D on a combination (i, s) is ai,s, we can have the
objective function:

J =
∑
i,s

(1− ai,s)p(s|i)p(i) =
∑
i,s

p(s|i)p(i)−
∑
i,s

ai,sp(s|i)p(i) = 1−
∑
i,s

ai,sp(s|i)p(i), (3)

where
∑

i,s p(s|i)p(i) =
∑

i p(i)
∑

s p(s|i) =
∑

i p(i) · 1 = 1 and we omit the subscripts of p so as not to
abuse notation.

Ideally, the full capacity c is utilized especially when the combination space is huge, allowing us to express the
capacity constraint with equality as

∑
i,s ai,s = c. Then, the problem becomes:

J∗ = min
a∈A

max
pS|I∈PS|I

f(a, pS|I) = min
a

max
pS|I

1−
∑
i,s

ai,spS|I(s|i)p(i)


= 1−max

a
min
pS|I

∑
i,s

ai,spS|I(s|i)p(i) s.t.
∑
i,s

ai,s = c

(4)

where A and PS|I denote the domains of a and PS|I respectively. A summary of the key assumptions of our
theoretical framework can be found in Appendix A.

3 MAIN RESULTS

3.1 BASIC SETTING

One interesting question is whether an equilibrium point exists between the attacker and the defender.

Theorem 3.1. (Equilibrium of the game) The equilibrium value of the game equation 4 is:

J∗ = 1− c

|S|
∑
i

p(i)2 (5)

with ai,s = p(i)c/|S| and p(s|i) = 1/|S|.

4



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Under review as a conference paper at ICLR 2026

Proof Sketch: This result comes from analyzing how the attacker and defender interact when both play optimally.
The attacker chooses how to mix skills with intents, while the defender allocates limited capacity to detect
harmful combinations. At equilibrium, the attacker chooses the skill with the lowest cost for each intent. To
counter this, the defender spreads resources evenly across all skills for each intent, preventing any clear weak
point. See the full proof in Appendix B.

Discussion: Theorem 3.1 has several implications: (1) The equilibrium value is negatively proportional to
the model capacity, so increasing model capacity strengthens the defense and reduces the attacker’s gain. (2)
However, the equilibrium value varies as the negative reciprocal of the size of the skill space, so a larger skill
space can increase the attacker’s gain, which aligns with intuition, since a larger space introduces more potential
out-of-distribution combinations for the defender to handle, i.e. more space for creativity (Varshney, 2019).

Currently, we consider only the case where a single skill is mixed with an intent. However, it is possible to mix
multiple skills, expanding the skill combination space to

(|S|
n

)
, where n is the number of skills being mixed

and
(|S|

n

)
is a binomial coefficient. In that case, if we further assume the defender’s performance on these

combinations are uncorrelated, the equilibrium value becomes:

1− c(|S|
n

) ∑
i

p(i)2. (6)

The equilibrium shows in theory, it is very difficult for the defender to scale with c, when the skill space is large
and encountering combinations that involve a mix of more skills. This gives important implications on how
attacker performance can be scaled up: (1) by expanding the size of the skill space, (2) by increasing the number
of skills mixed with each intent, and (3) more importantly, the defender will completely fail as the number and
complexity of skill mixtures grow asymptotically, which is hard to be seen without the theoretical analysis and
demonstrates the need for a more effective defense strategy than simply scaling up the defender’s capacity.
Theorem 3.2. (Maximum equilibrium value and optimal intent distribution) The equilibrium value J∗ from
Theorem 3.1 is maximized when the prior distribution p(i) over I is uniform, i.e.,

p(i) =
1

|I|
, for all i ∈ I. (7)

In this case, the maximum value of J∗ is:

J∗
max = 1− c

|S|·|I| . (8)

Proof Sketch: The key idea is that the equilibrium value depends on the concentration of the intent distribution.
Specifically, it involves the sum of the squared intent probabilities, which is minimized when all intents are
equally likely (uniform distribution). Plugging that into the expression from Theorem 3.1 gives the highest
possible value for the attacker’s utility. See Appendix B for the full proof. See Appendix B for the full proof.

Discussion: The theorem is about worst-case vulnerability. A uniform prior corresponds to the maximum
uncertainty the defender faces. In real systems, defenders often protect against a wide range of harmful intents
from an unknown distribution. For example, if an attacker wants to discredit a LLM, this theorem can help
identify strategies that most effectively expose its vulnerabilities. Similarly, red-teaming methods often explore
a variety of malicious intents instead of a targeted one to identify vulnerabilities of a target system.

3.2 DEFEND BY MISLEADING THE ATTACKER

Following discussion on the results from 3.1, a more effective defense mechanism targeting the proposed attack
is needed beyond simply scaling the defender’s capacity. The attacker identifies the defender’s weak points
through probing and the optimal strategy of the attacker is to fully concentrate on a weak point with the lowest
ai,s, given an intent i. This raises the question of whether, from the defender’s perspective, it is possible to
mislead the probing results. We design a defense mechanism that actively misleads the attacker.

In this design, the defender attempts to mislead the attacker by exposing it to an incorrect performance
distribution â. For instance, the defender might deliberately accept a malicious request but return a harmless
and uninformative response, thereby actively trapping the attacker into fake weak points and distorting the
observed performance distribution. In practice, this could resemble an LLM hallucination, making it difficult to
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distinguish between a genuine hallucination and a strategically fabricated response. The attacker then selects a
skill s∗ to pair with the given intent i, based on the misleading signal that the defender performs worst on this
combination. This allows the defender to anticipate and concentrate its defense on this specific case. We analyze
the game’s equilibrium under the new setting as follows.
Theorem 3.3. (Equilibrium of the game with misled attacker) Let π be a permutation of {1, . . . , |I|} for the
intent probability distribution such that pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(n). The equilibrium value of the game
equation 4 with misled attacker is:

J∗
M = 1− (

⌊c⌋∑
j=1

pπ(j) + (c− ⌊c⌋) · pπ(⌊c⌋+1)) (9)

where for each intent i, the attacker concentrates all probability mass on a skill s∗ that minimizes the fabricated
performance value âi,s, i.e., any s∗ ∈ argmins âi,s and the defender then allocates its limited capacity greedily,
prioritizing the fake weakest points associated with the most probable intents.

Proof Sketch: The idea is that the attacker chooses skill combinations based on observed weaknesses in the
defense. If the defender can manipulate these observations, for example, by pretending to be weak on certain
combinations, it can steer the attacker toward less effective strategies. At equilibrium, the attacker focuses on the
combinations that appear weakest, and the defender allocates its limited capacity to cover those. The expression
comes from greedily covering the most likely intents first.

The result indicates our defense mechanism successfully removes the attacker’s advantageous combinatorial
term. We also compare the new equilibrium point with the previous one via the following theorem.
Theorem 3.4. (Advantage of defense by misleading the attacker) The equilibrium point from Thm. 3.3 with
misled attacker is upper bounded by the equilibrium point from Thm. 3.1:

J∗
M ≤ J∗, (10)

given |S| ≥ c.

Proof Sketch: The key idea is that misleading the attacker lets the defender concentrate its limited capacity
more effectively covering the most likely intents rather than spreading effort across all combinations. We find a
generalized problem form and show that the defender’s allocation under the misleading setup is at least as good
(in terms of reducing attacker utility) as the best possible allocation under the original setup. This is done by
comparing two optimization strategies, one greedy and one proportional and showing that the greedy one always
performs at least as well. Please see detailed proofs in Appendix B for the new equilibrium and the comparison.

Discussion: The assumption of |S| ≥ c is practically relevant when the skill space is large and the classification
model’s capacity does not grow proportionally. Theorem 3.4 clearly demonstrates our defense mechanism is
more advantageous than the original one described in Theorem 3.1 via its upper bounded equilibrium point.
More importantly, in the proof of Theorem 3.4 in Appendix B , we are able to show our proposed defense
mechanism is actually optimal under a generalized problem form, an insightful and non-intuitive result from our
analysis. Asymptotically, as the defender’s capacity increases, the attacker receives no gain from the new game.

Overall, Theorem 3.1 from our game-theoretic analysis reveals a critical robustness issue for the defender
in the basic setting. This finding highlights the need for a more effective defense strategy and inspires us to
design this new defense method by misleading an attacker that removes the attacker’s advantageous binomial
coefficient term and causes the asymptotical failure of the attacker by changing the rules of the game; in other
word, this new defense method greatly enhances the robustness of the defender system. We formally prove the
effectiveness of this defense in Theorem 3.4, providing practitioners with greater confidence and theoretical
guarantees, especially under constrained defense resources.

This approach essentially follows the principle of mechanism design, a concept closely related to game theory
that focuses on designing the rules of the game (the mechanism) to achieve a desired outcome, a more robust
defender system in our case.

4 EXPERIMENTS

In this section, we implement our theoretically constructed attack and defense and empirically evaluate their
effectiveness to complement the theory.

6
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Table 1: Comparison of raters powered by different LLMs under human evaluation. We evaluate their
performance using agreement rate, false positive rate (FPR), and false negative rate (FNR) as metrics.

Metric Llama-3-70B GPT-3.5 GPT-4.1

Agreement (↑) 47% 78% 89%
FPR (↓) 50% 26% 12%
FNR (↓) 60% 14% 9%

Acceptance Rate (↑) 52% 99% 100%

Our problem setting differs from conventional jailbreak evaluations (Chao et al., 2024): our attack assumes a
prompt and response filtering as a defense mechanism, so its triggered response may appear harmless but could
still be useful. Therefore, performance should be assessed based on the helpfulness of the target LLM’s response
toward the malicious intent instead of harmfulness as in conventional jailbreak evaluations. More discussion
could be found in Appendix D.1.

Dataset. We evaluate our proposed methods using the JBB-Behaviors dataset (Chao et al., 2024) and Mali-
ciousInstructions (MI) (Bianchi et al., 2023). We provide the experimental results on the MI in Appendix F.2.
Please find more details about these datasets in Appendix D.2.

Prompt and response filtering. We utilize the widely-used LLaMA-3-70B (AI@Meta, 2024) judge from Chao
et al. (2024) along with safety alignment mechanism of each target LLM as our prompt and response filter. This
judge has demonstrated strong agreement with human annotators and exhibits low false positive (FPR) and false
negative rates (FNR), making it a reliable choice for filtering.

Helpfulness evaluation. Assessing whether a response helps fulfill a malicious intent is non-trivial due to
several challenges. (1) Responses may involve complex semantic structures, especially with multiple skill
compositions. (2) Helpfulness can be subtle, indirect, or partial. (3) Some responses might contain mixed
framing (e.g., pros and cons) but still aid the intent. (4) Others may appear educational or fictional, masking
their utility. Given these complexities, we adopt an LLM-as-rater approach, using an LLM to assign helpfulness
scores ranging from 1 (not helpful) to 5 (fully helpful), similar to many prior works in this field (Chao et al.,
2023; 2024) using LLM as a judge.

In order to build an effective rater, we carefully designed a custom prompt and evaluated various base LLMs
sharing the same custom prompt on a modified dataset based on the data provided by the JailbreakBench for
judge comparison. More details about this dataset could be found in Appendix D.3.

Additionally, following Chao et al. (2024), we use LLaMA-3-8B-chat-hf (Touvron et al., 2023) as a refusal
classifier, which determines whether a LLM refused a query by analyzing both the prompt and response. Using
this classifier, we report the acceptance rate as the percentage of queries that are not refused.

As shown in Table 1, GPT-4.1-2025-04-14 (GPT-4.1) (OpenAI, 2025) demonstrates the highest agreement with
human experts (over 89%) and achieves low false positive (12%) and false negative (9%) rates, indicating strong
alignment with human judgments. Notably, Llama-3-70B rejects nearly half of the rating requests, making it
impractical as a rater, whereas GPT-4.1 accepts all rating queries. Thus, we adopt GPT-4.1 as the rater for our
subsequent experiments.

Performance measurements. We introduce a new empirical evaluation metric based on classification produced
by the LLM-based judge (D) and our LLM-based rater (R), JR score for each intent i:

JR score(Ei, i) =
1

|Ei|
∑

(xj ,yj)∈Ei

D(xj , yj)(R(i, yj)− 1) (11)

where Ei = {(x1, y1), (x2, y2), . . . , (xn, yn)} is a set of n evaluation samples, with each sample consisting of
a prompt xj and a response yj for an intent i, D(xi, yj) ∈ {0, 1} (safe vs unsafe) is the classification label
assigned by the judge, and R(i, yj) ∈ {1, 2, . . . , 5} is the score assigned by the rater, which we offset by
1 so that a score of 0 represents no helpfulness. This formulation indicates that utilities are gained only if
bypassing the prompt and response filtering. We can also have a binary version of it: Bin-JR score(Ei, i) =
1

|Ei|
∑

(xj ,yj)∈Ei
D(xj , yj)1R(i,yj)>1.

7
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To evaluate the overall attack performance across multiple intents, we compute an aggregate JR score by
summing per-intent scores weighted by intent importance. For simplicity, we assume a uniform distribution over
intents. We adopt Bin-JR score as our primary metric, as it is bounded, mirrors our binary utility measurement in
our theoretical setup, and intuitively captures the proportion of helpful responses aligned with malicious intents.
Moreover, since the degree of helpfulness is inherently more subjective than a binary judgment of whether
helpful or not, we primarily focus on the Bin-JR score in our evaluation. Besides, we use the JR score as a
secondary metric to better simulate real-world conditions beyond our theoretical worst-case analysis and to
provide a comprehensive evaluation of the attacks.

Our method and baselines. Based on our construction, our attack is structured in two stages: In the first stage,
the attacker probes the target LLM using various combinations of skills and intents, generating five prompts
per combination to identify weak points in the target system’s handling of specific combinations. In the second
stage, the attacker concentrates its attack by generating 20 prompts per intent for each intent by exploiting these
identified weak points. Our method utilizes the LLaMA-3.3-70B-Instruct-Turbo as our model E for composing
a prompt via mixing an intent and skills. We compare our approach with several existing adversarial prompting
methods, including PAIR (Chao et al., 2023), GCG (Zou et al., 2023), JailbreakChat (JBC) (Albert, 2024), and
Prompt with random search (PRS) (Andriushchenko et al., 2024).

Hyperparameters. Appendix D reports more experimental details and hyperparameters for both our method
and the baselines, including the full list of 10 skills used (could be much more in practice).

Targets. By following a common practice in this field and to make various methods comparable, we evaluate
attacks on a range of both open- and closed-source LLMs, including Vicuna-13B-v1.5 (Zheng et al., 2023),
Llama-2-7B-chat-hf (Touvron et al., 2023), GPT-3.5- Turbo-1106 (OpenAI et al., 2023), and GPT-4-0125-
Preview (OpenAI et al., 2023), all defended with prompt and response filtering. Following the commonly used
defense protocol in Chao et al. (2024), we assess transfer attacks from an undefended LLM to the defended target
LLM. Further details are in Appendix D.6. More results on more recent models including GPT-4.1 (OpenAI
et al., 2023) and Llama-4 (AI@Meta, 2024) are listed in Appendix F.2.

1-skill experiments. We begin our experiments by mixing each intent with a single skill from the predefined
skill list (detailed in Appendix D.4) of 10 skills (a 1-skill setup). As shown in Table 2, our method achieves
the highest performance, measured by the primary metric, Bin-JR score, across all target LLMs except Vicuna,
where it still performs competitively. This demonstrates the effectiveness of our approach in bypassing prompt
and response filtering and advancing a given intent compared to existing methods. Figure 1 demonstrates a real
attack example by our method. More experimental results such as case studies can be found in Appendix F.

In some cases, such as with Vicuna, our method yields a lower JR score than methods like PAIR. This is
partly because PAIR employs an iterative prompt optimization process, which can generate responses that more
fully satisfy the intent once the defense is bypassed. While our method can be integrated with such iterative
optimization techniques, doing so is beyond the scope of this work, as JR score is not our primary metric, and
our experiments are primarily designed to complement our theoretical analysis.

Despite its simplicity, our method consistently performs well by evading detection through intent obfuscation,
without relying on computationally expensive iterative optimization. Furthermore, even though according to
Chao et al. (2024), the JBC method is less likely to be blocked by judge-based defenses, this is largely because
its responses tend to lack utility, often due to refusals from the target LLM. This is reflected in its low Bin-JR
score, confirming that JBC still performs poorly.

Scaling of attack performance. As discussed earlier, there are two major ways to scale up our attack: (1)
expanding the skill space and (2) mixing additional skills with the intent. Our experiments vary the sizes of the
skill space under the 1-skill setup and each intent is combined with two skills (2-skill setup), while keeping other
settings fixed. Table 3 shows that increasing skill space and additional skill mixing achieve higher acceptance
rates and Bin-JR scores and JR scores. This indicates that exploring a large skill space and incorporating more
skills could effectively contribute to improved attack performance, demonstrating a scaling effect consistent
with the practical implications outlined in equation 6 and confirming the scalability of our attack method.

Defense by misleading the attacker. We conduct experiments using our defense method against the attack we
established in our experiments in Section 3.2. Specifically, we force the attacker to focus on the skill–intent
combinations that exhibit the highest defense performance during the first stage of the attack.
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Table 2: Comparing attacks for a target system defended by prompt and response filtering. For each
method, we report the Bin-JR-Score and JR-Score using LLaMA-3-70B as the judge and GPT-4.1 as the rater.

Open-Source Closed-Source

Attack Metric Llama-2 Vicuna GPT-3.5 GPT-4

PAIR
Bin-JR score 0.03 0.22 0.23 0.31

JR score 0.03 0.41 0.50 0.57

GCG
Bin-JR score 0.08 0.15 0.20 0.05

JR score 0.10 0.34 0.43 0.10

JBC
Bin-JR score 0.01 0.04 0.0 0.0

JR score 0.01 0.09 0.0 0.0

PRS
Bin-JR score 0.19 0.13 0.15 0.20

JR score 0.50 0.31 0.45 0.53

Ours
Bin-JR score 0.25 0.21 0.45 0.52

JR score 0.29 0.23 0.73 0.79

Table 3: Comparing different skill setups. For each skill setup, we report acceptance rate, Bin-JR-Score, and
JR-Score using LLaMA-3-70B as the judge and GPT-4.1 as the rater. The size of the skill space is listed beside
each 1-skill case.

Setup Metric GPT-3.5

1-skill (size = 2)
Acceptance Rate 58%

Bin-JR score 0.20
JR score 0.26

1-skills (size = 5)
Acceptance Rate 65%

Bin-JR score 0.31
JR score 0.51

1-skills (size = 10)
Acceptance Rate 78%

Bin-JR score 0.45
JR score 0.73

2-skills
Acceptance Rate 80%

Bin-JR score 0.50
JR score 0.77

Table 4 presents the percentage of attack performance drop relative to the original performance after implement-
ing our defense mechanism over different target LLMs. We observe substantial reductions in attack performance
over all target LLMs when the defense is applied. This drop measured as the percentage decrease in both
the Bin-JR score and JR score relative to the original performance, indicating empirical effectiveness of our
defense strategy against the attack by hiding intent and significantly improved robustness of our defense system.
Consistent results are observed on additional dataset and more target LLMs in Appendix F.2.

5 RELATED WORKS

Adversarial prompting. Various adversarial prompting methods aiming to circumvent LLM safeguards are
proposed based on specific templates (Albert, 2024), gradient-based methods (Zou et al., 2023), iterative
optimizations (Chao et al., 2023) and random search (Andriushchenko et al., 2024; Hayase et al., 2024).

Information Hiding. The idea of hiding information through semantic obfuscation has been proposed in the se-
mantic communication literature, yielding information-theoretic and communication-theoretic characterizations
(Shen et al., 2024; Yang et al., 2024). Semantic obfuscation techniques have especially been considered for code
security settings (Preda and Giacobazzi, 2009; Borello and Mé, 2008). The most famous example of information

9
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Table 4: Percentage drop in attack performance relative to the original performance on various target LLMs
defended by our defense method by misleading attacker.

Open-Source Closed-Source

Attack Metric Llama-2 Vicuna GPT-3.5 GPT-4

Ours
Bin-JR score drop (%) 68.0% 52.4% 71.1% 40.4%

JR score drop (%) 69.0% 52.1% 67.1% 35.4%

hiding through semantic means is perhaps the Navajo code talkers in WWII (Lanigan, 2012). Linguists that
specialize in semantics and pragmatics study the nature of meaning through transformations such as metaphor
(Jaszccolt, 2023; Noveck, 2018).

Indirect jailbreak. Chang et al. (2024) and Wang et al. (2024) investigate indirect jailbreaks via a guessing game
and logic-chain injection, respectively. In contrast, our work (i) frames the problem through a game-theoretic
lens with skill-mixing, (ii) targets bypassing both prompt and response filters, (iii) replaces subjective human
evaluation in Chang et al. (2024) with a reproducible automated assessment, and (iv) introduces a targeted
defense tailored to our attack.

To our knowledge, existing methods have not systematically targeted LLM-based systems with a prompt and
response filter in place, from a information-hiding and game-theoretic perspective as pursued here.

6 CONCLUSION

We present and theoretically investigate an adversarial prompting strategy for LLM-based systems by hiding
intents, in which a malicious intent is concealed through the composition of skills. We propose a game-
theoretic framework that captures the interaction between the attacker and a defense mechanism incorporating
a prompt and response filtering. We derive the game’s equilibrium and reveal structural advantages that favor
the attacker, offering insights into the design of robust defenses. Building on this theory, we design and
analyze a defense mechanism specifically tailored to counter intent-hiding strategies. Finally, we empirically
validate the effectiveness of our attack across multiple real-world LLMs and a broad range of malicious
behaviors, demonstrating advantages over existing adversarial prompting techniques. Furthermore, we validate
the performance of our defense mechanism through experiments against our intent-hiding attacks.
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A ASSUMPTIONS

We summarize here the key assumptions underlying our theoretical framework.

A1. Capacity-limited defender. The defender’s performance on each intent–skill pair (i, s) is parameterized
by an accuracy value ai,s ∈ [0, 1], subject to a total capacity constraint∑

i,s

ai,s ≤ c.

This models the finite capacity of the defender used for prompt and response filtering. The persistence of
jailbreaks and adversarial prompting in frontier models, as demonstrated by a recent work (Bisconti et al., 2025),
highlights that defensive capacity is both practically constrained and inherently imperfect. In many real-world
deployments, especially in edge or on-device settings, LLM-based systems often use models of limited sizes
as safety filters due to constraints like inference-time latency, compute, and power consumption. This makes
capacity-constrained safety components a practically relevant abstraction.

A2. No positive transfer across intent–skill pairs. We assume that defender performance does not generalize
across distinct intent–skill pairs. Formally, the accuracy values {ai,s} are treated as uncorrelated across (i, s).
Robustness on (i, s) neither predicts nor improves robustness on (i, s′) for s ̸= s′. This models a conservative,
worst-case scenario for safety analysis and ensures no beneficial cross-skill generalization.

A3. Simplified payoff structure. For analytic tractability, the payoff is simplified to

V (i, x, y,D) = 1−D(x, y),

absorbing intent weights into pI and assuming unit utility whenever the defender fails to reject the response.
This yields a conservative worst-case estimate of attacker gain.

12



624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

Under review as a conference paper at ICLR 2026

B PROOFS

Theorem B.1. (Equilibrium of the game)

The equilibrium value of the game is:
J∗ = 1− c

|S|
∑
i

p(i)2 (12)

with ai,s = p(i)c/|S| and p(s|i) = 1/|S|.

Proof. For fixed {ai,s}, the attacker chooses p(s|i) for each i to minimize:∑
i,s

ai,sp(s|i)p(i) =
∑
i

p(i)
∑
s

ai,sp(s|i).

For each i, the attacker wants to minimize
∑

s ai,sp(s|i). This is minimized when the entire mass is on the s
with the smallest ai,s. Thus,

min
PS|I

∑
i,s

ai,sp(s|i)p(i) =
∑
i

p(i)min
s

ai,s.

Now, a defender will want to maximize
∑

i p(i)mins ai,s. The objective is the expected value (under p(i)) of
the minimum ai,s over s for each i.

This is maximized when ai,s is uniform over s for each i, because spreading the mass evenly maximizes the
minimum. So for each i, set:

ai,s = q(i) · c

|S|
,

where q(i) ≥ 0 and
∑

i q(i) = 1, ensuring
∑

i,s ai,s = c. Then:

min
s

ai,s = q(i) · c

|S|
, ⇒

∑
i

p(i)min
s

ai,s =
∑
i

p(i)q(i) · c

|S|
.

This is maximized when q(i) = p(i), giving: ∑
i

p(i)2 · c

|S|
.

The equilibrium value of the sequential game is:

J∗ = 1− c

|S|
∑
i

p(i)2.

The optimal strategies are: (1) for each i, set ai,s = p(i)c/|S|, (2) for each i, place all mass on the s that
minimizes ai,s, i.e., any s (since they are uniform), so p(s|i) = 1/|S|.

Theorem B.2. (Maximum equilibrium value and optimal intent distribution)

The equilibrium value J∗ from Theorem 3.1 is maximized when the prior distribution p(i) over I is uniform,
i.e.,

p(i) =
1

|I|
, for all i ∈ I.

In this case, the maximum value of J∗ is:

J∗
max = 1− c

|S| · |I|
. (13)
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Proof. We want to maximize the equilibrium value:

J∗ = 1− c

|S|
∑
i

p(i)2

over all valid probability distributions p(i)

Since |S| and c is fixed, this is equivalent to minimizing:∑
i

p(i)2,

subject to
∑

i p(i) = 1, p(i) ≥ 0. This is the L2 norm squared of the probability vector. The L2 norm is
minimized (i.e.,

∑
i p(i)

2 is smallest) when p(i) is uniform.

So, the uniform distribution:

p(i) =
1

|I|
for all i ∈ I

maximizes J∗.

In that case,

J∗ = 1− c

|S|
∑
i

(
1

|I|

)2

= 1− c

|S|
· |I|
|I|2

= 1− c

|S| · |I|
.

Theorem B.3. (Equilibrium of the game with misled attacker)

Let π be a permutation of {1, . . . , |I|} for the intent probability distribution such that:

pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(n).

The equilibrium value of the sequential game 4 with misled attacker is:

J∗
M = 1− (

⌊c⌋∑
j=1

pπ(j) + (c− ⌊c⌋) · pπ(⌊c⌋+1)) (14)

where for each intent i, the attacker concentrates all probability mass on a skill s∗ that minimizes the fabricated
performance value âi,s, i.e., any s∗ ∈ argmins âi,s and the defender then allocates its limited capacity greedily,
prioritizing the weakest points associated with the most probable intents.

Proof. For fixed {ai,s}, the attacker chooses p(s|i) for each i to minimize:∑
i,s

ai,sp(s|i)p(i) =
∑
i

p(i)
∑
s

ai,sp(s|i)

For each i, the attacker wants to minimize
∑

s ai,sp(s|i). This is minimized when the entire mass is on the s
with the smallest ai,s. Thus,

min
PS|I

∑
i,s

ai,sp(s|i)p(i) =
∑
i

p(i)min
s

ai,s.

The defender may attempt to mislead the attacker by presenting a distorted or inaccurate performance distribution.
Therefore, the problem becomes:

max
a

∑
i

p(i)ai,s∗ =

⌊c⌋∑
j=1

pπ(j) + (c− ⌊c⌋) · pπ(⌊c⌋+1) (15)

where ai,s∗ is the performance of the defense under (i, s∗). Assuming the attacker adopts a strategy that
concentrates the entire mass of p(s|i) on its perceived weak point, the defender could deceive the attacker into
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focusing on a fake weak point, s∗, which actually has a performance level of ai,s∗ . Since p(i) is fixed. The
optimal strategy is allocating c capacity in the order of decreasing intent probability p(i), where the performance
is capped at 1, leading to equation 15.

The equilibrium value of the sequential game is:

J∗
M = 1− (

⌊c⌋∑
j=1

pπ(j) + (c− ⌊c⌋) · pπ(⌊c⌋+1)).

The optimal strategies are: (1) for each i, the attacker places all mass on the s∗ that minimizes the fake âi,s, i.e.,
any s∗. (2) The defender allocates its capacity greedily to the weak point of the most probable intents.

Theorem B.4. (Advantage of defense by misleading the attacker) The equilibrium point 3.3 with misled attacker
is upper bounded by the equilibrium point 3.1:

J∗
M ≤ J∗,

given |S| ≥ c.

Proof. Let us define:

A :=

⌊c⌋∑
j=1

pπ(j) + (c− ⌊c⌋) · pπ(⌊c⌋+1)

B :=
c

|S|

|I|∑
i=1

p(i)2

We equivalently show:
A ≥ B

in order to prove this theorem.

Let us define an allocation vector w ∈ [0, 1]|I|, representing how much of each probability mass is captured
under a budget c, with

∑
i wi ≤ c. We consider a linear program:

max
w∈[0,1]|I|,

∑
wi≤c

|I|∑
i=1

wip(i) (16)

Its optimal solution is known: greedily assign weight 1 to the largest p(i)s, i.e., set:

wπ(i) =


1 for i ≤ ⌊c⌋
c− ⌊c⌋ for i = ⌊c⌋+ 1

0 otherwise

which is exactly A.

A =

|I|∑
i=1

wip(i).

Let us define a soft allocation corresponding to B:

wsoft
i :=

c

|S|
p(i).

This corresponds to distributing the budget proportional to p(i) uniformly across |S| choices. Then the value of
this soft strategy is:

B =

|I|∑
i=1

wsoft
i p(i) =

|I|∑
i=1

c

|S|
p(i)2 =

c

|S|

|I|∑
i=1

p(i)2.
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Since |S| ≥ c, we can have:
wsoft

i =
c

|S|
p(i) ≤ 1∑

i

wsoft
i =

∑
i

c

|S|
p(i) ≤ c

which satisfies the constraints of the linear program equation 16.

Thus B is also a feasible solution of the linear program equation 16, but not necessarily the maximizer. Therefore,
by the optimality of A:

A = max
w∈[0,1]|I|,

∑
wi≤c

|I|∑
i=1

wip(i) ≥
|I|∑
i=1

wsoft
i p(i) = B

We have shown:
A ≥ B =⇒ J∗

M = 1−A ≤ 1−B = J∗.

C LIMITATIONS

In the experiments, due to constraints on budget and computational resources, we limit our study to a static
defender and a set of 10 skills and consider only mixing at most two skills. While this setting is restricted, it can
be expanded in practice to further enhance the attacker’s advantage. We compare our approach against a limited
set of baseline methods, as few existing techniques directly apply to our problem formulation. The primary goal
of the experiments is not to pursue state-of-the-art performance, but to demonstrate the effectiveness of our
proposed methods.

D EXPERIMENTAL DETAILS AND HYPERPARAMETERS

D.1 DISCUSSION ON EXPERIMENTAL SETUPS

Recent benchmarks for adversarial prompting allow comparisons among many different adversarial prompting
methods (Liu et al., 2024). Success is typically assessed by whether a target LLM generates a response that
is harmful and addresses a given prompt, as judged by an LLM-based evaluator (Chao et al., 2024). However,
this evaluation approach has several limitations. First, the LLM-based judge makes its decision using both the
prompt and the response, which is completely available to a defense system. As a result, a straightforward
defense strategy is to employ the LLM-based judge itself as a filter, since it performs well in this job to be an
effective evaluator. Second, current LLM-as-judge evaluation criteria overlook a crucial risk: Not only harmful
content but also harmless content may contribute to harmful outcomes if it can be used to advance a malicious
intent—directly or indirectly, fully or partially.

We study a different problem setting in this work. Specifically, we evaluate attacks against systems that defend
themselves via prompt and response filtering. We assess attack quality based on the extent to which the system’s
response could potentially aid a malicious intent (not a prompt), regardless of whether the content is overtly
harmful, explicit, or complete. In this setting, an evaluator must have access to the underlying intent, which
may not be explicitly conveyed in the prompt or response, making it unsuitable as a direct choice as a filter for
defense. In real-world scenarios, attackers are opportunistic: they exploit any helpful information to achieve
their goals, making this a practically significant threat model that warrants serious attention.

D.2 DATASETS

We use 100 diverse malicious behaviors from the JBB-Behaviors dataset (Chao et al., 2024), which is partly
sourced from multiple benchmarks including AdvBench (Zou et al., 2023) and HarmBench (Mazeika et al.,
2024) for comprehensively evaluating our method. This dataset, as part of the widely used JailbreakBench,
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Figure 2: Custom prompt for our LLM-as-raters. intent and response are replace by the user intent and a
response from a target system respectively.

spans ten broad categories, each with ten specific behaviors. Each query requesting objectionable behavior
provided by the JailbreakBench is treated as a distinct intent.

The MaliciousInstructions (MI) contains 100 English prompts that explicitly instruct harmful or illegal actions,
grouped across 10 malicious-intent categories.

D.3 LLM-AS-RATER

We present our custom prompt in Figure 2. We found that model capacity plays a crucial role in enabling LLMs
to function effectively as raters. Models with insufficient capacity such as LLaMA-3-70B and GPT-3.5—often
struggle to identify implicit or indirect connections between the intent and the response, and in some cases (e.g.,
LLaMA-3-70B), it frequently refuses to generate ratings altogether.

This dataset we used to evaluate the LLM-as-rater includes 200 jailbreak responses from the JailbreakBench,
100 benign examples similar to the harmful ones from XS-Test (Röttger et al., 2024), and 300 mismatched
prompt-response pairs (expected to score 1); their ground truth labels are binary and were obtained through
the majority vote among the human experts. We binarize the 5-point scale by treating scores greater than 1 as
positive and negative otherwise, and flip benign ground-truth labels accordingly to fit our problem setting since
they are still helpful despite being harmless. We then evaluate raters based on agreement with human experts,
FPR, and FNR.

D.4 OUR ATTACK METHOD

In our experiments, we use a skill space comprising 10 skills, as shown in Table 5. Following our theoretical
constructions, the attack is executed in two stages. In the first stage, the attacker systematically probes the
target LLM using various combinations of skills and intents. For each combination, five prompts are generated
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Table 5: A set of skills used in our experiments and their respective categories.

Skill Category

Analogical Reasoning Creative Writing
Technical Jargon Creative Writing
Poem Creative Writing
Haiku Creative Writing
Dream Psychology
Negotiation Social Reasoning
Cooking instructions Daily Life
Rewriting Language
Metaphor Creative Language
Comparing two ideas Critical Thinking

Figure 3: Prompt for our re-writer. intent and skills should be replace by the user intent and a set of skills to be
mixed respectively.

using our generator model E, implemented with LLaMA-3.3-70B-Instruct-Turbo. This stage aims to identify
weak points or combinations with the lowest refusal rates—without considering the target system’s prompt and
response filtering. The prompt used by LLaMA-3.3-70B-Instruct-Turbo to mix an intent with skills is shown in
Figure 3. We ensure that the automatically generated prompts consistently encode malicious intent by enforcing
the generator LLM to generate prompts that entail the specified intent. We use refusal rates in the absence
of filtering for fair comparison with baseline methods that operate on unguarded LLMs and are unaware of
the target’s defense mechanisms. In practice, our method could leverage defense feedback to establish more
effective attacks, meaning the reported performance actually represents a lower bound. In the second stage, the
attacker focuses its efforts by generating 20 prompts per intent, exploiting the previously identified weak points.
Repeating attacks using multiple prompts for the same intent is advantageous, as the responses often contain
complementary or non-overlapping information as demonstrated by examples 1 and 2 presented in Figure 4. In
practice, an attacker could aggregate such information to achieve its malicious objective.

D.5 BASELINES

By following Chao et al. (2024), the GCG adopts its default implementation to optimize a single adversarial
suffix for each target behavior, using the default hyperparameters: a batch size of 512 and 500 optimization steps.
To evaluate GCG on closed-source models, the optimized suffixes discovered using Vicuna is transfered. PAIR
follows its default setup, employing Mixtral () as the attacker model with a temperature of 1.0, top-p sampling
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Table 6: Comparisons of attack performance between stage 1 and stage 1 + stage 2.

Open-Source Closed-Source

Attack Metric Llama-2 Vicuna GPT-3.5 GPT-4

Our stage 1
Bin-JR score 0.16 0.16 0.35 0.42

JR score 0.20 0.20 0.59 0.65

Our stage 1 + stage 2
Bin-JR score 0.25 0.21 0.45 0.52

JR score 0.29 0.23 0.73 0.79

with p = 0.9, generating N = 30 streams, and a maximum reasoning depth of K = 3. JB-Chat utilizes its most
popular jailbreak template, titled "Always Intelligent and Machiavellian" (AIM).

D.6 TARGET LLMS

W followed Chao et al. (2024) to set the temperature to 0 and generate 150 tokens for each target model. When
available, we use the default system prompts.

E BROADER IMPACTS

Our attack method identifies vulnerabilities in target systems, closely aligning with the goals of red-teaming
and offering potential to strengthen the safety and trustworthiness of the target systems. While the proposed
attack could be exploited by malicious users to serve their harmful intents, our work also introduces an effective
defense strategy specifically designed to counter this attack, which could also potentially be combined with
other existing defense mechanisms to enhance overall system safety.

F MORE RESULTS

F.1 ABLATION STUDIES

We conduct an ablation study to assess whether the concentrated attack in Stage 2 enhances overall attack
performance. As shown in Table 6, incorporating both stages leads to improved performance compared to using
Stage 1 alone, highlighting the benefits of focusing attacks on the identified weak points of the target systems
during Stage 2.

F.2 MORE EXPERIMENTS ON MORE RECENT MODELS AND ADDITIONAL DATASET

We additionally evaluate our attack and targeted defense on two more recent models including the open-
source Llama-4-Maverick model (400B) and close-source GPT-4.1 defended by the powerful prompt and
response filtering by following our 1-skill experiment setup . We also consider one additional benchmark
MaliciousInstructions besides the JBB-Behaviors dataset.

As shown in Table 7, our attack method continues to perform well on the latest models and is generalizable
across diverse datasets. Notably, it achieves a Bin-JR score of 0.48 (compared to 0.52 for GPT-4) and even
slightly better JR score (0.80 vs. 0.79 for GPT-4). These results suggest that our attack remains a persistent and
unresolved threat to the GPT model series.

Table 8 demonstrates that our targeted defense, inspired by the theoretical analysis, remains effective on the
latest models and generalizes well across diverse datasets.

F.3 CASE STUDIES

In Figure 4, we present two representative attack examples from the 20 samples during the second attack
stage, which share the same intent and skill. The highlighted segments in each response reveal useful yet
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(a) Example 1

(b) Example 2

Figure 4: Real examples for attacking gpt-3.5-turbo-1106 by mixing 1 skill. We highlight useful information for
achieving the given intent.
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Figure 5: Real example for attacking gpt-3.5-turbo-1106 by mixing 2 skills.
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Table 7: JR metrics across datasets. We report Bin-JR score and JR score on JailbreakBench (JBB) and
MaliciousInstructions (MI).

Dataset

Model Metric JBB MI

Llama-4 Bin-JR score 0.41 0.58
JR score 0.66 0.92

GPT-4.1 Bin-JR score 0.48 0.61
JR score 0.80 1.01

Table 8: Relative drops (%). Percentage drop in Bin-JR and JR scores on JBB and MI.

Dataset

Model Metric JBB MI

Llama-4 Bin-JR score drop (%) 65.6% 53.5%
JR score drop (%) 65.2% 54.4%

GPT-4.1 Bin-JR score drop (%) 60.4% 41.0%
JR score drop (%) 52.5% 34.7%

complementary information, illustrating the risk that an attacker could aggregate non-overlapping content across
multiple responses to achieve their malicious intent. This underscores the advantage of the second stage, where
generating multiple samples increases the likelihood of extracting useful information.

Additionally, Figure 5 shows an attack example that combines the metaphor and poem skills. In this case, the
malicious intent is effectively concealed through mixing these two skills, while the response still conveys useful
content, demonstrating the efficacy of this strategy in evading detection.

We also provide two failure examples of our attack on GPT-3.5 model under our basic setting. In Figure 6a, the
generated prompt is too overtly malicious. Even though it’s phrased as a poetic request, the prompt explicitly
references “ridicule,” “laughter,” and “humorously critiques individuals who are overweight or obese.” These
terms strongly correlate with known harmful patterns in LLM safety filters. The example 6b represents a partial
failure of the attack: the LLM refuses to directly fulfill the defamatory intent, but still provides useful technical
content that could be misused or recontextualized to support the malicious goal.

F.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to improve the writing quality of this manuscript. Specifically, an LLM assisted in refining
language, enhancing readability, and ensuring clarity across various sections. Additionally, LLMs were leveraged
to support retrieval and discovery such as finding related works.

22



1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

Under review as a conference paper at ICLR 2026

(a) Failure Example 1

(b) Failure Example 2

Figure 6: Real failure examples for attacking gpt-3.5-turbo-1106 by mixing 1 skill.
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