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Figure 1. We propose LiDARCrafter, a 4D LiDAR-based generative world model that supports controllable point cloud layout generation
(left), dynamic sequential scene generation (center), and rich scene editing applications (right). Our framework enables intuitive “what
you describe is what you get” LiDAR-based 4D world modeling.

Abstract

While generative world models have advanced video and001
occupancy-based data synthesis, LiDAR generation re-002
mains underexplored despite its importance for accurate003
3D perception. Extending generation to 4D LiDAR data004
introduces challenges in controllability, temporal stability,005
and evaluation. We present LiDARCrafter, a unified frame-006
work that converts free-form language into editable LiDAR007
sequences. Instructions are parsed into ego-centric scene008
graphs, which a tri-branch diffusion model transforms into009
object layouts, trajectories, and shapes. A range-image010
diffusion model generates the initial scan, and an autore-011
gressive module extends it into a temporally coherent se-012
quence. The explicit layout design further supports object-013
level editing, such as insertion or relocation. To enable fair014
assessment, we provide EvalSuite, a benchmark spanning015
scene-, object-, and sequence-level metrics. On nuScenes,016
LiDARCrafter achieves state-of-the-art fidelity, controlla-017
bility, and temporal consistency, offering a foundation for018
LiDAR-based simulation and data augmentation.019

1. Introduction020

Generative world models are reshaping autonomous driv-021
ing by enabling scalable simulation and interpretation of022

sensor-rich environments [6, 16]. Recent advances have 023
focused on structured modalities such as videos and occu- 024
pancy grids, whose dense and regular representations align 025
naturally with image or voxel pipelines. Video-based meth- 026
ods [6, 16, 32] leverage autoregression and richer con- 027
ditioning, while BEV-based approaches such as Magic- 028
Drive [4] enforce temporal consistency across frames [23, 029
33]. Occupancy-based works [1, 22, 34, 35], capture fine 030
spatial structure for downstream tasks. Multimodal frame- 031
works [5, 13] further align cross-modal signals for consis- 032
tency. Despite this progress, LiDAR, a core modality for 033
precise 3D geometry and all weather robustness remains 034
comparatively underexplored. 035

LiDAR point clouds present unique challenges. They 036
are sparse, irregular, and unordered [12, 14, 15, 27], mak- 037
ing direct application of image- or voxel-based techniques 038
ineffective. Early efforts such as LiDARGen [36] project 039
360° scans to range images and adapt pixel-based diffusion, 040
while subsequent works like RangeLDM [7], R2DM [17], 041
and R2Flow [18] improved single-frame fidelity. Other 042
methods such as Text2LiDAR [24], WeatherGen [25], and 043
UltraLiDAR [26] introduced diverse conditioning or edit- 044
ing capabilities. Yet, most are restricted to static scans or 045
lack temporal modeling, leaving 4D sequence generation 046
and fine-grained control unresolved. 047

A central obstacle is spatial controllability. Existing 048
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“A sedan drives along a straight road, with another car directly ahead and one directly behind; to its right, a 
large truck stands stationary at the curb; to its left, a lone pedestrian walks on the sidewalk . . .”
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Figure 2. Overview of the LiDARCrafter framework. In the Text2Layout stage (cf. Sec. 2.1), the natural-language instruction is parsed
into an ego-centric scene graph, and a tri-branch diffusion network generates 4D conditions for bounding boxes, future trajectories, and
object point clouds. In the Layout2Scene stage (cf. Sec. 2.2), a range-image diffusion model uses these conditions to generate a static
LiDAR frame. In the Scene2Seq stage (cf. Sec. 2.3), an autoregressive module warps historical points with ego and object motion priors
to generate each subsequent frame, producing a temporally coherent LiDAR sequence.

models often require costly inputs such as HD maps [21]049
or 3D bounding boxes [28, 31], while text-only meth-050
ods [6, 24] are more accessible but lack spatial precision.051
Indoor scene synthesis has addressed this trade-off with in-052
termediate scene graphs [29, 30], but such strategies are not053
yet established for outdoor, dynamic LiDAR streams. Be-054
yond controllability, LiDAR world models also lack tem-055
poral coherence: single-frame synthesis cannot capture oc-056
clusions or motion patterns, and naı̈ve cross-frame attention057
overlooks the geometric continuity of point clouds. Finally,058
unlike video models that benefit from benchmarks such as059
VBench [8], LiDAR has no standardized protocols to eval-060
uate scene-, object-, and sequence-level quality.061

We introduce LiDARCrafter, the first unified frame-062
work for controllable 4D LiDAR sequence generation. At063
its core is an explicit, object-centric 4D layout that bridges064
free-form language instructions with LiDAR geometry and065
motion. In the Text2Layout stage, a large language model066
parses descriptions into an ego-centric scene graph, which a067
tri-branch diffusion network expands into object boxes, tra-068
jectories, and shapes. Layout2Scene converts this layout069
into a high-fidelity initial scan using a range-image diffu-070
sion backbone, enabling precise editing such as object in-071

sertion or relocation. Scene2Seq autoregressively extends 072
the sequence by warping foreground and background points 073
with motion priors to maintain long-term temporal consis- 074
tency. To close the evaluation gap, we release EvalSuite, 075
the first benchmark that jointly scores semantic correctness, 076
layout validity, and sequence smoothness. 077

In summary, LiDARCrafter establishes a new paradigm 078
for LiDAR-based world modeling by combining intuitive 079
language-driven control, explicit layout conditioning, and 080
temporally stable generation. It offers both a practical syn- 081
thesis tool and a standardized benchmark, providing the 082
community with a foundation for controllable and consis- 083
tent 4D LiDAR simulation. 084

2. LiDARCrafter: 4D LiDAR World Model 085

We introduce LiDARCrafter, the first generative world 086
model dedicated to LiDAR, which transforms free-form 087
instructions into temporally coherent 4D point cloud se- 088
quences with object-level control. The core idea is to main- 089
tain an explicit 4D layout that bridges language descriptions 090
with LiDAR geometry. As shown in Fig. 2, the framework 091
follows three stages: Text2Layout, which lifts language 092
into a structured 4D layout; Layout2Scene, which gener- 093
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ates a controllable first scan; and Scene2Seq, which au-094
toregressively extends the sequence. We further introduce095
EvalSuite, a protocol for standardized evaluations.096

2.1. Text2Layout: Language to 4D Layout097

Since natural language lacks the spatial precision needed098
for LiDAR synthesis, we construct an intermediate scene099
graph. An LLM parses the user prompt into an ego-centric100
graph G = (V, E), where nodes represent the ego vehicle101
and dynamic objects with semantic labels and motion states,102
while edges encode spatial relations. This explicit graph103
captures both semantic and relational cues.104

Each node is lifted into a layout tuple Oi = (bi, δi,pi),105
including a 3D bounding box, a trajectory of planar offsets,106
and canonical shape points. To enrich these with contextual107
semantics, we process the graph with a TripletGCN [9], em-108
bedding nodes and edges with a frozen CLIP encoder [20].109
The resulting features condition a tri-branch diffusion de-110
coder: one branch denoises boxes, another predicts trajec-111
tories, and a third synthesizes coarse shapes. This structured112
4D layout provides the foundation for later LiDAR synthe-113
sis while supporting explicit object-level control.114

2.2. Layout2Scene: Controlled LiDAR Generation115

Given the 4D layout, LiDARCrafter generates the initial Li-116
DAR frame using a range-image diffusion model, which117
preserves LiDAR geometry while leveraging efficient con-118
volutional backbones [11, 17]. To address sparsity, particu-119
larly for small or distant objects, we condition the network120
on compact object representations encoding category, pose,121
and shape priors, projected onto the range view [10]. A122
lightweight attention layer propagates context across ob-123
jects, and scene-level embeddings provide global condition-124
ing. During denoising, the noisy map is combined with this125
conditioning to yield a coherent first scan.126

The explicit layout also enables fine-grained editing. By127
modifying layout tuples (e.g., inserting, deleting, or drag-128
ging objects), users can re-synthesize scenes with only lo-129
cal changes, preserving the rest of the scan. This makes Li-130
DARCrafter suitable for interactive scenario design in sim-131
ulation and planning research.132

2.3. Scene2Seq: Autoregressive Sequence Synthesis133

To extend a single scan into a full 4D sequence, we adopt134
an autoregressive strategy. Unlike video, where textures135
change every frame, LiDAR scenes are largely static except136
for moving agents and ego motion. LiDARCrafter exploits137
this by warping background points with the ego pose and138
foreground objects with their predicted trajectories. This139
warp provides a strong geometric prior at each timestep,140
which the diffusion model refines into a clean range map.141
To prevent accumulated drift, we include a warp from the142
first frame to every later frame, ensuring long-term stabil-143

Table 1. Evaluations of scene-level fidelity for LiDAR generation
on the nuScenes dataset. MMD values are reported in 10−4 and
JSD in 10−2. Lower is better for all metrics (↓).

# Method Venue Range Points BEV
FRD↓ MMD↓ FPD↓ MMD↓ JSD↓ MMD↓

Vo
xe

l UniScene CVPR’25 – – 976.47 29.06 31.55 13.61
OpenDWM CVPR’25 – – 714.19 21.95 20.17 5.61

OpenDWM-DiT CVPR’25 – – 381.91 12.46 19.90 5.73

R
an

ge

LiDARGen ECCV’22 759.65 1.71 159.35 35.52 5.74 2.39
LiDM CVPR’24 495.54 0.18 210.20 8.45 5.86 0.73

RangeLDM ECCV’24 – – – – 5.47 1.92
R2DM ICRA’24 243.35 1.40 33.97 1.62 3.51 0.71

LiDARCrafter Ours 194.37 0.08 8.64 0.90 3.11 0.42

Table 2. Comparison of foreground object quality using FDC
(↑), which reflects detector confidence on generated scenes. #Box
is the average number of boxes per frame.

# Method Venue Car↑ Ped↑ Truck↑ Bus↑ #Box

U
nc

on
d. LiDARGen ECCV’22 0.57 0.29 0.42 0.38 0.364

LiDM CVPR’24 0.65 0.22 0.45 0.31 0.28
R2DM ICRA’24 0.54 0.29 0.39 0.35 0.53

C
on

d.

UniScene CVPR’25 0.53 0.28 0.35 0.25 0.98
OpenDWM CVPR’25 0.74 0.30 0.51 0.44 0.54

OpenDWM-DiT CVPR’25 0.78 0.32 0.56 0.51 0.64

LiDARCrafter Ours 0.83 0.34 0.55 0.54 1.84

Table 3. Evaluation of object-level fidelity for LiDAR generation.
MMD is reported in 10−4, and JSD in 10−2.

# Method Venue FPD↓ P-MMD↓ JSD↓ MMD↓

U
nc

on
d. LiDARGen ECCV’22 1.39 0.15 0.20 16.22

LiDM CVPR’24 1.41 0.15 0.19 13.49
R2DM ICRA’24 1.40 0.15 0.17 12.76

C
on

d.

UniScene CVPR’25 1.19 0.18 0.23 16.65
OpenDWM CVPR’25 1.49 0.19 0.16 9.11

OpenDWM-DiT CVPR’25 1.48 0.18 0.15 9.02

LiDARCrafter Ours 1.03 0.13 0.15 5.48

ity. The result is a temporally consistent sequence where 144
motion and occlusion patterns remain realistic. 145

2.4. EvalSuite: Comprehensive Evaluation 146

LiDAR generation requires metrics beyond static fidelity. 147
Our EvalSuite measures quality across three levels: Scene- 148
level: evaluating global realism and distributional fidelity 149
of entire scenes. Object-level: verifying semantic correct- 150
ness, bounding box geometry, and detection confidence. 151
Temporal-level: assessing motion smoothness and frame- 152
to-frame transform accuracy. 153

Together, these metrics provide the first standardized 154
benchmark for 4D LiDAR sequence generation, enabling 155
fair and holistic evaluation of future methods. 156

3. Experiments 157

We evaluate LiDARCrafter on nuScenes [2] using both 158
classical LiDAR generation metrics (FRD, FPD, JSD, 159
MMD) and our EvalSuite for measuring object-, layout- and 160
sequence-level generation quality. Comparisons are made 161
against recent LiDAR generative models, including R2DM 162
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Figure 3. Single-frame LiDAR point cloud generation results. LiDARCrafter produces the pattern closest to the ground truth, with notably
superior foreground quality compared to other methods. Best viewed at high resolution.

A vehicle on the right side is turning left . . .

A bus hits a pedestrian in its blind spot . . .

Two cars on the left and right sides collided . . .

T=1 T=2 T=3

T=1 T=2 T=3

T=1 T=2 T=3

Figure 4. Diverse corner cases generated by LiDARCrafter with
object-centric controllability. Best viewed at high resolution.
Frames are arranged sequentially from left to right.

Table 4. Comparison of temporal consistency in 4D LiDAR gen-
eration. TTCE measures transformation error from point cloud
registration; CTC computes Chamfer Distance between adjacent
frames. Numbers indicate frame intervals.

Method Venue TTCE↓ CTC↓
3 4 1 2 3 4

UniScene CVPR’25 2.74 3.69 0.90 1.84 3.64 3.90
OpenDWM CVPR’25 2.68 3.65 1.02 2.02 3.37 5.05

OpenDWM-DiT CVPR’25 2.71 3.66 0.89 1.79 3.06 4.64

LiDARCrafter Ours 2.65 3.56 1.12 2.38 3.02 4.81

[17], R2Flow [18], and OpenDWM [19].163

3.1. Scene-Level Generation164

At the scene level, we assess both whole-scan fidelity and165
the accuracy of synthesized foregrounds. As shown in166
Tab. 1, LiDARCrafter attains the lowest FRD and FPD, out-167
performing prior methods by a notable margin. Qualita-168
tive comparisons in Fig. 3 confirm that our model recon-169
structs realistic global structure while preserving sharp ob-170
ject geometry, whereas alternatives often suffer from noise171

or blurred backgrounds. 172
Foreground quality is further validated using a pre- 173

trained VoxelRCNN detector [3]. We report Foreground 174
Detection Confidence (FDC). LiDARCrafter achieves the 175
highest scores across most categories (Tab. 2), demonstrat- 176
ing that generated objects align closely with ground-truth 177
semantics and boxes. 178

3.2. Object-Level Generation 179

At the object level, we benchmark fidelity and consistency 180
under box-level conditioning. Using 2,000 car instances, 181
LiDARCrafter achieves the best scores in FPD and MMD 182
(Tab. 3), showing superior reconstruction of fine-grained 183
geometry compared to OpenDWM and R2Flow. 184

3.3. Temporal-Level Generation 185

We evaluate temporal consistency in 4D LiDAR gener- 186
ation in Table 4. Temporal Transformation Consistency 187
Error (TTCE) measures the error between the predicted 188
and ground-truth transformation matrices obtained via point 189
cloud registration, while Chamfer Temporal Consistency 190
(CTC) computes the Chamfer Distance between consecu- 191
tive frames. Our approach achieves the lowest TTCE scores 192
across both frame intervals and maintains competitive CTC 193
performance at all intervals, demonstrating strong temporal 194
coherence. 195

4. Conclusion 196

We presented LiDARCrafter, a unified framework for con- 197
trollable 4D LiDAR sequence generation and editing. By 198
leveraging scene graph descriptors, the multi-branch diffu- 199
sion model, and an autoregressive generation strategy, our 200
approach achieves fine-grained controllability and strong 201
temporal consistency. Experiments on nuScenes demon- 202
strate clear improvements over existing methods in fidelity, 203
coherence, and controllability. Beyond high-quality data 204
synthesis, LiDARCrafter enables the creation of safety- 205
critical scenarios for robust evaluation of downstream au- 206
tonomous driving systems. Future work will explore multi- 207
modal extensions and further efficiency improvements. 208
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