
Under review as a conference paper at ICLR 2023

REWIRING WITH POSITIONAL ENCODINGS FOR GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Several recent works use positional encodings to extend the receptive fields of
graph neural network (GNN) layers equipped with attention mechanisms. These
techniques, however, extend receptive fields to the complete graph, at substantial
computational cost and risking a change in the inductive biases of conventional
GNNs, or require complex architecture adjustments. As a conservative alterna-
tive, we use positional encodings to expand receptive fields to r-hop neighbor-
hoods. More specifically, our method augments the input graph with additional
nodes/edges and uses positional encodings as node and/or edge features. We thus
modify graphs before inputting them to a downstream GNN model, instead of
modifying the model itself. This makes our method model-agnostic, i.e. compati-
ble with any existing GNN architectures. We also provide examples of positional
encodings that are lossless with a one-to-one map between the original and the
modified graphs. We demonstrate that extending receptive fields via positional
encodings and a virtual fully-connected node significantly improves GNN per-
formance and alleviates over-squashing using small r. We obtain improvements
on a variety of models and datasets, and reach state-of-the-art performance using
traditional GNNs or graph Transformers.

1 INTRODUCTION

GNN layers typically embed each node of a graph as a function of its neighbors’ (1-ring’s) embed-
dings from the previous layer; that is, the receptive field of each node is its 1-hop neighborhood.
Hence, at least r stacked GNN layers are needed for nodes to get information about their r-hop
neighborhoods. Barceló et al. (2020) and Alon and Yahav (2021) identify two broad limitations
associated with this structure: under-reaching occurs when the number of layers is insufficient to
communicate information between distant vertices, while over-squashing occurs when certain edges
act as bottlenecks for information flow.

Inspired by the success of the Transformer in natural language processing (Vaswani et al., 2017),
recent methods expand node receptive fields to the whole graph (Dwivedi and Bresson, 2021; Ying
et al., 2021). Since they effectively replace the topology of the graph with that of a complete graph,
these works propose positional encodings that communicate the connectivity of the input graph as
node or edge features. As these methods operate on fully-connected graphs, the computational cost
of each layer is quadratic in the number of nodes, obliterating the sparsity afforded by conventional
1-ring based architectures. Moreover, the success of the 1-ring GNNs suggests that local feature
aggregation is a useful inductive bias, which has to be learned when the receptive field is the whole
graph, leading to slow and sensitive training.

In this paper, we expand receptive fields from 1-ring neighborhoods to r-ring neighborhoods, where
r ranges from 1 (typical GNNs) to R, the diameter of the graph (fully-connected). That is, we
augment a graph with edges between each node and all others within distance r in the input topol-
ogy. We show that performance is significantly improved using fairly small r and carefully-chosen
positional encodings annotating this augmented graph. This simple but effective approach can be
combined with any GNN.

Contributions. We apply GNN architectures to augmented graphs connecting vertices to their peers
of distance ≤ r. Our contributions are as follows: (i) We increase receptive fields using a modified
graph with positional encodings as edge and node features. (ii) We compare r-hop positional en-
codings on the augmented graph, specifically lengths of shortest paths, spectral computations, and

1

Under review as a conference paper at ICLR 2023

powers of the graph adjacency matrix. (iii) We demonstrate that relatively small r-hop neighbor-
hoods sufficiently increase performance across models and that performance degrades in the fully-
connected setting.

2 RELATED WORK

The Transformer has permeated deep learning (Vaswani et al., 2017), with state-of-the-art perfor-
mance in NLP (Devlin et al., 2018), vision (Parmar et al., 2018), and genomics (Zaheer et al., 2020).
Its core components include multi-head attention, an expanded receptive field, positional encodings,
and a CLS-token (virtual global source and sink nodes). Several works adapt these constructions to
GNNs. For example, the Graph Attention Network (GAT) performs attention over the neighborhood
of each node, but does not generalize multi-head attention using positional encodings (Veličković
et al., 2018). Recent works use Laplacian spectra, node degrees, and shortest-path lengths as posi-
tional encodings to expand attention to all nodes (Kreuzer et al., 2021; Dwivedi and Bresson, 2021;
Rong et al., 2020; Ying et al., 2021). Several works also adapt attention mechanisms to GNNs (Yun
et al., 2019; Cai and Lam, 2019; Hu et al., 2020; Baek et al., 2021; Veličković et al., 2018; Wang
et al., 2021b; Zhang et al., 2020; Shi et al., 2021).

Path and distance information has been incorporated into GNNs more generally. Yang et al. (2019)
introduce the Shortest Path Graph Attention Network (SPAGAN), whose layers incorporate path-
based attention via shortest paths between a center node and distant neighbors, using an involved
hierarchical path aggregation method to aggregate a feature for each node. Like us, SPAGAN intro-
duces the ≤ k-hop neighbors around the center node as a hyperparameter; their model, however, has
hyperparameters controlling path sampling. Beyond SPAGAN, Chen et al. (2019) concatenate node
features, edge features, distances, and ring flags to compute attention probabilities. Li et al. (2020)
show that distance encodings (i.e., one-hot feature of distance as an extra node attribute) obtain
more expressive power than the 1-Weisfeiler-Lehman test. Graph-BERT introduces multiple posi-
tional encodings to apply Transformers to graphs and operates on sampled subgraphs to handle large
graphs (Zhang et al., 2020). Yang et al. (2019) introduce the Graph Transformer Network (GTN)
for learning a new graph structure, which identifies “meta-paths” and multi-hop connections to learn
node representations. Wang et al. (2021a) introduce Multi-hop Attention Graph Neural Network
(MAGNA) that uses diffusion to extend attention to multi-hop connections. Frankel et al. (2021)
extend GAT attention to a stochastically-sampled neighborhood of neighbors within 5-hops of the
central node. Isufi et al. (2020) introduce EdgeNets, which enable flexible multi-hop diffusion. Luan
et al. (2019) generalizes spectral graph convolution and GCN in block Krylov subspace forms.

Each layer of our GNN attends to the r-hop neighborhood around each node. Unlike SPAGAN
and Graph-BERT, our method is model agnostic and does not perform sampling, avoiding their
sampling-ratio and number-of-iterations hyperparameters. Unlike GTN, we do not restrict to a par-
ticular graph structure. Broadly, our approach does not require architecture or optimization changes.
Thus, our work also joins a trend of decoupling the input graph from the graph used for information
propagation (Veličković, 2022). For scalability, Hamilton et al. (2017) sample from a node’s local
neighborhood to generate embeddings and aggregate features, while Zhang et al. (2018) sample to
deal with topological noise. Rossi et al. (2020) introduce Scalable Inception Graph Neural Networks
(SIGN), which avoid sampling by precomputing convolutional filters. Kipf and Welling (2017) pre-
process diffusion on graphs for efficient training. Topping et al. (2021) use graph curvature to rewire
graphs and combat over-squashing and bottlenecks.

In contrast, our work does not use diffusion, curvature, or sampling, but expands receptive fields
via Transformer-inspired positional encodings. In this sense, we avoid the inductive biases from
pre-defined notions of diffusion and curvature, and since we do not remove connectivity, injective
lossless changes are easy to obtain.

3 PRELIMINARIES AND DESIGN

Let G = (V,E, fv, fe) denote a graph with nodes V ⊂ N0 and edges E ⊆ V × V , and let G be the
set of graphs. For each graph, let functions fv ∶ V → Rdv and fe ∶ E → Rde denote node and
edge features, respectively. We consider learning on graphs, specially node classification and graph
classification. At inference, the input is a graph G. For node classification, the task is to predict

2

Under review as a conference paper at ICLR 2023

a node label lv(v) ∈ R for each vertex v ∈ V . Using the node labels, the homophily of a graph is
defined as the fraction of edges that connect nodes with the same labels (Ma et al., 2022). For graph
classification, the task is to predict a label lG ∈ R for the entire graph G.

Given the tasks above, GNN architectures typically ingest a graph G = (V,E, fv, fe) and output
either a label or a per-node feature. One can view these as an abstraction; e.g. a GNN for graph
classification is a map Fθ ∶ G → Rn with learnable parameters θ. These architectures vary in terms
of how they implement Fθ. Some key examples include the following: (i) Spatial models (Kipf and
Welling, 2017) use the graph directly, computing node representations in each layer by aggregating
representations of a node and its neighbors (1-ring). (ii) Spectral models (Bruna et al., 2014) use the
eigendecomposition of the graph Laplacian to perform spectral convolution. (iii) Diffusion models
(Wang et al., 2021a; Klicpera et al., 2019) use weighted sums of powers of the adjacency matrix
to incorporate larger neighborhoods (r-hops). (iv) In Transformers (Kreuzer et al., 2021; Dwivedi
and Bresson, 2021; Rong et al., 2020; Ying et al., 2021), each node forms a new representation
by self-attention over the complete graph (R-hop neighborhood) using positional encodings. These
approaches incorporate useful inductive biases while remaining flexible enough to learn from data.

Spatial models have been extremely successful, but recent work shows that they struggle with under-
reaching and over-squashing (Alon and Yahav, 2021). Spectral approaches share similar convolu-
tional bias as spatial models and face related problems (Kipf and Welling, 2017). On the other hand,
Transformers with complete attention and diffusion aim to alleviate the shortcomings of spatial
models and show promising results. Due to complete attention, Transformers carry little inductive
bias but are also computationally expensive. Diffusion explicitly incorporates the inductive bias that
distant nodes should be weighted less in message aggregation; limiting its breadth of applicability.

We alleviate under-reaching and over-squashing while avoiding the computational load of complete
attention by incorporating a more general proximity bias than diffusion without committing to a
specific model. Our method is built on the observation that Fθ can be trained to ingest modified
versions of the original graph that better communicate structure and connectivity. Hence, we add
new edges, nodes, and features to the input graph. To still convey the original topology of the input
graph, we add positional encodings. More formally, we design functions g ∶ G → G that modify
graphs and give features to the new nodes and edges. These functions can be prepended to any GNN
Fθ ∶ G → Rn as Fθ ○ g ∶ G → Rn.

The following are desiderata informing our design of g: (i) ability to capture the original graph,
(ii) ability to incorporate long-range connections, (iii) computational efficiency, and (iv) minimal
and flexible locality bias. By using positional encodings and maintaining the original graph G as a
subgraph of the modified graph, we capture the original graph in our modified input (Section 4.2.1).
By expanding the receptive field around each node to r-hop neighborhoods we reduce computational
load relative to complete-graph attention, with limited inductive bias stemming from proximity.
Additionally, expanded receptive fields alleviate under-reaching and over-squashing (Section 6.1).

4 APPROACH

We modify graphs before inputting them to a downstream GNN model, instead of modifying the
model itself. Our approach does not remove edges or nodes in the original graph but only adds
elements. Given input G = (V,E, fv, fe), we create a new graph G′ = (V ′,E′, f ′v, f ′e) such that
G is a subgraph of G′. Expanded receptive fields are achieved in G′ by adding edges decorated
with positional encodings as node or edge attributes; we also add a fully-connected CLS node. G′
is still a graph with node and edge attributes to which we may apply any GNN. This process is
represented by a function g ∶ G → G. We decompose the construction of g into topological rewiring
and positional encoding, detailed below. In a slight abuse of notation, we will subsequently use G
to denote only the subset of graphs relevant to a given machine learning problem. For example, for
graph regression on molecules, G denotes molecule graphs, with atoms as nodes and bonds as edges.

4.1 TOPOLOGICAL REWIRING

We modify the input graph G to generate G′ in two steps:

3

Under review as a conference paper at ICLR 2023

Expanded receptive field. Given a graph G = (V,E, fv, fe) ∈ G and a positive integer r ∈ N+, we
add edges between all nodes within r hops of each other in G to create G′r = (V,E′, f ′v, f ′e). If G is
annotated with edge features, we assign to each edge in E′/E an appropriate constant feature Ce.

CLS node. Following Gilmer et al. (2017), we also include a “CLS”—or classification—node to
our graph connected to all others. We follow this procedure: Given a graph G, we (i) initialize a
new graph G′ = (V ′,E′, f ′v, f ′e) = G, (ii) add a new node vCLS to V ′, and (iii) set f ′v(vCLS) ∶= Cv

for a constant Cv . Finally, we set E′ ∶= E ∪ ⋃v∈V {(vCLS, v), (v, vCLS)}, with f ′e((vCLS, v)) =
f ′e((v, vCLS)) ∶= Ce, where Ce is defined above.

4.2 POSITIONAL ENCODINGS

Given only the connectivity of a rewired graph G′r = (V ′,E′, f ′v, f ′e) from the two-step procedure
above, it may not be possible to recover the connectivity of the original graph G = (V,E, fv, fe).
In the extreme, when r is large and G is connected, G′r could become fully-connected, meaning
that all topology is lost—removing the central cue for graph-based learning. To combat this, we
encode the original topology of G into G′r via positional encodings, which are node and/or edge
features. We consider several positional encoding functions for edges pe ∶ G × V ′ × V ′ → Rn or
nodes pv ∶ G × V ′ → Rn, appending the output of pe as edge or pv as node features to G′r. Section
4.2.1 lays out properties to compare choices of pe and/or pv . Then, Section 4.2.2 provides concrete
positional encodings compared in our experiments that trade off between the properties we lay out.

4.2.1 PROPERTIES OF POSITIONAL ENCODINGS

There are countless ways to encode the subgraph topology of G within G′ in vertex features pv or
edge features pe. Below, we state a few properties we can check to give a framework for comparing
the capabilities and biases of possible choices.

Lossless encoding. While a GNN can ignore information in input G′, it cannot reconstruct informa-
tion that has been lost in constructing G′ from G. Yet, there can be benefits in forgetting information,
e.g. when dealing with noisy graphs or incorporating a stronger inductive bias (Rossi et al., 2020;
Klicpera et al., 2019). That said, a simple property to check for G′ equipped with positional encod-
ing features pe, pv is whether we can recover G from this information, that is, whether our encoding
is lossless (or non-invasive). As long as it is possible to identify G within g(G), g is an injection
and non-invasive. Hence, a sufficient condition for lossless positional encodings is as follows: If all
edges in G′ have unique positional encodings, then g ∶ G → G is a bijection. One way to achieve this
condition is to use an additional edge feature that is unique to the 1-ring.

Discriminative power. Following work investigating the discriminative power of GNNs (Xu et al.,
2019; Brüel Gabrielsson, 2020), Ying et al. (2021) showed that expanded receptive fields together
with shortest-path positional encodings are strictly more powerful than the 1-Weisfeiler-Lehman
(WL) test and hence more powerful than 1-hop vanilla spatial GNN models (Xu et al., 2019). The
combination of increased receptive fields, positional encodings, and choice of subsequent GNN
models determines discriminative power. In fact, it follows from (Ying et al., 2021) that the po-
sitional encodings presented below together with an increased receptive field r > 1 and a vanilla
spatial GNN model are strictly more powerful than the 1-WL test.

Computational time. Positional encodings may come at substantial computational cost when work-
ing with r-hop neighborhoods. The cost of computing positional encodings affects total inference
time, which may be relevant in some learning settings. However, in our setting the runtime of com-
puting positional encodings is an order of magnitude less than the subsequent inference time, and
in our implementation the asymptotic runtimes of computing the positional encodings are the same.
See Appendix E.

Local vs. global. The positional encoding of a vertex or edge can be local, meaning it incorporates
information from a limited-sized neighborhood in G, or global, in which case adding or removing a
node anywhere in G could affect all the positional encodings.

Inductive bias. Our positional encodings can bias the results of the learning procedure, effectively
communicating to the downstream GNN which properties of G and G′ are particularly important
for learning. Without positional encodings, our model would induce a bias stating that distances < r
in our graph are insignificant. More subtly, suppose ℓ is the distance (of length ≤ r) between two

4

Under review as a conference paper at ICLR 2023

nodes in G corresponding to a new edge in E′. Using ℓ directly as positional encoding rather than a
decaying function, e.g. e−αℓ, makes it easier or harder (resp.) to distinguish long distances in G.

A related consideration involves whether our model can imitate the inductive bias of past work. For
example, graph diffusion has been used to incorporate multi-hop connections into GNNs using fixed
weights (Wang et al., 2021a). We can ask whether our positional encodings on G′ are sufficient to
learn to imitate the behavior of a prescribed multi-hop model on G, e.g. whether a layer of our GNN
applied to G′ can capture multi-hop diffusion along G.

Over-squashing and under-reaching. Section 6.1 demonstrates, via the NeighborsMatch problem
(Alon and Yahav, 2021), that increased receptive fields as well as the CLS-node alleviate over-
squashing; however, this toy problem is concerned with matching node attributes and not with graph
topology. We want positional encodings that alleviate over-squashing in the sense that it enables
effective information propagation for the task at hand. Our experiments showing that expanded re-
ceptive fields alleviate the over-squashing problem and that the best performing positional encoding
varies across datasets showcase this. Additionally, our experiments on the discriminative power of
positional encodings in Appendix D further help discern the different options.

4.2.2 POSITIONAL ENCODING OPTIONS

Taking the properties above into consideration, we now give a few options for positional encodings
below, compared empirically in Section 6.

Shortest path. For any edge e ∈ G′r, the shortest-path positional encoding takes pe ∈ {0,1, . . . , r}
to be the integer length of the shortest path in G between the corresponding nodes of E. These
embeddings are lossless because G is the subgraph of g(G) with pe = 1. They also are free to
compute given our construction of G′r from G. But, multiple vertices in the r-neighborhood of a
vertex in V could have the same positional encoding in V ′, and shortest path lengths are insufficient
to capture complex inductive biases of multi-hop GNNs like diffusion over large neighborhoods.
Shortest-path positional encoding was previously used by Ying et al. (2021), for extending G to a
fully-connected graph, but they did not consider smaller r values.

Spectral embedding. Laplacian eigenvectors embed graph vertices into Euclidean space, providing
per-vertex features that capture multi-scale graph structure. They are defined by factorizing the
graph Laplacian matrix, ∆ = I−D−1/2AD−1/2, where D is the degree matrix and A is the adjacency
matrix. We call the result a spectral positional embedding. We can use the q smallest non-trivial
Laplacian eigenvectors of G as a node-based positional encoding pv ∶ V ′ → Rq . Following Dwivedi
et al. (2020), since these eigenvectors are known only up to a sign, we randomly flip the sign during
training. Prior work consider Laplacian eigenvectors as additional node features without topological
rewiring (Dwivedi et al., 2020).

Spectral positional encodings do not necessarily make g injective. Even when q = ∣V ∣, this encod-
ing fails to distinguish isospectral graphs (Von Collatz and Sinogowitz, 1957), but these are rarely
encountered in practice. On the other hand, spectral signatures are common for graph matching and
other tasks. Moreover, unlike the remaining features in this section, spectral positional encodings
capture global information about G rather than only r-neighborhoods. Finally, we note that the dif-
fusion equation for graphs can be written as ut = −∆u; this graph PDE can be solved in closed-form
given the eigenvectors and eigenvalues of ∆. Hence, given the spectral embedding of G in G′, we
can simulate diffusion-based multi-hop GNN architectures up to spectral truncation.

Powers of the adjacency matrix. Our final option for positional encoding generalizes the shortest
path encoding and can capture the inductive biases of diffusion-based GNNs. The entry at position
(i, j) of the k-th power Ak of the adjacency matrix A of graph G gives the number of paths of length
k between node i and j in G. Concatenating the powers from k = 1, . . . , r, we get for each edge e in
G′ an integer vector pe ∈ Nr giving the powers of the adjacency matrix positional encoding.

This embedding can be used to recover the shortest-path embedding. This adjacency-derived em-
bedding can also generalize the inductive bias of diffusion-based multi-hops GNNs. In particu-
lar, diffusion aggregation weights are often approximated using a Taylor series, W = ∑∞i=0 θiAi ≈
∑r

i=0 θiA
i ∶= W , where θi are a prescribed decaying sequence (θi > θi+1). The entries of W above

can be computed linearly from the adjacency-powers positional encoding. Hence, it is strictly more
general than using prescribed diffusion-based aggregation weights on G.

5

Under review as a conference paper at ICLR 2023

Lossless encodings. The previously discussed lossless-encoding properties of our graph rewiring
method are accomplished by two of the above-mentioned positional encodings:

Proposition 1. Shortest-path and adjacency matrix positional encodings yield lossless rewirings.

Proof. Recovering the original graph G = (V,E) from the rewired graph G′ = (V,E′) is almost
trivial. With the shortest-path position encoding the original graph can be recovered via E = {e∣e ∈
E′, pe = 1} and for powers-of-the-adjacency-matrix encodings via E = {e∣e ∈ E′, (pe)1 = 1}.

5 IMPLEMENTATION DETAILS

Our method is compatible with most GNN architectures. Here we adopt GatedGCN (Bresson and
Laurent, 2018), MoNet (Monti et al., 2017), and an implementation of the Transformer (Vaswani
et al., 2017); see Appendix B for details. For each model, we consider graph rewiring with a different
r-hop receptive field around each node, and compare with and without the CLS-node, as well as the
three positional encodings introduced in Section 4.2.2.

Input and readout layers. Typically, GNNs on a graph G = (V,E, fv, fe) first embed node features
fv and edge features fe through a small feed-forward network (FFN) input layer. When incorpo-
rating positional encodings per edge/node, we embed using a small FFN and add them at this input
layer. After this layer, it updates node and edge representations through successive applications of
GNN layers. Lastly, a readout layer is applied to the last GNN layer L. For node classification, it
is typically a FFN applied to each node feature hL

i . For graph classification, it is typically an FFN
applied to the mean or sum aggregation of all node features hL. For graph classification and when
using the CLS-node, we aggregate by applying the FFN to the CLS-node’s features in the last layer.

6 EXPERIMENTS

We evaluate performance on six benchmark graph datasets: ZINC, AQSOL, PATTERN, CLUSTER,
MNIST, and CIFAR10 from (Dwivedi et al., 2020). The benchmark includes a training time limit
of 12 hours; we use similar compute to their work via a single TeslaV100 GPU. Training also stops
if for a certain number of epochs the validation loss does not improve (Dwivedi et al., 2020). Thus,
our experiments consider the ease of training and efficient use of compute. For the first two datasets,
we run GatedGCN, MoNet, and Transformer to show that rewiring and positional encoding work for
different models; for the other datasets we run only GatedGCN to focus on the effects of receptive
field size, the CLS node, and positional encodings. For all datasets, we run with increasing receptive
fields, with different positional encodings, and with or without the CLS-node. In the tables, density
is the average of the densities (defined as the ratio ∣E∣/∣V ∣2) of each graph in the dataset rewired to
the respective receptive field size. See Appendix A for details.

Table 1 compares our best results with other top performing methods and models. All our top per-
forming models come from the GatedGCN, although the Transformer performs comparably; how-
ever, the Transformer was harder to train—see Appendix B. MoNet performs worse but still sees
significant improvements from our approach. Our GatedGCN implementation was taken from the
same work (Dwivedi et al., 2020) that introduced the benchmarks and code that we use. Thus, hy-
perparameters might be better adapted to the GatedGCN. This highlights the benefits of our model-
agnostic approach, which allows us to pick the best models from Dwivedi et al. (2020) and combine
them with our methods. Our approach with 100K parameters achieves state-of-the-art on all datasets
among models with 100K parameters and even outperforms 500K-parameter models.

ZINC, Graph Regression. ZINC consists of molecular graphs and the task is graph property re-
gression for constrained solubility. Each ZINC molecule is represented as a graph of atoms with
nodes and bonds as edges. In Table 2 we present results for r from 1 to 10. The density column
shows that these graphs are sparse and that the number of edges increases almost linearly as the
receptive field r is increased. Performance across all settings noticeably improves when increasing
r above 1. Top performance is achieved with the CLS-node and powers-of-the-adjacency positional
encoding at r = 4, and at 52% of the edges and compute compared to complete attention. When
using the CLS node and/or spectral positional encodings, top performance generally occurs at lower
r, which is likely due to the global nature of these changes to the graphs. The GatedGCN and

6

Under review as a conference paper at ICLR 2023

Transformer perform comparably for the same settings, with a slight edge to the GatedGCN. The
two models show the same performance trends between settings, i.e., both increased receptive fields
and the CLS-node boost performance. Further, Ying et al. (2021) include a performance of 0.123
on ZINC with their Graphormer(500K), i.e., a Transformer with positional encodings and complete
attention. However, their training is capped at 10,000 epochs while ours is capped at 1,000 epochs;
training their Graphormer(500K) with same restrictions leads to a score of 0.26 on ZINC.

AQSOL, Graph Regression. AQSOL consists of the same types of molecular graphs as ZINC. The
densities of AQSOL graphs are slightly higher than those of ZINC. For all settings not including
CLS-node or spectral positional encodings, performance improves significantly when increasing r
above 1 (see Table 3); in these settings, better performing r are larger than for ZINC. However,
when including CLS node or spectral positional encodings, performance changes much less across
different r. This indicates the importance of some form of global bias on this dataset. At least one
of larger r values, spectral positional encoding, or the CLS-token is required to provide the global
bias, but the effect of them differs slightly across the two models. GatedGCN performs significantly
better, and larger r-values still boosts performance when combined with the CLS-token for MoNet,
but not for GatedGCN. MoNet uses a Bayesian Gaussian Mixture Model (Dempster et al., 1977) and
since MoNet was not constructed with edge-features in mind, we simply add edge embeddings to
the attention coefficients. Not surprisingly, this points to the importance of including edge features
for optimal use of expanded receptive fields and positional encodings.

CLUSTER, Node Classification. CLUSTER is a node classification dataset generated using a
stochastic block model (SBM). The task is to assign a cluster label to each node. There is a total
of 6 cluster labels and the average homophily is 0.34. CLUSTER graphs do not have edge features.
Table 4 gives results for r-hop neighborhoods from 1 to 3. As can be seen in the density column,
at r = 3 all graphs are fully connected, and more than 99% of them are fully connected at r = 2.
Hence, these graphs are dense. Significant improvements are achieved by increasing r for all but
the spectral positional encoding (again showcasing its global properties), which together with the
CLS node perform competitively at r = 1. The CLS node is helpful overall, especially at r = 1.
The GatedGCN and Transformer perform comparably for all but the spectral positional encodings
where the Transformer breaks down. We found that this breakdown was due to the placement of
batch normalization, discussed in Appendix B.1.

PATTERN, Node Classification. The PATTERN dataset is also generated using a SBM model,
and has an average homophily of 0.66. The task is to classify the nodes into two communities
and graphs have no edge features. Table 5 shows results for r-hops from 1 to 3. Similarly to
CLUSTER, the density column shows that the graphs are dense. Significant improvements are
achieved by increasing r > 1 and/or using the CLS-node. Performance generally decreases at r = 3.
Similarly to CLUSTER, the CLS-node helps at r = 1, but for both CLUSTER and PATTERN, top
performing model comes from a larger r > 1 without the CLS-node, suggesting that trade-offs exist
between CLS-node and increased receptive fields. Compared to CLUSTER, our approach shows less
performance boost for PATTERN, which lead us to hypothesize that our approach is more helpful
for graphs with low homophily which we investigate further in Appendix F.

MNIST, Graph Classification. MNIST is an image classification dataset converted into super-pixel
graphs, where each node’s feature includes super-pixel coordinates and intensity. The images are
of handwritten digits, and the task is to classify the digit. Table 6 summarizes results for r from 1
to 3. Not all graphs are fully connected at r = 3, but training at r = 4 exceeds our memory limit.
Noticeable performance gains are achieved at r = 2, but performance generally decreases at r = 3.
The CLS-node consistently improves performance at r = 1 but not otherwise, indicating that the
CLS-node and increased r-size have subsumed effects.

CIFAR10, Graph Classification. CIFAR10 is an image classification dataset converted into super-
pixel graphs, where each node’s features are the super-pixel coordinates and intensity. The images
consist of ten natural motifs, and the task is to classify the motif, e.g., dog, ship, or airplane. Table
7 provides results for r from 1 to 3. Not all graphs are fully connected at r = 3, but training at r = 4
led to out-of-memory issues. Top performing versions are all at r = 1, and performance degrades
for r > 1. As with MNIST, the CLS-node only improves performance at r = 1, again indicating its
shared (subsumed) effects with increased r-sizes.

7

Under review as a conference paper at ICLR 2023

Table 1: Benchmarking. Higher is better for all but for ZINC and AQSOL where lower is better.
Benchmarks can be found in Dwivedi et al. (2020); Corso et al. (2020); Bouritsas et al. (2020);
Dwivedi and Bresson (2021). The benchmarks (Dwivedi et al., 2020) and corresponding leaderboard
have 100K and 500K parameter entries. OOM is short for out-of-memory errors.

Datasets: PATTERN CLUSTER MNIST CIFAR10 ZINC AQSOL
task: node class. node class. graph class. graph class. graph reg. graph reg.
graphs: 14000 12000 70000 60000 12000 9823
Avg # nodes: 117.47 117.20 70.57 117.63 23.16 17.57
Avg # edges: 4749.15 4301.72 564.53 941.07 49.83 35.76
MoNet(100K) 85.482±0.037 58.064±0.131 90.805±0.032 54.655±0.518 0.397±0.010 1.395±0.027
GAT(100K) 75.824±1.823 57.732±0.323 95.535±0.205 64.223±0.455 0.475±0.007 1.441±0.023
GraphSage(100K) 50.516±0.001 50.454±0.145 97.312±0.097 65.767±0.308 0.468±0.003 1.431±0.010
GIN(100K) 85.590±0.011 58.384±0.236 96.485±0.252 55.255±1.527 0.387±0.015 1.894±0.024
PNA(100K) 86.730±0.050 63.020±0.262 97.940±0.120 70.350±0.630 0.188±0.004 1.083±0.011
GatedGCN(100K) 84.480±0.122 60.404±0.419 97.340±0.143 67.312±0.311 0.328±0.003 1.295±0.016
GatedGCN-PE/E(500K) 86.363±0.127 74.088±0.344 OOM OOM 0.214±0.006 0.996±0.008
GraphTransformer(500K) 54.941±3.739 27.121±8.471 OOM OOM 0.598±0.049 1.110±0.010
Ours(100K) 86.757±0.031 77.575±0.149 98.743±0.062 73.808±0.193 0.143±0.006 0.920±0.009

Table 2: Increasing r on ZINC/molecules 100K parameters.
type: density trans-adj trans-adj-cls trans-short trans-short-cls trans-lp trans-lp-cls gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls
r=1 .14 0.341±0.024 0.289±0.012 0.346±0.022 0.298±0.012 0.293±0.044 0.257±0.036 0.329±0.023 0.287±0.010 0.326±0.024 0.265±0.043 0.291±0.029 0.274±0.027
r=2 .27 0.297±0.019 0.234±0.021 0.295±0.030 0.220±0.040 0.263±0.024 0.253±0.030 0.265±0.021 0.198±0.011 0.263±0.019 0.204±0.022 0.233±0.023 0.199±0.009
r=3 .40 0.233±0.010 0.150±0.003 0.287±0.024 0.197±0.014 0.297±0.018 0.243±0.019 0.199±0.007 0.152±0.007 0.243±0.005 0.153±0.005 0.254±0.006 0.214±0.007
r=4 .52 0.217±0.014 0.145±0.003 0.294±0.027 0.194±0.014 0.325±0.013 0.288±0.032 0.180±0.009 0.143±0.006 0.236±0.008 0.167±0.010 0.305±0.010 0.307±0.028
r=5 .62 0.226±0.022 0.146±0.006 0.303±0.012 0.200±0.019 0.349±0.006 0.331±0.019 0.165±0.010 0.144±0.005 0.254±0.015 0.175±0.006 0.331±0.013 0.297±0.023
r=6 .71 0.206±0.005 0.169±0.010 0.305±0.014 0.209±0.016 0.373±0.012 0.343±0.009 0.171±0.007 0.152±0.007 0.255±0.009 0.185±0.009 0.352±0.005 0.337±0.009
r=7 .79 0.206±0.013 0.165±0.008 0.318±0.012 0.211±0.017 0.371±0.017 0.336±0.003 0.172±0.007 0.152±0.004 0.259±0.013 0.197±0.004 0.351±0.005 0.327±0.012
r=8 .85 0.212±0.012 0.180±0.010 0.341±0.035 0.235±0.031 0.369±0.009 0.338±0.009 0.192±0.008 0.182±0.012 0.276±0.019 0.210±0.025 0.345±0.006 0.330±0.006
r=9 .90 0.216±0.007 0.203±0.022 0.385±0.013 0.225±0.009 0.396±0.008 0.342±0.007 0.214±0.012 0.257±0.017 0.280±0.020 0.205±0.011 0.363±0.017 0.332±0.011
r=10 .94 0.247±0.021 0.238±0.014 0.366±0.027 0.245±0.023 0.398±0.009 0.350±0.011 0.270±0.045 0.304±0.032 0.275±0.008 0.206±0.010 0.370±0.013 0.336±0.003

gcn: GatedGCN, trans: Transformer, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 3: Increasing r on AQSOL 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls mon-adj mon-adj-cls mon-short mon-short-cls mon-lp mon-lp-cls
r=1 .17 1.277±0.039 0.920±0.009 1.287±0.017 0.927±0.019 1.027±0.006 0.936±0.004 1.391±0.019 1.261±0.117 1.402±0.013 1.216±0.139 1.136±0.020 1.234±0.028
r=2 .37 1.268±0.011 0.956±0.019 1.273±0.019 0.947±0.016 1.049±0.016 0.961±0.027 1.357±0.020 1.205±0.049 1.376±0.032 1.145±0.055 1.193±0.021 1.269±0.155
r=3 .54 1.164±0.006 0.954±0.013 1.200±0.013 0.961±0.017 1.045±0.010 0.953±0.020 1.250±0.009 1.277±0.088 1.269±0.017 1.215±0.070 1.160±0.023 1.183±0.017
r=4 .67 1.118±0.008 0.943±0.017 1.132±0.012 0.951±0.008 1.056±0.007 0.937±0.019 1.240±0.018 1.183±0.039 1.188±0.027 1.158±0.036 1.199±0.021 1.225±0.056
r=5 .76 1.076±0.015 0.970±0.011 1.090±0.019 0.981±0.012 1.046±0.022 0.962±0.012 1.243±0.040 1.166±0.026 1.179±0.030 1.183±0.071 1.211±0.005 1.203±0.026
r=6 .82 1.056±0.021 0.941±0.020 1.064±0.017 0.945±0.012 1.054±0.018 0.933±0.008 1.229±0.031 1.195±0.041 1.206±0.013 1.151±0.044 1.194±0.014 1.217±0.038
r=7 .87 1.064±0.014 0.967±0.018 1.043±0.012 0.949±0.006 1.026±0.017 0.930±0.004 1.235±0.056 1.186±0.031 1.197±0.024 1.141±0.035 1.208±0.028 1.211±0.022
r=8 .90 1.054±0.014 0.956±0.017 1.057±0.008 0.952±0.009 1.035±0.009 0.944±0.014 1.213±0.025 1.179±0.043 1.212±0.022 1.144±0.016 1.193±0.013 1.182±0.019
r=9 .92 1.090±0.009 0.996±0.009 1.042±0.008 0.955±0.010 1.038±0.011 0.952±0.010 1.248±0.044 1.205±0.055 1.205±0.017 1.160±0.050 1.184±0.014 1.208±0.008
r=10 .93 1.092±0.010 0.966±0.008 1.035±0.009 0.953±0.018 1.037±0.011 0.951±0.010 1.228±0.011 1.264±0.067 1.164±0.037 1.161±0.038 1.195±0.024 1.192±0.015

gcn: GatedGCN, mon: MoNet, adj: adjacency p.e, short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 4: Increasing r on CLUSTER 100K parameters.
type: density trans-adj trans-adj-cls trans-short trans-short-cls trans-lp* trans-lp-cls* gcn-adj gcn-adj-cls gcn-short gcn-short-cls gcn-lp gcn-lp-cls
r=1 .31 73.124±0.264 73.972±0.123 73.346±0.119 74.117±0.363 53.858±7.832 48.950±6.887 72.492±0.460 73.459±0.197 72.554±0.418 73.048±0.220 76.453±0.105 77.156±0.181
r=2 >.99 76.964±0.059 77.193±0.072 76.498±0.216 76.432±0.115 47.140±11.138 53.381±4.887 76.917±0.059 76.874±0.172 75.354±0.115 75.411±0.063 77.445±0.153 77.520±0.176
r=3 1.0 77.095±0.250 77.266±0.133 76.364±0.085 76.636±0.049 37.274±14.859 54.194±1.746 61.028±2.334 61.540±2.404 75.255±0.199 75.392±0.190 77.575±0.149 77.560±0.195

gcn: GatedGCN, trans: Transformer, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node, *: Training not converging

Table 5: Increasing r on PATTERN 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .43 85.715±0.036 86.723±0.006 86.547±0.026 86.713±0.031 85.681±0.033 86.732±0.020
r=2 >.99 86.698±0.047 86.707±0.029 86.723±0.031 86.747±0.011 86.757±0.031 86.736±0.014
r=3 1.0 85.471±0.949 84.657±0.977 86.718±0.024 86.744±0.015 86.712±0.031 86.739±0.027

gcn: GatedGCN, adj: adjacency p.e, short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

Table 6: Increasing r on MNIST 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .13 98.537±0.089 98.522±0.033 98.395±0.099 98.542±0.079 98.373±0.126 98.545±0.057
r=2 .34 98.630±0.134 98.743±0.062 98.720±0.067 98.605±0.032 98.597±0.070 98.552±0.107
r=3 .58 98.035±0.094 98.190±0.141 98.513±0.145 98.570±0.117 98.315±0.156 98.390±0.104

gcn: GatedGCN, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

6.1 NEIGHBORSMATCH, OVER-SQUASHING

Alon and Yahav (2021) introduce a toy problem called NeighborsMatch to benchmark the extent of
over-squashing in GNNs, while controlling over-squashing by limiting the problem radius rp. The
graphs in the dataset are binary trees of depth equal to the problem radius rp. Thus, the graphs are

8

Under review as a conference paper at ICLR 2023

Table 7: Increasing r on CIFAR10 100K parameters.

type: density gcn-adj gcn-adj-cls gcn-lp gcn-lp-cls gcn-short gcn-short-cls
r=1 .08 73.415±0.717 73.498±0.842 72.525±0.471 73.808±0.193 72.610±0.574 72.950±0.520
r=2 .21 72.037±0.400 72.480±0.420 72.085±0.487 71.745±0.325 72.127±0.471 71.470±0.508
r=3 .38 70.688±0.171 69.580±0.488 70.380±0.308 70.318±0.295 71.285±0.722 71.188±0.498

gcn: GatedGCN, adj: adjacency p.e., short: shortest-path p.e., lp: spectral p.e., cls: CLS-node

structured and sparse, and the number of edges grows linearly with the increased receptive field r.
See Figure 1, Appendix C, for results with GatedGCN. Increasing the receptive field r with a step
of 1 increases the attainable problem radius with a step of 1, while using the CLS-node at r = 1
falls in between the performance of r = 2 and r = 3 but with a much longer tail. Thus, this further
showcases the subsumed as well as different effect (complementary and conflicting) the receptive
field and the CLS-node have, as also observed on the other benchmarks.

6.2 COMPUTATIONAL ANALYSIS

For all positional encodings, the number of edges determines the asymptotic runtime and memory
use. The CLS-node only introduces an additive factor. Figures 4 and 5 in Appendix E show that the
runtime in practice scales roughly the same as the density, as the receptive field size is increased;
though real runtime has a significant constant factor.

6.3 SELECTING POSITIONAL ENCODING AND HOPS SIZE

We recommend the adjacency positional encodings together with the CLS-node. In terms of ranked
performance across the 6 datasets, adjacency- and spectral positional encodings perform the same,
but the spectral encoding performs considerably worse on the ZINC dataset, while the differences
are smaller on the other datasets. Additional experiments in Appendix D, Figure 2, assess the dis-
criminative power of the different encodings. However, there is no positional encoding superior in
all aspects. Instead, each one has unique benefits as well as drawbacks. This is made apparent by
considering r as a parameter and observing the performance differences across values of r. Fur-
thermore, the CLS-node is part of the best-performing configuration more often than not. Similarly,
no fixed r is optimal for all datasets. Instead, optimal r depends on the dataset and the amount of
compute. Appendix F shows that increased r diminishes the reliance on homophily as an inductive
bias, and thus low homophily of a dataset could be used as an indicator for selecting an increased r.
If the density does not change much from a change in r then neither does performance. The use of
the spectral positional encodings, the CLS-node, or increased r have subsuming effects for multi-
ple datasets; here the CLS-node or spectral positional encodings may be preferred, computationally
cheaper, alternatives to increasing r.

From this empirical study, for picking optimal r, we recommend computing the densities for increas-
ing r and picking the first one where the average density exceeds 0.5 to reap most of the performance
boosts. This seems to maintain a helpful locality bias as well as to significantly reduce the compute
compared to complete attention. See Appendix G for further discussion.

7 DISCUSSION

Our simple graph rewiring and positional encodings achieve state-of-the-art performance, widening
receptive fields while alleviating over-squashing. This is much due to the ability to easily apply our
method to models that stem from a large body of work on GNNs, highlighting the benefits of our
model-agnostic approach.

The reality is that attention with complete receptive fields is still computationally intractable for
most practitioners and researchers. However, here we show that significant performance boosts
via attention and increased receptive fields can be obtained by increasing the receptive field only
slightly. Thus, opening up recent work to a broader range of practitioners as well as giving more
fair conditions for comparing GNNs. In addition, the systematic investigation of increased receptive
fields and positional encodings gives further insights into the necessity of homophily for the success
of GNNs and highlights other implicit biases in GNN architectures.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling, 2021.

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. CoRR, abs/2006.09252, 2020.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets, 2018.

Rickard Brüel Gabrielsson. Universal function approximation on graphs. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 19762–19772. Curran Associates, Inc., 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In Yoshua Bengio and Yann LeCun, editors, 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. CoRR, abs/1911.07470,
2019.

Benson Chen, Regina Barzilay, and Tommi Jaakkola. Path-augmented graph transformer network,
2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Sys-
tems, 2020.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,
1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
2021.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks, 2020.

Ari Frankel, Cosmin Safta, Coleman Alleman, and Reese Jones. Mesh-based graph convolutional
neural networks for modeling materials with microstructure, 2021.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

10

http://www.jstor.org/stable/2984875

Under review as a conference paper at ICLR 2023

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. CoRR,
abs/2003.01332, 2020.

Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets: Edge varying graph neural networks.
CoRR, abs/2001.07620, 2020.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. CoRR,
abs/2006.15595, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. Curran Associates Inc., Red Hook, NY, USA, 2019.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. CoRR, abs/2106.03893, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning, 2020.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger
multi-scale deep graph convolutional networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/ccdf3864e2fa9089f9eca4fc7a48ea0a-Paper.pdf.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks?, 2021. URL https://arxiv.org/abs/2106.06134.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=ucASPPD9GKN.

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric
deep learning on graphs and manifolds using mixture model cnns. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 5425–5434, Los Alamitos,
CA, USA, jul 2017. IEEE Computer Society. doi: 10.1109/CVPR.2017.576. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2017.576.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4055–4064. PMLR, 10–15 Jul 2018.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 12559–12571. Curran Associates, Inc., 2020.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. CoRR, abs/2004.11198, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

11

https://proceedings.neurips.cc/paper/2019/file/ccdf3864e2fa9089f9eca4fc7a48ea0a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ccdf3864e2fa9089f9eca4fc7a48ea0a-Paper.pdf
https://arxiv.org/abs/2106.06134
https://openreview.net/forum?id=ucASPPD9GKN
https://openreview.net/forum?id=ucASPPD9GKN
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.576
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.576

Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Petar Veličković. Message passing all the way up, 2022. URL https://arxiv.org/abs/
2202.11097.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018.

Lothar Von Collatz and Ulrich Sinogowitz. Spektren endlicher grafen. In Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, volume 21, pages 63–77. Springer, 1957.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural net-
works. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
(IJCAI), pages 3089–3096, 2021a.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural net-
work, 2021b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. Spagan: Shortest path
graph attention network. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 4099–4105. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/569.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? CoRR,
abs/2106.05234, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 17283–17297.
Curran Associates, Inc., 2020.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations, 2020.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian graph convolutional
neural networks for semi-supervised classification, 2018.

12

https://arxiv.org/abs/2202.11097
https://arxiv.org/abs/2202.11097

Under review as a conference paper at ICLR 2023

A TRAINING DETAILS

Both code and training follow Dwivedi et al. (2020) closely, and to a lesser extent (Dwivedi and
Bresson, 2021), which uses the same code base.

Like (Dwivedi et al., 2020), we use the Adam optimizer (Kingma and Ba, 2015) with the same learn-
ing rate decay strategy. The initial learning rate is set to 10−3 and is reduced by half if the validation
loss does not improve after a fixed (”lr schedule patience”) number of epochs, either 5 or 10. In-
stead of setting a maximum number of epochs, the training is stopped either when the learning rate
has reached 10−6 or when the computational time reaches 12 hours (6 hours for NeighborsMatch).
Experiments are run with 4 different seeds; we report summary statistics from the 4 results.

Below we include training settings for the different datasets.

A.1 ZINC

"model": GatedGCN and Transformer,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.2 AQSOL

"model": GatedGCN and MoNet,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.3 CLUSTER

"model": GatedGCN and Transformer,
"batch_size": 48 (GatedGCN), 32 or 16 (Transformer),
"lr_schedule_patience": 5,
"max_time": 12

A.4 PATTERN

"model": GatedGCN,
"batch_size": 48,
"lr_schedule_patience": 5,
"max_time": 12

A.5 MNIST

"model": GatedGCN,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.6 CIFAR10

"model": GatedGCN,
"batch_size": 128,
"lr_schedule_patience": 10,
"max_time": 12

A.7 NEIGHBORSMATCH

"model": GatedGCN,

13

Under review as a conference paper at ICLR 2023

"batch_size": 256,
"lr_schedule_patience": 10,
"max_time": 6

B TRANSFORMER IMPLEMENTATION

We implemented a simple version of the Transformer adapted to graphs:

ĥl
i =BN(hl−1

i)
ˆ̂
hl
i = ∥Hk=1 (∑

j∈Ni∪{i}
al,ki,jW

l
kĥ

l−1
j) + hl−1

i

hl
i =FFN(BN(ˆ̂hl

i)) +
ˆ̂
hl
i

with
êli,j =BN(el−1i,j)
âl,ki,j =((A

l
kĥ

l
i)T (Bl

kĥ
l
j) +Cl

kê
l
i,j)/d

al,ki,j =
exp(âl,ki,j)

∑j′∈Ni∪{i} exp(â
l,k
i,j′)

eli,j =FFN(êli,j) + el−1i,j

Here, h and e are node and edge features (resp.) from the previous layer. Wk,A,B ∈ Rd/H×d and
C ∈ R1×d are learnable weight-matrices, H is the number of attention heads, and BN is short for
batch normalization. ∥Hk=1 denotes the concatenation of the attention heads.

B.1 DESIGN CHOICES AND CHALLENGES

There are many variations on the Transformer model. Following Ying et al. (2021), we put the nor-
malization before the multi-head attention, which caused instability when training on CLUSTER
with Laplacian (spectral) positional encodings. This was fixed by putting the normalization after or
using layer normalization instead of batch normalization; however, these changes reduced perfor-
mance on ZINC. While the GatedGCN worked well with identical architecture parameters across
datasets, we found that the Transformer needed more variations to stay competitive on MNIST and
CIFAR10; in particular, fewer layers and larger hidden dimensions.

Transformers use multi-head attention which puts number-of-heads dimension vectors on each
edge—seen as directed. Hence, the memory load becomes 2× ∣E∣× num heads (in our experiments,
num heads = 6), which compared for GatedGCN is only 2 × ∣E∣. This causes a memory bottleneck
for the Transformer that may force one to use a reduced batch size to avoid memory issues.

B.2 OTHER VARIANTS

We implemented other variants, including more involved Transformers. As in (Vaswani et al., 2017),
we ran the path-integers through sine and cosine functions of different frequencies, and inspired by
(Dai et al., 2019; Ke et al., 2020) we implemented a more involved incorporation of relative positions
in the multi-head attention (see below); however, we found performance to be comparable.

In natural language processing, the input is a sequence (a line graph) x = (x1, . . . , xn) of text
tokens from a vocabulary set V , with each token having a one-hot-encoding fV ∶ V → [0,1]∣V ∣.
The word embeddings E ∈ Rn×d for n tokens are formed as E = (WembedfV(xi) ∣ xi ∈ x) where
Wembed ∈ Rd×∣V ∣ is a learnable weight matrix.

The original Transformer model used absolute positional encodings. This means that we add the po-
sitional encoding to the node embedding at the input layer. Consider a positional encoding function
pe ∶ N0 → Rd. Then the first input is

h0 = (WembedfV(xi) + pe(i) ∣ i = 1, . . . , n) = E +U

14

Under review as a conference paper at ICLR 2023

Table 8: Increasing r on ZINC/molecules 100K parameters.

type: trans-adj trans-short-cls
r=1 0.338±0.020 0.274±0.021
r=2 0.296±0.010 0.179±0.011
r=3 0.260±0.013 0.183±0.018
r=4 0.255±0.009 0.271±0.036
r=5 0.235±0.022 0.227±0.026
r=6 0.226±0.015 0.264±0.042
r=7 0.219±0.012 0.251±0.039
r=8 0.210±0.009 0.278±0.026
r=9 0.213±0.010 0.289±0.042
r=10 0.564±0.221 0.327±0.023

Table 9: Increasing r on CLUSTER 100K parameters.

type: trans-adj-cls trans-adj trans-short-cls trans-short
r=1 74.262±0.188 73.445±0.068 74.717±0.308 72.947±0.123
r=2 77.390±0.168 77.399±0.200 76.771±0.012 76.454±0.084
r=3 77.216±0.226 68.384±7.975 76.770±0.094 76.521±0.250

where U = (pe(i) ∣ i = 0, . . . n) ∈ Rn×d. Typically pe contains sine and cosine functions of different
frequencies:

pe(k,2 × l) = sin(k/10000(2×l)/d)
pe(k,2 × l + 1) = cos(k/10000(2×l+1)/d)

where k ∈ N is the position and l ∈ N is the dimension. That is, each dimension of the positional
encoding corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to
10000 × 2π. This function was chosen because it was hypothesized that it would allow the model
to easily learn to attend by relative positions, since for any fixed offset m, pe(k +m) is a linear
function of pe(k). It was also hypothesized that it may allow the model to extrapolate to sequence
lengths longer than the ones encountered during training.

In many cases, absolute positional encodings have been replaced with relative fully learnable posi-
tional encodings and relative partially learnable positional encodings (Dai et al., 2019). To justify
these, consider the first attention layer with absolute positional encodings:

Aabs
i,j = ExiWqW

T
k ET

xj
+ExiWqW

T
k UT

j +UiWqW
T
k ET

xj
+UiWqW

T
k UT

j

For relative (fully and partially) learnable positional encodings we have instead:

Arel
i,j = ExiWqW

T
k,EE

T
xj
+ExiWqW

T
k,RR

T
i−j + uWT

k,EE
T
xj
+ vWT

k,RR
T
i−j

where u, v ∈ R1×d are learnable weights and Ri−j ∈ R1×d is a relative positional encoding between i
and j. Each term has the following intuitive meaning: term (1) represents content-based addressing,
term (2) captures a content-dependent positional bias, term (3) governs a global content bias, and
(4) encodes a global positional bias.

For relative fully learnable positional encodings, WT
k,RR

T
i−j is a learnable weight in Rd×1 for each

i− j ∈ N, while for relative partially learnable positional encodings Ri,j = pe(∣i− j∣) where pe is the
sinusoidal function from before.

We implemented both fully and partially learnable positional encodings for the shortest-path posi-
tional encodings (integer-valued) and related versions for the other positional encodings (in Rd). We
include results in Tables 8 and 9.

C OVER-SQUASHING

Results for over-squashing experiment can be found in Figure 1.

15

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rp (problem radius)

A
cc

ur
ac

y
r = 1
r = 2
r = 3
r = 4

r = 1,CLS

Figure 1: NeighborsMatch (Alon and Yahav, 2021). Benchmarking the extent of over-squashing via
the problem radius rp.

D ADDITIONAL EVALUATION OF POSITIONAL ENCODINGS

Here we provide a start to toy data and a task for comparing positional encodings. In this task we
wish to assess how powerful the positional encodings are in practice, i.e. how well they discriminate
between different graph isomorphism classes. Specifically, we generate 100 random Erdos graphs
and then expand the receptive field so that the graph is fully connected. Thus, the positional en-
codings become the mere instrument for communicating the connectivity/topology of the original
graph. The task is to retrieve a specific graph among all 100 graphs, i.e. the task is graph classifi-
cation and there is a 100 classes. Hence, achieving 100% accuracy means that the GNN, based on
the positional encodings, has been able to discriminate between all graphs. We only look at train
accuracy here, since we’re interested in the power to overfit, not to generalize. Results can be found
in Figure 2.

All positional encodings are able to solve that task after a sufficient amount of training, besides Adj-
10. Adj-5 and Adj-10 encode the adjacency matrix to the power of 5 and 10 respectively (at both
points all graphs are fully connected). Adj-10 encodes between any two nodes the number of paths
of length 10, number of path of length 9, and so on. The experiments indicate that too much such
information confuses the GNN and makes it harder to discriminate between graphs. The shortest
and Adj-5 positional encodings are the fastest at solving the task. This can be due to the fact that
the Laplacian positional encoding is only unique up to a sign and that we randomly switch the sign
during training.

E COMPUTATIONAL RUNTIME AND MEMORY USE

In our implementation, the step of computing the positional encodings as well as expanding the r-
hops of the graph is done in the same process for shortest-path and adjacency positional encodings;
thus this step always occur and we found that implementing it via iterative matrix multiplications
of the adjacency matrix gave the fastest results. How this scales with the r-size can be found in
Figure 3. Since each increment of the r-size results in an additional matrix multiplication, the linear
increase is expected. The spectral positional encoding has the same additive runtime per graph
across r-sizes of 1.3 × 10−3 seconds. These matrix multiplications are done on CPU rather than
GPUs, but running them on GPUs could results in speed-ups. However, the runtime for computing
these positional encodings is at least an order of magnitude smaller (per graph) than the runtime for
running the subsequent GNN on a GPU, so there was no need to optimize this runtime further.

16

Under review as a conference paper at ICLR 2023

25 50 75 100 125 150 175 200 225 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. Epochs

Tr
ai

n
A

cc
ur

ac
y

Laplacian
Shortest
Adj-5

Adj-10

Figure 2: Learning to retrieve random Erdos graphs.

In Figures 4 and 5 we include actual runtime of the GNN (on GPU) of different positional encodings
and hops sizes, juxtaposed with the density of the modified graphs, for the ZINC and CIFAR10
datasets. Note, we are here excluding the computation of the positional encoding on the input graph,
which can be found in Figure 3.

Most graphs to which GNNs are applied to are connected and typically the number of edges are
greater than the number of nodes, i.e. ∣E∣ ≥ ∣V ∣. Since all established GNNs make use of the
edges in one way or another, the number of edges usually determines the asymptotic behavior of
the runtime and memory use, i.e. they are in O(∣E∣). With modern deep learning and specialized
graph learning framework, GPU-parallelization and other more technical aspect affect memory and
runtime. Thus, Figures 4 and 5 compare theoretical runtime (dominated by the density) with actual
runtime of code run on GPUs. We find that density and actual runtime is strongly correlated. In
Figure 6 we include the memory use for increasing radius on ZINC dataset, and find its roughly
linear with the density as well.

F HOMOPHILY SCORE AND PERFORMANCE

We include experiments to investigate the correlation between homophily score (Ma et al., 2021) and
performance when increasing hops size. This applies to the node classification datasets, CLUSTER
and PATTERN, that we used. We split the test set into three buckets, which is just a sorted segmen-
tation of the graphs with increasing homology scores. We evaluate trained Gated-GCN models with
adjacency positional encodings for r-values 1 and 2 (at r = 2 almost all graphs are fully connected).
See Tables 10 and 11 for results.

We find that high homophily score correlates much stronger with performance when r = 1 than
it does at r = 2. This indicates that increased r-size diminishes the reliance on homophily as an
inductive bias.

Table 10: Increasing r on CLUSTER homophily buckets.

density homophily score: 0.315±0.008 0.336±0.006 0.366±0.0160
.31 r=1 71.494±0.619 72.361±0.462 73.812±0.265
>.99 r=2 77.010±0.234 76.660± 0.143 76.965±0.242

17

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

11

r-hops

A
vg

.t
im

e
pe

rg
ra

ph
,×

10
−4

Adj, Short, LP
Density

Figure 3: P.E. Computational Time on ZINC/molecules

1 2 3 4 5 6 7 8 9 10

15

20

25

30

r-hops

A
vg

.t
im

e
pe

re
po

ch

Laplacian
Shortest

Adj
Adj-CLS
Density

Figure 4: GNN Computational Time on ZINC/molecules

18

Under review as a conference paper at ICLR 2023

1 2 3

100

150

200

250

300

350

400

r-hops

A
vg

.t
im

e
pe

re
po

ch

Laplacian
Shortest

Adj
Adj-CLS
Density

Figure 5: GNN Computational Time on CIFAR10

1 2 3 4 5 6 7 8 9 10

1,300
1,400
1,500
1,600
1,700
1,800
1,900
2,000
2,100
2,200
2,300
2,400
2,500

r-hops

M
iB

m
em

or
y

us
e

Adj
Density

Figure 6: GNN Memory use on ZINC/molecules

19

Under review as a conference paper at ICLR 2023

Table 11: Increasing r on PATTERN homophily buckets.

density homophily score: 0.567±0.031 0.652±0.026 0.774±0.051
.43 r=1 83.958±0.031 86.862±0.021 92.154±0.492
>.99 r=2 84.197±0.048 87.214± 0.062 87.085±0.082

G OPTIMAL POSITIONAL ENCODING AND HOPS SIZE

Again, we recommend the adjacency positional encodings together with the CLS-node. We find
that in terms of ranked performance on the 6 datasets, adjacency- and spectral positional encod-
ings perform at the same level, but the spectral encoding perform considerably worse on the ZINC
datasets, while the differences are smaller on the other datasets. The spectral encoding hardcode
global-to-local information on the nodes and the size of the encoding-vector is a hyper parameter;
we found performance not to be too sensitive to this hyper-parameter but future work could further
investigate this. Spectral embeddings also use less memory as it does not encode its embeddings
as edge-features; however, since information still is propagated along edges we find this memory
saving to be significant but not asymptotically different. Adjacency encoding breaks down faster as
the r-size is increased compare to the other positional encodings, we believe this to be due to the
corresponding increase in size of the embedding-vectors and its introducing low-signal information
that is also easy to overfit to, e.g. the number of paths of length 10 between two nodes (where any
edge can be used multiple times). The Erdos experiments in Appendix D support this observation.
However, all in all, the adjacency encoding stands out slightly considering the performance, runtime,
memory use, and toy experiments. Furthermore, the CLS-node is part of the best performing config-
uration more times than it is not, and it has the additional advantage of leading to peak performance
at lower r-sizes where in some cases it also has reduced runtime and memory use compared instead
to increasing the r-size.

In this work we do not find a fixed r-size that is optimal for all datasets. The optimal r depends
on the dataset and the amount of compute available. Given the fixed amount of compute used in
our experiments, we found that all the best performance was found at r-size four or smaller. We
provide heuristic for selecting a good r-size but ultimately it depends on the amount of compute and
memory available.

20

	Introduction
	Related Work
	Preliminaries and Design
	Approach
	Topological Rewiring
	Positional Encodings
	Properties of Positional Encodings
	Positional Encoding Options

	Implementation Details
	Experiments
	NeighborsMatch, Over-squashing
	Computational Analysis
	Selecting Positional Encoding and Hops Size

	Discussion
	Training Details
	ZINC
	AQSOL
	CLUSTER
	PATTERN
	MNIST
	CIFAR10
	NeighborsMatch

	Transformer Implementation
	Design Choices and Challenges
	Other Variants

	Over-squashing
	Additional Evaluation of Positional Encodings
	Computational Runtime and Memory Use
	Homophily Score and Performance
	Optimal Positional Encoding and Hops Size

