Published as a conference paper at ICLR 2023

A -WL: A NEW HIERARCHY OF EXPRESSIVITY FOR
GRAPH NEURAL NETWORKS

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, Muhammad Farhan
School of Computing, Australian National University
{ging.wang,dillon.chen2,asiri.wijesinghe}@anu.edu.au
{shouheng.li,muhammad.farhan}@anu.edu.au

ABSTRACT

The expressive power of Graph Neural Networks (GNNs) is fundamental for
understanding their capabilities and limitations, i.e., what graph properties can
or cannot be learnt by a GNN. Since standard GNNs have been characterised to
be upper-bounded by the Weisfeiler-Lehman (1-WL) algorithm, recent attempts
concentrated on developing more expressive GNNs in terms of the k-WL hierarchy,
a well-established framework for graph isormorphism tests. In this work we show
that, contrary to the widely accepted view, the k-WL hierarchy is not well-suited
for measuring expressive GNNs. This is due to limitations that are inherent to high-
dimensional WL algorithms such as the lack of a natural interpretation and high
computational costs, which makes it difficult to draw any firm conclusions about the
expressive power of GNNs beyond 1-WL. Thus, we propose a novel hierarchy of
graph isomorphism tests, namely Neighbourhood WL (.#-WL), and also establish
a new theorem on the equivalence of expressivity between induced connected
subgraphs and induced subgraphs within this hierarchy. Further, we design a
GNN model upon A-WL, Graph Neighbourhood Neural Network (G3N), and
empirically verify its expressive power on synthetic and real-world benchmarks.

1 INTRODUCTION

Graph-theoretic algorithms are a powerful source of inspiration for Graph Neural Networks (GNNss).
The most known is that the expressive power of standard GNNs is upper-bounded by the Weisfeiler-
Lehman (1-WL) algorithm (Weisfeiler & Leman, 1968}, Xu et al., [2019; [Morris et al., [2019). In
pursuit of more expressive GNNs, various attempts have been made to leverage existing results
in graph theory such as high-dimensional WL algorithms (Azizian & Lelarge, [2021} [Maron et al.,
2019a; Morris et al., 2020b)), substructure counting (Bouritsas et al., [2022; Barcel? et al., 2021}, and
individualisation (Dupty et al.,|2022). The expressivity of these GNNs is measured in terms of the
k-WL hierarchy, a well-established framework for graph isomorphism testing (Grohel 2017)).

However, the k-WL hierarchy exhibits several theoretical and practical limitations as a measure of
expressivity for GNNs. Theoretically, it is a highly non-trivial problem to tell if and when k-WL
algorithms can distinguish two particular graphs (Kiefer, 2020). Deciding which graph properties are
important for distinguishing graphs is even much harder, if not impossible. A complete description
of all subgraph patterns whose counts and occurrence are k-WL invariant is only available for
k =1 (Arvind et al., 2020). Even bearing high computational costs, the power of k-WL algorithms
in recognising graph properties seems still limited and some negative results are known, e.g., 3-
WL cannot identify any k-cliques with & > 3 (Fiirer, [2017). These issues hamper the practical
applicability of high-dimensional WL algorithms for solving real-world tasks on graph-structured
data (Chen et al., [2020; |Garg et al.,[2020). A question that arises from this is - Whether the k-WL
hierarchy is a good yardstick for expressivity of GNNs?

In the search for an answer to this question, we observe several disparities between (standard)
GNNs and the k-WL hierarchy. First, GNNs encode structural information into nodes as an efficient
and practical way for graph learning. This is however against the spirit of the k-WL hierarchy
which increases expressive power by going up to higher order objects, i.e., k-tuples, rather than
just nodes (Cai et al.l |1992; |Grohel 2017). Second, GNNs are built upon a natural notion of local

Published as a conference paper at ICLR 2023

neighbourhood, i.e., within a certain distance to a node. In contrast, the k-WL hierarchy defines the
neighbourhood of a k-tuple based on “adjacency”. This notion of adjacency involves the enumeration
of all nodes of a graph in each dimension, which is not local and raises concerns about computational
efficiency (Morris et al.,[2020b). Last but not least, GNNs learn node representations by aggregating
the information from its neighbouring nodes, assuming “birds of a feather flock together" from
real-world perception (Zhu et al.| |2020; McPherson et al.,[2001). The k-WL hierarchy updates the
representation of a k-tuple by aggregating the information from its adjacent neighbours, which does
not have a natural interpretation and thus makes it difficult to understand its real-world implications.

In light of these observations, we explore a hierarchy of
expressivity that is grounded on a new class of graph iso- 4

morphism algorithms, called Neighbourhood WL (A4 -WL) 5 1 D o

algorithms. This hierarchy overcomes the aforementioned -

limits of the k-WL hierarchy. More importantly, it enables a ‘@

new paradigm for designing expressive GNNs while still re- 3 @ o LWL

maining intuitive and computational efficient. We integrate e in disﬁn'guishable

the following novel insights into the algorithmic design of 2| () pairs

this hierarchy: (1) Instead of imposing a rigid condition | ‘O/ |
that both objects and its neighbours use the same structure

(e.g., k-tuple and its variants), why can we not separate them >

by colouring nodes in a lower-dimensional space basedon 0 1 2 3 4 5 6 f
information from induced subgraphs in a high-dimensional

space? (2) Can we build a hierarchy of expressivity for Figure 1: Indistinguishable pairs of
GNNs upon a natural choice about neighbourhood, i.e., d- simple graphs of eight vertices by 1-
hop neighbourhood? On one hand, this ensures the locality WL, which are distinguishable by .-
of neighbourhood and thus brings in computational effi- WL under different d and ¢ values.
ciency; on the other hand, it allows high-dimensional neigh-

bours to capture intricate graph properties into node representations for distinguishing graphs. (3)
Unlike the £-WL hierarchy which increases expressivity only through one dimension k, the hierarchy
in our work enables two independent ways of controlling expressive power: the size ¢ of induced
subgraphs and the size d of neighbourhoods, i.e., enumerating all subgraphs of order ¢ within a d-hop
neighbourhood. This helps strike a balance between computational complexity and expressivity of
algorithms, which is often highly sought by real-world applications.

shows pairs of simple graphs of eight vertices that are indistinguishable by 1-WL but can be
distinguished by our proposed hierarchy .#"-WL under different ¢ and d parameters. By the k-WL
hierarchy, we only know that 312 pairs of simple graphs lie between 1-WL and 3-WL as none of them
can be distinguished by 1-WL but all of them can be distinguished by 3-WL. Rather than “None" or
“All", our .#'-WL hierarchy can distinguish these graphs in a more refined way under varied ¢ and d
values, i.e., each point (¢, d) inindicates the number of pairs of simple graphs that remain
indistinguishable under these parameters, and all pairs are distinguishable when ¢ > 3 and d > 2.

Further details and example graphs are provided in

With a hierarchy of expressivity, it is natural to ask whether the hierarchy is strict. We thus further
explore whether the .#"-WL hierarchy is strictly more expressive when considering induced subgraphs
or neighbourhoods of larger sizes. To show the strictness, we construct counterexample graphs such
that, for any fixed d € N and every ¢ € N, there exist non-isomorphic graphs which .4/-WL with
(t, d) fails to distinguish but can be distinguished by .4"-WL with (¢t+1, d); on the other hand, for
any fixed ¢t € N and every d € N, there also exist non-isomorphic graphs which .4-WL with (¢, d)
fails to distinguish but can be distinguished by .#"-WL with (¢, d+1). Not surprisingly, constructing
such counterexample graphs turns out to be difficult, due to the intricate interaction between ¢ and
d as well as the combinatorial nature of graph structure. We present such a construction which can
produce families of non-isomorphic graph pairs with O(t) or O(d) vertices.

To understand how graph connectivity may affect the expressivity of .4#-WL, we go on to examine
the relation between induced subgraphs and their connectivity. Inspired by the Algebra of Sub-
graphs (Kocayl, [1982), we discover a previously unknown connection between induced subgraphs
of size t, for any ¢ € N, and induced connected subgraphs whose sizes are less than or equal to t.
This surprisingly leads to the finding that these two families of subgraphs have equivalent expressive
power for distinguishing graphs. Hence, when graphs are sparse, instead of considering all induced
subgraphs, we may consider only induced connected subgraphs, improving efficiency considerably.

Published as a conference paper at ICLR 2023

Table 1: Comparison of k-WL and their variants §-k-LWL (Morris et al.,2020b), (k, s)-LWL (Morris
et al., 2022)), and (k, ¢)(<)-SETWL (Zhao et al.| [2022a) with our algorithms .4 (¢, d)-WL and
N ¢(t, d)-WL, where #Coloured objects and #Neighbour objects refer to the number of coloured
objects in a graph and the number of neighbour objects for each coloured object, respectively;
AColoured objects and ANeighbour objects refer to the type of coloured objects and the type of
neighbour objects, respectively; n is the number of nodes and a is the average node degree in a graph;
a? is the average number of nodes in the d-hop neighbourhood of a node. Note that a? < n for
graphs whose diameters are considerably greater than d.

| k-WL 0-k-LWL (k,s)-LWL (k,c)(<)-SETWL | A/(t,d)-WL N (¢, d)-WL
ﬁgj(;lcotzlred nk nk subset(n®, s) subset(Z’;:l (Z) ,0) n n
#Neighbour] ad o t a?
objects nxk axk axk nxq (.) SUbﬁet(Zq:I(Y)7 1)
ﬁ)]ceocltc;ured k-tuples k-tuples k-tuples <k-sets nodes nodes
(ﬁ)];;csclihbour k-tuples k-tuples k-tuples <k-sets t-sets <t-sets
Sparsity ‘ X v v v X v
-awareness

Contributions. The main contributions of this work are summarised below:

* We introduce a new class of graph isomorphism algorithms, Neighbourhood WL (./"-WL),
which exhibit a natural and strict hierarchy of expressivity for measuring GNNSs in their

ability to distinguish graphs (Theorem 3.1 [Theorem 3.2} and [Theorem 3.3).

* We establish a new theorem on the equivalence of expressivity between induced connected
subgraphs and induced subgraphs in general within the hierarchy of .#"-WL, which enables

us to further leverage graph sparsity for improving efficiency (Theorem 3.7).
* We explore how the hierarchy of .4-WL relates to the k-WL hierarchy and establish their
connections (Theorem 3.8).

* We propose a new GNN model architecture, Graph Neighbourhood Neural Network (G3N),
which instantiates the ideas of the .#-WL algorithms for graph learning (Theorem 4.1)).

2 RELATED WORK

Since the advent of Graph Neural Networks (GNNs), a central theme is to understand the expressivity
of GNNSs. It has been revealed that standard GNN’s are at most expressive as the Weisfeiler-Leman
(WL) algorithm (Weisfeiler & Leman, |1968};|Xu et al., 2019; Morris et al.l 2019). Ever since, the WL
algorithm has played a crucial role in the theoretical studies on GNNs.

The k-WL hierarchy generalises the WL algorithm (1-WL) to classify k-tuples of vertices (Grohe,
2017;|Babai & Kuceral [1979). It is known that k-WL is strictly more powerful than (k—1)-WL for
any k > 3. The Cai-Fiirer-Immerman (CFI) construction can produce a family of non-isomorphic
graph pairs as counterexamples which are indistinguishable by (k—1)-WL but can be distinguished
by k-WL (Cai et al., [1992). Since k-WL is computationally expensive for & > 3, k-WL is mostly
used as a theoretical tool in graph isomorphism testing and not practically useful.

Various attempts have been made in recent years to develop more expressive GNNs - see a survey
by [Sato| (2020). Until now, the expressivity of GNNSs is typically measured in terms of 1-WL.
However, the expressivity gap between £ = 1 and k = 3 for k-WL is often too large for applications
in practice. On one hand, 1-WL is not expressive enough since it cannot count some simple structures
such as cycles or triangles; on the other hand, many applications may not require strong 3-WL power.
There is a lack of measure for expressivity of models that lies in between 1-WL and 3-WL, as well as
beyond - higher-dimensional WL - in a more refined and natural way.

In this work, we depart from the k-WL hierarchy by proposing a new hierarchy that builds on
high-order subgraphs within a neighbourhood aggregation scheme to characterise the expressivity of
GNNs. shows a comparison between k-WL and their variants and our hierarchy. A detailed
discussion on this comparison and other related works are provided in

Published as a conference paper at ICLR 2023

e
Pt D Pee Do

d=1 d=1

Figure 2: Two graphs distinguishable by .4 ~(2,1)-WL and .4~ (2, 2)-WL but not .4~ (2, 3)-WL.

3 NEIGHBOURHOOD WL ALGORITHMS

Let G = (V, E) be a simple graph with a set V' of nodes and a set E of edges and |V'| = n. Given
anode u € V, its d-hop neighbourhood is defined by Ny(u) = {v € V' | p(u,v) < d} where p(-)
denotes the shortest-path distance between two nodes and v € Ny(u). The order of a (sub)graph
is the number of its nodes. We use G; C G5 to denote that G is a subgraph of G5, and G ~ G4
that G; and G4 are isomorphic, i.e., there exists a bijection between their nodes which induces a
correspondence between their edges. Each equivalence class under ~ is called an isomorphism type.
All the proofs for lemmas and theorems in this section are provided in

3.1 A HIERARCHY OF EXPRESSIVITY

We begin with a simple yet weak hierarchy. This hierarchy shows that expressivity increases with
the order of induced subgraphs in a neighbourhood; but counterintuitively, expressivity does not
necessarily increase with the size of a neighbourhood.

Weak hierarchy. A node colouring in G is a function ¢ : V' — N which is refined in iterations, i.e.
¢!(u) forl = 0,1,...,m. Initially, each node w is assigned with some colour ¢’ (u). Then, the colour
¢!+ (u) is iteratively refined based on the its own colour ¢!(u) and the colours of induced subgraphs
in its neighbourhood at the [-th iteration. The colours of induced subgraphs are also defined iteratively,
according to the colours of their nodes in the same iteration and connectivity of the nodes. Let Sg
denote the set of all induced subgraphs of G and f;s, : S¢ — N be a permutation invariant function
that encodes the isomorphism types of induced subgraphs. A subgraph colouring in G at the [-th
iteration is a function ¢! : Sg — N such that ¢/(S}) # ¢'(S2) iff fiso(S1) # fiso(S2).

Given the set S(,, 1 q) of all induced subgraphs of order ¢ within the d-hop neighbourhood of a node
u, Eéu,i) = {<¢'(S) | S € Squt,a) and fiso(S)=i}, and I; = {fis0o(S)|S € S(u,t,a)}> We have

<"1 (u) = HasH(S (w), {&(,1) bier,)- M
Here, HASH(-) is an injective hash function.

We use .4~ (t, d)-WL to denote the above algorithm with two parameters: ¢ for the order of induced
subgraphs and d for the hop of neighbourhood. The following theorem can be proven.

Theorem 3.1. For any fixed d € N, 4~ (t+1, d)-WL is strictly more expressive than A~ (t,d)-WL
in distinguishing non-isomorphic graphs, where t > 1.

However, .4~ (t,d+1)-WL is not necessarily more expressive than .4~ (¢, d)-WL in distinguishing
non-isomorphic graphs. [Figure 2]illustrates the problem. We observe that the source of the problem
is that subgraphs are treated in multisets in which their colours can be distinguished only by their
isomorphism types. Thus, aggregating subgraphs from a larger neighbourhood may lose information
about subgraphs in the previous smaller neighbourhood.

Strong hierarchy. To alleviate the above problem, we propose to consider not only isomorphism
types but also positional types of subgraphs. This enables us to capture relative importance of
structures, even of the same isomorphism type, in a neighbourhood as its receptive field increases.

We define a permutation invariant function fp,s : S¢ — N that encodes the positional types of
induced subgraphs in G to satisfy the following condition for any ¢ € N and any d € N:

VSi € Sut,a)VSj € (Stut,at+1) — Stut.d)) (fpos(Si) # fpos(S;))- 2

Published as a conference paper at ICLR 2023

We also reformulate the subgraph colouring function as ¢! : S — N such that ¢!(S;) = ¢'(Ss)
iff fiso(Sl) - fiso(SQ) and fpos(sl) - fpos(52)~ Let §éu’i)j) - {CI(SHS S S(u,t,d)7 fiso(S):i7
and fpos(S)=7} and Jq = {fpos(S)|S € S(us.a)}- Then the node colouring in [Equation 1]is

redefined to integrate the positional types of induced subgraphs as

¢ (u) = HasH(< (u), {géu7i,j)}i61t,j€Jd)' 3)

We denote this algorithm with node colouring defined in as A (t, d)-WL, to distinguish it
from 4"~ (¢, d)-WL. The following theorem states that the expressivity of .4 (¢, d)-WL increases
when considering higher-order subgraphs or larger neighbourhoods.

Theorem 3.2. For any fixed d € N, A (t+1, d)-WL is strictly more expressive than A (t,d)-WL in
distinguishing non-isomorphic graphs, where t > 1.

Theorem 3.3. For any fixedt € N, A (t, d+1)-WL is strictly more expressive than A (t,d)-WL in
distinguishing non-isomorphic graphs, where d > 1.

Strictness of hierarchies. To prove the strictness of the hierarchies in{Theorem 3.1|and [Theorem 3.2}
we need to construct a family of non-isomorphic graph pairs such that, for any fixed d € N, there
exist at least two non-isomorphic graphs that are distinguishable by the colours of their nodes that
are iteratively refined through counting all t41-order induced subgraphs of different isomorphism
and positional types in d-hop neighbourhoods of their nodes, but indistinguishable if considering
all t-order induced subgraphs instead. Conversely, requires to construct a family of
non-isomorphic graph pairs such that, for any fixed ¢ € N, there exist at least two non-isomorphic
graphs which can be distinguished by the colours of their nodes through counting all ¢-order induced
subgraphs of different isomorphism and positional types in d+-1-hop neighbourhoods of their nodes,
but cannot be distinguished if considering d-hop neighbourhoods of their nodes instead. We present

these constructions in [Appendix C| with illustrations in[Figure 6] [Figure 7} and [Figure 8]

Upper bound expressivity. With increasing ¢ and d values, the upper bound expressivity of .4 (¢, d)-
WL is reached when both ¢ and d equal to the diameter of a graph. In such cases, whether A4 (¢, d)-
WL can distinguish two non-isormorphic graphs is reduced to the classical graph isomorphism (GI)
problem (Grohe & Schweitzer], [2020). This is because, given a graph G, each d-hop neighbourhood
subgraph is the same as the graph G when d > dia(G); induced subgraphs of ¢ vertices are also the
same as the graph G when ¢ > dia(G), where dia(G) refers to the diameter of G.

Note that as shown by Cai, Fiirer, and Immerman in their seminal paper (Cai et al.,|[1992), the k-WL
algorithm is incomplete in the sense that, for any k¥ € N, there exists a pair of non-isomorphic
graphs that cannot be distinguished by the k-WL algorithm. Similarly, in our work, the construction
presented in[Appendix C|shows that, for any ¢ € N and d € N, there exists a pair of non-isomorphic
graphs that cannot be distinguished by A4 (¢, d)-WL.

3.2 CONNECTED-HEREDITARY SUBGRAPHS

The locality of neighbourhood restricts .4 (¢, d)-WL to considering only induced subgraphs that are
“close” to a node. This nice property helps reduce the computational complexity, compared with
k-WL. Nonetheless, enumerating all induced subgraphs in a neighbourhood can still be inefficient
if their order is high. Real-world applications often focus on analysing connectivity of nodes in a
graph. For example, highly interacting proteins are more likely to form function modules (Alokshiya
et al.,|2019). Thus, one natural thought to further reduce complexity is to consider only connected
subgraphs. Following this direction, we identify connected-hereditary subgraphs. Surprisingly, it
turns out that all connected induced subgraphs with orders no greater than ¢ can capture no less
information than all induced subgraphs of order ¢. This finding leads us to improving the .4#"-WL
algorithm by taking graph connectivity into consideration.

Let I7 C I, be the set of isomorphism types in I; for connected subgraphs. Instead of considering
all subgraphs in the neighbourhood as in[Equation 3| we now restrict node colouring to connected
subgraphs but allow the orders of connected subgraphs to range over [1, ¢]:

¢ (u) = masu(s' (), |J {€luiz) ierssesa)- 4)
kel,t]

Published as a conference paper at ICLR 2023

For this algorithm with node colouring based only on connected subgraphs, we denote it as .4 (¢, d)-
WL. Although[Equation 4] might look rather restricted, we show that if two graphs G and G are
distinguishable by .4 (t, d)-WL, they are also distinguishable by .4 ¢(¢,d)-WL. This is due to a
property of subgraphs occurring in .4 ¢(t, d)-WL, which we elaborate below.

Let S=* and S=* be the set of all subgraphs in the d-hop neighbour-
hood of a node u being considered by .#°(t,d)-WL and .4/ (¢, d)-WL,
respectively, and 3 the set of all subgraphs of order ¢ in S=F.

Definition 3.4. Let S C S¢. Then S is said to be connected-hereditary Vs
if every S € S is a connected induced subgraph and S € S implies that
every connected induced subgraph of S'is also in S.

. . . . G G
869 contains all connected induced subgraphs of k vertices with 1 < k < L 2
t in the d-hop neighbourhood of a node. We have the following lemma. (a) Neighbourhoods of
<t: - : Rook’s graphs and the
Lemma 3.5. S=' is connected-hereditary. Shrikhande graph.

Let S7 0S5 denote the union of two node-disjoint subgraphs, i.e., V' (S1) N

V(S2) = 0, and p(S) the number of connected components in S. The

lemma below states that any non-connected subgraph in (S='—8-!) is a

union of a number of smaller connected subgraphs in S=! whose nodes

are disjoint to each other.

Lemma 3.6. For each induced subgraph S satisfying S € S~ but I:I

S ¢ 87, there exists a set {S1,Sa,...,5,} C S= such that S = G G
S10820...08, where i(S) = q. ! 2

(b) An 8-cycle and a
The intuition is that smaller connected induced subgraphs can actually pair of disconnected

be used as pieces to reconstruct all the disconnected order-¢ induced 4-cycles.
subgraphs, without losing expressivity. Hence, based on these lemmas,

we can prove the following theorem that the .#¢(t, d)-WL algorithm is Figure 3: Pairs of non-
as powerful as the .4 (t, d)-WL algorithm. In fact, both algorithms have isomorphic (sub)graphs.
the same expressivity.

Theorem 3.7. Foranyt € Nandd € N, A ¢(t,d)-WL and A (t,d)-WL have the same expressivity
in distinguishing non-isomorphic graphs.

It is worth noting that, by further restricting connected subgraphs to specific isomorphism types, we
may obtain different subclasses of algorithms. For example, if limiting I, to cycles, cliques, and paths,
N ¢(t,d)-WL is reduced to the neighbourhood WL algorithms 4 <v<l¢(t, d)-WL, ¥ cliaue (¢ d)-
WL, and 472" (¢, d)-WL, respectively, which encode structures of specific kinds from the node
neighbourhoods into node colours.

3.3 CONNECTIONS TO k-WL HIERARCHY

One may arise a question with regard to how .4#-WL relates to the k-WL hierarchy. Since 1-WL
corresponds to node labelling based on a multiset of the colours of its neighbours within a 1-hop
neighbourhood, it is straightforward to establish the following connection.

Theorem 3.8. .4(1, 1)-WL is equivalent to 1-WL in distinguishing non-isomorphic graphs.

By Theorems 3.2]and we know that the expressivity of .4/ (¢, d) increases when increasing either
the order of subgraphs or the hop of a neighbourhood. This leads to the proposition below.

Proposition 3.9. Both 4 (2,1)-WL and ¥ (1,2)-WL are strictly more powerful than 1-WL in
distinguishing non-isomorphic graphs.

However, in general, the .4-WL hierarchy is incomparable with k-WL, as we notice in the nontrivial
case that .#'(3, 1) is incomparable to 3-WL. A canonical example of two non-isomorphic, strongly
regular graphs which 3-WL cannot distinguish are Rook’s graph and the Shrikhande graph. Despite
being strongly regular, .4'(3,1)-WL can distinguish them by distinguishing 3-order subgraphs in
1-hop node neighbourhoods as in a). Nevertheless, .#(3, 1)-WL fails to detect 4-cycles as its
receptive field is too small in contrast to 3-WL. This is seen where the former is unable to distinguish
an 8-cycle from two disconnected 4-cycles in[Figure 3(b) whereas 3-WL is able to distinguish them.

Published as a conference paper at ICLR 2023

000
000
000

OO
O

O

@,

—~
J
~

OooOED - --------

I —
0o
00

an

Figure 4: An overview of a G3N layer: (a) ¢-order subgraphs are extracted from a node’s d-hop
neighbourhood. (b) The subgraphs are grouped by their positional and isomorphic types. (c) The
subgraphs are embedded by a pooling function POOL. (d) The subgraph embeddings are aggregated
in their own topological groups by AGG” . (e) The resulting embedding vectors are further aggregated
and combined with AGG" and COMBINE to form an updated node embedding.

4 GRAPH NEIGHBOURHOOD NEURAL NETWORK

Motivated by the .4#"-WL algorithm, we design Graph Neighbourhood Neural Network (G3N) which
is able to leverage and learn structural information from neighbourhoods.

Model design. Given a graph G = (V, E), each node u € V is associated with an f-dimensional
feature vector z,, € RS and h;o) = x,. Let S,(f) (i,) denote the set of all ¢t-order subgraphs within
the d-hop neighbourhood of a node u with the isomorphism type ¢ and positional type j at the [-th
layer. Then at the (I41)-th layer the node embedding hg 1 of a node u is defined by

A+ = COMBINE (h,ff), AGGN (i jyer, x 7, (AGGTSESSLH(M) (POOL(S))>) . 5)

POOL(-) extracts node representations within a subgraph S as a subgraph embedding which can
be defined by any graph pooling method. Aggregation proceeds in two steps: AGGT(-) combines
subgraph embeddings of the same isomorphism and positional types and AGG™ (+) combines the
resulting embeddings from all subgraphs in the neighbourhood. COMBINE(-) combines the node

embedding of node wu at the previous layer with the aggregated embedding of subgraphs. Further
details of the G3N model architecture are described in

One can compare to the node colouring of .4#"-WL described in where subgraph

pooling corresponds to subgraph colouring, and the aggregation corresponds to the hashing of sets of
multisets. We refer to G3N with given ¢ and d by G3N-(¢, d).

Expressivity analysis. G3N-(¢, d) is at most as expressive as .4 (¢, d)-WL. To match the expres-
siveness of .4 (¢, d)-WL, one may insert Multi-Layer Perceptrons (MLPs) to approximate injective
functions as employed by [Xu et al.| (2019). However, this comes at higher parameter complexity
which may increase expressiveness but could decrease generalisability. The following theorem

phrases this formally with the proof available in

Theorem 4.1. G3N-(t, d) with injective COMBINE and AGGY functions, an injective AGG” function
w.rt. multisets of subgraphs with the same isomorphism and positional types, an injective graph
readout function, and sufficiently many layers is as powerful as A (t,d)-WL.

Complexity analysis. Usually, expressivity comes at a cost of computational complexity and this is

no exception for G3N. Let a denote the average node degree of a graph. Then ignoring node features
d

embedding dimensions, standard GNNs have the complexity O(n - a) while G3N has O(n - (%)) per

layer. Here, t is a very small value, usually less than 6. Note that a? << n is an average size of a
local d-hop neighbourhood, different from k-WL which considers all vertices in a graph, i.e., O(n*).

Published as a conference paper at ICLR 2023

Table 2: Graph isomorphism tasks on EXP, SR25, graph8c and CSL are evaluated by counting
the pairs of graphs which are indistinguishable. Substructure counting tasks are performed on the
RandomGraph dataset and evaluated by MSE.

Graph isomorphism Substructure counting
EXP SR25 graph8¢c CSL Triangle Tailed Tri. Star 4-Cycle

MLP 600 105 293K 45 3.13E-1 2.22E-1 1.0E-4 1.73E-1
GCN 600 105 4775 45 2.43E-1 1.42E-1 1.0E-4 1.14E-1
GAT 600 105 1828 45 247E-1 1.44E-1 1.0E-4 1.12E-1
GIN 600 105 386 45 2.06E-1 1.18E-1 1.0E-4 1.21E-1
PPGN 0 105 0 1 1.00E-4 2.61E-4 1.0E-4 3.30E-4

G3N-(2,1) 600 105 36 1.81E-4 3.58E-4 6.46E-4 1.03E-1
G3N-(3,1) 600 0 36 4.31E-4 430E-4 341E-4 1.14E-1
G3N-(2,2) 0 105 15 6.77E-4 7.06E-4 8.63E-4 1.61E-2
G3N-(3,2) 0 0 10 1.55E-3 1.69E-3 4.42E-3 7.38E-3

Model

S Nt

Table 3: TU datasets evaluated by classification accuracy (%). The first 3 rows are kernel methods
and the remaining are GNN models. The first and second best results are highlighted and underlined.

Model MUTAG PTC_MR PROTEINS NCI1 IMDB-B IMDB-M
RWK 79.242.1 55.9403 59.640.1 >3 days - -

WL-kernel 90.4+5.7 59.9+43 75.0+3.1 86.0+1.8 73.8+39 50.9+338
P-WL 90.5+1.3 64.0£0.8 75.940.8 85.6+0.3 -

PATCHY-SAN 92.6+4.2 60.0%4.8 75.9+2.8 78.6x19 71.0%22 452428

DCNN - - 61.3%1.6 56.6+x1.0 49.1*14 33.5+1.4
DGCNN 85.8+0.0 58.620.0 75.540.9 744405 70.0+0.9 47.8+0.9
GIN 89.4+5.6 64.6+7.0 76.2+2.8 82.7+1.7 75.1%5.1 52.3+238
PPGN 90.6£8.7 66.2+6.6 77.244.7 83.2+1.1 73.058 50.5%3.6

G3N-(1,1) 89.9+8.0 63.3+6.3 73.6+5.3 82.3+52 73.6%35 51.5%2.9
G3N-(2,2) 92.0+42 65.5+6.3 74.6+4.1 83.2+15 74.3%37 52.4+3.4

Further, we may consider only connected subgraphs when graphs are sparse. Subgraph aggregations
can be conducted in parallel across all subgraphs according to their isomorphism and positional types.
Computationally, it is much more efficient than expressive GNNs based on k-WL.

5 EXPERIMENTS

We run experiments on synthetic and real-world datasets to empirically validate the theoretical
properties of G3N. For synthetic datasets, we focus on two main tasks: the graph isomorphism
problem and substructure counting. As for real-world datasets, we focus on graph classification
and regression on molecular datasets and social networks. Details about datasets, baselines, and
experimental setups, as well as additional experimental results, are available in[Appendix E]

5.1 SYNTHETIC DATASETS

Setup. EXP (Abboud et al., [2021) consists of 600 pairs of nonisomorphic graphs (G;, H;) each
encoding a propositional formula which is either satisfiable or not. The graphs are designed to be
indistinguishable by 1-WL. SRZﬂ (Balcilar et al.,|2021)) contains 15 strongly regular graphs, each
with 25 nodes and indistinguishable by 3-WL. graph8c (Balcilar et al.| 2021) contains all 11,117
connected non-isomorphic 8-node graphs, of which 312 pairs are indistinguishable by 1-WL and all
are distinguishable by 3-WL. CSL was first introduced by Murphy et al.[|(2019) and commonly used
to test graph expressiveness (Dwivedi et al.;,[2020). It consists of 10 isomorphism classes of 41 node
4-regular graphs which are almost all distinguishable by 3-WL. For counting graph substructures, we
consider RandomGraph (Chen et al., 2020). We follow the setup described by Balcilar et al.| (2021).

lavailable at http: //users.cecs.anu.edu.au/~bdm/data/graphs.html

http://users.cecs.anu.edu.au/~bdm/data/graphs.html

Published as a conference paper at ICLR 2023

Table 4: Experiments on ZINC and MolHIV, where the performance of the methods marked by *
(i.e., DEEP LRP, GSN, and CIN) is based on pre-selected subgraph patterns.

(a) ZINC evaluated by MAE.

(b) MolHIV evaluated by ROC-AUC.

Model ZINC ZINC Model MolHIV MQIHIV
(no edge features) (edge features) (test) (validation)
GCN 0.459+0.006 0.321+£0.009 GCN 0.7606+0.0097 0.8204+0.0141
PPGN 0.40740.028 - GIN 0.7558+0.0140 0.8232+0.0090
GIN 0.387%0.015 0.163+0.004 GraphSNN 0.7851£0.0170 0.8359+0.0096
PNA 0.32020.032 0.188+0.004 PNA 0.7905%0.0132 -
DGN 0.219+0.010 0.168+0.003 DGN 0.7970+0.0097 -
DEEP LRP* 0.223+0.008 - DEEP LRP* 0.7687%0.0180 0.8131%0.0088
GSN* 0.1400.006 0.115%0.012 GSN* 0.7799+0.0100 0.8658+0.0084
CIN* 0.115+0.003 0.079+0.006 CIN* 0.8094+0.0057 -
G3N-(2,3) 0.165+0.018 0.128+0.015 G3N-(2,3) 0.7900+0.0134 0.8359+0.0061

Observations. From we can see that G3N with ¢ = 2 and d = 1 alone is already more
expressive than 1-WL bounded GNNs, being able to distinguish most graph8c graphs and some CSL
graphs. By increasing ¢ to 3, we are able to distinguish all SR25 graphs which the 3-WL bounded
PPGN is unable to. Other configurations of d and ¢ also support that .4#"-WL is incomparable with
k-WL. Looking at substructure counting tasks, G3N with ¢ = 2 are able to trivially detect triangles
but not 4-cycles. Setting t = 3 and d = 2 allows us to detect 4-cycles. Note that G3N with ¢ = 2 and
d = 2 is unable to learn 4-cycles but is able to memorise some configurations, leading to the slightly
lower error. We finally observe that for higher d and ¢, convergence of G3N takes longer due to its
higher expressivity and low parameter budget in this setting, resulting in slighty poorer predictions.

5.2 REAL-WORLD DATASETS

Setup. ZINC (Irwin et al.} 2012} contains 250K molecules of which 12K are selected for the task
of regressing constrained solubility. We follow the experimental setup described in (Dwivedi et al.|
2020). MolHIV was introduced by Wu et al.| (2018) as part of the MoleculeNet benchmark and has
been proposed in (Hu et al.l 2020) to be graph classification tasks. We follow the train, validation and
test split from Hu et al.|(2020) and evaluate on the test score corresponding to the best validation score.
We further consider the bioinformatics and social network datasets from the TUDataset collection
(Morris et al.,|2020a). We follow the setup described in (Xu et al.,2019).

Observations. From the results collated in Tables [3|and] G3N performs well compared with the
other baselines. On ZINC, G3N performs better on learning topological features over PPGN. There
exist stronger performing models on molecular datasets such as CIN (Bodnar et al., 2021a) and GSN
(Bouritsas et al.l|2022); however, these methods explicitly compute cycle information which is known
to be correlated with molecular classes and attributes. For example, cycle counts are used in the
calculation of the regressed constrained solubility attribute of ZINC datasets (Irwin et al., [2012).
Among the baselines that learn topological features without pre-selecting application-dependent
subgraph patterns, our G3N performs best on ZINC both with edge features and without edge features.

6 CONCLUSIONS

We proposed a new class of graph isomorphism algorithms known as .4#"-WL algorithms. This class
of graph isomorphism algorithms exhibits a more refined hierarchy of expressivity for distinguishing
non-isomorphic graphs by focusing on approximating graph neighbourhood structures as best as
possible. We further explored how to narrow our focus down to only connected subgraphs to
improve efficiency while still preserving expressiveness. Motivated by ./-WL, we proposed the
G3N architecture which is provably more expressive than vanilla message-passing neural networks
and is able to leverage graph structure more effectively for prediction tasks.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We are thankful to Professor Brendan Mckay for helpful discussions and feedback. We gratefully
acknowledge the support of the Australian Research Council under Discovery Project DP210102273.
We also would like to thank anonymous reviewers for their comments and suggestions which helped
improve the quality of the paper.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of the theoretical and empirical results included in this work, we have made
the following efforts: (1) For theoretical results, the complete proofs for lemmas and theorems are
provided in (2) Details of the model architecture and the implementation are included
in (3) Experimental details, including datasets, baseline methods, hyperparameter
selection, and additional experimental results, are provided in (4) The code is available
athttps://github.com/seanli3/G3N.

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In International Joint Conference on
Artificial Intelligence (IJCAI), 2021.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning
(ICML), pp. 21-29, 2019.

Mohammed Alokshiya, Saeed Salem, and Fidaa Abed. A linear delay algorithm for enumerating all
connected induced subgraphs. BMC bioinformatics, 20(12):1-11, 2019.

Vikraman Arvind, Frank Fuhlbriick, Johannes Kobler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System
Sciences, 113:42-59, 2020.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems (NeurlIPS), pp. 1993-2001, 2016.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
In International Conference on Learning Representations (ICLR), 2021.

Laszl6 Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In Annual
Symposium on Foundations of Computer Science (SFCS), pp. 3946, 1979.

Muhammet Balcilar, Pierre Héroux, Benoit Gaiizere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning (ICML), volume 139, pp. 599-608, 2021.

Pablo Barceld, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. Neural Information Processing Systems (NeurIPS), 34, 2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and
Pietro Lid. Directional graph networks. In International Conference on Machine Learning, volume
139, pp. 748-758, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. International Conference on Learning Representations, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34:2625-2640, 2021a.

10

https://github.com/seanli3/G3N

Published as a conference paper at ICLR 2023

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning (ICML), pp. 1026-1037, 2021b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Robert Brijder, Floris Geerts, Jan Van Den Bussche, and Timmy Weerwag. On the expressive power
of query languages for matrices. ACM Transactions on Database Systems (TODS), 44(4):1-31,
2019.

Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model local
structure. arXiv preprint arXiv:2011.15069, 2020.

Jin-Yi Cai, Martin Fiirer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389-410, 1992.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in Neural Information Processing Systems (NeurIPS), 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Velickovic. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems
(NeurlPS), 33, 2020.

Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. Pf-gnn: Differentiable particle filtering
based approximation of universal graph representations. In International Conference on Learning
Representations, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems,
2022.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. arXiv preprint arXiv:2206.11140, 2022.

Frank Fuhlbriick, Johannes Kobler, Ilia Ponomarenko, and Oleg Verbitsky. The weisfeiler-leman
algorithm and recognition of graph properties. Theoretical Computer Science, 895:96-114, 2021.

Martin Fiirer. On the combinatorial power of the weisfeiler-lehman algorithm. In International
Conference on Algorithms and Complexity, pp. 260-271. Springer, 2017.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning (ICML), pp. 3419-3430,
2020.

Thomas Girtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129-143. 2003.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations (ICLR), 2022.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Communications of the ACM,
63(11):128-134, 2020.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. In International Conference on Learning Representations
(ICLR), 2021.

11

Published as a conference paper at ICLR 2023

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Neural
Information Processing Systems (NeurIPS), 2020.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757-1768, 2012.

Sandra Kiefer. Power and limits of the Weisfeiler-Leman algorithm. PhD thesis, Dissertation, RWTH
Aachen University, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

William L Kocay. Some new methods in reconstruction theory. In Combinatorial Mathematics IX,
pp.- 89-114. Springer, 1982.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations (ICLR), 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations (ICLR), 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in Neural Information Processing Systems (NeurlIPS), 32, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning (ICML), pp. 4363—4371, 2019b.

Brendan D McKay. Practical graph isomorphism. Congressus Numeranitum, 30:45-87, 1981.

Brendan D Mckay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of Symbolic
Computation, 60:94-112, 2014.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415-444, 2001.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, volume 33, pp. 46024609, 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. ICML Graph
Representation Learning and Beyond (GRL+) Workhop, 2020a.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Neural Information Processing Systems (NeurIPS), 33,
2020b.

Christopher Morris, Matthias Fey, and Nils M Kriege. The power of the weisfeiler-leman algorithm
for machine learning with graphs. International Joint Conference on Artificial Intelligence (IJCAI),
2021.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. In ICML, 2022.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning (ICLR), pp. 4663—-4673,
2019.

Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International Confer-
ence on Machine Learning, pp. 7306-7316. PMLR, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International Conference on Machine Learning (ICML), pp. 2014-2023, 2016.

12

Published as a conference paper at ICLR 2023

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195-205, 2020.

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman procedure for
graph classification. In International Conference on Machine Learning (ICML), pp. 5448-5458,
2019.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp.
333-341, 2021.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Erik Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
Advances in Neural Information Processing Systems, 34, 2021.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations (ICLR),
2017.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. In Neural Information Processing Systems
(NeurlIPS), 2020.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural network.
arXiv preprint arXiv:2009.14332, 2020.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NT1, Series, 2(9):12-16, 1968.

Asiri Wijesinghe and Qing Wang. A new perspective on" how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations, 2022.

Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513-530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In Conference on Artificial Intelligence (AAAI), 2021.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems (NeurIPS), 34, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, 2018.

Lingxiao Zhao, Louis Hértel, Neil Shah, and Leman Akoglu. A practical, progressively-expressive
gnn. Advances in Neural Information Processing Systems, 2022a.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. International Conference on Learning Representations (ICLR),
2022b.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33:7793-7804, 2020.

13

Published as a conference paper at ICLR 2023

CONTENTS (APPENDIX)

|A " Indistinguishable Pairs - £-WL vs ./ -WL/ 14
[B_Related Work] 15
.1 Expressive GNNs Beyond I-WL Test| 15

-WL andits Variants| 17

[C_Proofs of Theorems| 18
C.1 Proofs for Weak Hierarchy (Theorem 3.1)(. 18
C.2 Proofs for Strong Hierarchy (I'heorem 3.2land[Theorem 3.3)[. 21
C.3 Proofs for Connected-Hereditary Subgraphs (Theorem 3.7)] 23
C.4 Proofs for Connections to k-WL Hierarchy (Theorem 3.8)(. 30
C.5 Proofs for Graph Neighbourhood Neural Network (Theorem 4.1) 31

D G3N Model Architecturel 32
E _Experimental Details and Results 33
EI Da@sels] o o o 33
[E2 Baseline Methods| o 34
[E.3 Parameter Selection| L 34

A Ablation Study| Lo 35

.5 Runtime and Memory Analysis fortandd]. 35

.6 Runtime Analysis for Connected Variants| 37

.7 Complexity Analysis - k-WLvs A-WL}0 L. 37
[’_Limitations and Future Workl 39

A INDISTINGUISHABLE PAIRS - k-WL vs .4/ -WL

presents two pairs of non-isomorphic simple graphs of eight vertices from the 312 pairs of
non-isomorphic simple graphs reported in [Figure 1]

In terms of the k-WL hierarchy, both pairs of these non-isomorphic simple graphs cannot be distin-
guished by 1-WL but can be distinguished by 3-WL. Beyond these, there is no further information
about why these pairs of non-isomorphic graphs can or cannot be distinguished and what graph
properties are important in distinguishing them.

Nonetheless, if looking into these pairs of non-isomorphic graphs in terms of the .4#"-WL hierarchy,
we have the following observations:

ey

@

3)

Although both pairs of graphs are among the 312 pairs of non-isomorphic simple graphs
of eight vertices that cannot be distinguished by 1-WL, they look very different, exhibiting
different properties.

The reason why G and GY in[Figure 5{(a) cannot be distinguished by 1-WL is due to the
fact that these two graphs have the same number of vertices in their 1-hop neighbourhoods.
Indeed, they also have the same number of edges in their 1-hop neighbourhoods. However,
they do have different numbers of triangles in their 1-hop neighbourhoods, which explains
why they can only be distinguished by 4" (¢t,d)-WL if t > 3.

The reason why GG; and G5 in|Figure 5|(b) cannot be distinguished by 1-WL is different from
the case why G| and G} in a) cannot be distinguished by 1-WL. If d = 1, then no

matter how ¢ is increased, it is always insufficient to distinguish these two graphs. On the
other hand, even if ¢ = 1, these two graphs can be distinguished as long as we consider their
2-hop neighbourhoods rather than 1-hop neighbourhoods, i.e., d > 2.

Table 5|presents that, among all simple graphs of eight vertices, .4 (¢, d)-WL with varying ¢ and d
values have different expressive powers in distinguishing pairs of these simple graphs. For example
A (1,1)-WL fails to distinguish 312 pairs of simple graphs from all pairs of simple graphs of eight

14

Published as a conference paper at ICLR 2023

Gy (a) G, G, (b) G,

Figure 5: Two pairs of non-isomorphic simple graphs of eight vertices: (a) G/ and G/, cannot be
distinguished by .4/ (¢,d)-WL unless ¢t > 3, regardless how large d is; (b) G; and G5 cannot be
distinguished by .4 (¢, d)-WL unless d > 2, regardless how large ¢ is.

vertices and .4 (1,d)-WL with d = 2,3, 4,5, 6 fails to distinguish 186 pairs of simple graphs. On
the other hand, .47 (¢,1)-WL with ¢ = 3,4, 5, 6 fails to distinguish 5 pairs of simple graphs.

In summary, for all simple graphs of eight vertices, .#"(1,1)-WL with ¢ > 3 and d > 2 is sufficient
to distinguish any pair of them.

Table 5: Indistinguishable pairs by .4 (¢, d)-WL on all simple graphs of eight vertices.

|d=1 d=2 d=3 d=4 d=5 d=6
t=1| 312 18 186 186 186 186

t= 20 6 6 6 6 6
t= 5 0 0 0 0 0
t=4 5 0 0 0 0 0
t=5 5 0 0 0 0 0
t=26 5 0 0 0 0 0

B RELATED WORK

B.1 EXPRESSIVE GNNS BEYOND 1-WL TEST

Below, we summarise the main directions of research for designing expressive GNNs that go beyond
1-WL test.

High-order GNNs. Following k£-WL, a natural way of increasing the power of GNNss is to go higher
dimensions (Azizian & Lelarge, [2021; Morris et al., 2021)). Morris et al.| (2019) introduced £-GNN
based on a set variant of k-WL, which learns features over subgraphs on k nodes and is strictly
weaker than k-WL. Maron et al.| (2018;|2019bjal) developed k-order GNN s that are as expressive as
k-WL and showed that a reduced 2-order GNN is as powerful as 3-WL.|[Morris et al.| (2020b; 2022)
and |Zhao et al.[(2022a) proposed high-order GNNs by only considering a subset of all k-tuples, i.e.,
k-tuples that are local or correspond to inducing subgraphs with certain connected components. These
GNN models are all provably stronger than 1-WL; however, they still suffer from the shortcomings
of k-WL - non-intuitive design and high computational costs - and are thus impractical for real-world
tasks, particularly when graphs are large.

Unlike these works, our GNN architecture is not built upon the classical k-WL algorithms. At its
core, the .4#"-WL algorithm proposed in this work is a node (1-dimensional) refinement algorithm
based on high-order induced subgraphs in its d-hop neighbourhood, i.e., incorporating subgraph
colouring into node colouring instead of propagating k-tuple colouring based on k-tuple colouring of
the same dimension. Further, the .4#"-WL algorithm has the same locality as in standard GNNgs, i.e.,
considering local structures in the neighbourhood within d-hop away from each node.

Injecting structures. Substructure counting has been leveraged by several GNNs to inject structural
information into node or edge features of a graph (Bouritsas et al.l 2022; Barceld et al.} 2021).
Typically, isormorphism counts (Bouritsas et al.| [2022)) or homomorphism counts (Barcel6 et al.,

15

Published as a conference paper at ICLR 2023

2021) of small subgraph patterns (e.g., cycles and cliques) are precomputed as application-specific
inductive biases. In a similar spirit,|Thiede et al.| (202 1)) applied convolutions on automorphism groups
of subgraph patterns; Nguyen & Maehara|(2020) used homomorphism counts of subgraph pattens as
graph invariants. A recent work (Wijesinghe & Wang| [2022) introduced a way of injecting structural
coefficients from local structures into neighbour aggregation. Despite being more expressive than
1-WL, all these models require preprocessing to extract structural information from subgraphs.

Although considering subgraphs, our work has some important distinctions from the above works. We
consider subgraphs from a combinatorial perspective which does not require hand-choosing subgraph
patterns, while the above GNN models consider specific subgraphs that are pre-defined. As noted
by [Barcelo et al.| (2021)), knowing which subgraph patterns work well and which do not is critical
for the power of the GNN models that reply on specific pre-defined subgraph patterns. However,
this question is not easy to answer because determining which subgraph patterns work well is often
application-dependent.

Subgraph-based GNNs. Several recent studies proposed to apply a base GNN on subgraphs of a
graph rather than on the whole graph directly (Zhao et al.l |2022b; Zhang & Lil [2021; Bevilacqua
et al.| [2022; [Frasca et al.| 2022). The way of representing a graph in terms of subgraphs may vary in
models. [Bevilacqua et al.| (2022)) represents each graph as a multiset of subgraphs chosen according
to a predefined policy, e.g., removing one edge or one node. Zhao et al.|(2022b)) and [Zhang & Li
(2021)) represent a graph with a multiset of induced subgraphs, each rooted at one node in the graph,
which generalises rooted subtrees used in the traditional setting. It has been shown that, by applying
a base GNN that is expressive as 1-WL such as GIN (Xu et al.| 2019) on subgraphs, the expressive
power of these models goes beyond 1-WL.

Our work is different from these subgraph-based GNNs because we do not apply a GNN on subgraphs.
Instead, our GNN architecture aims to incorporate structural information (i.e., isomorphism types)
and positional information (i.e., positional types) of subgraphs in the neighbourhood of each node
into the node’s embedding. To this end, our GNN architecture is similar to standard GNNs except
that the neighbourhood information for aggregation may include the information from high-order
subgraphs in a neighbourhood rather than merely neighbouring nodes.

K -hop message-passing GNNs. Recently, some attempts have been made to extend GNNs from
1-hop message passing aggregation to K -hop message passing aggregation (Abu-El-Haija et al.,
2019; INikolentzos et al., [2020; Brossard et al., 2020; [Wang et al., 2020; [Feng et al.| 2022). The key
idea is to aggregate information from not only direct neighbours (1-hop neighbours) of a node but also
neighbours within K hops of a node. [Feng et al.|(2022) showed that standard K -hop message-passing
GNNs are strictly more powerful than 1-WL test when K > 1, but their expressive power is bounded
by 3-WL test whose proof is based on the work in (Frasca et al.| [2022)). To further improve the
expressive power, Feng et al.| (2022 proposed a new GNN model, called KP-GNN, which leverages
the information of peripheral subgraphs into K-hop message-passing GNNs.

Our work provides a comprehensive theoretical framework for characterising the expressive power
of different K -hop message-passing GNNs. For example, standard /K -hop message-passing GNNs
with the shortest path distance kernel (Feng et al., 2022) can be characterised as corresponding to
our .4 (1,d)-WL with d = K, where each node has its shortest-path distance to the target node as a
positional type. Further, depending on the isomorphism types of peripheral subgraphs, KP-GNN can
be characterised as an instance of .4 (¢, d)-WL in our work with d = K and ¢ referring to the size of
peripheral subgraphs, where isomrphism types are restricted to pre-selected isormorphism types by
KP-GNN.

Node identity and individualisation. Several works augmented node identifiers (Loukas} [2020;
You et al., 2021)) and random features (Vignac et al.| [2020; |Sato et al.,[2021;|/Abboud et al., |2021)
or applied individualisation and refinement (Dupty et al., 2022) to improve the expressive power
of GNNs. Specifically, |You et al.| (2021)) proposed ID-GNNs which add identity information for
each rooted node during message passing. |Vignac et al.| (2020) manipulated node identifiers in a
permutation-invariant way to learn a local context around each node. Murphy et al.|(2019)) introduced
RP-GNN which runs a permutation-sensitive GNN by adding node identifiers and then sums over all
permutations of node identifiers to obtain permutation-invariant representations. |Dupty et al.|(2022)
individualised nodes using individualisation and refinement for canonical colouring. These GNN's
are permutation invariant in expectation.

16

Published as a conference paper at ICLR 2023

In our work, we do not assign identifiers and random features to nodes, nor individualise and refine
the colours of nodes. Our GNN architecture can preserve permutation invariance.

Tensor languages. Several works have studied the expressive power of GNNs from the perspective
of matrix query languages. Balcilar et al.|(2021)) obtained the upper bounds of the expressive power
of GNNs in terms of 1-WL and 2-WL based on the MATLANG matrix query language (Brijder
et al.,|2019). |Geerts & Reutter| (2022) explored a tensor language specifically designed for specifying
GNNs and discovered the connections between a guarded fragment of the MATLANG matrix query
language and k-WL. The key idea is to first reduce the expressivity problem of GNNs to the problem
of specifying GNNs in a tensor language and then analyse their expressive powers in terms of the
number of indices and the summation depth used in tensor language expressions.

In addition to the above, |Bodnar et al.| (2021a3b)) proposed a message passing scheme operating on
topological objects such as simplicial complexes or cell complexes. Horn et al.|(2021) proposed a
topological layer for GNNs that can leverage topological information of a graph using persistent
homology - a technique for calculating topological features such as connected components and cycles
of a graph. These works also lead to more expressive GNNs than 1-WL.

B.2 CONNECTIONS TO k-WL AND ITS VARIANTS

Recently, several heuristic algorithms for the graph isomorphism problem have been developed based
on the classical k-WL algorithms, which take into account the sparsity of graphs (Morris et al., | 2020b;
2022;|Zhao et al.}2022a)). These works were motivated by addressing the issue of high computational
cost associated with the classical k-WL algorithms.

In the following, we conduct a comparison of the £-WL and its variants, and our .4"-WL algo-
rithms. To obtain a better understanding of the underlying differences between these two families of
algorithms (k-WL vs .4-WL), we separate the comparison of these algorithms into two aspects:

(1) Objects to be coloured in a graph (i.e., #Coloured objects referring to the number of coloured
objects and AColoured objects referring to the type of coloured objects);

(2) Neighbour objects when colouring each object (i.e., #Neighbour objects referring to the
number of neighbour objects and ANeighbour objects referring to the type of neighbour
objects).

Let n denote the number of nodes in a graph, a be the average number of nodes adjacent to a node in
a graph (i.e., average node degree), a be the average number of nodes in the d-hop neighbourhood
of a node, and dia(G) be the diameter of a graph. We denote sets with exactly &k nodes as k-sets and
sets with at most k nodes as < k-sets. Usually, a% << n when d << dia(QG). Further, subset(nk, S)
refers to the number of k-tuples in a subset of all n* k-tuples whose induced subgraphs have at most

s connected components, while subset(Zf:1 (") , ¢) refers to the number of < k-sets in a subset of

g

all Zle (’;) sets whose induced subgraphs have at most ¢ connected components.

Table 6| compares k-WL, .#-WL, and their variants in terms of #Coloured objects, #Neighbour
objects, AColoured objects, ANeighbour objects, and sparsity-awareness. We have the following
observations:

* k-WL and its variants focus on colouring k-tuples, subsets of k-tuples or their corresponding
set forms such as k-sets and < k-sets by aggregating information from their neighbours of
the same types. .4 -WL aims to colour nodes by aggregating information from neighbouring
subgraphs. Here, subgraphs may be considered as corresponding to ¢-sets or < ¢-sets. In
regard to their connections to GNN architectures, both k-WL and .4/-WL can be easily
implemented for graph-level learning tasks. However, for node-level learning tasks, as
discussed in Morris et al.|(2022), k-WL and its variants need an additional pooling operation
to combine features of k-tuples, k-sets, or < k-sets that contain a node for computing a
representation of the node. In contrast, .#-WL serves as a natural paradigm that computes
node representations as first-class citizens.

* k-WL has a more global nature than .#-WL in the sense that its coloured objects are
grounded on all possible k-tuples of an entire graph. The variants of k-WL impose some

17

Published as a conference paper at ICLR 2023

Table 6: Comparison of k-WL and their variants §-k-LWL (Morris et al.,2020b), (k, s)-LWL (Morris
et al.l|2022), and (k, ¢)(<)-SETWL (Zhao et al., [2022a)) with our .4 (¢, d)-WL and .4¢(¢, d)-WL,
where #Coloured objects and #Neighbour objects refer to the number of coloured objects in a graph
and the number of neighbour objects for each coloured object, respectively; AColoured objects
and ANeighbour objects refer to the type of coloured objects and the type of neighbour objects,
respectively; n is the number of nodes and « is the average node degree in a graph; a? is the average
number of nodes in the d-hop neighbourhood of a node. Note that a? < n for graphs whose diameters
are considerably greater than d.

| k-WL 6-k-LWL (k,s)-LWL (k,c)(<)-SETWL | A (t,d)}-WL . 4(t,d)-WL

ﬁ;zl;gred nk nk subset(n®, s) subset(zl{;:1 (Z) ,0) n n
#Neighbour d P d
objects nxk axk axk nxgq) subset(3_,_, (aq), 1)
ﬁnce(::lgured k-tuples k-tuples k-tuples < k-sets nodes nodes
ﬁ)lj\ieclihbour k-tuples k-tuples k-tuples <k-sets t-sets <t-sets
Sparsity x v v v X v
-awareness

additional conditions on all k-tuples with an aim to reduce all k-tuples to a subset of all
k-tuples or < k-tuples. Two commonly used conditions by the variants of k-WL are:

— reducing k-tuples or < k-tuples to a set form such as k-sets and < k-sets, and

— restricting coloured objects or neighbour objects to satisfying a certain connectivity
conditions, e.g., containing no more than a specified number of connected components.

In contrast, .4#"-WL is designed to be local. This difference can be observed from [Table 6

Specifically, for coloured objects, k-WL and its variants deal with the number n* of all
k-tuples, or a subset of all k-tuples, or < k-sets from an entire graph, while .#"-WL only
deals with the number n of all nodes in a graph. For neighbour objects, k-WL considers the
number n X k of neighbour objects for each coloured object; 6-k-LWL (Morris et al.,[2020b)
and (k, s)-LWL (Morris et al.,2022) consider the number a x k of neighbour objects, where
a refers to the average node degree, since only local neighbours of a k-tuple are taken into
consideration; and (k, ¢)(<)-SETWL (Zhao et al., [2022a) considers the number n x g of
neighbour objects for each coloured object, where g € [k]. For .4 (t, d)-WL, it considers

the number (“:) of subgraphs of order ¢ from the d-hop neighbourhood of a node while

N ¢(t, d)-WL considers only connected subgraphs with < nodes. When a? < n, .#-WL
performs much more efficient than £-WL and its variants.

* As depicted in the variants 6-k-LWL, (k, s)-LWL, (k, ¢)(<)-SETWL, and our
N €(t,d)-WL are sparsity-aware (i.e., adapt to the sparsity of a graph), while the classical
k-WL and our .4 (t, d)-WL algorithms are not sparsity-aware. Nonetheless, different from
these k-WL variants which trade off expressivity for computational efficiency, our A4 ¢(¢, d)-
WL is provably as powerful as .4/ (¢, d)-WL without compromising expressive power while

improving efficiency on sparse graphs (see [Theorem 3.7).

Remark B.1. It is worthy to note that, when learning a node representation, our N -WL algorithms
consider all or connected subgraphs bounded within the d-hop neighbourhood of a node, but these
subgraphs may not necessarily be incident to the node. This is different from rooted subgraphs
considered by the local variants of k-WL as well as subgraph-based GNNs in the literature.

C PROOFS OF THEOREMS

C.1 PROOFS FOR WEAK HIERARCHY (THEOREM 3.1))
To prove[Theorem 3.1] we begin with the following lemma.

18

Published as a conference paper at ICLR 2023

Lemma 1. For any fixed d € N, .4~ (t+1,d)-WL is at least as expressive as .4~ (£, d)-WL in
distinguishing non-isomorphic graphs, where ¢ > 1.

Proof. We prove this lemma by contradiction. Assume that there exist two non-isomorphic graphs G
and G5 which can be distinguished by .4~ (¢, d)-WL, but cannot be distinguished by 4"~ (t+1, d)-
WL after k iterations. This implies that, for any I-th iteration where [= 0,1,..., k—1, 4"~ (t+1,d)-
WL must have the same multiset of node colours for G; and Gs.

Now it suffices to show that, for any iteration [, if the colours of any two nodes in G; and G are
the same by .4~ (t+1, d)-WL, then their node colours by .4~ (¢, d)-WL must also be the same. We
prove this by induction.

When [= 0, the initial node colours are the same for .4~ (t+1, d)-WL and .4~ (¢, d)-WL; hence,
the above statement holds. When [> 0, we assume that this statement holds for [—1. Then, if the

colours of any two nodes in G; and G5 are the same at the [-th iteration by .4~ (t+1, d)-WL, i.e.,
¢'(u1) = ¢'(u2), by|Equation 1} we have:

(glil(ul)a {géqjll’i)}iefwrl) = (glil(u2)7 {fé;;i)}iéfurl)

Since u; and ugy have the same colour in the [—1-th iteration, this gives us the following equation
which must hold

{gélllyi) }i61t+1 = {gé;;,i) }iEIH-l .

By the definition of the .#"~-WL algorithm, {fé;i) }ier,,, represents the set of multisets of colours

for subgraphs of ¢+1 order from the d-hop neighbourhood of a node w at the [—1-th iteration of
applying ./~ (t+1, d)-WL. This corresponds to (t’fl) induced subgraphs of order t+1 where m
refers to the number of vertices in the d-hop neighbourhood of node v and w.l.o.g. we assume

t+1 < m.

We show that {féu i }iel,,, determines {ffu i }ier, . Here, {géu i Yier, corresponds to (") induced
subgraphs of order ¢ in the d-hop neighbourhood of node u at the {-th iteration of 4"~ (¢, d)-WL.
Since each féu 0 encodes the count of induced subgraphs with respect to an isomorphism type ¢, we

just need to show that the isomorphism counts of induced subgraphs of order ¢ are determined by the
isomorphism counts of induced subgraphs of order ¢+1.

Let S be an induced subgraph of order t+1. We denote the deck of S as deck(.S) which is the set of
induced subgraphs of order ¢ that are obtained by deleting one vertex in every possible way from .S.
That is, deck(S) = {S'|v € V(S),V(S") =V (S) — {v},S" C S}.

By the results in (Kocay, [1982)), we know that counting induced subgraphs and counting all subgraphs
have the same power. Note that each subgraph of ¢ vertices lies in m—t subgraphs of t+1 vertices. So
there is a total number (m—t) of subgraphs of ¢+1 vertices, for which each subgraph S’ of ¢ vertices
sits in their decks. Thus, to determine the number of times a subgraph S’ of ¢ vertices occurs in a
graph, we can first count the occurrence of S’ in all of subgraphs of ¢+1 vertices, and then divide the
count by (m—t). Therefore, the counts of subgraphs of vertices ¢+1 implies the counts of subgraphs
of vertices ¢. In doing so, we are able to infer the isomorphism counts of induced subgraphs of order
t from the isomorphism counts of induced subgraphs of order ¢+1.

Thus, we have the following equation:

{gé;llﬁi) }iEIf, = {gé;;,i) }iEIf, .

Accordingly, the following must hold:

("M un) {60 Yier) = (617 (u2), €0, 4 Yier)-

Hence, by again, we know that the node colours of u; and us by A"~ (¢, d)-WL must
also be the same at the [-th iteration.

19

Published as a conference paper at ICLR 2023

This implies that there exists an injective function between colours of the nodes by A4~ (t+1, d)-WL
and by ./~ (t,d)-WL at any [-th iteration. Since for any [-th iteration where [= 0,1,...,k—1
A~ (t+1, d)-WL has the same multiset of node colours for Gy and Ga, A"~ (t, d)-WL must also
have the same multiset of node colours for G; and G3. This means that .4~ (¢, d)-WL cannot
distinguish G; and G after k iterations, which contradicts with the assumption. The proof is
done. O

Theorem 3.1. For any fixed d € N, 4"~ (t+1, d)-WL is strictly more expressive than .4~ (¢, d)-WL
in distinguishing non-isomorphic graphs, where ¢t > 1.

Proof. By Lemma [l} we know that .4~ (41, d)-WL is as expressive as .4~ (¢,d)-WL. Thus,
we just need to show that, for any fixed but arbitrary d € N, there exists at least a pair of non-

isomorphic graphs (G, Go) that cannot be distinguished by .4 ~ (¢, d)-WL but can be distinguished
by A~ (t+1,d)-WL.

Let V(G) and E(G) denote the set of nodes and the set of edges in G, respectively. In general, there
are three cases when constructing such a pair of non-isomorphic graphs (G, G2):

« When ¢ = 1, we construct G; to be two cycles of length 2d + 1 and G> to be one cycle of
length 4d + 2.

» When t = 2, we first construct a pair (G, G2) of graphs where G consists of two cycles of
length 4 and G5 consists of one cycle of length 8. Let GG denote the complement of a graph
G. Then, we construct ;. = G, to be the complement of G, for r = 1, 2.

* When ¢t > 3, we first construct a pair (G1, G2) of graphs where G consists of two cycles
of length ¢ and G5 consists of one cycle of length 2¢, where r is defined as follows:

(3t —1)/20r (3t+1)/2 iftisodd;
= e (6)
3t/2 if ¢ is even.

Then, for each of G; and G2, we add a single vertex that connects to all vertices in a graph.
More precisely, given two new vertices v; ¢ V(G1) and vg ¢ V(G3), we define G and
G asV(G,) =V (G,) U{v.} and E(G,) = E(G,) U {(v,,u)|lu € V(G,)} forr =1, 2.

Figure 8|(a) demonstrates the aforementioned pairs of non-isomorphic graphs for the case of t = 1.
1gure 6|shows the pair of non-isomorphic graphs for the case of ¢t = 2. [Figure 7}(a)-(c) shows the
pairs of non-isomorphic graphs for the cases of t = 3 and ¢t = 4.

The proof is done. O
4-cycles 8-cycle . @ AT
G, =G G, =G,

Figure 6: (Left) Two graphs GG; and G5 where (G consists of two 4-cycles and G is one 8-cycle;
(Right) Two graphs (G; and G5 that can be distinguished by 4"~ (¢ + 1,d)-WL but cannot be

distinguished by .4~ (¢,d)-WL for t = 2 and d > 1, where G and G are the complements of Gy
and G, respectively.

20

Published as a conference paper at ICLR 2023

A <

RSN eI eie

. .

12 =5 1)

(b)

o\ e gl

hd =6

V1 V2
(©)

Figure 7: Three pairs of non-isomorphic graphs (G1, Go) that can be distinguished by A4~ (t+ 1, d)-
WL but cannot be distinguished by 4"~ (¢,d)-WL: (a)t =3 and £ = 4, (b) t = 3 and £ = 5, and (¢)
t =4 and ¢ = 6, where d > 1.

C.2 PROOFS FOR STRONG HIERARCHY (THEOREM 3.2| AND|THEOREM 3.3))

Lemma 2. For any fixed d € N, A (t+1,d)-WL is at least as expressive as .4 (¢, d)-WL in
distinguishing non-isomorphic graphs, where ¢ > 1.

Proof. The proof can be carried out in the same way as in the proof for Lemmal [T} Specifically,
to prove this lemma, it suffices to show that, for any two non-isomorphic graphs G and Ga, if
they can be distinguished by .4 (¢, d)-WL at the [-th iteration, they can also be distinguished by
N (t+1,d)-WL at the [-th iteration. By the definition of the .#'-WL algroithm, the set of multisets
of colours for subgraphs of {41 order from the d-hop neighbourhood of a node u at the [-th iteration
of applying .4~ (t+1, d)-WL is represented as {ffu’i’j)}ithjeJd. This still corresponds to (,"")
induced subgraphs of order ¢t+1, where m refers to the number of vertices in the d-hop neighbourhood
of node v and w.l.o.g. we assume t+1 < m.

Now, we need to show that {&{,, ; s }ier, ;1 je, determines {&(, ; - Yier, jesa- {&,) }ien i
corresponds to (T) induced subgraphs of order ¢ in the d-hop neighbourhood of node u at the [-th
iteration of .4 (t, d)-WL. Different from §éu) that encodes the count of induced subgraphs with

respect to only an isomorphism type %, £ éu i) encodes the count of induced subgraphs with respect
to both an isomorphism type ¢ and a positional type j. Accordingly, we need to show that the counts

21

Published as a conference paper at ICLR 2023

of induced subgraphs of order ¢ with respect to both isomorphism types and positional types are
determined by the counts of induced subgraphs of order 41 with respect to both isomorphism types
and positional types.

The fact that each subgraph of ¢ vertices lies in m—t subgraphs of ¢t+1 vertices remains. To take
both isomorphism types and positional types into account, when determining the number of times a
subgraph S’ of ¢ vertices occurs in a graph, we can first count the occurrence of S’ in all subgraphs of
t+1 vertices with respect to both the isomorphism and positional types, and then divide the count by
(m~—t). Thus, the counts of induced subgraphs of vertices t-+1 imply the counts of induced subgraphs
of vertices ¢ respect to both isomorphism types and positional types. O

Theorem 3.2. For any fixed d € N, 4" (t+1, d)-WL is strictly more expressive than .4 (¢, d)-WL in
distinguishing non-isomorphic graphs, where ¢ > 1.

Proof. By Lemma 2| we know that .#"(t+1,d)-WL is at least as expressive as .4 (¢,d)-WL in
distinguishing non-isomorphic graphs. For the strictness of expressw1ty between A (t+1,d)-WL

and 4 (t, d)-WL, we can see that the pairs of non-isomorphic graphs (G4, Gs) that cannot be distin-
guished by .4~ (¢, d)-WL but can be distinguished by .4~ (¢+1, d)-WL in the proof of [Theorem 3.1 m
still hold when taking positional types of induced subgraphs into account. Thus, we can prove this
strictness in a similar way as for the case that .4~ (¢+1,d)-WL is strictly more expressive than

A~ (t,d)-WL, i.e. based on the same pairs of non-isomorphic graphs (G1, G) described in the

proof of [Thicorem 1) O

Before proving[Theorem 3.3] we first prove the following lemma.

Lemma 3. For any fixed ¢ € N, 4 (t,d+1)-WL is at least as expressive as .4 (t,d)-WL in
distinguishing non-isomorphic graphs, where d > 1.

Proof. We can proceed with the proof as follows, in a way similar to Lemma[l} Assume that there
exist two non-isomorphic graphs G; and G2 which can be distinguished by .4 (¢, d)-WL, but cannot
be distinguished by .4/ (t, d+1)-WL after k iterations. This implies that, for any I-th iteration where
1=0,1,...,k=1, A4 (¢, d+1)-WL must have the same multiset of node colours for G; and Gs.

Then we show that, for any iteration /, if the colours of any two nodes in G; and G are the same by
A (t,d+1)-WL, then their node colours by .4 (¢, d)-WL must also be the same. Again, we prove
this by induction.

When [= 0, the initial node colours are the same for .4 (¢, d+1)-WL and .4 (¢, d)-WL. Hence, the
above statement holds. When [> 0, we assume that this statement holds for the {—1-th iteration.
Then, if the colours of any two nodes in G; and G are the same at the [-th iteration by A" (¢, d+1)-

WL, ie., ¢! (u1) = ¢! (us2), byMwehave

(Clil(ul)a {€E;11717j)}i61t,j€t]d+1) = (() {g(u,z ZJ)}TGIhjeJd+1)'

Since u; and us have the same colour in the [—1-th iteration, this gives us the following equation
which must hold

{g (u1,i])}1€It,j€Jd+1 {E(uQ i) }iGIijJdJrl'

By the definition of the permutation invariant function fp.s : S¢ — N that encodes the posi-
tional types of induced subgraphs and satisfies the condition: V.S; € S(y,1,)VS; € (S(u,t,d+1) —
Stut,d)) (fpos(Si) # fpos(Sj)), we know that J; C Jgy1 holds for induced subgraphs in
neighbourhoods and any fixed but arbitrary ¢t € N, where Jg = {fp0s(5)|S € S(u,q)} and
Jar1 = {fpos(S)|S € Stu,t,a+1)}- Accordingly, we have the following for any node v in G; and
GQZ

-
{f (u,i j)}lelt,jeJd - {g(ué,j)}ieft7j€Jd+1'

22

Published as a conference paper at ICLR 2023

Since ¢! : S¢ — N such that ¢!(S1) = ¢!(S2) iff fis0(S1) = fiso(S2) and fh0s(S1) = fpos(S2)

and fé,u7i7j) = {cl(9)|S € Stut,ays fiso(S)=1, and fros(S)=3}, by again and the fact
that HASH(-) in[Equation 3]is an injective function, we further have

(€t jyYieniess = € i jy YieTjea-

We know ¢! ~1(u;) = ¢!~ (uz) by the assumption for the [— 1-th iteration. Thus, the following must
hold:

("), {gé;{i’j)}ielt,je.]d) = (" M(ua), {5%;21,1»’]»)}2'61“;'6(1(,).

According to[Equation 3| we know that the node colours of u; and us by A/ (¢, d)-WL must also be
the same at the [-th iteration.

This implies that there exists an injective function between the colours of nodes by 4 (t,d+1)-
WL and .4 (¢,d)-WL at any [-th iteration. Since for any [-th iteration where [= 0,1,...,k—1
A (t, d+1)-WL has the same multiset of node colours for G and G, A (t, d)-WL must also have
the same multiset of node colours for G; and G2. This means that 4" (¢, d)-WL cannot distinguish
G and G5 after k iterations, which contradicts with the assumption. Hence, .4 (¢t, d+1)-WL is at
least as expressive as .4 (t, d)-WL in distinguishing non-isomorphic graphs. O

Theorem 3.3. For any fixed ¢ € N, 4#(¢, d4+1)-WL is strictly more expressive than .4 (¢, d)-WL in

distinguishing non-isomorphic graphs, where d > 1.

Proof. Firstly, we show that, for a fixed but arbitrary ¢ € N, there exists at least one pair of non-

isomorphic graphs (G1, G3) that cannot be distinguished by .4 (¢, d)-WL but can be distinguished
by A (t, d+1)-WL. Generally speaking, there are also three cases to consider when constructing

such a pair of non-isomorphic graphs (G1, Gy):

« When ¢ = 1, we construct G, to be two cycles of length 2d + 1 and G+ to be one cycle of
length 4d + 2.

« When ¢ = 2, we construct G, to be two cycles of length 2d + 3 and G+ to be one cycle of
length 4d + 6.

e When t > 3, we construct C:‘l to be two cycles of length 2d + 2 and ég to be one cycle of
length 4d + 4.

[Figure 8](a)-(c) depicts the pairs of non-isomorphic graphs being constructed for the cases of any
d>andt=1,t=2,and ¢t = 3, respectively.

Then, by Lemma[3] we also know that .4 (¢, d+1)-WL is as expressive as .4 (¢, d)-WL. Based on
the above two aspects, it can thus be concluded that .4 (¢, d+1)-WL is strictly more expressive than
A (t,d)-WL in distinguishing non-isomorphic graphs. O

C.3 PROOFS FOR CONNECTED-HEREDITARY SUBGRAPHS (THEOREM 3.7))

Lemma 3.5. S=! is connected-hereditary.

Proof. By the definition of S=¢, every S € S=! is a connected induced subgraph. Further, if
S € S5, then every connected induced subgraph of S is also in S=t. By [Theorem 3.4, S=¢ is thus
connected-hereditary. O

Lemma 3.6. For each induced subgraph S satisfying S € S=! but S ¢ SZ%, there exists a set
{51,82,...,8,} € S=t such that S = Sy 0 Sy 0... 0 S, where pu(S) = q.

23

Published as a conference paper at ICLR 2023

A A

G G,
(2d + 1)-cycles (4d +2)-cycle
(a)
Gy
(2d + 3)-cycles (4d + 6)-cycle
(b)

(2d + 2)-cycles (4d +4)-cycle
©)

Figure 8: Three families of pairs of graphs that can be distinguished by .4~ (¢,d + 1)-WL but
cannot be distinguished by .4~ (¢,d)-WL: (a)t = 1andd > 1,(b)t =2and d > 1,and (c) t > 3
and d > 1.

Proof. Since S € 87 but S ¢ S, such an induced subgraph .S must have more than one connected
component. Then, for each connected component in .S, it corresponds to one connected induced
subgraph in cht. Thus, it is straightforward to show that S = S;0550...05; where {S1, Sa, ..., 5}
corresponds to the set of components of S and {S1, Ss,...,S,} C S=! is such a set of connected
induced subgraphs. O

The proof of depends on two lemmas - Lemma] and Lemma 3] In the following, we
prove these two lemmas first.

Lemma 4. Forany ¢t € Nand d € N, .4¢(¢,d)-WL is at least as expressive as ./ (¢, d)-WL in
distinguishing non-isomorphic graphs.

Proof. For clarity, we use ¢'(u) and ¢! (u) to refer to the colour of a node u by .4¢(t, d)-WL and
A (t,d)-WL, respectively, in the following of this proof.

We prove this lemma by contradiction. Assume that there exist two non-isomorphic graphs G; and
G2 which can be distinguished by .4/ (¢, d)-WL, but cannot be distinguished by .4#¢(t, d)-WL after k
iterations. This implies that, for any I-th iteration where [= 0,1, ..., k—1, A4 ¢(t, d)-WL must have
the same multiset of node colours for G and Ga, i.e., {s!(u1) }uyevicy) = Lst(u) busev(cn)-

Below, we need to prove the following statement:
(A1). For any iteration [, if the colours of any two nodes in G; and G5 are the same by .4 (¢, d)-

WL, i.e., sL(u1) = ¢! (uz), then their node colours by .#'(t, d)-WL must also be the same,
ie., ¢l (ur) = ¢! (ug).

24

Published as a conference paper at ICLR 2023

We prove Statement Al by induction.

* For ! = 0, Statement A1 holds since the initial node colours are the same for .4#°(t, d)-WL
and 4 (t,d)-WL.

+ Assume that Statement A1 holds for [—1. Then if ¢! (u;) = ¢! (uz), by and the
fact that HASH(+) is injective, we have:

= 1 = 1
Se (u1), U {5 ul“ﬁ)}z‘elg,je.fd = s (u2), U {5 ugzj)}zel,‘;,je]d

ke(1,t] ke[1,t]

This leads to the following equation:

U {5(u1u>}16127j6«fd: U {5<uzu)}l€f£=j€h'

ke(1,t] ke(1,t]

Now, we need to show that, with respect to both isomorphism types and positional types,
the counts of connected subgraphs of vertices k for 1 < k£ < ¢ determine the counts of all
subgraphs of ¢ vertices.

We first ignore positional types and focus on proving that the counts of connected subgraphs
of k vertices for 1 < k < t determine the counts of all subgraphs of ¢ vertices with respect
to isomorphism types. The main theorem upon which our proof will be based is the Vertex
Theorem of |Kocay|(1982).

Let G = (V, E) be a graph, G[V'] for V! C V be an induced subgraph of G whose vertex
setis V’ and whose edge set consists of all of the edges in F that have both endpoints in V",
and ¢(S,G) = {V' CV(G) : G[V'] = S}| denote the number of induced subgraphs of G
which are isomorphic to S, i.e., isomorphism counts of S in G. In the following, we omit
the symbol G in ¢(S, G) unless the graph G needs to be specified.

We start with introducing Kocay’s Vertex Theorem.

Vertex Theorem. Let (i1, ..., 4,) be a list of all isomorphism types of graphs, and S; and
So be any two graphs. Then

c(S1)e(S2) = Z amC(im), 7

1<m<b

where the coefficient a,, is the number of decompositions of V' (i,,) into V4 U V5 such that
im[V1] = S1 and i,,[Va] =~ Sa, and V; and V5 may be overlapping.

Below, we show how to use Kocay’s Vertex Theorem to prove that, given the counts of
connected subgraphs of k vertices with 1 < k < ¢ with respect to their isomorphism
types, the counts of subgraphs of ¢ vertices with respect to all isomorphism types can be
determined.

If an isomorphism type 7 corresponds to connected subgraphs, i.e., ¢ € I7, then it is trivial
to prove because the count of connected subgraphs with respect to such an isomorphism
type is already available. Thus, we only need to discuss the case for i € (I; — If) in the
following. We prove this by induction:

— For k£ = 1, there is only one isomorphism type i,,,q4c that is in If. Thus, the count of
nodes with respect to 4,4, is already available.

— For k = 2, there are two isomorphism types - one is in I (i.e., teqge) and the other
isin (I}, — If) G.e., Inoedge)- BY the Vertex Theorem, we can determine the count of
subgraphs for 7,544 €asily through the following equation by applying the Vertex
Theorem:

C(inode)c(inode) = alc(inoedge) + a2c(iedge) + a3c(inode)~ 8)

25

Published as a conference paper at ICLR 2023

Here, a;, as, and ag are the coefficients. Following the Vertex Theorem, each a,,
where m = 1,2, 3 represents the number of decompositions of V' (i,,), where 4,, =
Inoedge, bedge Inode- respectively, into V4 U V; such that 4,,, [V1] = ip0qe and i, [Va] o~
inode- Note that, it is possible that V1 NV, # (). Based on this, we have a; = 2, as = 2,
and a3 = 1. That is,

C(inode)c(inode) = 2C(Z‘noedge) + 2C(iedge) + C(inode)' (9)

Since inode € I and icqge € If, the values of ¢(inode) and c(icqqe) are already
available. Hence, we can calculate the value of c(inoedge) according to the above
equation.

— Assume that this holds for £ = t—1, we now prove the case k = t. For each isomor-
phism type i € (I; — If), we apply of the Vertex Theorem as follows:

% The LHS of corresponds to two subgraphs Sy and Sy of 4 which satisfy
the condition: V' (S7) # 0, V(S2) # (), and Sy o Sy = 4, i.e., 7 is the union of two
node-disjoint subgraphs 57 and So;

* The RHS of corresponds to the set of all isomorphism types in
Ui <<t Li» including the isomorphism type i.

Note that the order of considering isomorphism types in (I; — If) is non-trivial.
Specifically, given two isomorphism types i and ' from I; with V(i) = V(¢),
we say that 7 subsume i’, denoted as i 3 ¢/, if and only if there exists at least
one decomposition of V(i) into V{,..., V] such that U,.,,V, = V(i) and
Vil .. iV} =~ {51, 55, ..., S, } where {S],55,...,5} is the set of all con-
nected components of ¢’. For any two isomorphism types from (I; — If), one iso-
morphism type should be calculated before the other isomorphism type if the former
subsumes the latter. Since all isomorphism types in [; have the same number of vertices
(i.e., t vertices) and are distinct from each other, we have the following properties:

Pl. (I;,3) is a poset, i.e., J is a partial order on isomorphism types in I;.
P2. Coefficients for isomorphism types in I; — {i} are zero if they are subsumed by i.

According to these two properties, we know that, given any isomorphism type ¢ €
(I — If), the values of ¢(i’) for isomorphism types i’ € (I; — If) that satisfy i’ J ¢
are already known, while the values of c(i”) for isomorphism types i € (I — I7) that
satisfy ¢ i are unknown but also not needed since their corresponding coefficients
are zeros. Moreover, by the assumption that the case k¥ = t—1 holds, the values of
(i) for isomorphism types i € Ij, where 1 < k < ¢ are known, including ¢(S1)

and C'(S2). Hence, the value of ¢(i) can be determined by applying [Equation 7 of the
Vertex Theorem as described above.

Since positional types provide additional information to distinguish subgraphs, we may view
them as one additional feature for subgraphs and handle it as an extension to isomorphism
types to prove that the counts of connected subgraphs of vertices &k for 1 < k < t determine
the counts of all subgraphs of ¢ vertices with respect to both isomorphism types and positional
types. This thus leads to the following:

{€0tin Yien et = {52;21,2»7]»)}1‘65,;‘6@-

Since we assume that Statement A1 holds for the (I—1)-th iteration, i.e., if ¢~ (u;) =
si1(uy), then ¢!~ (uy) = ¢!~ 1(uy), we further have the following:

<§l71(ul)a {(fé;117¢,j)a i?j)}iEIhjEJd) = (glil(UQ)v {(gé;;’i?j)a ivj)}iEIijJd) .

Hence, from the above equation and by the definition of node colouring in we
know that ¢! (u;) = ¢!(usy). Statement A1 thus holds for the I-th iteration.

26

Published as a conference paper at ICLR 2023

Ig I - It

=2 | MW O AL VIT oo
t=3 | A L. VAR

t:2 o—e o o

Figure 9: Isomorphism types for graphs of ¢ vertices, where 1 < ¢ < 4, I refers to a set of
isomorphism types for connected subgraphs of order less than or equal to ¢, and I; — I{ refers to a set
of isomorphism types for disconnected subgraphs (i.e., containing at least two connected components)
of order less than or equal to .

According to Statement Al, there must exist an injective function f such that ¢!(u) = f(s!(u))
for any vertex in G; and G5. Then, since for any [-th iteration where [= 0,1,...,k—1
A ¢(t,d)-WL has the same multiset of node colours for Gy and Gy, i.e., {<i(u1)}u,evic,) =

{ct(u2)Yusevias), A (t,d)-WL must also have the same multiset of node colours for G; and

Ga, ie., {f(ct(u)}uevicy = €/ (t(u2))}usev(c,)- This means that .4 (t, d)-WL cannot
distinguish G'; and G after k iterations, which contradicts with the assumption. O

Example 1. depicts all isomorphism types for graphs with up to 4 vertices. Below, we

illustrate how to calculate ¢(, o) on graphs by applying the Vertex Theorem, where , o is an
isomorphism type in (I, — I7) for t = 4.

— Step 1: We calculate ¢(, ,) using the following equation, where ¢(,) and c(s_,) are
known because both , and,_, are isomorphism types in U1 <k<2 I:

(o)l o) =2ce o) +2¢c(e—s) +¢(o). (10)

— Step 2: We calculate ¢(, o) by decomposing, into two subgraphs S; =, .and Sy = _,.
Since the coefficients that correspond to the following isomorphism types are zeros, we omit
these isomorphism types in the equation:

Then, we have the equation below:

Cle—s)Cle o) Ealc(x + G2C(IZI) + GSC(I:I) + a4C(IZ) + a50(71) + aGC(I::)+
a70(17. + agC(IH.) + agC(:) + a1oC(.H:)+

011C(A) + a120(L-)+ (11)
a138(/ o+
(

ajqcC o—o)

_— ~—

Following the Vertex Theorem, we have the following coefficients for[Equation TT}

a a2 asz a4 as GaGg a7y ag a9 aijp G111 a12 AaA13 Al4
2 3 1 3 2 0 1 0 2 2 0

Published as a conference paper at ICLR 2023

In the RHS of the isomorphism types in the first, third and fifth lines belong
to I for k = 4, 3,2, respectively. Hence, the counts of subgraphs with respect to these
isomorphism types are already available. The isomorphism types in the second line belong
to I, — I} for k = 4, By the property P1, we know that the counts of subgraphs with respect

to these isomorphism types 17:, I_: and ,_, have been calculated before calculating the
count with respect to , . The isomorphism types in the fourth line belong to Ij, — I} for
k = 3, and by the induction, the count of subgraphs with respect to the isomorphism type
/ » is available. Therefore, only the value of ¢(,) is unknown in the RHS of [Equation 11
On the other hand, the values for ¢(,_,) and ¢(, ,) are both known because o , and , ,

belong to I}, for k = 2. Putting things together, we can determine the value of ¢(, ,) using

quation

In the following, we illustrate how to apply [Equation 10| and [Equation T1]in the above steps to

calculate ¢(, ,) for two graphs: @ and .

(1) Calculating ¢(, ,) for @: We hereby detail how ¢(, o) can be derived for the graph @

We know ¢(,) = 5 and ¢(,_,) = 6 for the graph @ By applying [Equation 10|in Step 1, we have

5x5=2c(s o) +2x6+5. (12)
Hence, we obtain ¢(,) = 4.

Now we apply Step 2. Because V:, I_: and ,_, all subsume , , we have calculated C(V:) =

c(I_:) = 0 and ¢(s_s) = 2. Further, we know the counts of isomorphism types that belong to I

for k = 4,3,2, i.e. we have e(l]) = e(7]) = 0, (D) = «(/\) = 1, o170y = e 2) = 2 and

C(A.) = ¢(s—s) = 6. By the induction, we have also calculated c(/ o) =3atk=3.
By applying [Equation T1] we thus have

6x4=04+0+0+2x2+0+1x 2+

0+0+0+df3+
042 x 6+

2 x 3+

0

o o = 0 for the graph '@

By solving it we have ¢(

(2) Calculating c(:_:) for §<‘: We show another example of calculating c(:_:) for the graph §<'

We know ¢(,) = 5 and ¢(,_,) = 4 for the graph $.<‘ By applying|Equation 10|in Step 1, we have

5x5=2c(s o) +2x4+5. (13)
Hence, we know ¢(,) = 6.

Now we apply Step 2. Because I7:, I_: and ,_, all subsume , ,, we have calculated 0(17:) =
¢(e—s) = 0 and C(I_:) = 1. Further, we know the counts of isomorphism types that belong to I},

for k = 4,3,2, i.e. we have c() = el 1) = e = e\ = 0, (0D = 1, e _2) = 2 and

c(.L.) = ¢(e—s) = 4. By the induction, we have also calculated c(/ o) =4datk=3.

28

Published as a conference paper at ICLR 2023

By applying [Equation 1] we thus have
4x6=0+0+0+0+3x1+1x2+

0+2><1+0+c(:_:)+
042 x4+

2 x 4+

0

o o) = 1 for the graph $‘<'

By solving it we have ¢(

Remark C.1. [t is worthy to notice that, when calculating c(3) for an isomorphism type i € (I — If),
the ways of applying of the Vertex Theorem may not be unique.

*—e
Taking the isomorphism type c(o o) for example, we can calculate it in two different ways:

(1) As illustrated in Example we may first calculate ¢(, o) via treating S1 = o and So = ,

and then calculate c(,) via treating S1 = o _oand So =4 .

(2) Alternatively, we may first calculate c(/ o) Via treating S1 = «_oand So = , , and then
*—o
calculate ¢(, o) via treating S1 = / sand Sy = .

Lemma 5. Forany ¢t € Nand d € N, 4(¢,d)-WL is at least as expressive as .4 (¢, d)-WL in
distinguishing non-isomorphic graphs.

Proof. The proof follows a similar structure as used in the previous lemmas. Specifically, we assume
that there exist two non-isomorphic graphs G; and G5 which can be distinguished by .4#°(t, d)-WL,
but cannot be distinguished by .4 (¢, d)-WL after k iterations. This implies that, for any [-th iteration
where l =0,1,...,k—1, A4 (t,d)-WL must have the same multiset of node colours for G; and Gb,

ie., {ct(u1)burevic) = {' (u2) busevica)-

We need to prove the following statement:

(A2). For any iteration [, if the colours of any two nodes in G; and G4 are the same by A4/ (¢, d)-
WL, i.e., ¢'(u1) = s!(us2), then their node colours by .4 ¢(¢, d)-WL must also be the same,
ie., cL(uy) = ¢ (us).

We prove Statement A2 by induction:

* For | = 0, Statement A2 holds since the initial node colours are the same for .4#°(t, d)-WL
and ¥ (t,d)-WL.

+ Assume that Statement A2 holds for [—1. Then if ¢! (u1) = ¢! (uz), by we have

(Cl_l(ul)v {(fé;ll’i’j)ai j)}iGIt,jGJd) = (gl_l(u2)7 {(fé;;’i’j)u i7j)}i€h,j€-7d) .

This gives us the following

1— 1—
{g(ull’i’j) }iEIt,jGJd = {g(ugl,i,j) }’iGIt,jEJd .

Then, we need to further prove that, with respect to both isomorphism types and positional
types, the counts of all subgraphs of ¢ vertices can determine the counts of connected
subgraphs of k vertices for 1 < k < t¢. The proof may follow a similar counting argument
from Lemma [I] by noticing that each subgraph of ¢ vertices uniquely determines the set
of all subgraphs of k vertices contained within it for 1 < k < ¢. Thus, to determine the

29

Published as a conference paper at ICLR 2023

number of times a subgraph S of k vertices occurs in a graph where 1 < k < ¢, we can
check all subgraphs of ¢ vertices which contain it and then divide the count by () ie.,

the number of subgraphs of vertices ¢ which contain S where m = |Ny(u)| is the size of the
neighbourhood of a node u. Thus, we have

U {f (o iy YieIsjess = U {f(u2 i) Yielgieda:

ke[1,1] ke[1,1]

Similar to the previous direction, by assumption Statement A2 holds for the (I—1)-th
iteration, i.e., if ¢/ 71 (uy) = ¢!~ 1(ua), then ¢! 1 (uy) = ¢.~!(uz). We obtain the following:

- 1 - 1
Se (u1), U {5 u”])}zelg,jeJd = s (u2), U {f(u”])}zelg,jeJd

ke[l,t] ke[l,t]

By the definition of node colouring in M [Equation 4{for .4 ¢(t, d)-WL, we conclude ¢! (u;) =
s!(uz). Hence, Statement A2 also holds for the I-th iteration.

According to Statement A2, there must exist an injective function f’ such that ¢! (u) = f’(s'(u)) for
any vertex in G and Go. Then, since for any [-th iteration where | = 0,1,...,k—1 4 (¢,d)-WL
has the same multiset of node colours for Gy and G2, i.e., {<' (u1) b, ev(ay) = {6t (u2) busevaa):
Ae(t,d)-WL must also have the same multiset of node colours for G and Go, i.e.,

{1 () bureviey) = {1/ (w2) Yusevics)-

This means that .4"¢(t, d)-WL cannot distinguish G; and G5 after k iterations, which contradicts
with the assumption. The proof is done. O

Theorem 3.7. Forany t € Nand d € N, .4°(t, d)-WL and .4 (¢, d)-WL have the same expresivity
in distinguishing non-isomorphic graphs.

Proof. Lemmald]and Lemma [5]together prove this theorem. O

C.4 PROOFS FOR CONNECTIONS TO k-WL HIERARCHY (THEOREM 3.8))

Theorem 3.8. .#'(1,1)-WL is equivalent to 1-WL in distinguishing non-isomorphic graphs.

Proof. A" (1,1)-WL hast = 1 and d = 1. Accordingly, the node colouring function in
for .4#7(1,1)-WL can be expressed as

¢ (u) = HasH (¢! (u), {{s' (W)}, €' (v)|v € N1 (w)}}) .

We may remove {{s!(u)} since it occurs twice in the input of the above hash function and does not
add additionl information. This leads to the following simplified expression:

< (w) = HasH(< (w), {<'(0)|v € N(w)}),

which is exactly the same as the node colouring function of 1-WL. [

30

Published as a conference paper at ICLR 2023

C.5 PROOFS FOR GRAPH NEIGHBOURHOOD NEURAL NETWORK (THEOREM 4. 1))

Theorem 4.1. G3N-(t, d) with injective COMBINE and AGG” functions, an injective AGG” function
w.r.t. multisets of subgraphs with the same isomorphism and positional types, an injective graph
readout function, and sufficiently many layers is as powerful as 4" (¢, d)-WL.

Proof. The proof can proceed similarly to the proof that GIN is as expressive as 1-WL (Xu et al.,
2019). Let G and G2 be any two non-isomorphic graphs which can be distinguished by .4 (¢, d)-WL
at the k-th iteration. It suffices to show that G3N’s neighbourhood aggregation scheme described in
with the above assumptions is able to map G and G5 into different multisets of node
features. The G3N’s neighbourhood aggregation scheme is restated as

h{) = COMBINE (hq(}*l),AGGN(M)eItXJd (AGGTSESSA)(M.) (POOL(S))>) :

According to|Equation 3| .4 (¢, d)-WL applies an injective hash function HASH(-) to update the node
colours at the [-th iteration:

¢ (w) = Hasu(s " (u), (€l Vienea),

where§ u”) = {¢"7H9)IS € Sutays fiso(S)=i, and fpos(S)=5}.

Below, we need to show that there always exists an injective function f such that A" = f (s'(u)),
for any iteration [. We prove this by induction.

« When [= 0, both 1! and ¢ (u) are the input node feature of a node u. Thus, Y =l (u)
holds for any node v in G and Gs.

« Assume that A\ " = f(c!~1(w)) holds, we now need to show that A\’ = f(¢!(u)) holds.
Firstly, we have:

h{!) = COMBINE (f(gl_l(u)), AGGYN (i jyer, %, (AGGTSES#D(L].) (POOL(S)))) :

Since we assume that both COMBINE(-) and AGG™ (-) are injective functions and the
composition of injective functions is injective, there exists some injective function g such
that

n = (gll(u)’ {AGGTSGSS‘”(i,j) (POOL(S))}'L'EBJEJ(I) '

Because Si(f_l) (i, j) denotes the set of t-order subgraphs within the d-hop neighbourhood
of a node u with the isomorphism type 7 and the positional type j at the (I—1)-th layer, we

have §l Lo ={¢19)S e S~ 1)(2 7)}}- By the definition of subgraph colouring, i.e.,

(u,2,7)
C SG — N such that Cl(Sl) = CZ(SQ) iff fiso(Sl) = fiso(SQ) and fpos(Sl) - fpos(SQ),
and the assumption that AGGT(-) is an injective function with respect to multisets of
subgraphs with the same isomorphism and positional types, we further have the following:

) =g (C Huw), {g(uz])}lelt’je‘ld> ’

where ¢’ is also an injective function. Thus, we have Rl = g0 HASH ' (¢!(u)) and
f = ¢ o HAsH™!. Since ¢’ and HASH are injective, and the composition of injective
functions is injective, f is injective.

31

Published as a conference paper at ICLR 2023

At the k-th iteration, if .4 (¢, d)-WL distinguishes G; and G2 to be non-isomorphic, this implies that
G4 and G, differ in {¢*(u)|u € V(G1)} and {c*(u)|u € V(G2)}. Then, Gy and G5 must also
have different G3N’s node embeddings at the k-th iteration due to the injectivity of f. The proof is
done.

D G3N MODEL ARCHITECTURE

Here we describe the specific G3N layer in more detail. An instance of we employ is as
follows:

RUAD — 5 [ROW® 4 Z O‘Egj) Z o <Z hq(]l)W((i%)) (14)

(1,)€lt X Jq s5es® (4,5) ves

where hq(f) € R% and h&l +1) € R% are learned node embeddings at each layer, and excluding sub-

and superscript notations, W € R %42 are learnable linear transformations and « are learnable
scalars corresponding to different isomorphism and positional types of subgraphs. Furthermore, o is
any nonlinear activation function such as sigmoid or ReL.U.

Matching the notation described earlier in the pooling function for subgraphs can be

defined by any permutation invariant pooling function. Here, given a subgraph S € Sq(f)(i, j), we
have

POOL(S) = o (Z hg”W((jfj)) . (15)

veS

In practice, we may also consider component-wise product over node embeddings in a subgraph:

POOL(S) = O, eg0 (hq(,l)W((il)j)) In this case, o has to be a bounded activation function such as

sigmoid in order to ensure numerical stability. The inner aggregation step AGG” simply sums up all
the subgraph embeddings of the same isomorphism and positional types, while the outer aggregation
step AGG™ applies a weighted sum with learnable weights on the aggregated groups of subgraph
embeddings of the same isomorphism and positional types. To match expressivity of .4#"-WL, one
may replace the outer activation function ¢ with an MLP and replace W) with 1 4 (), where ()
is a learnable scalar parameter, as seen in GIN (Xu et al.,[2019).

However, we found that using different learnable linear transformations for all possible isomorphism
and positional types leads to much slower training. For example, if we had a number |J;| of positional
types and a number |I;| of isomorphism types, this would lead to |I;| X |J4| possible combinations
of linear transformations, resulting in longer training and higher generalisation gap due to the large
number of parameters. To remedy this problem, we instead only use different weight matrices for
positional types only, and inject the isomorphism type information as additional features to node
embeddings. For example, we change [Equation 14]to[Equation 16]below

I LU UCEED SN U<Z<h5f>|ei>wfl)> 1o
)

(i5)€lsx Ja ses® (i,j ves

where e; denotes a vector with entries all zero except one at the ¢-th component. Thus, we have a
different pool function for subgraph embeddings but keep all other components the same:

POOL(S) = o (Z(hy)n ei)wj”> . (17)

veS

32

Published as a conference paper at ICLR 2023

In the implementation, we apply a pre-processing step to compute all indices of induced neighbour-
hood subgraphs with respect to their isomorphism and positional types and store all these indices,
which are used by G3N layers described in This pre-processing step is only required to
perform once on each dataset.

For isomorphism types, we can compute them generally for any ¢-order subgraphs using the McKay’s
nauty algorithm (McKay, [1981} [Mckay & Piperno, [2014). When ¢ < 3, for efficiency, we consider a
simple way to determine isomorphism types which count edges and nodes of subgraphs. In order
to preserve structural information, initial colours of nodes are treated as being the same in the
computation of isomorphism types.

For positional types, we implement f,,s as follows. Let S be an induced subgraph in the d-hop
neighbourhood of a node u. Then fp,(5) is the set of shortest-path distances of the nodes in S
to the node u, i.e., fpos(S) = {p(u,v)|v € V(S)}, where p refers to the shortest-path distance
between nodes u and v. For example, if S has three nodes V' (S) = {v1, v2, v3} with p(u,v1) = 1,
p(u,v2) = 1 and p(u, v3) = 2, then the positional type of S is fp,s(S) = {1, 1,2} in this case.

Remark D.1. In our work, the definition of positional types for induced subgraphs (via the function
fpos) is intended to characterise two general conditions that are required at the minimum to establish
the proposed strong hierarchy: (1) permutation invariant; (2) the condition specified by [Equation 2]
Thus, in general, there are many different ways to instantiate the function fp.s for positional types
in implementation, as long as fps is permutation invariant and satisfies the condition specified in

quation

There are two model variants in our G3N implementation: one is to aggregate all connected-hereditary
subgraphs of order up to ¢, corresponding to the node colouring function defined by as
discussed in Section[3.2] and the other is to aggregate all ¢-order subgraphs regardless of connectivity,
corresponding to the node colouring function defined by In our experiments, we consider
the former one as the default model, unless otherwise stated.

E EXPERIMENTAL DETAILS AND RESULTS

In the following, we provide the further information about the datasets, baseline methods, and
parameter selection considered in our experiments as well as additional experimental results.

E.1 DATASETS

summarises the dataset tasks and the statistics of the datasets used in our experiments.

Table 7: Dataset statistics.

Dataset Task type #Classes #Graphs Avg. #nodes Avg. #edges Avg. diameter
graph8c Isomorphism 11117 11117 8 28.8 2.7
EXP (iso ver.) Isomorphism 1200 1200 44 .4 110.2 7.1
SR25 (iso ver.) Isomorphism 15 15 25 300 2
CSL (iso ver.) Isomorphism 10 10 41 164 6
RandomGraph Regression 4 5000 18.8 62.6 42
MUTAG Classification 2 188 17.9 19.8 8.2
PTC-MR Classification 2 344 14.3 14.7 7.5
PROTEINS Classification 2 1113 39.0 72.8 11.3
NCI1 Classification 2 4110 29.9 323 11.5
IMDB-B Classification 2 1000 19.8 96.5 1.9
IMDB-M Classification 3 1500 13.0 65.9 1.5
ZINC Regression 1 12000 23.1 49.8 12.5
MolHIV Classification 2 41127 25.5 27.5 12.0
MolITOX21 Classification 2 7831 18.6 19.3 9.6

33

Published as a conference paper at ICLR 2023

E.2 BASELINE METHODS

In our experiments on synthetic datasets, we compared the performance of G3N against the following
baseline methods: MLP, GCN (Kipf & Welling} 2017), GAT (Velickovic et al}[2017), GIN (Xu et al.
2019), and PPGN (Maron et al., 2019a).

In our experiments for real-world datasets, we considered the following baseline methods:

— For the TU datasets, we compared G3N against (1) three kernel methods - RWK (Gértner
et al.| [2003), WL-kernel (Shervashidze et al.,[2011), and P-WL (Rieck et al.,[2019); (2) five
GNN models - PATCHY-SAN (Niepert et al., 2016), DCNN (Atwood & Towsley, [2016),
DGCNN (Zhang et al., [2018)), GIN (Xu et al.,2019), and PPGN (Maron et al., 2019a).

— For the ZINC and MolHIV datasets, we compared G3N against GCN (Kipf & Welling|
201°7), PPGN (Maron et al., 2019a), GIN (Xu et al.,[2019), PNA (Corso et al., 2020), DGN
(Beaini et al., 2021)), DEEP LPR (Chen et al., 2020), GSN (Bouritsas et al.,[2022) and CIN
(Bodnar et al., [2021a).

E.3 PARAMETER SELECTION
Synthetic datasets. We follow the experimental setup described by Balcilar et al.| (2021).

— For the EXP, SR25, graph8c, and CSL datasets, we run 100 randomly initialised weights on
the models and record pairs of graphs to be similar if the L1 distance of the length 10 graph
representations is less than 0.001 on any of the runs. All models are constrained to a 30K
parameter budget, consisting of 4 convolutional layers, sum readout, and one final linear
layer.

— For the RandomGraph dataset, all models are also restricted to a 30K parameter budget,
consisting of 4 convolutional layers, sum readout, and a further 2 fully connected layers
trained for up to 200 iterations with a fixed learning rate of 0.001. Learning terminates when
error goes below 1074,

TU datasets. Following the setup from |Xu et al.|(2019)), model evaluation and selection are done
by collecting the accuracy from the single epoch with the best cross-validation accuracy averaged
over the 10 folds. We fix t = 2, d = 2, hidden units of 128 and learning rate of 0.001 which is halved
every 50 steps. summarises the hyperparameters used in our experiments for these datasets.

ZINC. We follow the setup described in Dwivedi et al.|(2020) with batch size 128 and 1000 epochs
with initial learning rate of 10~2 which is halved when validation does not improve over after 20 steps
and training is halted when the learning rate goes under 10~°. We fix t = 2, d = 3 and by adhering
to the 100k parameter budget, we use 4 message passing layers with hidden size 80, followed by a
final MLP readout.

MolHIV. We follow the train, validation and test split from|Hu et al.| (2020) and evaluate on the test
score corresponding to the best validation score. We fix ¢ = 2, d = 3, and set the batch size to be 128,
hidden dimension 128, number of message passing layers 3, 100 epochs with a fixed learning rate
1073 and dropout ratio 0.5.

MolTOX21. We follow the train, validation and test split from [Hu et al.| (2020) and evaluate on the
test score corresponding to the best validation score. We set the batch size to be 64, hidden dimension
300, number of message passing layers 4, 100 epochs with a fixed learning rate 10~3 and dropout
ratio 0.5.

Table 8: Hyperparameters for TU datasets.

Dataset MUTAG PTC_MR PROTEINS NCII IMDB-B IMDB-M

#Layers 2 4 2 5 2 2
Drop ratio 0.1 0.5 0.75 0.1 0.5 0.5
batch size 64 32 64 32 64 64

#Epochs 200 300 200 200 200 200

34

Published as a conference paper at ICLR 2023

E.4 ABLATION STUDY

Setup. We analyse the effect of ¢ and d on the expressivity and generalisability of G3N. We run
all different configurations of ¢t € {1,2,3},d € {1,2,3} and number of layers € {3,4,5} on the
datasets ZINC and MolTOX21. An initial learning rate is set to 10~3 and is halved when validation
does not improve over 20 patience steps and training is halted when the learning rate goes under
10~°. The results are reported in|Table 9|and [Table 10

Table 9: Test MAE (average test score) and generalisation gap (test score - train score) on ZINC for
different configurations of ¢ and d. The results show that d is more important for performance on
ZINC.

Test MAE Generalisation Gap
#Layers 3 4 5 3 4 5

d=1 0.353+x0006 0.324+0.017 0.29240.019 0.131£0.026 0.13940.027 0.147%0.019
t=1 d=2 0.305+0020 0.258+0.012 0.240%0.008 0.161£0.013 0.142+0.018 0.140+0.007
d=3 0.187+0.004 0.191%0.007 0.194%0.006 0.083%£0.014 0.101£0.014 0.094%0.016

d=1 0.328+0022 0.361+0.004 0.377£0.005 0.10240.021 0.09440.010 0.12940.013
t=2 d=2 03370008 0.282+0.019 0.258+0.021 0.132+0.024 0.148+0.008 0.133+0.014
d=3 0.182+0.003 0.176%0.005 0.185%0.008 0.07620.003 0.088%0.006 0.090%0.014

=1 0.370+0.005 0.362+0.009 0.357+0.023 0.127+0.020 0.106%0.010 0.131%0.021
0.341x0.011 0.328+0.018 0.312+0.028 0.1332£0.019 0.130%0.017 0.119%0.010
0.176%0.007 0.175+0.007 0.182%0.010 0.072+0.011 0.07420.006 0.077%0.009

,F
I
w
SRSV R
[l
w N

Table 10: Test ROC-AUC (average test score) and generalisation gap (test score - train score) on
MolTOX21 for different configurations of ¢ and d. The results show that ¢ is more important for
performance on MolTOX21.

Test ROC-AUC (%) Generalisation Gap
#Layers 3 4 5 3 4 5

t=1 0.7363+£0006 0.74384+0.008 0.7398+0.009 0.1476+0.003 0.1303£0.013 0.1603+0.011
d=1 t=2 0.7402+0003 0.7565+0.006 0.748240.006 0.1339+0.002 0.114620.016 0.1350+0.006
t=3 0.7487+0.005 0.7649%0.007 0.7531+0.005 0.1171x0.001 0.0734£0.009 0.0934+0.003

t=1 0.7365+0.013 0.74002£0.009 0.7553+0.011 0.1364+0.002 0.1390+0.008 0.1260%0.010
d=2 t=2 0.7426£0009 0.7514+0008 0.7603+£0.009 0.1352+0.014 0.0994+0.003 0.096520.002
t=3 0.7496£0.019 0.7636+0.009 0.7657+0.006 0.1296+0.006 0.0773%0.016 0.0900%0.016

t=1 0.7443x0017 0.751120.007 0.7494+0.001 0.1364+0.003 0.1264+0.003 0.1390%0.004
d=3 t=2 0.7531%0005 0.7593x0.018 0.757720.008 0.1203+£0.002 0.0934%0.009 0.0996=£0.007
t=3 0.7586+0.006 0.7695%+0.007 0.7608+0.007 0.1006+0.005 0.0656+0.013 0.0831%0.013

Observations. We observe that increasing the size of subgraphs ¢ or the size of the receptive field d
generally increase expressive power and reduces generalisation gap. This supports the theoretical
results with the higher expressive power of .4#-WL for higher ¢ or higher d. One reason the
generalisation gap is lower is because graph structure becomes more important for learning than node
features with G3N which prevents overfitting. Further, according to the a higher number
of layers is required for expressivity for lower values of d and vice versa. This is because the total
receptive field of each node with L layers of G3N is d - L, thereby requiring a balance of d and L to
receive enough information from far away nodes in a graph. Moreover, according to[Table 10} we can
obtain higher expressive power by increasing the size ¢ of subgraphs since this can lead to capturing
more local structural information into node embeddings.

E.5 RUNTIME AND MEMORY ANALYSIS FOR ¢t AND d
Setup. Here we present an empirical analysis of the runtime and memory usage of G3N as the

neighbourhood size d and the order of subgraphs ¢ increase. We measure resource usage by varying d
and ¢ while fixing all other hyperparameters. All model configurations include 4 message passing

35

Published as a conference paper at ICLR 2023

Table 11: Runtime measured by seconds per epoch on ZINC (molecular dataset) and IMDB-B (social
network dataset) with a parameter budget of approximately 30k. A message passing neural network
(MPNN) is modelled by G3N with d = ¢ = 1. The IMDB-B graphs have maximum diameter 2,
meaning that d = 2, 3 use the same resources. OOM represents out of memory.

ZINC IMDB-B
runtime (s/epoch) #parameters runtime (s/epoch) #parameters

MPNN 04 32607 0.1 33758
GNNML3 4.3 33309 04 34537

PPGN 3.7 32417 0.6 32009
G3N-(2,1) 0.6 31631 0.2 32938
G3N-(2,2) 1.1 31759 0.4 33018
G3N-(2,3) 1.6 31051 - -
G3N-(3,1) 0.5 32911 1.6 33578
G3N-(3,2) 1.6 31601 OOM OOM
G3N-(3,3) 2.5 32079 - -

Table 12: Runtime and number of parameters for G3N on ZINC (molecular dataset) and IMDB-B
(social network dataset) with 4 number of layers and hidden dimension of 64. The IMDB-B graphs
have maximum diameter 2, meaning that d = 2, 3 use the same resources. OOM represents out of
memory.

ZINC IMDB-B
runtime (s/epoch) #parameters runtime (s/epoch) #parameters

MPNN 0.4 23619 0.1 53198
GNNML3 4.4 120077 0.4 122601

PPGN 3.9 91329 0.8 138753
G3N-(2,1) 0.7 32581 0.2 71122
G3N-(2,2) 1.2 50505 0.5 106970
G3N-(2,3) 1.7 68429 - -
G3N-(3,1) 0.6 23875 1.7 72146
G3N-(3,2) 1.7 60747 OOM OOM
G3N-(3,3) 2.5 97619 - -

layers and a hidden dimension adhering to a 30k parameter budget for runtime analysis, and a hidden
dimension of 64 for memory analysis. Furthermore, we run experiments on two different datasets
ZINC and IMDB-B which have different settings and graph densities: ZINC consists of molecular
graphs with average graph density 0.195 and diameter 12.47 which are sparser than the IMDB-B
social networks with average graph density 0.520 and diameter 1.86, and max diameter 2. We further
compare against GNN models with 3WL expressivity: GNNML3 (Balcilar et al., [2021)) and PPGN
(Maron et al.,|2019a). The implementations are taken from |Balcilar et al.|(2021)). The experiments
for this section were run on an RTX 3090 GPU.

Observations. Viewing the results in[Table TT| we notice that for sparse graphs the order of magnitude
for runtime stays the same even when d and ¢ are increased up to 3. On the other extreme when
graphs are small and dense, runtime increases at a greater rate as d and ¢ increase, given that the
number of connected components in a neighbourhood grows large as can be seen with d = 2 on
the IMDB-B dataset which results in global aggregation. For ¢ = 3, this results in memory issues
from computing all 3-order subgraph indices. Note that the runtime for (¢, d) = (2, 1) is greater than
for (¢,d) = (3,1). This is because all 3-order subgraphs in 1-hop neighbourhoods have the same
positional type, whereas there are more positional types of 2-order subgraphs in the given datasets.
We further note that runtime performance is comparable with the higher order GNN methods with
the exception on the IMDB-B dataset where our model performs aggregation on whole graphs.

36

Published as a conference paper at ICLR 2023

On the other hand in[Table 12] we note that the parameter usage increases more moderately regardless
of dataset structure, as the parameters are bounded by up to 5 times the parameters used in the
message passing version of G3N. This is because the number of parameters scales with the number
of isomorphism types, which are modest for connected components and small d and ¢.

We further note from both tables that the main computation effort arises from varying d and ¢ and not
the number of parameters of the model as expected.

E.6 RUNTIME ANALYSIS FOR CONNECTED VARIANTS

Table 13: Runtime measured by seconds per epoch and MAE on ZINC with a parameter budget
of approximately 100k on G3N with aggregation variants: connected ¢-subgraphs only, connected-
hereditary subgraphs, and all ¢-subgraph.

connected connected-hereditary all
runtime(s/epoch) 2.5 4.2 5.5
MAE 0.1650.006 0.174+0.002 0.2260.009

Setup. We further present an empirical analysis of the runtime and performance of G3N on the
ZINC dataset with various aggregation variants depending on which subgraph types it aggregates.
Specifically, we consider the original G3N which aggregates only connected t-order subgraphs,
G3N which aggregates connected-hereditary subgraphs discussed in Section [3.2] and G3N which
aggregates all t-order subgraphs regardless of connectivity. The message G3N layer equations given
in[Equation 14]and [Equation 16|remain unchanged for all connectivity variants with the except of the

definition of S&l) (i, 7) which consists of the set of all induced subgraphs from the neighbourhood of
a node u being restricted to connectivity variants discussed above.

The parameter setup for all three variants consists of the same setup with the ZINC experiments
above. Specifically, we have a batch size 128 and an initial learning rate of 10~ which is halved
when validation does not improve over after 25 steps and training is halted when the learning rate
goes under 1075, We fix t = 3,d = 3 with 2 message passing layers and fix the number of hidden
units such that we adhere to a 100k parameter budget. We use an MLP readout. The experiments for
this section were run on an RTX 3090 GPU.

Observations. From we observe that the runtime of all the G3N variants have the same
order of magnitude. By considering connected-hereditary subgraphs, we achieve lower runtime as
there are fewer isomorphism types to consider for the given dataset. Note however, that this does not
hold in general and that there exist graphs where considering connected-hereditary subgraphs is less
efficient, such as with cliques. We further note that the connected-hereditary variant provides better
performance which may be attributed to the fact that by considering all possible isomorphism types
regardless of connectivity, we may lose information in the training process as to which structures are
actually helpful for prediction. This is given by the intuition that connected components should have
a greater contribution for predictions. Finally, we note that considering connected ¢-order subgraphs
only as opposed to connected-hereditary subgraphs (all k-order subgraphs for 1 < k < t) obviously
provides faster runtime but more significantly provides similar performance. This may be attributed
to the fact that larger ¢-order subgraphs in the given dataset generally subsume smaller subgraphs in
providing structural information for prediction.

E.7 COMPLEXITY ANALYSIS - k-WL vs 4/ -WL

Setup. We conduct an experiment to empirically analyse the time complexity of our .4"-WL algo-
rithms, in comparison with the classical k-WL algorithms. In the experiment, four datasets ZINC,
MolHIV, NCI1, and IMDB-B are selected, which have varying graph structural information, such as
the sparsity of a graph, the diameter of a graph, etc. For each dataset, we randomly select 10 graphs.

We compute the average complexity of k-WL and .4#"-WL as follows: (1) for k-WL, we compute
nt x (t -n) where t = k. This is because k-WL considers the number n* of k-tuples in a graph G
with |V (G)| = n and there are further (k - n) neighbouring k-tuples considered for colouring each of

such k-tuples. (2) for .4-WL, we compute n X (“:) where n refers to the number of nodes to be

37

Published as a conference paper at ICLR 2023

| -
\
\
| F~
\
\
|] o
\
N
n o
\
\
n F <t
\
\
n -
\
\
[F ey
\
\
-
T T T T
B2 % 3
o o
— = — —~
])
\
Ay
n L~
\
N
| F©
\
w P
\
| | - <
N\,
Ay
] -
\,
N
[| F o
\
\
e
T T T T
g 0% %
=} [=)
— — — —
| oo
N\,
N
| | F o~
\
\
| F©
\
w o
N\,
-
= | F <
I
s x |] L
' AN
" Boore
\
1 \
m b
T T T T
~ P © ™
s S o o
et — — —
Axajdwo)

ZINC

Figure 10

L\ I
\
, F~

\

) | o
\
\
| | Fn
\
N
] - <
\
\
n Fm
\
Ay
n F ey
N
\
-

T T T T

23 % %

o ©o

=t = — —

| -
\

w F~

N,

) |)
\
\
| | Fn
\
N
] - <
\,
N
n o
N,
\
[F ey
N
\
-
T T T T
2 0% %
o o
= = — —
| - oo
\
N
] -~
N
\
| o
\
w Lo
) N\

— -
==z L § =
T S \

S x l/)

. \

[e

\
1 \
o

T T T

R X

(=

= — —

Axajdwo)

: MolHIV

Figure 11

| I o
\
\
n F o~
\
w Lo
\
| Fun
\
N\,
| | F<
\,
\
| | Fm
.
\
| | F o
\.
N
o
T T T T
502 0% 9
=} o
= = — —
|| F
\
\
[| F~
N\
\
| o
N\
w Lo
\
m F
\
| | e
\
\
| | F o
N
\
| O]
T T T T
R R N
o o
= = — —
L\ I
\
| F~
\
N
n - o
N\,
\
| F
\
-
s " Y
S 3 w -
s \
. = oore
\
1 \
WO
T T T T
ERE R
o o
purt purt — —
Aixadwo)

NCI1

.
.

Figure 12

| - ©
\.
\
|] -~
\
\
u Fo©
\.
N
] F o
,
\
| | F<
N
N
| Fm
\
\
[| F ey
\
\
| Nl
T T T T
R
o o
ot = — —
| I ©
\.
\
|] -~
\
\
u Fo©
\.
N
] F o
,
\
| | F <
N
N
| Fm
\
\
[| F ey
\
\
| Nkl
T T T T
T2 % %
o o
— = — —
L8 I
\
I -~
N
| Fo
\
\
u F o
//
-
=g |] F <
> 2 N
5 % m Fm
' //
] e
\
1 \
-~
T T T T
s % %
o o
— = — —
Ayxadwo)d

IMDB-B

.
.

Figure 13

38

Published as a conference paper at ICLR 2023

coloured in a graph and (“:) approximates the number of neighbouring subgraphs of order ¢ within
the local d-hop neighbourhood of a node. The results are reported in Figures and

Observations. From these figures, we observe the following:

* When d = 1, for graphs with relatively large diameters such as ZINC, MolHIV, and NCI1,
as shown in Figures and (12} our .#"-WL algorithm is several orders of magnitude
faster than the k-WL algorithm. We can see that the performance gap between k-WL and
A -WL becomes more and more significant when ¢ increases and becomes stable after
t = 4. This is because the number of 1-hop neighbours a' is much smaller than the total
number of nodes 7 in a graph (i.e., a’ < n). For graphs with very small diameters such as
IMDB-B, all the nodes are almost within 2-hop of a node; therefore, the number of 1-hop
neighbours a' is relatively closer to the number of nodes n in such graphs. In this case, as
depicted in the performance gap between k-WL and .#"-WL becomes small.

* When d = 2, for graphs with relatively large diameters such as ZINC, MolHIV, and NCI1, as
shown in Figures and[12] .#"-WL still shows a significant performance improvement
over k-WL and the performance gap starts to increase after ¢ = 4. The increase in the
complexity of .#-WL for ¢t = [1, 2, 3] is due to the effect of including 2-hop neighbours
along with 1-hop neighbours; after ¢ = 4, the size of 2-hop neighbours |a?| and parameter ¢
start to approach each other which results in an increased performance gap. For IMDB-B
dataset with a very small diameter, as shown in almost all the nodes in the graphs
are within 2-hop (i.e., a® ~ n) and the time complexity of our algorithm increases for initial
values of ¢ and then start to stabilizes or decreases as compared to k-WL.

» When d = 3, the value of a? gradually approaches the total number of nodes in a graph. In
such cases, .#-WL remains significantly faster on graphs with relatively large diameters, as
shown in Figures[I0] [TT] and[I2] and also shows to outperform well for graphs with small
diameters with k-WL, as shown in [Figure 13| The performance gap still becomes larger
with the increased values of parameter ¢.

Overall, due to the local nature of the .#"-WL algorithm in contrast to the global nature of the k-WL
algorithm, the .#"-WL algorithm is much more efficient than the k-WL algorithm when performing
on graphs with reasonably large diameters, particularly if diameters are greater than d values. The
performance gap between the .#"-WL algorithm and the k-WL algorithm is reduced when increasing
d or graphs have very small diameters, e.g., IMDB-B has an average diameter 1.9.

Remark E.1. The complexity of N -WL can be reduced when the gap between t and a® gets smaller.

ad

This is because the number of induced subgraphs (') may decrease in this case. For instance, we
can see from that when d = 1 and t = 4, the complexity is lower than the one at d = 1 and
t = 3; then it stabilises when d = 1 and t > 5. Similar cases can be observed from|Figure 11|and

F LIMITATIONS AND FUTURE WORK

In this work, the design of G3N still has some limitations. Firstly, as with most expressive GNN
models going beyond 1-WL, G3N suffers from inevitably increased runtime per training step and
parameter complexity. Although seen to be feasible for sparse molecular graphs, this may still pose
an issue with much larger datasets. To solve this issue, one may have to consider sampling methods.
Another issue is with an unclear explanation on the gap between expressivity and generalisability.
Finally, although G3N is able to detect graph substructures contrary to methods which precompute
and inject them as additional features for learning, the parameters d and ¢ are still domain dependent
and will have to be hand chosen to balance computational resources and performance. Due to
these limitations, one interesting future research direction is to explore the underlying design princi-
ples of expressive GNN models for a better understanding of the interaction between expressivity,
generalisability, explanability, and training efficiency of GNN models.

From the algorithmic perspective, for both k-WL and .#"-WL, a possible future research direction is
to analyse their connections to node-level, link-level, or more generally subgraph-level properties
and accordingly build connections between subgraph properties and expressivity of GNN models.
In the literature of the k-WL algorithms, despite their fruitful connections to logic and descriptive

39

Published as a conference paper at ICLR 2023

complexity theory, there is no clear understanding for characterisations of subgraph patterns whose
counts and occurrence are higher-order k-WL invariant (Kiefer, [2020). In fact, traditionally, the
k-WL algorithm is mainly used as a combinatorial tool in graph isomorphism tests and little work
has been done to study the applicability of £-WL to recognition of graph properties rather than to
testing isomorphism (Fuhlbriick et al., 2021)). Further, a study on the formal properties of the .4#"-WL
algorithms by exploring the connections between the .4 -WL hierarchy and logic is needed.

40

	Introduction
	Related Work
	Neighbourhood WL Algorithms
	A Hierarchy of Expressivity
	Connected-Hereditary Subgraphs
	Connections to k-WL Hierarchy

	Graph Neighbourhood Neural Network
	Experiments
	Synthetic Datasets
	Real-world Datasets

	Conclusions
	Indistinguishable Pairs - k-WL vs N-WL
	Related Work
	Expressive GNNs Beyond 1-WL Test
	Connections to k-WL and its Variants

	Proofs of Theorems
	Proofs for Weak Hierarchy (Theorem 3.1)
	Proofs for Strong Hierarchy (Theorem 3.2 and Theorem 3.3)
	Proofs for Connected-Hereditary Subgraphs (Theorem 3.7)
	Proofs for Connections to k-WL Hierarchy (Theorem 3.8)
	Proofs for Graph Neighbourhood Neural Network (Theorem 4.1)

	G3N Model Architecture
	Experimental Details and Results
	Datasets
	Baseline Methods
	Parameter Selection
	Ablation Study
	Runtime and Memory Analysis for t and d
	Runtime Analysis for Connected Variants
	Complexity Analysis - k-WL vs N-WL

	Limitations and Future Work

