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ABSTRACT

Cyclic compounds that contain at least one ring play an important role in drug
design. Despite the recent success of molecular modeling with graph neural net-
works (GNNs), few models explicitly take rings in compounds into consideration,
consequently limiting the expressiveness of the models. In this work, we design a
new variant of GNN, ring-enhanced GNN (O-GNN), that explicitly models rings
in addition to atoms and bonds in compounds. In O-GNN, each ring is represented
by a latent vector, which contributes to and is iteratively updated by atom and bond
representations. Theoretical analysis shows that O-GNN is able to distinguish two
isomorphic subgraphs lying on different rings using only one layer while conven-
tional graph convolutional neural networks require multiple layers to distinguish,
demonstrating that O-GNN is more expressive. Through experiments, O-GNN
shows good performance on 11 public datasets. In particular, it achieves state-of-
the-art validation result on the PCQM4Mv1 benchmark (outperforming the previ-
ous KDDCup champion solution) and the drug-drug interaction prediction task on
DrugBank. Furthermore, O-GNN outperforms strong baselines (without model-
ing rings) on the molecular property prediction and retrosynthesis prediction tasks.
The code is released at https://github.com/O-GNN/O-GNN.

1 INTRODUCTION

Cyclic compounds, which refers to the molecules that have at least one ring in its system, naturally
exist in the chemical space. According to our statistics on 109M compounds from PubChem (Kim
et al., 2019) which is a widely used chemical library, more than 90% compounds have at least
one ring. The rings could be small/simple (e.g., the benzene is a six-member carbon ring, and the
pentazole is a five-member nitrogen ring) or large/complex (e.g., the molecule shown in Figure 1).
Rings are important in drug discovery, for example: (1) Rings can potentially reduce the flexibility
of molecules, reduce the uncertainty when interacting with target proteins, and lock the molecules
to their bioactive conformation (Sun et al., 2012). (2) Macrocyclic compounds, which usually have
a ring with more than 12 atoms, play important roles in antibotics design (Venugopal & Johnson,
2011) and peptide drug design (Bhardwaj et al., 2022).

Recently, deep neural networks, especially graph neural networks (denoted as GNN) (Kipf &
Welling, 2017; Hamilton et al., 2017a), have been widely used in molecular modeling. A GNN
takes a graph as input, and messages of different nodes are passed along edges. GNNs have made
great success in scientific discovery: (1) Stokes et al. (2020) train a GNN to predict growth inhibi-
tion of Escherichia coli and find that Halicin is a broad-spectrum bactericidal antibiotic. (2) Shan
et al. (2022) leverage GNN to model the interactions between proteins, and they eventually obtain
possible antibodies for SARS-CoV-2. In addition, GNNs are widely used in drug property predic-
tion (Rong et al., 2020), drug-target interaction modeling (Torng & Altman, 2019), retrosynthesis
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(Chen & Jung, 2021), etc. However, none of the above work explicitly models the ring information
into GNNs. From the application’s perspective, they miss an important feature for their tasks. From
the machine learning’s perspective, Loukas (2020) points out that existing message-passing-based
GNNs cannot properly capture the ring information when the product of network width and height
is not large enough (see the Table 1 in Loukas (2020)). Therefore, with the classic GNNs, the ring
information in compounds is not well leveraged.

Figure 1: Paclitaxel, a compound with
7 simple rings. Kampan et al. (2015)
summarized that the intact taxane ring
(i.e., r4, r5, r6) and a four-membered
oxetane side ring (i.e., r7) is essential to
induce cytotoxic activity.

To tackle this issue, in this work, we propose a new
model, ring-enhanced GNN (denoted as O-GNN), that
explicitly models the ring information in a compound.
The O stands for the rings in molecules and is pronounced
as “O”. Generally speaking, O-GNN stacks L layers,
and each layer sequentially updates edge representations,
node representations and ring representations by aggre-
gating their neighbourhood information. We mainly use a
self-attention layer for adaptive message passing, and use
a feed-forward layer to introduce non-linearity to repre-
sentations.

We first demonstrate the advantage of O-GNN through
theoretical analysis. O-GNN is able to distinguish two
isomorphic sub-graphs lying on different rings using only
one layer (see Figure 2 for the example). On the con-
trary, if we remove the ring-modeling components from
O-GNN, such a distinguishability would require multi-
ple layers (see Section 2.3 for detailed analysis). These
results demonstrate that O-GNN is more expressive than
conventional graph convolutional networks in the absence of explicitly modeling rings.

(A) (B) (C)

Figure 2: An illustrative example of
theoretical results. The three substruc-
tures in the red circles are isomorphic.
The second and third substructures lie
on different rings (a Cyclooctane and
an Azocane). A regular GNN requires
multiple layers to distinguish the three
substructures while O-GNN requires
only one layer due to the ring represen-
tations.

We then conduct experiments on 11 datasets from three
tasks, including molecular property prediction, drug-drug
interaction prediction and retrosynthesis:

(1) For molecular property prediction, we first conduct
experiments on PCQM4Mv1, which is to predict the
HOMO-LUMO gap of molecules. Our method outper-
forms the champion solution of KDDCup on the valida-
tion set (Shi et al., 2022) (note that test set labels are not
available). Next, we verify O-GNN on six datasets from
MoleculeNet (Wu et al., 2018), which is to predict several
pharmaceutical related properties of molecules. O-GNN
outperforms the corresponding GNN baselines without
rings. Finally, we conduct experiments on FS-Mol (Stan-
ley et al., 2021), a few-shot property prediction task, and
shows that modeling rings can also improve the predic-
tion accuracy. (2) For drug-drug interaction prediction,
which is to predict whether two drugs interacts with each
other, we test O-GNN on DrugBank following the previous settings (Nyamabo et al., 2021; Li et al.,
2022), and achieve state-of-the-art results. (3) For retrosynthesis, we apply O-GNN to LocalRetro
(Chen & Jung, 2021), a strong GNN-based method for retrosynthesis. On USPTO-50k, our method
significantly boosts the accuracy.

2 METHOD

2.1 NOTATION AND PRELIMINARIES

Let G = (V,E) denote a molecular graph, where V and E are the collections of nodes/atoms
and edges/bonds1. Let R denote the collection of rings in G. Define V = {v1, v2, · · · , v|V |} and

1When the context is clear, we use nodes/atoms and edges/bonds alternatively in this work.
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E = {eij}, where vi is the i-th atom and eij is the bond connecting vi and vj . When the context is
clear, we use i to denote atom vi, and use e(vi, vj) to denote edge eij . Let N (i) denote the neighbors
of atom i, i.e., N (i) = {vj | eij ∈ E}. Define R = {r1, r2, · · · , r|R|}, where each ri is a simple
ring. A simple ring does not contain any ring structure. For example, for the molecule in Figure 3,
it has two simple rings as we marked (r1 and r2). The ring (1, 2, 3, 4, 5, 6, 7, 8, 9, 1) is not a simple
ring. Let R(vi) and R(eij) denote the rings that the atom vi or the bond eij lies on, and V (r) and
E(r) denote all the atoms and the bonds lying on ring r. For example, in Figure 3, R(v4) = {r1, r2}
while R(v3) = r2. R(e49) = {r1, r2} while R(e78) = r1. V (r1) = {v4, v5, v6, v7, v8, v9} and
E(r1) = {e45, e56, e67, e78, e89, e94}.

A graph neural network (GNN) is usually stacked by several identical GNN layers. Each GNN layer
is composed of an Aggregate function and an Update function,

h′
i = Update (hi,Aggregate(hj |j ∈ N (i))) , (1)

where hi is the representation of atom i and h′
i is its updated representation. Different GNNs have

different Aggregate functions and Update functions. Details are summarized in Appendix D.
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Figure 3: The workflow of our method. H(l)
E , H(l)

V , H(l)
R and U (l) denote the representation collec-

tions of bond, atom, ring and the global compound at the l-th layer.

2.2 MODEL

Our model consists of L identical layers with different parameters. The architecture of each layer is
shown in Figure 3. Let h(l)

i , h(l)
ij and h

(l)
r denote the output representations of atom vi, bond eij and

ring r at the l-th layer, respectively. Let U (l) denote the compound representation at the l-th layer.
We initialize h

(0)
i via a learnable embedding layer which indicates its atomic type, chirality, degree

number, formal charge, hybridization type, and so on. Similarly, we initialize h
(0)
ij with a learnable

embedding wich indicates its bond type, stereoisomerism type and whether the bond is conjugated.
Then we initialize h

(0)
r by concatenating the node and edge embedding and then transform it with

a non-linear layer. Last, we initialize the compound representation with a learnable embedding. In
each layer, we update representations of nodes, bonds, rings and the compound sequentially. We
will frequently use MLP(· · · ), a multi-layer perception network with one hidden layer, to build our
model. The inputs of MLP are concatenated as a long vector and processed by the network.

(1) Update bond representations: The representation of a bond is updated via the connected atoms,
the rings that the bond belongs to and the compound representation from the last layer:

h
(l)
ij = h

(l−1)
ij + MLP

h
(l−1)
i , h

(l−1)
j , h

(l−1)
ij ,

∑
r∈R(eij)

h
(l−1)
r

|R(eij)|
, U (l−1)

 . (2)

(2) Update atom representations: We use an attention model to adaptively aggregate bond represen-
tations into the centralized atoms. Mathematically,

h̄
(l)
i =

∑
j∈N (i)

αjWvconcat(h
(l)
ij , h

(l−1)
j );

αj ∝ exp(a⊤LeakyReLU(Wqh
(l−1)
i +Wkconcat(h

(l−1)
j , h

(l)
ij )));

h
(l)
i = h

(l−1)
i + MLP

(
h
(l−1)
i , h̄

(l)
i ,

1

|R(vi)|
∑

r∈R(vi)

h(l−1)
r , U (l−1)

)
.

(3)
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In Eqn.(3), the W ’s are the parameters to be learned, and concat denotes concatenating the input
vectors as a long one.

(3) Update ring representations: The ring representations are updated using MLP networks:

h(l)
r = h(l−1)

r +MLP
(
h(l−1)
r ,

∑
vi∈V (r)

h
(l)
i ,

∑
eij∈E(r)

h
(l)
ij , U

(l−1)
)

(4)

(4) Update the compound representation:

U (l) = U (l−1) + MLP

 1

|V |

|V |∑
i=1

h
(l)
i ,

1

|E|
∑
i,j

h
(l)
ij ,

1

|R|
∑
r∈R

h(l)
r , U (l−1)

 . (5)

After stacking L O-GNN layers, we get the graph representation by a simple average pooling layer,
i.e., hG = 1

|V |
∑|V |

i=1 h
(L)
i , which could be utilized by graph classification tasks. For node classifica-

tion tasks, we can add a classification head to h
(L)
i .

2.3 THEORETICAL ANALYSIS

In this section, we compare the distinguishability between standard GNN (without ring representa-
tions) and O-GNN. In addition to the notations defined in Section 2.1, we define the valued version
of a graph G = (V,E) as a triplet VALUEf (G) = (V,E, f), where f is a mapping storing feature
information and mapping a node or an edge to its corresponding input feature (e.g., a 256-dimension
representation). We call f as a feature mapping on G.
Definition 1 (k-neighbourhood node). For a molecular graph G = (V,E) and two nodes u, v ∈ V ,
we say u is a k-neighbourhood of v if there exists a path in G connecting u and v with length
no larger than k. More formally, u is a k-neighbourhood of v if and only if there exists a set of
nodes {v0, v1, · · · , vt} ⊂ V , such that, t ≤ k, v0 = v, vt = u, and for any i ∈ {0, · · · , t − 1},
vi+1 ∈ N(vi).

We highlight here that v is a 0-neighbourhood node (and thus a k-neighbourhood node with any
k ≥ 0) of itself.
Definition 2 (k-neighbourhood sub-graph). For a molecular graph G = (V,E) and a node
v in G, we define the k-neighbourhood sub-graph of v as the sub-graph composed of all
v’s k-neighbourhood node. More formally, we slightly abuse the notations and denote the k-
neighbourhood sub-graph of v as G(v, k) ≜ (V (v, k), E(v, k)), where

V (v, k) ≜ {u ∈ V : u is a k-neighbourhood node of v},
E(v, k) ≜ {e(v1, v2) ∈ E : v1, v2 ∈ V (v, k)}.

Definition 3 (Equivalent valued graph). For two valued graphs VALUEf1(G1) = (V1, E1, f1) and
VALUEf2(G2) = (V2, E2, f2), we say that they are equivalent if (i). G1 and G2 are isomorphic,
i.e., there exists a one-to-one mapping P : V1 → V2, such that the edges are preserved; (ii). P also
preserves the value of edges and the the value of nodes, i.e., ∀u, v ∈ G1,

e(u, v) ∈ E1 ⇔ e(P(u),P(v)) ∈ E2,

f1(u) = f2(P(u)), f1(v) = f2(P(v)), f1(e(u, v)) = f2(e(P(u),P(v))).

With all the preparations above, we are now ready to define the graph feature extractor and its
discriminatory ability.
Definition 4 (Graph feature extractor and its discriminatory ability). We say a mapping Φ is a
graph feature extractor, if it maps a valued graph VALUEf (G) to a new feature mapping f̃ on G.
We further allow Φ to be parameterized as Φθ, and call Φθ a parameterized graph feature extractor.

For a parameterized graph feature extractor Φθ, we say Φθ has the discriminatory ability for k-
neighbourhood sub-graphs, if for any valued graphs (G, f) and any two nodes u, v in G, if the
valued k-neighbourhood sub-graph of u and v (i.e., (G(u, k), f) and (G(v, k), f)) are equivalent,
there exists θ⋆ such that Φθ⋆((G, f))(u) ̸= Φθ⋆((G, f))(v). In this case, we also say that Φθ⋆ can
distinguish u and v.
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We point out that {h(l)
i }i ∪{h(l)

i,j}i,j defined by Eqn. (2, 3, 4, 5) is a parameterized feature extractor,
and thus above provides a formal definition of O-GNN’s discriminatory ability.

The next proposition shows that without the ring representation, the O-GNN needs at least k + 1
layer to have the has the discriminatory power for k-neighbourhood sub-graphs.
Proposition 1. Without the ring presentation, O-GNN with no more than k layers does not have the
discriminatory ability for k-neighbourhood sub-graphs.

Note that Proposition 1 can be easily extended to the conventional graph convolutional neural net-
works, which only aggregate information from 1-neighborhood nodes. We then show that with the
ring representations, O-GNN with only one layer has the discriminatory power.
Proposition 2. If u and v lie on different rings, O-GNN with only one layer can distinguish them.

The proofs are deferred to Appendix B due to space limitation. From Proposition 1 and 2, we
can see that O-GNN is more expressive than the regular GNN that does not model rings. The
regular GNN requires at least k layers to distinguish two isomorphic k-neighborhood sub-graphs on
different rings, while O-GNN only requires one layer for this purpose (see the example in Figure 2).
Comparing O-GNN to a regular GNN with the same number of layers, modeling ring presentations
constantly increases the percentages of parameters (irrelevant to k). However, a regular GNN may
require k layers to achieve the discriminatory power for k-neighborhood sub-graphs. When k is
large, O-GNN will be much more parameter efficient. More discussions are in Appendix C.5.

3 EXPERIMENTS

To validate the effectiveness of our method, we test O-GNN on the following three tasks: molecular
property prediction, drug-drug interaction prediction and retrosynthesis. The first two tasks are
graph classification tasks, and the third one is a node/link prediction task.

3.1 APPLICATION TO MOLECULAR PROPERTY PREDICTION

Datasets. We work on three datasets for this application:

(1) The HOMO-LUMO energy gap prediction of the PCQM4Mv1 dataset (Hu et al., 2021). The
input is a 2D molecular graph, and the target is its HOMO-LUMO energy gap, which is an essen-
tial molecular property in quantum chemistry. PCQM4Mv1 has 3045360 and 380670 training and
validation data (test labels are not available). The properties are obtained via density function theory.

(2) Molecular property prediction on MoleculeNet dataset (Wu et al., 2018). This is a dataset about
the prediction of pharmaceutical properties of small molecules. We choose six molecular property
prediction tasks (including BBBP, Tox21, ClinTox, HIV, BACE and SIDER), and the data ranges
from 1.5k to 41k.

(3) Few-shot molecular property prediction of the FS-Mol dataset (Stanley et al., 2021). FS-Mol
is made up of 5120 separate assays extracted from ChEMBL27 (https://www.ebi.ac.uk/
chembl/). Each assay has 94 molecular-property pairs on average.

Training configuration. For PCQM4Mv1, we set the number of layers as 12 and hidden dimen-
sion as 256, which is selected by the cross-validation method on the training set. For FS-Mol, the
number of layers are 6 and the hidden dimension is 256. The candidate number of layers and hid-
den dimensions for MoleculeNet are {4, 6, 8, 12} and {128, 256}. On FS-Mol and MoleculetNet,
the hyper-parameters are selected according to validation performance. We train all these tasks on
one GPU. The optimizer is AdamW (Loshchilov & Hutter, 2019). More detailed parameters are
summarized in Table 5 of Appendix A.

Results on PCQM4Mv1 The results of PCQM4Mv1 are reported in Table 1. We compare O-
GNN with the following baselines: (1) Conventional GCN/GIN with/without virtual node (marked
by “vn”). The results are from Hu et al. (2021); (2) ConfDSS (Liu et al., 2021), which predicts
quantum properties conditioned on low-cost conformer sets; (3) Two-branch Transformer (Xia
et al., 2021), which has a regression head and a classification head that learn from each other;
(4) Graphormer (Ying et al., 2021; Shi et al., 2022), the champion solution of PCQM4Mv1. Since
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Method MAE (↓)

GCN 0.1684
GCN + vn 0.1510
GIN 0.1536
GIN + vn 0.1396
ConfDSS 0.1278
Two-branch Transformer 0.1237
Graphormerbase 0.1193
Graphormerlarge 0.1231
O-GNN (ours) 0.1148

Table 1: Validation MAE on PCQM4Mv1.
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Figure 5: Performance improvement over several ring properties.

the owners of PCQM4Mv1 did not release labels of the test set, we can only compare the results
on the validation set. The evaluation metric is the mean absolute error (MAE). From Table 1, we
can see that O-GNN achieves the best results among the strong baseline models, which shows the
effectiveness of our method. In addition, GIN vn, ConfDSS and Graphormer do not explicitly use
the ring information, and we will combine O-GNN with the strong methods in the future.

To investigate the significance of the ring information, we study a variant of O-GNN by removing the
ring modeling component from O-GNN, and denote this variant as “O-GNN w/o ring”. Specifically,
it is implemented by removing Eqn.(4) and all the hr’s in Eqn.(2,3,5). We conduct experiments for
O-GNN and “O-GNN w/o ring” from 2 to 14 layers. The results are in Figure 4. We can see that
by utilizing ring information, the performance is boosted regardless of the number of layers. In
addition, we find that a 6-layer O-GNN is comparable with the 12-layer O-GNN w/o ring, which
shows the great power of modeling rings in GNN. We also have that O-GNN outperforms “O-GNN
w/o ring” in terms of the number of parameters (see Figure 10). It is noteworthy to point out that
validation MAE of the 14-layer O-GNN slightly drops compared to the 12-layer O-GNN. Note that
this phenomenon is also observed in Graphormer (Shi et al., 2022) that larger models do not always
lead to better validation results. We will explore how to train deeper models in the future.

On PCQM4Mv1, we also study the average performance improvement w.r.t. several ring properties.
The performance improvement is defined as ϵ1 − ϵ2, where ϵ1 and ϵ2 denote the validation MAE of
“O-GNN w/o rings” and O-GNN. The ring properties include: (i) the number of rings in a molecule;
(ii) the number of atoms lying on rings; (iii) the number of atoms in the largest ring. We conduct
experiments for the networks with different numbers of layers (L = 2, 6, 12). Results are reported in
Figure 5. We can conclude that overall, as the increase of number of rings, maximum ring sizes and
the number of atoms lying on rings, O-GNN achieves more improvement compared to the variant
without modeling rings. More analyses are in Appendix C.4.

Results on MoleculeNet For MoleculeNet, we compare with both pretraining and non-pretraining
methods. For non-pretraining methods, we compare with the following baselines: (i) GCN (Kipf
& Welling, 2017) with virtual node ; (ii) GIN (Xu et al., 2018) with virtual node; (iii) O-GNN
without using ring information (denoted as “O-GNN w/o ring”). For pre-training methods, we select
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Dataset BBBP Tox21 ClinTox HIV BACE SIDER
# Molecules 2039 7831 1478 41127 1513 1478

(Hu et al., 2020) 71.2± 0.9 74.2± 0.8 73.7± 4.0 75.8± 1.1 78.6± 1.4 60.4± 0.6
G-Contextual (Liu et al., 2022) 70.3± 1.6 75.2± 0.3 59.9± 8.2 75.9± 0.9 79.2± 0.3 58.4± 0.6
G-Motif (Liu et al., 2022) 66.4± 3.4 73.2± 0.8 77.8± 2.0 73.8± 1.4 73.4± 4.0 60.6± 1.1
GraphMVP (Liu et al., 2022) 72.4± 1.6 75.9± 0.5 79.1± 2.8 77.0± 1.2 81.2± 0.9 63.9± 1.2

GCN + vn 72.7± 1.3 75.0± 0.4 92.0± 1.1 78.8± 1.1 80.0± 0.8 62.9± 1.3
GIN + vn 71.7± 0.6 74.8± 0.6 89.4± 3.2 79.3± 1.0 82.0± 1.0 60.8± 0.8
O-GNN w/o ring 74.5± 1.4 75.2± 0.9 90.2± 2.1 80.5± 1.0 84.2± 1.5 65.5± 1.6

O-GNN (ours) 76.4± 0.4 75.7± 0.7 94.3± 1.6 81.3± 1.2 85.8± 1.0 66.2± 1.2

Table 2: Test ROC-AUC (%) performance of different methods on 6 binary classification tasks from
MoleculeNet benchmark. The training, validation and test sets are provided by DeepChem. Each
experiment is independently run for three times. The mean and standard derivation are reported.

several representative graph-based methods: (i) Hu et al. (2020) proposed to predict the masked
attributes on graphs as well as maintaining the consistency between a subgraph and its neighbors;
(ii) G-{Contextual, Motif} are variants of (Rong et al., 2020), which are provided in Liu et al.
(2022). (iii) GraphMVP (Liu et al., 2022), which is a joint pre-training between 2D molecules and
its 3D conformation. The results of (Hu et al., 2020), G-{Contextual, Motif} and GraphMVP are all
extracted from Liu et al. (2022), since Liu et al. (2022) use the same scaffold-based splitting as us.

The results are reported in Table 2. We can see that: (i) O-GNN outperforms the conventional
network architectures like GIN and GCN with virtual nodes, which demonstrate the effectiveness
of our new architecture; (ii) When comparing with G-{Contextual, Motif}, GraphMVP (Liu et al.,
2022) and Hu et al. (2020) which are all pre-training methods, O-GNN still outperforms those
methods. (More discussion about pre-training methods are left in Table 11 of Appendix C.5) This
shows the great potential of O-GNN and we will combine it with pre-training in the future. (iii)
Comparing O-GNN and O-GNN w/o ring, the average improvement overall the six tasks is 1.6.
This shows the advantage of using ring information in molecular property prediction.
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Figure 6: Results on FS-Mol.

Results on FS-Mol Stanley et al. (2021) verify that prototyp-
ical networks (PN) performs the best on FS-Mol compared
with other methods like MAML (Finn et al., 2017), multi-task
learning (MT) and random forest (RF). Stanley et al. (2021)
use a Transformer-like residual network for few-shot classifi-
cation. We replace that backbone to our O-GNN and “O-GNN
w/o ring”, and the other parts remain unchanged. Following
Stanley et al. (2021), the results with different support set sizes
(denoted as |Tu,support|) are reported. A support set consists
of a few examples with input-label pairs used to train models.
The evaluation metric is ∆AUPRC, which is the difference be-
tween the AUPRC (area under the precision-recall curve) and
the ratio of the active compounds in that query set. A higher
∆AUPRC score indicates better classification performance of
the model.

The results are in Figure 6. We report the mean and the standard derivations for different tasks
across various support sizes. We have the following observations: (i) By using O-GNN as the
backbone model for the prototypical network, the results are boosted for different support set sizes.
(ii) The improvement is more significant when the support set size is large. When |Tu,support| =
128 and 256, the improvements are 0.014 and 0.016. When reducing the sizes to 16/32/64, their
improvements are all around 0.008. We will further improve the results on limited data size in the
future.

3.2 APPLICATION TO DDI PREDICTION

Drug-drug interaction (DDI) prediction is to predict therapeutic output of taking two drugs together,
like increasing the risk of some side effects, or the effect is enhanced to take them together. We
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focus on the classification task, where the inputs are two drug molecules and one interaction (e.g.,
inhibition), and the output is 0 or 1 to indicate whether the two drugs have this specific interaction.
Following Nyamabo et al. (2022) and Li et al. (2022), we work on the inductive setting of the
DrugBank dataset (Wishart et al., 2018), which has 1, 706 drugs, 86 interaction types, and 191, 808
triplets. To test the generalization ability of the model, we conduct experiments on two settings w.r.t.
the drugs: the S1 setting, where neither of the two drugs on the test set appears in the training set; the
S2 setting, where one drug is seen in the training set and the other is not. Noting that the drug pairs
in the test set do not appear in the training set. Hence, the DrugBank data is split into training and
test sets by the visibility of the drugs, and the negative samples are offline generated. We directly
use the data provided by Nyamabo et al. (2021; 2022), where 20% drugs are first hold as unseen
drugs for formulating test set and the rest 80% drugs are used to create the training set.

S2 setting (1 known drug + 1 unknown drug) S1 setting (2 unknown drugs)
Method ACC AUROC AP F1 ACC AUROC AP F1

GAT-DDI (Nyamabo et al., 2021) 69.83 77.29 75.79 73.01 62.63 70.92 73.01 45.81
MHCADDI (Deac et al., 2019) 70.58 77.84 76.16 72.74 65.40 73.43 75.03 54.12
MR-GNN (Xu et al., 2019) 74.67 83.15 83.81 69.88 66.50 72.53 71.06 67.21
SSI-DDI (Nyamabo et al., 2021) 76.38 84.23 84.94 73.54 66.31 72.75 71.61 68.68
GMPNN (Nyamabo et al., 2022) 77.72 84.84 84.87 78.29 68.57 74.96 75.44 65.32
MSAN-GCN (Zhu et al., 2022) 77.81 85.74 – 76.48 69.17 76.12 – 67.10
MSN-DDI (Li et al., 2022) 81.92 91.01 91.09 80.18 73.42 81.79 81.82 70.34
O-GNN w/o ring 87.72 94.51 95.28 85.91 75.47 83.83 85.58 65.59

O-GNN (ours) 88.47 95.87 96.51 86.91 76.81 87.64 88.70 70.81

Table 3: Results of drug-drug interaction prediction on DrugBank.

To predict the interaction between two drugs, we use one 6-layer O-GNN to extract features for the
two drugs. Specifically, for each drug, we average the node representations output by the last layer
as the drug feature. We concatenate the two drug features together, and then multiply the interaction
embedding to do the prediction. The detailed parameters are left in Table 6 of Appendix A.

The results are reported in Table 3. O-GNN significantly outperforms previous baselines in terms
of accuracy (denoted as ACC), the area under the receiver operating characteristic (AUROC), the
average precision (AP), and the F1 score. Most of previous works use GCN, GIN or GAT backbones,
and they focus on designing comprehensive interaction module (Nyamabo et al., 2021; Li et al.,
2022). By using the advanced O-GNN backbone, we can significantly improve the results without
designing complex interaction modules. This shows the effectiveness of our method.

3.3 APPLICATION TO RETROSYNTHESIS

Retrosynthesis is to predict the reactants of a given product. Various GNNs have been applied to
this task. For example, GLN (Dai et al., 2019) use GNNs to predict the distributions of candidate
reaction templates and reactants. GraphRetro (Somnath et al., 2021) and G2G (Shi et al., 2020)
use GNNs to predict where to break a bond and how to add the fragments to complete the syn-
thons. To demonstrate the ability of our O-GNN, we combine our method with LocalRetro (Chen
& Jung, 2021), the current best graph-based model for retrosynthesis (without using pre-training).
LocalRetro uses GNN to predict the possible templates for each atom and each bond, and sort the
predicted templates according to their probabilities. The top templates will be applied to the corre-
sponding atoms or bonds via RDKit (Landrum et al., 2016) to generate the reactants. Chen & Jung
(2021) use MPNN (Gilmer et al., 2017a) for prediction, and we replace the MPNN with O-GNN.
We conduct experiments on the USPTO-50k dataset (Coley et al., 2017) that contains 50, 016 re-
actions. Following Chen & Jung (2021), we partition the dataset as 45k training set, 5k validation
set and 5k test set. The evaluation metric is the the top-k accuracy, where k = 1, 3, 5, 10, 50. The
results are summarized in Table 4. We can observe that O-GNN can predict reactions more accu-
rately than the baselines without ring information. Especially, when the reaction type is known, we
improve the top-1 accuracy for 1.8 points and the top-3 accuracy for 1.6 points. These results show
the importance of modeling ring structure and the effectiveness of our method.

The performance for different number of rings. To study the prediction performance of molecules
with different number of rings, we group the USPTO-50k test set by the number of rings in the
product molecules and compute the top-1 accuracy for each group. More specifically, we divide
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Reaction type unknown Reaction type known
Method Top-1 Top-3 Top-5 Top-10 Top-50 Top-1 Top-3 Top-5 Top-10 Top-50

G2G 48.9 67.6 72.5 75.5 – 61.0 81.3 86.0 88.7 –
GLN 52.5 69.0 75.6 83.7 92.4 64.2 79.1 85.2 90.0 93.2
GraphRetro 53.7 68.3 72.2 75.5 – 63.9 81.5 85.2 88.1 –
LocalRetro 53.4 77.5 85.9 92.4 97.7 63.9 86.1 92.4 96.3 97.9

O-GNN (ours) 54.1 77.7 86.0 92.5 98.2 65.7 87.7 93.4 96.9 98.3

Table 4: Results on USPTO-50k datasets with reaction type known/unknown.
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Figure 7: Study of O-GNN on retrosynthesis task. (a) The top-1 accuracy w.r.t. number of rings in
product molecules. (b) The one-step retrosynthesis prediction of a product molecule with five rings.
The first O-GNN output is the same as the ground truth (marked as green).

the test set into four groups with ring numbers [0, 2), [2, 4), [4, 6), [6, 12], and those groups have
808, 2347, 1617, 235 reactions, respectively. The results are in Figure 7(a) where the blue bars
represent the LocalRetro baseline and the green bars represent O-GNN. The results show that O-
GNN has better accuracy on all groups, where the improvements are 0.99, 0.85, 1.30 and 5.96.
Overall speaking, the improvement is larger when there are more rings in a molecule. Especially,
when there are at least 6 rings in a group (i.e., the last column), O-GNN increases the accuracy for
5.96 points, demonstrating that our method can better leverage ring structures.

Case study. In Figure 7(b), we show an example prediction of a product molecule with 5 rings. The
reactions in the left panel are the top-3 predictions from LocalRetro baseline and the ones on the right
are from O-GNN. Our method successfully predicts the correct reactants in its first output (marked
as green), but the baseline fails to give a correct prediction. More importantly, the baseline system
even fails to identify the correct bond to change. These results suggest that modeling ring structures
is crucial to predict reactions accurately, and O-GNN is an effective algorithm for retrosynthesis.

4 CONCLUSIONS AND FUTURE WORK

In this work, we propose a new model, ring-enhanced GNN (briefly, O-GNN) for molecular mod-
eling. We explicitly incorporate the ring representations into GNN and jointly update them with
atom and bond representations. We provide theoretical analysis to O-GNN and prove that by using
O-GNN, the node representations are more distinguishable than the variant without using ring repre-
sentations. We conduct experiments on molecular property prediction, drug-drug interaction (DDI)
prediction and retrosynthesis. O-GNN outperforms strong baselines on these tasks and achieves
state-of-the-art results on the validation performance of PCQM4Mv1 and DDI prediction. For fu-
ture work, first, we will combine with pre-training to obtain a stronger O-GNN. Second, we need
to further improve our model when the training data is very limited (e.g., when the support set size
is 16 or fewer). Third, how to efficiently identify and incorporate the representations with more
complex structures is another interesting direction to explore. Fourth, we will apply our model to
more real world scenarios, like the synthesis and generation of natural products with large rings.
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A DETAILED EXPERIMENT CONFIGURATIONS

The hyperparameters for the molecular property prediction, drug-drug interaction prediction and
retrosynthesis are summarized in Table 5, Table 6 and Table 7 respectively.

PCQM4Mv1 FS-Mol MoleculeNet

Number of Layers 12 6 {4, 6, 8, 12}
Hidden dimension 256 256 {128, 256}
Optimizer AdamW AdamW AdamW
Dropout 0.0 {0.0, 0.1, 0.2} {0.0, 0.1, 0.2, 0.3, 0.5}
Learning rate 0.0003 {0.0001, 0.0002, 0.0003} {0.00005,0.0001,0.0002,0.0005}
Training steps 300 epochs 10000 iterations {50,100} epochs
Batch size 512 16 {32,64}
Weight Decay 0.1 {0.01, 0.1} 0.01
Learning Rate Decay Cosine Cosine Linear

Table 5: Detailed hyper-parameters for molecular property prediction tasks.
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Number of Layers 6
Hidden dimension 512
Optimizer AdamW
Dropout {0.2, 0.5}
Learning rate 0.0003
Training steps 100 epochs
Batch size 128
Weight Decay 0.01
Learning Rate Decay Cosine

Table 6: Detailed hyper-parameters for drug-drug interaction prediction.

Number of Layers 6
Hidden dimension 512
Optimizer AdamW
Dropout 0.1
Learning rate 0.0003
Training steps 200 epochs
Batch size 64
Weight Decay 0.1
Learning Rate Decay Cosine

Table 7: Detailed hyper-parameters for retrosynthesis.

B PROOFS OF THE TWO PROPOSITIONS

Proof of Proposition 1. We start the proof by explicitly writing down the ring-free variant of O-
GNN.

Specifically, the bond representations are given by

h
(l)
ij = h

(l−1)
ij + MLP(h(l−1)

i , h
(l−1)
j , h

(l−1)
ij , U (l−1)).

The atom representations are given by

h̄
(l)
i =

∑
j∈N (i)

αjWvconcat(h
(l)
ij , h

(l−1)
j );

αj ∝ exp(a⊤LeakyReLU(Wqh
(l−1)
i +Wkconcat(h

(l−1)
j , h

(l)
ij )));

h
(l)
i = h

(l−1)
i + MLP

(
h
(l−1)
i , h̄

(l)
i , U (l−1)

)
.

(6)

The compound representations are given by

U (l) = U (l−1) + MLP

 1

|V |

|V |∑
i=1

h
(l)
i ,

1

|E|
∑
i,j

h
(l)
ij , U

(l−1)

 . (7)

Given the above notations, Proposition 1 can then be translated to the following claim:

Claim. For any valued graphs (G, f) and any two nodes va, vb in G, if the valued k-neighbourhood
sub-graph of u and v (i.e., (G(va, k), f) and (G(vb, k), f)) are equivalent, we have that hl

a = hl
b for

any l ∈ {1, · · · , k} holds regardless of the parameter.

We denote the equivalent mapping between (G(va, k), f) and (G(vb, k), f) as P . We will slightly
abuse the notations by letting P(i) = j if P(vi) = vj .

We will prove the above claim by induction. Specifically, we will prove that for any l ∈
{0, 1, · · · , k}, we have hl

c1 = hl
P(c1)

for any vc1 ∈ V (va, k − l), and hl
c1c2 = hl

P(c1)P(c2)
for

any vc1 , vc2 ∈ V (va, k − l).
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Base case: for l = 0, by the definition of f , we have f(vc1) = f(P(vc1)) for every vc1 ∈ V (va, k)
and f(vc1 , vc2) = f(P(vc1),P(vc2)) for every vc1 , vc2 ∈ V (va, k). The claim immediately follows
as h0

c1 = f(vc1), h
0
P(c1)

= f(P(vc1)), h
0
c1c2 = f(vc1 , vc2), and h0

P(c1)P(c2)
= f(P(c1),P(c2)).

Induction step: suppose the claim is true for l = i ∈ {0, · · · , k − 1}. Then, for l = i + 1, we have
that for every vc1 , vc2 ∈ V (va, k − l),

h(l)
c1c2 =h(l−1)

c1c2 + MLP(h(l−1)
c1 , h(l−1)

c2 , h(l−1)
c1c2 , U (l−1))

(⋆)
=h

(l−1)
P(c1)P(c2)

+ MLP(h(l−1)
P(c1)

, h
(l−1)
P(c2)

, h
(l−1)
P(c1)P(c2)

, U (l−1))

=h
(l)
P(c1)P(c2)

, (8)

where Eq.(⋆) is due to the induction hypothesis, as vc1 , vc2 ∈ V (va, k − l) ⊂ V (va, k − (l − 1)).

Similarly, for every vc1 ∈ V (va, k − l),

h̄(l)
c1 =

∑
j∈N (c1)

αjWvconcat(h
(l)
c1j

, h
(l−1)
j )

(◦)
=

∑
j∈N (c1)

αjWvconcat(h
(l)
P(c1)P(j), h

(l−1)
P(j) )

(⋄)
=

∑
j∈N (c1)

αP(j)Wvconcat(h
(l)
P(c1)P(j), h

(l−1)
P(j) )

=
∑

j∈N (c1)

αjWvconcat(h
(l)
P(c1)j

, h
(l−1)
j )

=h̄
(l)
P(c1)

,

where Eq. (◦) is due to the induction hypothesis and Eq. (8). Eq. (⋄) is due to

αj ∝ exp(a⊤LeakyReLU(Wqh
(l−1)
c1 +Wkconcat(h

(l−1)
j , h

(l)
c1j

)))

= exp(a⊤LeakyReLU(Wqh
(l−1)
P(c1)

+Wkconcat(h
(l−1)
P(j) , h

(l)
P(c1)P(j)))),

and thus αj = αP(j) for any j ∈ N (c1).

We then have

h(l)
c1 =h(l−1)

c1 + MLP
(
h(l−1)
c1 , h̄(l)

c1 , U
(l−1)

)
=h

(l−1)
P(c1)

+ MLP
(
h
(l−1)
P(c1)

, h̄
(l)
P(c1)

, U (l−1)
)

=h
(l)
P(c1)

.

Thus, the claim holds for l = i+1, and the proof for the induction claim completes. Thus, the claim
is true for every l ∈ {0, · · · , k}.

For every l ∈ {0, · · · , k} u ∈ G(va, 0) ⊂ G(va, k − l). Therefore, we have h
(l)
a = h

(l)
P(a) = h

(l)
b ,

and the proof is completed.

Proof of Proposition 2. For two equivalent valued sub-graph (G(va, k), f) and (G(vb, k), f), if va
and vb lie on different rings, we have

1

|R(va)|
∑

r∈R(va)

h(0)
r ̸= 1

|R(vb)|
∑

r∈R(vb)

h(0)
r .
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Therefore, there exists a choice of MLP, such that

h(1)
a =h(0)

a + MLP
(
h(0)
a , h̄(1)

a ,
1

|R(va)|
∑

r∈R(va)

h(0)
r , U (0)

)
̸=h

(0)
b + MLP

(
h
(0)
b , h̄

(1)
b ,

1

|R(vb)|
∑

r∈R(vb)

h(0)
r , U (0)

)
=h

(1)
b .

The proof is completed.

C MORE ABLATION STUDY

C.1 NODE REPRESENTATION POOLING V.S. COMPOUND REPRESENTATIONS

We explore the difference between using average pooling hG = 1
|V |

∑|V |
i=1 h

(L)
i and the compound

representation U (L) for classification. We try two networks with different numbers of layers (L = 6
and 12). We conduct experiments on PCQM4Mv1 dataset. The validation mean absolute errors
(MAE) are reported in Table 8. We can see that using average node pooling is better than using
compound representation. This is consistent with the discovery of using virtual node in GIN (Hu
et al., 2021). A virtual node can be regarded as a compound representation, which connects to
all nodes in graph. When using virtual nodes, it is a common practice to use the average or sum
pooling of node representations to represent a graph. One can refer to https://github.com/
snap-stanford/ogb/blob/1c875697fdb20ab452b2c11cf8bfa2c0e88b5ad3/
examples/lsc/pcqm4m/gnn.py#L60 for the detailed implementation.

L = 6 L = 12

Average node pooling 0.1171 0.1149
Compound representation 0.1196 0.1167

Table 8: Comparison between using average node representations VS compound representations.

C.2 ATTENTIVELY AGGREGATE THE INFORMATION FROM RINGS

In Eqn.(4), we concatenate the sum pooling of atom representations, the sum pooling of bond repre-
sentations and compound representations to update ring representations. An alternative solution is
to use attention models to aggregate the atom and bond representations. We study a variant which
updates the ring representations as follows:

h(l)
r = h(l−1)

r + MLP
(
h(l−1)
r ,

∑
vi∈V (r)

α
(l)
i h

(l)
i ,

∑
eij∈E(r)

β
(l)
ij h

(l)
ij , U

(l−1)
)
, (9)

In Eqn.(9),

α
(l)
i ∝ exp

(
Wq1h

(l−1)
r +Wk1h

(l)
i

)
and β

(l)
ij ∝ exp

(
Wq2h

(l−1)
r +Wk2h

(l)
ij

)
, (10)

where the four W ’s are parameters to be learned. The results are reported in Table 9. We can see
that although our method is simple, it can effectively leverage the ring information, and outperform
this attention-based variant.

C.3 O-GNN WITH BRICS

The ring representation used in our method could be considered as a special motif. One might
wonder whether other types of new motifs would be helpful. To see the effect, we use BRICS model
(Degen et al., 2008) to decompose molecules into fragments. BRICS designs 16 rules to break bonds
that can match a set of chemical reactions. The ring representations in Eqn.(2,3,4,5) are replaced by
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L = 6 L = 12

O-GNN 0.1171 0.1149
O-GNN with attention models when updating ring representations 0.1179 0.1160

Table 9: Comparison between our method and using attention models when updating ring represen-
tations.

L = 2 L = 4 L = 6 L = 8 L = 12

O-GNN 0.1247 0.1201 0.1181 0.1172 0.1155
O-GNN w/o rings 0.1325 0.1243 0.1222 0.1221 0.1204
BRICS 0.1294 0.1239 0.1219 0.1208 0.1193

Table 10: Comparison between using simple rings (i.e., our method) and using BRICS-based frag-
ments.

these motif representations. The remaining parts remain unchanged. We conduct the experiments on
PCQM4Mv1 dataset, and the results are shown in Table 10. Due to time and computation resource
limitation, all the models are trained for 200 epochs.

From Table 10, we can conclude that: (1) using simple ring representations achieves better results
than using BRICS; (2) in general, using BRICS is better than the variant without using any ring or
ring-based fragmentation information. We will keep exploring more segmentation methods.

C.4 MORE COMPARISON BETWEEN O-GNN AND O-GNN W/O RINGS

As a complementary to the analysis of the MAE w.r.t. the number of rings in molecules in Figure 5,
we also report the predicted error (i.e., mean absolute error, MAE) of O-GNN and the variant “O-
GNN w/o rings” in Figure 8. We can observe that when molecules have no rings, the two methods
perform similar. As the number of rings increases from 1 to 6, the MAE increases, and O-GNN
always outperforms the “O-GNN w/o rings” variant.

C.5 ADDITIONAL DISCUSSIONS

About over-smoothing One might be curious that since we build a 12-layer network, whether it
suffers from over-smoothing. Actually, Cong et al. (2021) point that “over-smoothing does not
necessarily happen in practice, a deeper model is provably expressive, can converge to global op-
timum with linear convergence rate, and achieve very high training accuracy as long as properly
trained.” (The words are from (Cong et al., 2021) for accurate expression). In addition, Li et al.
(2020) and Addanki et al. (2021) both successfully trained 50+ layer networks. Our method follows
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Figure 8: Predicted MAE categorized by different properties. x-axis denotes the number or rings,
and y-axis denoted the mean absolute error (MAE) on the validation set.
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the architecture of (Addanki et al., 2021), therefore we do not think that our model suffers from
over-smoothing.

Modeling k-neighborhood: If we want to explicitly use the k-neighborhood information, we might
need additional modules to process them, like

net1(1 neighbor nodes) + net2(2 neighbor nodes) + · · ·+ netk(k neighbor nodes). (11)

To ensure expressiveness, we usually do not share parameters. Therefore, the parameters are k times
larger than regular GNN. O-GNN constantly increases the percentages of parameters (irrelevant to
k). When k is large, O-GNN will be much more parameter efficient. On the other hand, the optimal
k∗ is not easy to determine. For example, in DrugBank, the ring maximum ring sizes range from 3
(e.g., DB00658) to 53 (e.g., DB05034). Which k is the best is hard to determine.

About invariant constraints In O-GNN, the features of atoms, bonds and rings are all invariant.
Specifically, the features of atoms and bonds are about their types, number of correlated electrons,
number of neighbors, etc (please refer to https://github.com/O-GNN/O-GNN/blob/
5b70a4f9dc9a5f87a0171eea1e9cecde30489eb8/ogb/utils/features.py#L2
for details). The ring representations are obtained via atom and bond representations (please kindly
refer to Eqn.(4)), which are also invariant. The variant features (like coordinates) are not encoded.

Comparison about the convergence speed: The validation MAE curves of PCQM4Mv1 are shown in
Figure 9. The results of 6-layer O-GNN (with/without rings) 12-layer O-GNN (with/without rings)
are reported. We can see that:

(1) by training the 6-layer O-GNN for 175 epochs, the results are almost the same as training the
12-layer “O-GNN w/o ring” for 275 epochs;

(2) by training the 12-layer O-GNN for 75 epochs, the results are almost the same as training the
12-layer “O-GNN w/o ring” for 275 epochs.

These results demonstrate that O-GNN has better convergence speed.

25 75 125 175 225 275
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0.145
O-GNN w/o ring, L=6
O-GNN w/o ring, L=12
O-GNN, L=6
O-GNN, L=12

Figure 9: Comparison about the convergence speed of O-GNN and “O-GNN w/o ring”. x-axis
denotes the training epoch and y-axis denotes the validation MAE.

Comparison between different number of parameters. Figure 4 shows the validation MAE of O-
GNN and “O-GNN w/o ring” w.r.t. the number of layers. We also visualize the validation MAE
w.r.t. the number of parameters in Figure 10. We can observe that when aligned with the number of
parameters, O-GNN still outperforms the variant without modeling rings.

Pre-training baselines on MoleculeNet. We summarize the pre-training baselines on MoleculeNet
in Table 11. Sun et al. (2022) have demonstrated different data splitting method could result in
significantly different results. We follow the common practice to use scaffold based splitting, and
we cite the results of Rong et al. (2020) from Fang et al. (2022). Note that the results of O-GNN is
not pre-trained on unlabeled molecules. We can see that in terms of the average score, our method
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Figure 10: Validation MAE of PCQM4Mv1 w.r.t. the number of parameters.

is comparable with those strong baselines, which demonstrate the effectiveness of our method. We
will combine our method with pre-training in the future.

Dataset BBBP Tox21 ClinTox HIV BACE SIDER Avg
# Molecules 2039 7831 1478 41127 1513 1478

(Hu et al., 2020) 71.2± 0.9 74.2± 0.8 73.7± 4.0 75.8± 1.1 78.6± 1.4 60.4± 0.6 72.3
G-Contextual (Liu et al., 2022) 70.3± 1.6 75.2± 0.3 59.9± 8.2 75.9± 0.9 79.2± 0.3 58.4± 0.6 69.8
G-Motif (Liu et al., 2022) 66.4± 3.4 73.2± 0.8 77.8± 2.0 73.8± 1.4 73.4± 4.0 60.6± 1.1 70.9
GraphMVP (Liu et al., 2022) 72.4± 1.6 75.9± 0.5 79.1± 2.8 77.0± 1.2 81.2± 0.9 63.9± 1.2 74.9
MGSSL (Zhang et al., 2021) 70.5± 1.1 76.5± 0.3 80.7± 2.1 79.5± 1.1 79.7± 0.8 61.8± 0.8 74.8
GROVERbase (Rong et al., 2020) 70.0± 0.1 74.3± 0.1 81.2± 3.0 62.5± 0.9 82.6± 0.7 64.8± 0.6 72.6
GROVERlarge (Rong et al., 2020) 69.5± 0.1 73.5± 0.1 76.2± 3.7 68.2± 1.1 81.0± 1.4 65.4± 0.1 72.3
GEM (Fang et al., 2022) 72.4± 0.4 78.1± 0.1 90.1± 1.3 80.6± 0.9 85.6± 1.1 67.2± 0.4 79.0

O-GNN (ours) 76.4± 0.4 75.7± 0.7 94.3± 1.6 81.3± 1.2 85.8± 1.0 66.2± 1.2 80.0

Table 11: Pre-training baselines on MoleculeNet.

D RELATED WORK SUMMARY

GCN (Kipf & Welling, 2017) aggregates its neighbor information according to the adjacency ma-
trix and degree matrix, and then updates the aggregated information with a linear transformation
and a non-linear activation layer. GraphSAGE (Hamilton et al., 2017b) aggregates the neighbors
information by element-wise average. GAT (Veličković et al., 2017) introduces the attention mech-
anism into GNN, by which it can adaptively aggregates the representations of the neighbors. Brody
et al. (2021) propose the GATv2 to improve the attention mechanism in a more expressive way. Xu
et al. (2018) develop a simple aggregate function which involves an ϵ parameter and multi-layer per-
ceptrons (MLPs) which is provably as powerful as the Weisfeiler-Lehman graph isomorphism test.
Besides, Gilmer et al. (2017b); Li et al. (2017); Pham et al. (2017) propose to augment the graph
with a virtual node to capture the global information of the graph. A virtual node connects to all
the other nodes in the graph and is jointly updated during training. Its effectiveness is validated in a
series of graph classification tasks.

However, these work do not explicitly use the ring R in graph neural networks. Complementary
to these work, we consider how to incorporate the ring information, which is another important
component on top of the node and edge information, into molecular modeling. These advanced
Aggregate and Update functions are also applicable to our work.
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