
Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

TOWARDS FUSING POINT CLOUD AND VISUAL REP-
RESENTATIONS FOR IMITATION LEARNING

Atalay Donat∗† Xiaogang Jia ∗† Xi Huang† Aleksandar Taranovic† Denis Blessing† Ge Li†
Hongyi Zhou† Hanyi Zhang‡ Rudolf Lioutikov† Gerhard Neumann†
† Karlsruhe Institute of Technology ‡ University of Liverpool
∗ Equal contribution, correspondence to jia266163@gmail.com

ABSTRACT

Learning for manipulation requires using policies that have access to rich sensory
information such as point clouds or RGB images. Point clouds efficiently capture
geometric structures, making them essential for manipulation tasks in imitation
learning. In contrast, RGB images provide rich texture and semantic information
that can be crucial for certain tasks. Existing approaches for fusing both modalities
assign 2D image features to point clouds. However, such approaches often lose
global contextual information from the original images. In this work, we propose
a novel imitation learning method that effectively combines the strengths of both
point cloud and RGB modalities. Our method conditions the point-cloud encoder
on global and local image tokens using adaptive layer norm conditioning, lever-
aging the beneficial properties of both modalities. Through extensive experiments
on the challenging RoboCasa benchmark, we demonstrate the limitations of rely-
ing on either modality alone and show that our method achieves state-of-the-art
performance across all tasks.

1 INTRODUCTION

Imitation Learning (IL) has become a fundamental approach in robotic learning Brohan et al. (2022);
Chi et al. (2023); Zhao et al. (2023); Black et al. (2024); Kim et al. (2024), allowing agents to
acquire complex behaviors by mimicking expert demonstrations. IL can additionally benefit from
contextual information that provides task description, therefore reducing the need for inferring task
goal from the demonstrations Ding et al. (2019). A crucial aspect of IL is the choice of the used input
representation, as it directly impacts the agent’s ability to generalize and make informed decisions.
RGB images are a common input modality because they offer rich texture and semantic information
that can be critical for tasks involving object recognition and contextual reasoning Mandlekar et al.
(2021); Reuss et al. (2024b); Liu et al. (2024). Additionally, they are easy to obtain and relatively
cheap, making them a practical choice in many scenarios. Another input modality is a point cloud
Zhu et al. (2024); Ze et al. (2024); Ke et al. (2024), which provides us with geometric information.
Point cloud representations have proven highly effective for robotic manipulation due to their ability
to directly encode 3D spatial structures. A further modality are language instructions. They contain
relevant task context Stepputtis et al. (2020); Li et al. (2023); Reuss et al. (2024b), such as human
understandable task descriptions. All these input types provide different benefits and limitations in
the learning process, and we should fuse them appropriately to extract all the individual benefits,
while offsetting the limitations. Therefore, fusing different modalities is a relevant but challenging
problem.

In this paper, we focus on the fusion of RGB images and point clouds while also taking language
instructions into account. Despite their complementary nature, integrating these RGB images and
point clouds remains a significant challenge in IL. Existing approaches Gervet et al. (2023); Shrid-
har et al. (2023); Ze et al. (2024) primarily attempt to assign 2D visual features to point clouds,
thereby incorporating RGB information into 3D representations. However, such strategies often fail
to retain the global contextual information from images, leading to suboptimal performance in tasks
that require both precise spatial reasoning and high-level semantic understanding. As a result, nei-
ther modality alone—nor naı̈ve fusion techniques—achieves universally strong performance across
diverse imitation learning benchmarks. Yet, more recent approaches of combining modalities such
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as adaptive conditioning in Layer-Norm layers Peebles & Xie (2022) has not yet been explored in
the imitation learning context, even though it allows a more flexible sensor fusion scheme.

To address this limitation, we introduce Fusion of Point Cloud and Visual Representation Network
(FPV-Net), a novel imitation learning method designed to effectively align and balance the strengths
of both point cloud and RGB images. Our approach leverages novel conditioning methods for
sensor fusion Peebles & Xie (2022) and ensures that the geometric precision of point clouds is
preserved while leveraging the global semantic richness of RGB inputs, enabling a more robust and
generalizable policy learning process. For the extraction of representations from RGB images, we
use a neural network based on the FiLM-ResNet architecture Perez et al. (2018). This extraction
process is conditioned on the language instruction, thus effectively incorporating this modality into
our method. Moreover, we make use of both local features and global features, which we show
to be critical for the manipulation tasks. To extract data from point clouds, we apply Furthest
Point Sampling Eldar et al. (1994) and k-Nearest Neighbors, that are then encoded into learned
embeddings. For fusing the modalities, we explore 3 different approaches, and show that fusing
Point Cloud and Language as main modalities while using RGB images as the conditional modality
using AdaLN conditioning Peebles & Xie (2022) performs best. Figure 1 illustrates how FPV-Net
extracts features from different modalities.

We evaluate FPV-Net on RoboCasa (Nasiriany et al., 2024), a challenging benchmark for robotic
manipulation. We conduct extensive experiments to analyze the impact of different input modalities.
Our results indicate that neither point clouds nor RGB images alone provide optimal performance
across all tasks, whereas naı̈ve fusion methods often degrade performance due to poor alignment
between modalities. FPV-Net consistently outperforms state-of-the-art approaches Ke et al. (2024);
Ze et al. (2024) across all tasks, establishing a new benchmark in multimodal imitation learning.

To summarize, our main contributions are threefold. First, we conduct systematic experiments on
RoboCasa, showing that neither RGB images nor point clouds alone are sufficient for strong perfor-
mance, as each modality excels in some tasks but performs poorly in others. Second, we introduce
FPV-Net, a diffusion-based multi-modal imitation learning method that leverages point cloud inputs
as the main modality and visual inputs as a conditional modality, integrated via AdaLN conditioning
Peebles & Xie (2022), while also incorporating language instructions for contextual guidance. FPV-
Net achieves state-of-the-art performance across most tasks, and, to our knowledge, using AdaLN
to fuse point cloud and RGB modalities is a novel insight. Third, we demonstrate the critical role of
local RGB features in fine-grained robotic manipulation tasks, showing that integrating both global
and local features significantly enhances model performance.

2 RELATED WORKS

Visual Imitation Learning. Recent state-of-the-art imitation learning methods Chi et al. (2023);
Reuss et al. (2024a); Kim et al. (2024); Liu et al. (2024); Li et al. (2025) often use 2D images as
state representation due to their rich global information and ease of acquisition from raw sensory
inputs. However, 2D images lack explicit 3D information such as precise 3D coordinates and object
geometry Zhu et al. (2024), which are crucial for many robotic manipulation tasks. While using
multiple camera views can partially mitigate this drawback, it requires significantly more training
data to infer the 3D spatial information effectively Ze et al. (2024). Moreover, image-based policies
struggle with occlusions and viewpoint variations Peri et al. (2024), making generalization across
diverse environments challenging.

Imitation Learning with 3D Scene Representation. An alternative approach is to leverage 3D
scene representations, such as point cloud Zhu et al. (2024); Ze et al. (2024); Ke et al. (2024),
which provide explicit spatial structure and thus enable better spatial reasoning. However, using
point clouds usually requires down-sampling Eldar et al. (1994), leading to loss of fine-grained
information from the raw sensory data. Recently, several studies Shridhar et al. (2023); Gervet
et al. (2023); Ke et al. (2024) have investigated how to effectively incorporate both 2D and 3D
representations into imitation learning. For instance, Act3D Gervet et al. (2023) generates feature
clouds using multi-view RGB images and depth information. 3D Diffuser Actor Ke et al. (2024) lifts
ResNet features to 3D using the depth map. Unlike these approaches, FPV-Net introduces a novel
2D-3D fusion strategy by conditioning Transformer policy with 2D images from multiple views
while processing tokenized 3D representations, enabling better generalization and spatial reasoning.
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Multi-modal Sensory Fusion in Imitation Learning. Most existing research on multi-modal sen-
sory fusion in imitation learning focuses on combining image observations with language goal con-
ditioning. A common strategy is to treat image and language inputs as separate tokens within a
Transformer and train the policy from scratch Reuss et al. (2024b); Bharadhwaj et al. (2024). An-
other line of research leverages large pre-trained Vision-Language Models (VLMs) and fine-tunes
them with demonstrations to create Vision-Language-Action (VLA) models Cheang et al. (2024);
Kim et al. (2024); Black et al. (2024). However, these methods predominantly rely on 2D image fea-
tures, which limits their effectiveness when working with small datasets or tasks requiring detailed
spatial reasoning. In the contrary, FPV-Net fuses 2D and 3D observations, enabling more efficient
multi-modal learning.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Imitation learning (IL) aims to train an agent to perform tasks by learning from expert demonstra-
tions. Given a dataset of expert trajectories D = {(τi)}Ni=1, where each trajectory τi consists of a
sequence of observations and corresponding expert actions

τi = (o1,a1,o2,a2, . . . ,oK ,aK), (1)

the goal is to learn a policy π(a|o) : O → A that maps observations to actions in a manner that
mimics expert behavior.

3.2 MULTI-MODAL IMITATION LEARNING

In a multi-modal imitation learning framework, the agent receives a multi-modal observation at each
time step k consisting of:

Language instruction (xL
k ): Provides high-level task semantics and contextual guidance, enabling

the agent to generalize across diverse instructions.

RGB image (xI
k): Captures visual scene information, including object appearances, spatial arrange-

ments, and environmental semantics.

Point cloud (xP
k ): Offers a structured 3D representation of the environment, encoding geometric

and spatial relationships that are crucial for manipulation.

Thus, an observation in the framework is defined as

o = (xL
k ,x

I
k,x

P
k ) ∈ O, (2)

where O denotes the observation space. Building on the success of Action Chunking Zhao et al.
(2023) in Imitation Learning, we formulate the objective as predicting a sequence of future actions

a = (ak,ak+1, . . . ,ak+H) ∈ AH , (3)

where H is the prediction horizon, and A denotes the action space.

3.3 SCORE-BASED DIFFUSION POLICIES

FPV-Net adopts the continuous-time denoising diffusion model from EDM Karras et al. (2022) to
represent the policy. Denoising diffusion models aim to time-reverse a stochastic noising process
that transforms the data distribution into Gaussian noise Song et al. (2020), allowing for generating
new samples that are distributed according to the data. In FPV-Net, a score-based diffusion model is
used for the policy π(a|o). The denoising process is governed by a stochastic differential equation
(SDE) given by

da =
(
βtσt − σ̇t

)
σt∇a log pt(a|o)dt+

√
2βtσtdBt, (4)
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Figure 1: Processing each input modality to generate corresponding embeddings. Top: A FiLM-
ResNet architecture is used to extract a feature map from the context image. The feature map is
processed through average pooling and flattening to obtain global and local feature tokens, which
are then concatenated and fed into the transformer along with a learnable CLS token, whose output
is used as a condition vector for the diffusion policy (Figure 2). Middle: The point cloud input is
processed by applying FPS to sample points, followed by KNN to group point patches using these
FPS points as centers. The resulting patches are passed through a point patches encoder, which can
be a lightweight MLP or the pretrained SUGAR model. Bottom: The CLIP model is employed to
generate the language embedding for the behavior prompt.

where βt determines how much noise is injected,Bt denotes a standard Wiener process, and pt(a|o)
is the score function of the diffusion process which moves samples towards regions of high data den-
sity. To generate new samples from noise, one trains a neural network to approximate ∇a log pt(a|o)
using Score Matching (SM) Vincent (2011). The SM objective is

LDθ
= Eσt,a,ϵ

[
α(σt)∥Dθ(a+ ϵ,o, σt)− a∥22

]
, (5)

whereDθ(a+ϵ,o, σt) is the trainable network. During training, noise is sampled from a predefined
distribution and added to an action sequence. The network then predicts the denoised actions and
computes the SM loss. Once training is complete, new action sequences can be generated by starting
from random noise and approximating the reverse SDE in discrete steps using a numerical ODE
solver. Specifically, one samples an initial action at ∼ N (0, σ2

t I) from the prior and progressively
denoises it. In FPV-Net, this is accomplished via the DDIM-solver Song et al. (2020), which is
an ODE solver tailored for diffusion models that can denoise actions in just a few steps. In all
experiments, FPV-Net uses 4 denoising steps.

4 METHOD

Fusion of Point Cloud and Visual representation Network (FPV-Net) is a multi-modal transformer-
based diffusion policy which leverages point cloud, image and language inputs. In this section, we
introduce how we process these different modalities and propose three different fusion methods to
combine point cloud features and image features. An overview of our model is shown in Figures 1
and 2.

4.1 IMAGE PROCESSING

To extract meaningful representations from RGB inputs, we utilize a FiLM-ResNet architecture
Perez et al. (2018), which is conditioned on the language instructions. This approach allows the
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Figure 2: Conditioned on image CLS tokens, the transformer-based diffusion policy (DiT block)
denoises action chunk tokens by utilizing 3D point cloud tokens and language tokens as inputs. The
conditioning process is detailed within the structure of the DiT block.

model to modulate feature extraction based on linguistic context, improving the alignment between
vision and language modalities. Most prior works Chi et al. (2023); Zhao et al. (2023); Reuss
et al. (2024b) in imitation learning extract only a global token from ResNet He et al. (2016) feature
maps, discarding fine-grained local spatial information. However, we argue that both global and
local features are critical for capturing fine-grained visual details necessary for action prediction. To
address this, we extract features as follows:

Global Token: We apply global average pooling over the ResNet feature map to obtain a single
global representation.

Local Tokens: Instead of discarding spatial features, we flatten the feature map into a sequence of
local tokens, preserving important spatial details.

Finally, we concatenate the global token with the local feature tokens, forming a comprehensive
visual representation

zIt = Concat(AvgPool(FResNet(I)), Flatten(FResNet(I))), (6)

where FResNet(I) denotes the extracted feature map from FiLM-ResNet. This enriched representation
provides the policy with a multi-scale visual understanding, ensuring that both high-level semantics
and fine-grained local details contribute to decision-making. The illustration of the image processing
can be found in Figure 1.

4.2 POINT CLOUD PROCESSING

Prior approaches in 3D imitation learning, such as 3D Diffusion Policy (DP3) Ze et al. (2024) and
3D Diffuser Actor (3DA) Ke et al. (2024), suffer from key limitations. DP3’s max pooling discards
local geometric features, while 3DA’s 2D feature lifting loses global contextual information from
original images. Moreover, 3DA generates an excessive number of point tokens, leading to higher
computational costs. To effectively process a point cloud xP

t ∈ RN×3 consisting of N points in 3D
space, we construct a structured representation as follows:

Furthest Point Sampling (FPS) Eldar et al. (1994); Qi et al. (2017a): We sample M = 256 center
points, ensuring a coverage of the global geometric structure.

k-Nearest Neighbors (KNN) Qi et al. (2017b): For each center point, we retrieve its K = 32
nearest neighbors, forming local point groups that capture fine-grained spatial structures.

Each local point group is encoded into a latent representation using a point cloud encoder ψθ. The
final point cloud embedding is represented as

zPt = {ψθ(Gm)}Mm=1, zPt ∈ RM×d, (7)
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“pick the mushroom from 
the plate and place it in 

the pan”

“open the microwave 
door”

“turn off the front left 
burner of the stove”

“turn on the sink 
faucet” “close the left drawer”

“press the button on the 
coffee machine to serve 

coffee”

Figure 3: Example scenarios from the RoboCasa benchmark Nasiriany et al. (2024) used in our
experiments.

where Gm ∈ RK×3 represents the K-neighbor subset for the m-th sampled center, ψθ(·) is the
point cloud encoder that extracts a per-group embedding, and zPt consists of M = 256 tokens,
each of dimension d. By structuring the point cloud representation into a tokenized format, our
approach preserves both local fine-grained features and global contextual information, ensuring a
more expressive representation for 3D imitation learning. We explore two different point cloud
encoding strategies:

Lightweight MLP Encoder: Inspired by 3D Diffusion Policy Ze et al. (2024), we use a multi-layer
perceptron (MLP) followed by a max pooling layer to process each point group independently. This
method is computationally efficient and preserves local structures.

Pretrained SUGAR Model: We leverage a pretrained point cloud encoder, SUGAR Chen et al.
(2024), to extract richer and more informative features, benefiting from knowledge gained in large-
scale 3D datasets.

4.3 FUSING MULTI-MODAL EMBEDDINGS

To effectively integrate multi-modal observations, including RGB images, point clouds, and lan-
guage embeddings, we explore three different fusion strategies for combining image and point cloud
features. In the following, other than the image embedding zIt and the point cloud embedding zPt ,
we use zLt ∈ RdL to denote language embeddings, which are obtained via the frozen CLIP model
Radford et al. (2021).

4.3.1 CONCATENATION-BASED FUSION

A straightforward approach is to directly concatenate the embeddings of these three modalities and
use it as input for the transformer policy. This fused representation zfusion

t can be written as

zfusion
t = Concat(zIt , z

P
t , z

L
t ). (8)

Although this fusion retains all feature information, it lacks a structured interaction between modal-
ities.

4.3.2 ADAPTIVE LAYERNORM CONDITIONING

Inspired by the use of Adaptive LayerNorm (AdaLN) layers to condition on classes in DiT models
Peebles & Xie (2022), we explore using AdaLN conditioning layers not on language, but on the point
cloud or the image modality. In this way, AdaLN conditioning treats one modality as conditioning
input and the other modalities as main feature inputs. The conditioning inputs scale or shift main
feature within the attention mechanism

AdaLN(z | c) = γ(c)⊙ z− µ(z)

σ(z)
+ β(c),

where z is the main feature, c is the conditioning input, µ(z) and σ2(z) are the mean and variance of
the main input z, and γ(c) and β(c) are learnable functions that map the conditioning input to a pair
of scale and shift parameters. More details about AdaLN conditioning can be found in Appendix D.
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Image and Language as Main Modality In this setup, we select the image embeddings zIt and
language embeddings zLt as the primary modality. The AdaLN layers take the point cloud embed-
dings zPt as conditions to modulate the activation of the primary modality. The fusion is formulated
as

zfusion
t = AdaLN(zIt , z

L
t |zPt ). (9)

Point Cloud and Language as Main Modality Alternatively, we consider using point cloud em-
bedding and language embedding as primary modality and image embedding as conditions

zfusion
t = AdaLN(zPt , z

L
t |zIt ). (10)

The observation embedding zfusion
t will then be fed into the transformer-based diffusion policy (Fig-

ure 2).

5 EXPERIMENTS

We conduct extensive experiments to answer the following questions:

Q1) Is a single modality enough to perform efficiently on challenging environments?

Q2) How does our method compare with state-of-the-art imitation learning policies?

Q3) What kinds of fusion types are most powerful?

5.1 SIMULATIONS

RoboCasa Nasiriany et al. (2024): RoboCasa is a large-scale simulation framework designed to
train generalist robots in diverse and realistic household environments, with a particular emphasis
on complex kitchen tasks. It features 120 meticulously crafted kitchen scenes, over 2,500 high-
quality 3D objects across 150 categories, and 100 tasks divided into foundational atomic tasks and
intricate composite tasks. Leveraging generative AI tools, RoboCasa achieves unparalleled diversity,
realism, and scalability in robotic learning. This benchmark is characterized by its exceptional diffi-
culty, stemming from the highly diverse scenarios it presents. Each scenario is accompanied by only
one demonstration, significantly increasing the challenge for learning algorithms. For instance, in
pick-and-place tasks, the object to be manipulated varies across scenarios, with just one demonstra-
tion per case. Furthermore, the training and evaluation datasets feature completely distinct scenes,
further testing a model’s ability to generalize and adapt robot behaviors to novel scenarios. With
its extensive task set, environmental variability, and high-fidelity simulations, RoboCasa establishes
itself as a new standard for evaluating robotic learning methodologies, pushing the boundaries of
generalization and adaptability in robot learning.

Training and Evaluation: We train each method for 100 epochs and rollout the models for 50 times
for all tasks in RoboCasa. We group similar tasks together as shown in Table 4 and train the models
for each of the groups.

5.2 BASELINES

BC Nasiriany et al. (2024): We inherit the result reported in RoboCasa. RoboCasa uses the BC-
Transformer implemented by RoboMimic. The BC policy uses a CLIP model to encode the goal
instruction and a ResNet-18 with FilM layers to encode the image-based observations.

3D Diffusion Policy (DP3) Ze et al. (2024): DP3 extracts point-wise features from single-view
points clouds with a MLP-based encoder and forms a compact 3D visual representation. Robot
actions are then generated by a convolutional network-based architecture, conditioned on this repre-
sentation and the current robot states.

3D Diffuser Actor (3DA) Ke et al. (2024): 3DA is a diffusion-based policy conditioned on 3D scene
features and language instructions. The 3D scene features are extracted and aggregated from single
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CATEGORY TASK BC DP3 3DA PC-ONLY RGB-ONLY PC+RGB FPV-MLP FPV-SUGAR

PICK AND PLACE

PNPCABTOCOUNTER 0.02 0.04 0.00 0.02 0.00 0.04 0.16 0.10

PNPCOUNTERTOCAB 0.06 0.02 0.00 0.00 0.00 0.08 0.08 0.14
PNPCOUNTERTOMICROWAVE 0.02 0.06 0.00 0.00 0.02 0.10 0.26 0.10

PNPCOUNTERTOSINK 0.02 0.00 0.00 0.00 0.02 0.04 0.06 0.08
PNPCOUNTERTOSTOVE 0.02 0.00 0.00 0.00 0.00 0.02 0.06 0.04

PNPMICROWAVETOCOUNTER 0.02 0.00 0.00 0.02 0.00 0.04 0.08 0.12
PNPSINKTOCOUNTER 0.08 0.00 0.00 0.00 0.00 0.18 0.22 0.30
PNPSTOVETOCOUNTER 0.06 0.00 0.00 0.02 0.02 0.06 0.20 0.26

OPEN/CLOSE DOORS

OPENSINGLEDOOR 0.46 0.24 0.00 0.44 0.38 0.72 0.68 0.74
OPENDOUBLEDOOR 0.28 0.20 0.00 0.38 0.50 0.86 0.94 0.92

CLOSEDOUBLEDOOR 0.28 0.56 0.00 0.50 0.50 0.76 0.82 0.78

CLOSESINGLEDOOR 0.56 0.62 0.14 0.76 0.82 0.80 0.86 0.84

OPEN/CLOSE DRAWERS
OPENDRAWER 0.42 0.36 0.00 0.36 0.34 0.56 0.62 0.72
CLOSEDRAWER 0.80 0.48 0.00 0.90 0.94 0.96 0.90 0.94

TWISTING KNOBS
TURNONSTOVE 0.32 0.24 0.10 0.48 0.30 0.50 0.46 0.66
TURNOFFSTOVE 0.04 0.06 0.02 0.12 0.10 0.16 0.12 0.20

TURNING LEVERS

TURNONSINKFAUCET 0.38 0.32 0.06 0.40 0.38 0.24 0.68 0.70
TURNOFFSINKFAUCET 0.50 0.42 0.28 0.58 0.42 0.34 0.82 0.78

TURNSINKSPOUT 0.54 0.54 0.26 0.70 0.48 0.40 0.54 0.52

PRESSING BUTTONS

COFFEEPRESSBUTTON 0.48 0.16 0.08 0.08 0.76 0.86 0.86 0.90
TURNONMICROWAVE 0.62 0.38 0.06 0.24 0.32 0.64 0.74 0.68

TURNOFFMICROWAVE 0.70 0.54 0.32 0.56 0.66 0.82 0.86 0.96
AVERAGE SUCCESS RATE 0.2880 0.2275 0.0550 0.2800 0.3000 0.4042 0.4942 0.5050

Table 1: Results for each task in RoboCasa. The models were trained for 100 epochs with 50 human
demonstrations per task and evaluated with 50 episodes for each task. The bold numbers highlight
the best achieved success rate for that task among all the models.

or multi-view images and depth maps. The policy denoises rotation and translation of the robot’s
end-effector as action.

5.3 FPV-NET

We systematically evaluate how the FPV-Net deals with different modalities while maintaining a
consistent architecture and diffusion policy configuration across all experiments. This setup allows
us to directly compare the effectiveness of different representations.

PC-only: We first group the point cloud by selecting 256 centers via Furthest Point Sampling (FPS),
then retrieve 32 nearest neighbors using K-Nearest Neighbors (KNN) to form 256 point groups.
Each group is passed through a lightweight MLP encoder, obtaining an embedding per group. These
embeddings, along with a language embedding from CLIP, a timestep embedding, and the noisy
action, are provided to a transformer-based diffusion policy.

RGB-only: In this model, each camera view is processed by a ResNet-18 model, which is pre-
trained and then finetuned separately for each view. FiLM layers condition the network on the
CLIP-encoded language instruction. The resulting embeddings from all camera views are subse-
quently given to the same transformer-based diffusion policy employed in the PC-only model.

PC+RGB: This variant simply concatenates the point group embeddings from PC-only with the
RGB embeddings from RGB-only, and feeds the combined representation into the transformer-based
diffusion policy.

FPV-MLP: Here, the point cloud is processed as before, but we additionally exploit local RGB
features. Specifically, we use the 8x8 feature map produced by the third ResNet layer for each
image. This feature map is flattened and concatenated with the global ResNet embedding, producing
65 tokens per view. Tokens from all views, along with a learnable class token, are passed to a
transformer. The output of the class token serves as the condition vector for AdaLN, while the point
group embeddings enter the diffusion policy in the usual way.

FPV-SUGAR: In this model, we use the point cloud encoder of the pretrained 3D visual represen-
tation model SUGAR Chen et al. (2024), which also partitions points into 256 groups of 32 via
FPS and KNN, but subsequently also employs a 12-layer transformer. We use the model pretrained
on multi-object scenes using objects from the Objaverse Deitke et al. (2022) dataset. To reduce
computational cost, we freeze the first 10 layers and finetune only the last 2. The RGB images are
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Figure 4: Success rates using different fusion types for point cloud and RGB images.
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Figure 5: Success rates using max pool or transformer to obtain global feature vector of RGB images
to use in AdaLN conditioning.

processed similarly to FPV-MLP, except that we use the 4x4 feature map from the fourth ResNet
layer. Finally, the conditioned transformer-based diffusion policy is applied as before.

5.4 MAIN RESULTS

Table 1 shows that models utilizing both modalities outperform those using a single modality, which
addresses Q1. Simply concatenating point cloud and RGB features leads to a 10% improvement, il-
lustrating the complementary nature of spatial and semantic information: each modality contributes
unique advantages that are not fully captured by the other. Notably, pick-and-place and insertion
tasks benefit most from having both modalities, suggesting that both spatial and semantic cues are
crucial for manipulating objects unseen during training. In one particular task the PC-only method
performs noticeably better than the other models, namely the TURNSINKSPOUT task, which re-
quires further investigation.

Our PC-only approach outperforms 3D Diffusion Policy by a margin of 5.25%, answering Q2. A
likely explanation is that the max-pooling step discards spatial information critical to the diffusion
policy. By contrast, our approach retains more of the point cloud’s geometric structure. Furthermore,
grouping points instead of handling each point separately like DP3 allows our PC-only model to
better capture local spatial features.

FPV-MLP and FPV-SUGAR, conditioning on RGB features, offer further gains, yielding an average
success rate of around 50%, higher than the simple concatenation of modalities. This suggests the
diffusion policy exploits the rich texture and semantic details from RGB data when using AdaLN
for conditioning more effectively than taking these features purely as an additional input. Another
possible reason is that the transformer-based diffusion policy can better separate the two modalities,
focusing on spatial relations through self-attention over point groups while annotating each group
with semantic features via AdaLN conditioning.

3DA exhibits a very low success rate on RoboCasa in our experiments. This may be attributed
to our decision to train each model for 100 epochs to ensure a fair comparison. However, as a
relatively more complex model, 3DA likely requires a longer training duration to achieve optimal
performance.

9



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

global feature 4x4 feature map 8x8 feature map

PNP1

PNP2

DOORS

DRAWER

STOVE

SINK

BUTTONS

COFFEE

0.10

Figure 6: Success rates of conditioning on ResNet features with different granularity level. Each
level in the chart corresponds to a 10% difference in success rate.

5.5 ABLATION ON DIFFERENT FUSION

We compared the performance of different fusion strategies for integrating point cloud and RGB
embeddings within the transformer architecture. Concat. refers to a straightforward concatenation of
both embeddings. Cond. on PC denotes using RGB features as the main modality while conditioning
on point cloud features through AdaLN conditioning. Conversely, Cond. on RGB treats point
cloud features as the primary modality, with RGB features providing the conditioning signal via
AdaLN. As shown in Figure 4, conditioning the RGB-based transformer on point cloud features
underperforms compared to simple concatenation. This could be due to compressing the entire
point cloud into a single vector, which may discard crucial spatial details, particularly for tasks like
COFFEE, where precise grasping of a mug is required. In contrast, conditioning on RGB features
yields the best performance across most tasks, effectively addressing Q3.

5.6 ABLATION ON OBTAINING CONDITION VECTOR

AdaLN does not directly support sequences as input, so a single token must be extracted to condition
on point clouds or RGB features. We compare two methods: (1) a simple max-pooling layer, and
(2) a transformer whose learnable class token serves as the global representation. Figure 5 indicates
that the transformer-based approach consistently outperforms max pooling in all tested tasks.

5.7 ABLATION ON RGB FEATURES

In order to identify the influence of global tokens and local tokens from ResNet feature map, we
evaluate FPV-Net with different feature granularity: global features versus 4x4 or 8x8 feature maps.
The results are presented in Figure 6, which show that by adding local features from ResNet would
gain performance significantly on most tasks such as BUTTONS and DRAWERS, whereas the DOORS
task show less sensitivity. This contrast could be due to the smaller size of buttons and drawer
handles, which require finer-grained feature maps for accurate manipulation.

6 CONCLUSION

In this paper, we introduce the Fusion of Point Cloud and Visual representation Network, a novel ap-
proach that integrates RGB and point cloud features using AdaLN conditioning within a transformer.
By fusing features at each residual connection, our method effectively captures complementary in-
formation from both modalities. Extensive experiments on the RoboCasa benchmark demonstrate
significant performance gains over baselines, highlighting the importance of thoughtful cross-modal
integration. These results open new avenues for exploring advanced fusion strategies to further
enhance robotic perception and understanding of complex environments.
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A EXPERIMENT SETTINGS

RoboCasa is a state-of-the-art simulation framework developed to advance the training of generalist
robots in diverse and realistic household settings, particularly in kitchen environments. It comprises
120 meticulously modeled kitchen layouts, over 2,500 high-quality 3D objects spanning 150 cat-
egories, and 25 foundational atomic tasks that are the building blocks for robot learning. These
atomic tasks encompass essential sensorimotor skills, including pick-and-place, opening and clos-
ing doors or drawers, twisting knobs, turning levers, pressing buttons, performing insertions, and
navigating kitchen spaces. In our work, we evaluated our model in 24 of these tasks, except for the
navigation. A list of these tasks evaluated in our work is given in Table 2.

The benchmark is particularly challenging due to its unparalleled diversity and realism. Each sce-
nario includes unique configurations and employs just a single demonstration, significantly raising
the bar for generalization. For example, in pick-and-place tasks, the objects vary extensively be-
tween scenarios, with no repetitions, forcing models to adapt to new instances without direct prior
exposure. Furthermore, the training and evaluation environments are entirely distinct, compelling
robotic agents to exhibit robust transfer learning capabilities across unseen kitchens and objects.

These features create a demanding benchmark, testing models on their ability to understand and
generalize robotic behavior in highly diverse, real-world-inspired scenarios. RoboCasa’s emphasis
on realistic physics, photorealistic rendering, and the integration of generative AI tools for diverse
asset creation ensures it sets a new standard for evaluating robotic learning methodologies. Its
extensive task variability and high fidelity make it one of the most rigorous and comprehensive
platforms for advancing generalist robot capabilities in everyday household environments.

B HYPERPARAMETERS

C FURTHER EXPERIMENTS

We conduct further experiments trying out different hyperparameters in the models which condi-
tioned on local ResNet features. The results can be seen in Figure 6. The models used are as
follows:

MLP uses the MLP point encoder and 4x4 feature map from ResNet. The diffusion policy uses an
embedding dimension of 128.

MLP256 is similar to MLP but the diffusion policy has an embedding dimension of 256.

SUGAR uses the point cloud encoder from the SUGAR pretrained model and 4x4 feature map from
ResNet. The point cloud encoder is frozen. The diffusion policy uses an embedding dimension of
128.

SUGAR-FT2 is similar to SUGAR but the last two layers are finetuned while keeping the other
layers frozen.

SUGAR256-FT2 is similar to SUGAR-FT2 but the diffusion policy uses an embedding dimension
of 256.

MLP8x8 uses the MLP point encoder and 4x4 feature map from ResNet. The transformer used to
get the condition vector from the ResNet features has an embedding dimension of 256. The diffusion
policy uses an embedding dimension of 128.

MLP8x8-L512 is similar to MLP8x8 but the transformer used to get the condition vector from the
ResNet features has an embedding dimension of 512.

D ADAPTIVE LAYERNORM CONDITIONING

A visualization of the adaptive layer norm is given in Figure 2. We use the point cloud and lan-
guage as primary modality in this visualization. In a Diffusion Transformer (DiT) block visualized
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in Figure 2, the most significant difference to a vanilla transformer block is scaling and shifting op-
erations conditioned on the image CLS token. The scaling factors α, γ and the shifting factor β are
applied to self-attention and feed-forward part of the DiT block. The expression AdaLN(zPt , z

L
t |zIt )

indicates that image embedding is used as condition and mapped to factors α, γ and β, while the
point cloud and language embeddings go through the self-attention and feed-forward blocks with
additional scaling and shifting operations by these factors.
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Task Skill Family Description
PickPlaceCounterToCabinet Pick and place Pick an object from the counter and

place it inside the cabinet. The cabinet
is already open.

PickPlaceCabinetToCounter Pick and place Pick an object from the cabinet and
place it on the counter. The cabinet is
already open.

PickPlaceCounterToSink Pick and place Pick an object from the counter and
place it in the sink.

PickPlaceSinkToCounter Pick and place Pick an object from the sink and place
it on the counter area next to the sink.

PickPlaceCounterToMicrowave Pick and place Pick an object from the counter and
place it inside the microwave. The mi-
crowave door is already open.

PickPlaceMicrowaveToCounter Pick and place Pick an object from inside the mi-
crowave and place it on the counter.
The microwave door is already open.

PickPlaceCounterToStove Pick and place Pick an object from the counter and
place it in a pan or pot on the stove.

PickPlaceStoveToCounter Pick and place Pick an object from the stove (via a pan
or pot) and place it on (the plate on) the
counter.

OpenSingleDoor Opening and closing doors Open a microwave door or a cabinet
with a single door.

CloseSingleDoor Opening and closing doors Close a microwave door or a cabinet
with a single door.

OpenDoubleDoor Opening and closing doors Open a cabinet with two opposite-
facing doors.

CloseDoubleDoor Opening and closing doors Close a cabinet with two opposite-
facing doors.

OpenDrawer Opening and closing drawers Open a drawer.

CloseDrawer Opening and closing drawers Close a drawer.

TurnOnStove Twisting knobs Turn on a specified stove burner by
twisting the respective stove knob.

TurnOffStove Twisting knobs Turn off a specified stove burner by
twisting the respective stove knob.

TurnOnSinkFaucet Turning levers Turn on the sink faucet to begin the flow
of water.

TurnOffSinkFaucet Turning levers Turn off the sink faucet to stop the flow
of water.

TurnSinkSpout Turning levers Turn the sink spout.

CoffeePressButton Pressing buttons Press the button on the coffee machine
to pour coffee into the mug.

TurnOnMicrowave Pressing buttons Turn on the microwave by pressing the
start button.

TurnOffMicrowave Pressing buttons Turn off the microwave by pressing the
stop button.

CoffeeSetupMug Insertion Pick the mug from the counter and in-
sert it onto the coffee machine mug
holder area.

CoffeeServeMug Insertion Remove the mug from the coffee ma-
chine mug holder and place it on the
counter.

Table 2: The 24 manipulation tasks of RoboCasa used in our work. This list was originally reported
as Fig. 11 in Nasiriany et al. (2024).
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PNP1 PNP2 DOORS DRAWER

PNPCOUNTERTOCAB PNPCOUNTERTOMICROWAVE OPENSINGLEDOOR CLOSEDRAWER

PNPCABTOCOUNTER PNPMICROWAVETOCOUNTER CLOSESINGLEDOOR OPENDRAWER

PNPCOUNTERTOSINK PNPSTOVETOCOUNTER OPENDOUBLEDOOR

PNPSINKTOCOUNTER PNPCOUNTERTOSTOVE CLOSEDOUBLEDOOR

STOVE SINK BUTTONS COFFEE

TURNONSTOVE TURNONSINKFAUCET COFFEEPRESSBUTTON COFFEESETUPMUG

TURNOFFSTOVE TURNOFFSINKFAUCET TURNOFFMICROWAVE COFFEESERVEMUG

TURNSINKSPOUT TURNONMICROWAVE

Table 4: Task groups used for training the models.

Hyper-params. PC Only RGB Only PC + RGB
PC Cond. RGB Cond. PC Cond. on
on RGB on PC local RGB feat.

Epoch 100 100 100 100 100 100

Batch size 256 256 256 256 256 256

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Weight Decay 5e−2 5e−2 5e−2 5e−2 5e−2 5e−2

Clip Grad

Point Sampling FPS - FPS FPS FPS FPS

# Points 4096 - 4096 4096 4096 4096

# Point Groups 256 - 256 256 256 256

Size of Point Group 32 - 32 32 32 32

Latent Dim. 512

Embedding Dim. 128 256 128 128 256 128

Table 5: Hyperparameters of the design choices discussed in this paper

TASK MLP MLP256 SUGAR SUGAR-FT2 SUGAR256-FT2 MLP8X8 MLP8X8-L512

PNPCABTOCOUNTER 0.16 0.10 0.04 0.08 0.10 0.10 0.16

PNPCOUNTERTOCAB 0.08 0.08 0.04 0.02 0.14 0.22 0.08

PNPCOUNTERTOMICROWAVE 0.22 0.20 0.04 0.08 0.10 0.18 0.26

PNPCOUNTERTOSINK 0.08 0.08 0.00 0.00 0.08 0.06 0.06

PNPCOUNTERTOSTOVE 0.02 0.06 0.00 0.02 0.04 0.04 0.06

PNPMICROWAVETOCOUNTER 0.04 0.08 0.02 0.06 0.12 0.10 0.08

PNPSINKTOCOUNTER 0.24 0.26 0.08 0.08 0.30 0.20 0.22

PNPSTOVETOCOUNTER 0.26 0.28 0.02 0.04 0.26 0.18 0.20

OPENSINGLEDOOR 0.62 0.58 0.52 0.44 0.74 0.64 0.68

OPENDOUBLEDOOR 0.88 0.94 0.74 0.70 0.92 0.90 0.94

CLOSEDOUBLEDOOR 0.84 0.82 0.56 0.76 0.78 0.70 0.82

CLOSESINGLEDOOR 0.80 0.84 0.68 0.84 0.84 0.86 0.86

OPENDRAWER 0.66 0.68 0.76 0.84 0.72 0.60 0.62

CLOSEDRAWER 0.90 0.96 0.96 0.96 0.94 0.96 0.90

TURNONSTOVE 0.56 0.46 0.62 0.54 0.66 0.48 0.46

TURNOFFSTOVE 0.14 0.16 0.22 0.14 0.20 0.12 0.12

TURNONSINKFAUCET 0.40 0.60 0.68 0.58 0.70 0.68 0.68

TURNOFFSINKFAUCET 0.50 0.80 0.68 0.82 0.78 0.76 0.82

TURNSINKSPOUT 0.50 0.52 0.58 0.60 0.52 0.60 0.54

COFFEEPRESSBUTTON 0.92 0.90 0.84 0.92 0.90 0.84 0.86

TURNONMICROWAVE 0.76 0.26 0.62 0.68 0.68 0.60 0.74

TURNOFFMICROWAVE 0.92 0.68 0.90 0.82 0.96 0.82 0.86

COFFEESERVEMUG 0.50 0.56 0.56 0.60 0.48 0.56 0.62

COFFEESETUPMUG 0.18 0.14 0.14 0.14 0.16 0.20 0.22

AVERAGE SUCCESS RATE 0.4658 0.4600 0.4292 0.4483 0.5050 0.4750 0.4942

Table 6: Further results for RoboCasa with 50 Human Demonstrations conditioning on local ResNet
features
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