
Contents lists available at ScienceDirect 

Ecological Economics 

journal homepage: www.elsevier.com/locate/ecolecon 

Analysis 

A Stochastic Economic Framework for Partitioning Biosecurity Surveillance 
Resources 
Belinda Barnesa,b,⁎, Anthony D. Arthura, Nathaniel J. Bloomfielda 

a Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia 
b Australian National University, Canberra, Australia  

A R T I C L E  I N F O   

Keywords: 
Stochastic Bio-economic Models 
Biosecurity 
Optimal Resource Partitioning 
Uncertainty 
Asian gypsy moth 

A B S T R A C T   

Effective biosecurity systems are important for protecting trade and the environment from the introduction of 
exotic pests and diseases, particularly as the movement of goods and people increases worldwide. But systems 
are complex and the optimal division of resources between biosecurity operations is difficult to determine. In this 
paper we formulate tractable, stochastic, bio-economic models to guide the optimisation of cost-efficiency in 
decisions concerning biosecurity operations. In particular, to guide a tradeoff between effort afforded to pre
venting the introduction of pests and diseases, and post-border surveillance, although the approach has general 
relevance. The models offer a practical means of optimising resource partitioning, designed to transfer easily 
between disparate settings and a range of pest-types, and to enable the incorporation of uncertainty. For highly 
complex problems, tractable frameworks are not always available or efficient. However, using an application to 
Asian gypsy moth trapping and reference to applications in the literature, we demonstrate that the proposed 
approach is relevant, is straightforward to apply, and provides a comprehensive analysis for decision-makers.   

1. Introduction 

Biosecurity systems are implemented world-wide to protect trade 
and the environment, while also facilitating the movement of goods and 
people. Efficient operations are particularly important to countries such 
as Australia, which currently remain free from many exotic pests and 
pathogens; however, effective biosecurity processes are expensive and 
logistically difficult. There is a need for accessible quantitative ap
proaches that address the cost-efficiency of resourcing different op
erations, and which are designed to guide policy decisions in the face of 
increasing costs, much uncertainty and the rapidly increasing volume of 
incoming goods and travellers (Mastin et al., 2019). 

There is a continuous low-level risk of new pest and disease in
troductions from source countries with arriving goods and the move
ment of people (Chapman et al., 2017). Available resources can be al
located to measures that reduce the frequency of pest arrivals, such as 
the education of arriving passengers and inspections at the border, or 
allocated to post-border operations, such as surveillance aimed at the 
early detection of newly established pests and diseases. In this paper we 
formulate a tractable, stochastic, economic framework that allows an 
optimal assessment of resource partitioning between pest-arrival pre
vention measures and post-border operations. Our purpose is to provide 
a practical means of partitioning resources so as to minimise costs, but 

one that can also incorporate uncertainty into decision-making and can 
be applied in disparate settings and across a range of different pest- 
types and scenarios. By choosing to formulate closed-form distributions 
for total costs rather than relying on simulations, our models are simple 
to apply, are easily transferable between applications and, when para
meter estimates are poor or unavailable as is common in biosecurity 
applications, their potential influence on results can be easily inter
preted for decision-makers. 

A number of stochastic economic models in ecology and biosecurity 
have appeared in the recent literature, with a variety of purposes in
cluding the optimal partitioning of expenditure between prevention and 
surveillance. Management decisions are typically determined using 
expected values without the incorporation of uncertainty (Anderson 
et al., 2017; Gormley et al., 2016; Kompas et al., 2018; Moore et al., 
2010; Regan et al., 2006) and, except for some simple scenarios (in 
(Moore et al., 2010; Regan et al., 2006), for example), most rely on 
simulation results (Anderson et al., 2017; Gormley et al., 2016; Kompas 
et al., 2018; Ramsey et al., 2011), or solutions using Markov decision 
theory (Moore et al., 2010; Regan et al., 2006). Several studies propose 
large-scale spatial simulation models with high data requirements 
((Gormley et al., 2016; Kompas et al., 2018), for example), with some 
modelling approaches taking monetary discounting into account 
(Kompas et al., 2018; Regan et al., 2006). The biosecurity system 

https://doi.org/10.1016/j.ecolecon.2020.106784 
Received 4 March 2020; Received in revised form 8 July 2020; Accepted 9 July 2020    

⁎ Corresponding author at: Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia. 
E-mail address: Belinda.Barnes@anu.edu.au (B. Barnes). 

Ecological Economics 178 (2020) 106784

Available online 25 August 2020
0921-8009/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09218009
https://www.elsevier.com/locate/ecolecon
https://doi.org/10.1016/j.ecolecon.2020.106784
https://doi.org/10.1016/j.ecolecon.2020.106784
mailto:Belinda.Barnes@anu.edu.au
https://doi.org/10.1016/j.ecolecon.2020.106784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolecon.2020.106784&domain=pdf


modelled in this paper is conceptually similar, with the same purpose 
and optimisation criteria of cost minimisation. Our approach, however, 
differs fundamentally. We provide closed-form solutions to the sto
chastic models, which are fast and simple to apply, and which are 
highly relevant to this class of problems and associated policy decisions. 

We formulate a full distribution for the total costs of a general 
biosecurity system through time, providing explicit expressions for the 
mean and variance. The biology of the pest or disease underpins results 
through functions that relate surveillance effort to pest-arrival prob
abilities, and to eradication costs and probabilities, making use of pest- 
specific detectability and growth characteristics. The distribution con
structed incorporates many of the features in the models referenced 
above, including both border and post-border biosecurity operations, 
switching between response strategies, and the option to include 
monetary discounting. Pest-arrivals are considered as independent 
stochastic events, with alternative arrival distributions easily accom
modated in order to generalise applicability to the diverse range of 
pests and diseases. And the success of sequential eradication programs 
is modelled using a distribution that depends on pest-type and present- 
value surveillance expenditure. A key difference between our approach 
and many of those referenced above is that, in the event eradication 
fails, a single long-term management cost replaces the cost of further 
prevention and surveillance measures, so as not to count the costs of a 
long-term incursion of the same pest more than once. 

The cost-distribution we construct is formulated using the standard 
properties of discrete mixed-distributions and conditioning, while also 
accounting for present-value costs through time. The model is not 
spatially explicit, focussing on newly arrived pests and diseases and 
their early detection rather than details of their spatial spread — for 
which further assumptions and greater complexity are required. We 
have not taken a decision-theory approach to optimisation, considering 
rather the cost-efficiency of partitioning general biosecurity activities as 
in (Anderson et al., 2017; Gormley et al., 2016; Kompas et al., 2018;  
Moore et al., 2010; Ramsey et al., 2011; Regan et al., 2006). The ex
plicit model proposed has comparable, or greater, complexity than 
many of those cited, is suited to a number of those studies and, by 
design, results from spatial modelling (when available) can be in
tegrated easily — as we show in an example application. 

To demonstrate how the framework performs, we optimise the 
trapping-grid spacing for Asian gypsy moth in Australia. The moth is 
not currently established, although there is a continuous low-level risk 
of its introduction, despite pre-border and border measures, and an 
incursion has the potential to devastate the Australian forest industry — 
as has occurred elsewhere (Sharov, 2004). Results show that the ex
plicit model is easy to apply and can replace the need for simulations, 
providing a more comprehensive analysis. 

In Section 2 we formulate stochastic models for a variety of biose
curity systems. We then consider some optimal surveillance strategies 
(Section 3), demonstrate how the model performs with a cost-mini
misation application (Section 4) and discuss some advantages and 
limitations of the proposed approach for more general application 
(Section 5). 

2. The Model Framework 

Fig. 1 provides a schematic diagram for the framework we for
mulate. For a single pest/pathogen species, we assume a continuous 
low-level risk of arrival and model this as a stochastic process, with 
alternative distributions easily accommodated. Arrivals from source 
countries often occur in ‘clumps’ and, in order to avoid double-counting 
the long-term consequences of several arrivals in a short time, we limit 
the number of incursions in a time-interval to one. Thus we cost a single 
incursion for the species during that interval although alternatives are 
easily substituted. Prevention measures implemented pre-border, or at 
the border, reduce the number of pests and pathogens that arrive in any 
time interval, with the probability of arrival depending on pest-type 

and declining with increasing expenditure on prevention. In the case 
post-border surveillance is undertaken, the pest or pathogen may be 
detected early, in which case eradication is more likely to succeed and 
eradication costs are reduced. How expenditure relates to pest-arrival 
rates, early detection, eradication costs and the probability of eradica
tion success, depend explicitly on the pest-type and associated spread 
mechanisms, and the framework is designed to accommodate alter
native relationships and disparate data availability. Eradication pro
grams are not always successful and, in the event of failure, it is as
sumed that prevention and surveillance measures cease and a long-term 
cost of ‘living with’ this pest is incurred — that is, the cost of its nat
uralisation. The stochastic economic framework we formulate takes the 
present-value costs of each component into account, as well a shift in 
strategy when eradication fails, with both the pest-arrival process and 
success of eradication programs treated as independent, discrete sto
chastic processes. We apply this modular structure of the consequences 
of each arrival to take advantage of repeated, identical processes to 
construct our framework, and then incorporate a distribution of times 
between arrivals to link them. Frameworks applied in, for example, 
(Anderson et al., 2017; Kompas et al., 2018; Moore et al., 2010), are 
conceptually similar in many respects; however, here we formulate the 
economic distributions explicitly and establish analytical results that 
provide clear advantages for analysis. 

The stochastic framework is developed in stages so that economic 
models are formulated for a number of different scenarios, including 
the case without surveillance effort which provides a baseline for 
comparison. Table 1 defines the notation, variables and parameters 
used. 

Fig. 1. Schematic diagram for the bio-economic model.  
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2.1. Baseline Stochastic Cost-Model for a Single Incursion 

Consider a single species that could arrive from overseas. Let p0 be 
the probability that a pest or pathogen arrives and establishes in a given 
year t (which could be determined from a Poisson arrival process 
(Becker, 2015); Appendix E), assuming that, at most, a single incursion 
can occur each year. We construct a stochastic model for the associated 
present-value costs. 

Let T be a discrete random variable for the time (year) of the first 
pest-arrival. In the case arrival times are geometrically distributed 
(although alternatives could be substituted), the probability mass 
function and probability generating function are, respectively, for 
t = 1, 2, …, 

= = =T p T t p p s
p s

p s
P~Geometric( ), ( ) (1 ) , ( )

1 (1 )
.t

T0 0 0
1 0

0

(1)  

The interpretation of the geometric distribution applied here is that 
the pest arrives in year T = t with probability p0, and does not arrive in 
any of the previous t − 1 years with cumulative probability 
(1 − p0)t−1. 

Let CL be the estimated long-term cost of naturalisation if an era
dication program fails, let δ  >  0 be the annual, monetary discount 
rate, and let TC0 be the total present-value cost over time. It follows 
that, given an arrival at T = t, the probability mass for total present- 
value costs is 

=
+

= = =TC C T t p pP P
(1 )

( ) (1 ) ,L
t

t
0 0 0

1
(2) 

so that the total expected present-value cost, which takes all possible 
pest-arrival times into account, is 

=
+

= =
+=
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1
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1
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t

L

t
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The distribution for T (geometric distribution in Eq. (1) or an al
ternative) can now be substituted into Eq. (3) using its generating 
function ΦT(s). The associated variance is (Appendix A.1) 

=

=
+ +
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(4)  

By construction, this cost-distribution is not necessarily symme
trical, and is valid for a range of pest-arrival distributions. 

2.2. Stochastic Cost-Model for a Single Incursion Including Prevention 
Measures 

Suppose now that arrival-prevention measures are implemented 
pre-border or at the border with an annual cost of cp. We assume that 
prevention measures reduce the annual probability of arrival from p0 to 
p, where 0 ≤ p ≤ p0 and p is an explicit function of both the arrival 
probability without prevention (p0) and expenditure on prevention 
measures (cp). Probability mass associated with total costs, notated TCp, 
is then 

=
+

+
+

= = =
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so that the total expected present-value cost becomes (Appendix B.1) 
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A distribution for arrival time T can then be incorporated — geo
metric distribution (Eq. (1)) with p in the place of p0, or an alternative. 
Note that, with prevention measures in place and p  <  p0, ΦT(s) in this 
expression differs from that in Eq. (3). The associated variance is (Ap
pendix A.2) 
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+ +
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(7)  

Table 1 
Random variables, parameters and notation.    

Symbol Description  

E Expected value 
P Probability 
ΦX(s) Probability generating function for generic random variable X 
T Discrete random variable for the time of an arrival-and-establishment event 
Tk Discrete random variable for the time of the kth arrival-and-establishment event, starting from the time of the k − 1th (previous) arrival-and-establishment event — 

a random variable for the inter-arrival time between the k − 1th and the kth arrivals 
E Event that an arrived pest is successfully eradicated — complement E
Ek Event that the kth pest arrival is successfully eradicated — complement Ek

E k( ) Event that the kth pest arrival is the first for which eradication is unsuccessful 
CL Once-off total cost of ‘living with’ an arrived pest given eradication was unsuccessful — equivalently, the cost of naturalisation 
CE Total cost of implementing an eradication program 
cp Annual cost of border or pre-border prevention measures 
cs Annual cost of post-border surveillance measures — cs

∗ optimal value 
p0 Probability a pest arrives and establishes in any randomly selected year 
p Probability a pest arrives and establishes in any randomly selected year, when prevention measures are in place (0 ≤ p ≤ p0) 

, Monetary discount rate (0  <  δ); = +1/(1 )
γ Search sensitivity for the inspection of arriving containers/ships 
k Calibration constant relating prevention measures to pest-arrival probability 
TC Random variable for total present-value costs for the full model 
TC0 Random variable for total present-value costs for the baseline model 
TCp Random variable for total present-value costs for the single-incursion model 
N Number of years under consideration 
B Limited annual budget available for prevention and surveillance measures 
f c f c( ), ( )p p1 1

Functions relating expenditure on prevention to a reduction in p 

f2(cs) Function relating expenditure on surveillance to a reduction in CE 

f3(cs) Function relating expenditure on surveillance to an increase in P(E) 
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2.3. Stochastic Cost-Model for Multiple Incursions Over Time 

Consider now a single species, for which there is a continuous risk of 
an arrival in any given year, and for which there may be multiple in
cursions over time, although we assume that, at most, a single incursion 
can occur each year as above. We incorporate prevention measures 
(pre-border and border) and post-border surveillance costs, as well as 
all other costs and processes represented in Fig. 1. 

Let cp and cs be the annual costs of prevention and surveillance, 
respectively, and let CE be a once-off cost of eradication. Eradication is 
assumed successful with probability P(E), after which prevention and 
surveillance measures are resumed. In the case eradication fails, with 
probability =E EP P( ) 1 ( ), prevention and surveillance are aban
doned and a once-off long-term cost CL of naturalisation is incurred. 

Define Ek to be the event that eradication of the kth pest-arrival is 
successful, and Ek to be the event that it is not. And let C ∣ Ek be the cost, 
conditional on event Ek. Let TC denote the total cost, and then 

= +
= + +
= +

+ +

= …
=

TC E C E E C E
E C E E E C E E E C E E
E C E E E C E E
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( | , , , ) ( ) (1 ( ))
k

k k
k
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1 2 1
2

3 2 1 3 2 1

1
1 1

1
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where the conditional cost is not yet specified. With pest arrivals pos
sible in any year, total expected costs, conditional on the kth pest-arrival 
being the first for which eradication is unsuccessful, thus has a geometric 
distribution. This follows because, in the event an eradication program 
is unsuccessful, a once-off long-term cost of naturalisation is incurred 
and there are no further costs. 

To incorporate the stochastic nature of pest arrivals we model inter- 
arrival times. The memoryless property of standard distributions ap
plied to such processes (geometric or exponential distributions, for 
example) means that the time of future pest-arrival events is in
dependent of the arrival history, in the sense that an arrival in one time 
interval does not alter the probability of an arrival in the following, or 
any other, interval. Let Tk be a random variable for the time (year) of 
the kth pest arrival, measured in years from the time of the previous 
k − 1th arrival. It follows that, for any two sequential inter-arrival 
times, 

=T T TP P( | ) ( ).k k k1 (9)  

Further, we consider the probability of successfully eradicating a 
pest that has established to be independent of the time at which that 
pest arrived, although, if it spreads, this probability will depend on the 
time between arrival and detection. Then, for all pest arrivals, 

= = = = =E T t T t E T t EP P P P P( | ) ( ) ( ) ( ) ( ).
t

k k
t

k
(10)  

In contrast, present-value costs depend explicitly on time — more 
specifically, on the year of each arrival event. To establish a distribution 
for total present-value costs, let E k( ) denote the event that the kth pest 
arrival is the first for which eradidation fails, so that 

= …E E E EP P( ) ( , , , )k
k k

( )
1 1 . Total cost, conditional on E k( ) and all inter- 

arrival times Ti, is then given by (see Eq. (8) and Appendix B.2) 
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where the Ti are independent and identically distributed random 

variables for pest inter-arrival times with associated probability mass 
functions (see Eq. (1)), for example). From Eq. (8), the probability mass 
associated with event E k( ) is P(E)k−1(1 − P(E)). Thus, for the system 
(Fig. 1), Eqs. (8) and (11) fully define a distribution for total present- 
value costs, with probability mass function 

… =
=

TC E T T T T E EP P P P( | , , , , ) ( ) ( ) (1 ( )),k
k k

i

k

i
k( )

1 1
1

1

(12) 

so that (conditional) total costs are geometrically distributed. 
To determine the expected total-cost, because inter-arrival times Ti 

are independent and identically distributed as a result of our chosen 
modular approach, the conditional expected cost is (from Eqs. (11),  
(12) and Appendix B.2) 
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where we have set = +1/(1 ) for reasons of parsimony. The total 
expected present-value cost is then given by (Appendix B.2) 
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We highlight that, by construction, result (14) holds for any arrival 
distribution with the properties of independence discussed in Eqs.  
(9)–(10) and thus alternatives are easily accommodated (see Appendix 
D). 

Note that, when surveillance and eradication measures are excluded 
from the model (cs, CE and P(E) set to zero), expression (14) reduces to 
Eq. (6), and when prevention measures are also excluded, the expres
sion reduces to Eq. (3). Thus our models are consistent. 

The associated variance, taking variation in both inter-arrival times 
and eradication-success into account, is (Appendix A.3) 

= +TC C E C EE EVar( ) [Var( | )] Var( [ | ]),k k( ) ( ) (15) 

where, with c = cs + cp, 
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Note that total variance Eq. (15) reduces to Eq. (7) when surveil
lance and eradication measures are excluded from the model (cs, CE and 
P(E) set to zero), and to Eq. (4) when prevention measures are also 
excluded — as would be expected. 

In summary, we have formulated a stochastic economic model that 
incorporates all costs and processes described in Fig. 1, including a 
continuous low-level risk of new incusions, and is sufficiently general to 
be applicable to a variety of cost-efficiency problems. Explicit expres
sions for the full distribution, the mean and the variance have been 
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established. The distribution for total present-value costs, conditional 
on the first pest-arrival for which eradication fails and no further an
nual costs are incurred, has been shown to be geometric, and sufficient 
flexibility has been built into the framework so that alternative pest- 
arrival distributions could be substituted. Pest-arrival and eradication- 
success processes retain independence between sequential events — 
between inter-arrival times and between sequential eradication suc
cesses, respectively. The probability of eradication success (P(E)), while 
not dependent on arrival time, will be a function of outbreak size at the 
time of detection, which will depend on surveillance-effort and efficacy; 
the cost of eradication (CE) will also be a function of outbreak size, 
surveillance-effort and efficacy; and the probability of a pest-arrival in 
any given year (p) will depend on prevention-effort and the efficacy of 
those measures. And all three functions depend on pest-type. By con
struction, this economic formulation allows for the substitution of dif
ferent relationships and/or distributions for P(E), CE and inter-arrival 
times Ti, which can be explored and compared. And where data are 
available, it is straightforward to incorporate simulation results through 
these parameters and functions — as we demonstrate in Section 4. 

3. An Optimal Economic Strategy 

The purpose of the framework is to guide the partitioning of ex
penditure between prevention and surveillance measures, or between 
other alternative surveillance scenarios (see Section 4), which mini
misises total expected present-value costs while also enabling decisions 
to take uncertainty and stochasticity into account. 

3.1. Minimising Expected Costs 

The minimisation of total expected costs, using a tradeoff between 
competing expenses, is often applied to determine an optimal strategy 
(see, for example, (Anderson et al., 2017; Kompas et al., 2018)). This 
optimal strategy is straightforward to determine from the above eco
nomic framework Eq. (14), 

=
+ ++

TC
f c f c f c f c C f c

f c f c
E( )

(1 ( )) ( ) ( ) (1 ( )) ( )
1 ( ) ( )

c c
p s p s L p

s p

1 2 1 3 1

3 1

p s

(16) 

where = f c( ) ( )T p1 is a function of annual expenditure on prevention 
(cp), as well as arrival probability (p0), and CE = f2(cs) and P(E) = f3(cs) 
are functions of surveillance expenditure (cs) and incorporate infesta
tion size at the time of detection. The resulting equation is a function of 
two variables, cp and cs. The optimal expenditure on prevention and 
surveillance, which results in the minimum total expected cost, can be 
determined from Eq. (16) using standard calculus (derivatives), noting 
that solutions may occur on the boundaries of the solution space. An 
example application to clarify this process is provided in Section 4. 

In cases with a fixed annual budget for border and post-border 
surveillance expenditure combined, denoted B so that cp = B − cs, total 
expected cost Eq. (14) becomes (Appendix B.3) 
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noting that ΦT(1/1 + δ) = f1(cp) = f1(B − cs), CE = f2(cs) and P 
(E) = f3(cs) are all functions of the single variable cs. It is straightfor
ward to find the value of cs which minimises this cost using derivatives. 
An example application is provided in Section 4. 

3.2. Incorporating Uncertainty 

The above approach to cost-minimisation considers only expected 

values, although it is well recognised that appropriate consideration of 
uncertainty in biosecurity decision-making is important. Explicit alge
braic forms for system variance, or stochasticity, have been formulated 
in this paper for this purpose. There are a number of approaches to 
optimising resource allocation, which respond to uncertainty using 
different criteria (Barnes et al., 2019; Bridges, 2004; Prattley et al., 
2007; Yemshanov et al., 2017; Yemshanov et al., 2014). It is beyond the 
scope of this paper to consider the wide variety of response criteria for 
distinct biosecurity applications and specific priorities. However, an 
approach conceptually similar to that proposed in (Barnes et al., 2019), 
which responds to model stochasticity and parameter uncertainty, is 
relevant to the type of biosecurity problem considered here. 

3.3. The Effect of Monetary Discounting on the Optimal Strategy 

Monetary discounting transforms future economic effects into pre
sent-values, with higher rates attributing less value to future benefits 
and costs, relative to those current. It is commonly incorporated into 
optimisation techniques for decision-making; however, it is also well 
known that appropriate discount rates are difficult to determine and 
can be highly influential (Clark, 1990; Scheraga and Sussman, 1998). 
For biosecurity applications, the inclusion of inappropriate discount 
rates can mean that long-term consequences are trivialised in the de
cision process (Scheraga and Sussman, 1998). For that reason we pro
vide model formulations for extreme cases so that a complete under
standing of how the chosen discount rate might affect decisions can be 
determined. 

For the case without discounting (δ = 0), the cost distribution of  
Section 2.3 (Eqs. (11)–(14)) is not appropriate because that formulation 
assumed δ  >  0. The appropriate model is (Appendix C) 

= + + +TC c c E T
E T

C
E

CE P E
P E P

( ) ( ) (1 ( )) ( )
1 ( ) ( ) 1 ( )

,p s
E

L (18) 

noting that Eq. (18) differs from Eq. (14) when δ → 0 only in the first 
term — as would be expected. In this extreme case, optimal surveillance 
expenditure is independent of the naturalisation cost CL. Alternatively, 
for high discount rates, results can be determined directly from Eq.  
(14), noting that E(TC) → 0 as δ increases without bound. An appro
priate upper-bound for the discount rate would depend on the appli
cation. 

4. Application to Asian Gypsy Moth (AGM) Trapping 

Australia is currently free from gypsy moth (Lymantria dispar), 
which has been identified as a National Priority Plant Pest (Bloomfield 
et al., 2018). This moth has the potential to devastate the Australian 
forest industry, with estimated economic consequences exceeding 1.6 
billion dollars (Bloomfield and Arthur, 2019). To avoid an incursion, 
prevention measures include the inspection of external container sur
faces and ships to ensure they are clean with respect to egg masses. 
Onshore, early-detection trapping programs are focussed near potential 
points of entry, such as shipping ports, but this surveillance is costly to 
maintain particularly when the distance between traps is low. We apply 
our analytical framework to determine optimal (lowest overall expected 
present-value cost) expenditure on container inspections at the border 
and post-border trapping programs, taking into account a continuous 
low-level risk of pest-arrival and establishment, costs of prevention and 
surveillance strategies, the cost of eradication and the costs incurred if 
eradication fails. 

First we consider a simplified version of the system without pre
vention measures, as in (Bloomfield and Arthur, 2019), which allows a 
direct comparison between published simulation results and those using 
our formulation. We then include expenditure on prevention measures 
and demonstrate how the surveillance tradeoff can alter the expected 
outcome. 

We model pest arrivals using a sequence of geometrically 
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distributed pest inter-arrival times (Eq. (1)), with the distribution for 
total-costs defined by Eqs. (11) and (12). Directly from Eq. (14), the 
expected present-value cost is 

=
+ + +

+
TC

c c pC p E C
p E

E
P

P
( )

(1 ( ))
(1 ( ))

p s E L

(19) 

where =p f c( )p1 , CE = f2(cs) and P(E) = f3(cs). These are functions of 
annual costs, cp and cs, and relate expenditure to the efficacy of pre
vention measures to reduce pest-arrival rates, and the efficacy of sur
veillance measures to reduce the cost of eradication programs and in
crease the probability of success. Discrete values of post-border 
surveillance, cs, link to alternative trapping densities (Table 2). For 
AGM, f c( )p1 is unknown (see below); however, f2(cs) and f3(cs) have the 
form (Bloomfield et al., 2018) 

= = +

= = +
+

+

+ +

+ +

C f c b

E f c bP

( ) ,

( ) ( ) ,

E s
c

s
c b

2 1 e 2

3 1 e 3

a cs d

a cs d

2
2 log10( 1) 2

3 3
3 log10( 1) 3 (20) 

as illustrated in Fig. 2, noting that a range of costs are aggregated in 
each function, and that as expenditure on surveillance increases the 
probability of eradication increases due to early detection. In the limit, 
this relationship captures the event a pest is never detected; however, 
the probability is small. 

Fig. 3 provides a comparison between the expected values and 
variances for the case without prevention measures (cp = 0 and fixed p) 
and with functions Eq. (20) (dashed curves), and those determined from 
simulations (solid points). The turning point of the curve in Fig. 3(a) 
(dashed-curve) identifies the minimum expected cost (y-axis) and the 
associated optimal surveillance expenditure (x-axis). For comparison, 
the case without surveillance for which cs = 0 (intersection of curve 
with y-axis in Fig. 3), and also the case without surveillance or re
sponse, for which cs = 0, CE = 0 and P(E) = 0 (dash-dotted line), have 

been included. From an economic perspective, results suggest that, on 
average, there is considerable advantage in undertaking surveillance 
(minimum total expected cost (dashed-curve) falls below the cost 
without surveillance and the ‘do nothing’ option (dash-dotted line) in  
Fig. 3(a)). Results are consistent with (Bloomfield and Arthur, 2019). 

Annual surveillance expenditure for which the minimum expected 
total-cost is achieved, denoted (cp

∗,cs
∗), can be calculated directly from 

Eq. (19), and satisfies the simultaneous equations 

=
+ +

= + + +

c C pC
f c p p E

f c
c

c C C
E

p E
f c E

c

P

P
P
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,
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3
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where f′ denotes the first derivative and p is a function of cp so that both 
sides of this equation may be functions of cp and cs. In the simplifying 
case cp = 0, minimum surveillance-expenditure cs

∗ satisfies 

=
+ +

c C pC
f c p p E

f c
P( ( ) 1/ )( (1 ( )))

( )
,s L E

s

s

2

3 (22) 

with p fixed. This minimum is identified in Fig. 3 (dotted line) at 
cs

∗ = 0.75 × 106 for this example, in agreement with that in 
(Bloomfield and Arthur, 2019). 

It is also straightforward to determine from Eq. (19) how variation 
in the arrival probability, costs, the probability of eradication and the 
discount rate affect the outcome — individually or in combination. For 
example, with respect to the discount rate δ, 

=
+ + +

+
<d TC

d
c c pC p E C

p E
E P

P
( ) (1 ( ))

( (1 ( )))
0p s E L

2 (23) 

provides an explicit rate of decline for total expected costs as δ in
creases, from which the case without prevention measures is easily 
deduced. 

Fig. 4(a)–(c) illustrates a few simple sensitivity results to show how 
the proposed approach is consistent with, and extends, the analysis in 
(Bloomfield and Arthur, 2019). Fig. 4(a) shows that the discount rate 
has marginal influence on decisions concerning trapping-grid spacing 
when it is sufficiently large, which is consistent with the scenarios re
ported in (Bloomfield and Arthur, 2019). In contrast, this figure also 
reveals that when δ  <  0.02 the chosen value of δ has a considerable 
influence, and that uncertainty in the arrival probability is also influ
ential. Results demonstrate that the response of optimal trap-spacing to 
variation in a combination of discount rates and arrival probabilities 
may be highly nonlinear, but is easily determined from Eqs. (22) and 

Table 2 
Estimated annual costs (AU$) for alternative AGM trapping densities 
(Bloomfield and Arthur, 2019).      

Trap-spacing (km) Annual cost cs Trap-spacing (km) Annual cost cs  

0.5 22,425,000 5 224,000 
0.75 9,967,000 6 156,000 

1 5,606,000 7 114,000 
1.5 2,492,000 8 88,000 
2 1,402,000 9 69,000 
3 623,000 10 56,000 
4 350,000 no traps 0 

Fig. 2. (a) The cost of eradication, CE = f2(cs), as expenditure on surveillance (x-axis) increases (function Eq. (20)). Open dots identify the 5th and 95th percentiles for 
the specific trapping densities in Table 2 from (Bloomfield and Arthur, 2019), with dashed curves function approximations. (b) The probability of eradication success, 
P(E) = f3(cs), as expenditure on surveillance (x-axis) increases (function Eq. (20)). Open dots identify the 5th and 95th percentiles for the specific trapping densities in  
Table 2 from (Bloomfield and Arthur, 2019), with dashed curves function approximations. Parameter values from (Bloomfield and Arthur, 2019): cp = 0, p = 1/65, 
δ = 0.07, CL = 1.6 × 109 (dollars), for P(E), a3 = 2.39439, b3 = 0.7143211, c3 = 0.9314516, d3 = 12.46908, and for CE, a2 = 2.514612, b2 = 1.956207, 
c2 = 20.25718, d2 =  − 12.14324. 
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(23). Fig. 4(b) illustrates the nonlinear manner in which the arrival 
probability influences optimal surveillance expenditure. Arrival events 
for AGM are rare (Bloomfield and Arthur, 2019; Bloomfield et al., 
2018), and this result, which establishes how rare arrival events can 
influence outcomes, is a key strength of analytical formulations — an 
attribute often difficult to capture with simulations. Fig. 4(c) illustrates 
how the optimal trap-spacing is likely to vary with uncertainty in the 
costs of eradication (CE) and naturalisation (CL) — neither of which can 
be estimated with certainty. For an expected value of CL (vertical dotted 
line at 1.6 × 109), results suggest that, at worst, the optimal trap- 
spacing could approach 2 km, while at best it approaches 5–6 km (see  

Table 2). Acknowledging that the percentile functions in Fig. 2(b) are 
rough approximations, results nevertheless demonstrate that variation 
in the eradication probability and naturalisation costs can be highly 
influential with a nonlinear response in the optimal trap-spacing. 

Determining the probability of ‘pest-freedom’ does not require the 
cost model. Probabilities are illustrated in Fig. 4(d) for a fixed value of 
p, and established by noting that inter-arrival times and the probability 
of eradication for each arrival are independent processes. An estimate 
for the probability that, regardless of the number of pest introductions 
within a fixed number of years N, all incursions are successfully era
dicated and the area is ‘AGM-free’ is (Appendix B.4) 

Fig. 3. (a) A comparison between total expected present-value costs defined by Eq. (19) (dashed curve) and using simulations (solid points), as expenditure on 
surveillance (trap-spacing) increases, assuming functions Eq. (20). The minimum total expected cost and associated optimal surveillance expenditure (dotted line) is 
identified using Eq. (22), and the dash-dotted line identifies total costs without surveillance or response to an incursion. (b) The same comparison as in (a) but for 
variance (Eq. (15)). Parameter values from (Bloomfield and Arthur, 2019): cp = 0, p = 1/65, δ = 0.07, CL = 1.6 × 109 (dollars). Parameter values for P(E) and CE 

are provided in Fig. 2. 

Fig. 4. (a) For a range of plausible discount rates δ (x-axis), optimal trapping expenditure cs
∗ (minimum expected present-value costs) is plotted for a variety of 

annual arrival probabilities p (line-styles). (b) For a range of plausible annual pest-arrival probabilities p (x-axis), optimal surveillance expenditure, cs
∗, is plotted. (c) 

Curves illustrate variation in the optimal surveillance cost (cs
∗), with variation in the estimated cost of naturalisation CL (x-axis) and probability of eradication P(E) 

(line-styles for the three curves in Fig. 2(b)). Dotted lines identify the case for CL = 1.6 × 109 (dollars). (d) For each time period of N years (line-styles), black curves 
illustrate the probability that any AGM introductions that may occur during this period are successfully eradicated (Eq. (24)), while grey lines of the same line-style 
provide the associated probability there are no introductions during this period (P(E) = 0 in Eq. (24)). Parameter values from (Bloomfield and Arthur, 2019) (unless 
otherwise specified): cp = 0, p = 1/65, δ = 0.07, CL = 1.6 × 109 (dollars). Parameter values for P(E) and CE are provided in Fig. 2. 
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+p p EP(1 ( )) ,N (24) 

with =p f c( )p1 (fixed in this figure) and P(E) = f3(cs). The probability 
of ‘freedom’ Eq. (24) clearly declines with the number of years N and 
with decreasing surveillance effort cs (Fig. 2(c)). The probability of no 
arrivals is given by (1 − p)N (grey lines in Fig. 4(c)), while the case with 
no trapping is established by setting cs = 0 in Eq. (24) (intersection 
between curve and y-axis in Fig. 4(d)). For the parameter scenario 
considered, results suggest that surveillance expenditure above 1 mil
lion dollars (approximately) offers little benefit to the probability of 
‘AGM-free’ status, which equates to a trap spacing of 3 or more km 
(Table 2). Results provide a consistent generalisation for the simulated 
scenarios in (Bloomfield and Arthur, 2019). 

We now incorporate prevention measures, not considered in 
(Bloomfield and Arthur, 2019). For the example application, it is rea
sonable to assume that annual expenditure on prevention relates 

directly to the proportion, ρ, of arriving containers and/or ships sear
ched before entry (RRRA Unit, 2016), so that, approximately, the an
nual probability of pest-arrival is reduced from p0 (without prevention 
measures) to (Appendix E) 

= =p p1 e 1 (1 ) ,p( ln(1 ))(1 )
0

(1 )0 (25) 

where γ captures the search-sensitivity and ρ is the proportion of con
tainers searched. 

For this application the relationship between annual expenditure on 
prevention (cp) and arrival probability (p) is unknown. We contrive two 
plausible associations for illustrative purposes. Following (RRRA Unit, 
2016), who suggest a linear relationship for this application, we set 
γρ ≈ kcp (dashed curve in Fig. 5(e)). However, because a linear re
lationship is unlikely we also consider the scenario that an increase in 
the proportion searched becomes progressively more difficult to 

Fig. 5. (a) Surface for the total expected present-value costs using the full model Eq. (19) as expenditure on prevention measures and post-border-surveillance (trap- 
spacing) vary, assuming the near-linear relationship between expenditure on prevention and the probability of pest-arrivals (dashed curve in (e)). (b) The same 
comparison as in (a) but for variance (Eq. (15)). (c) Surface for the total expected present-value costs using the full model Eq. (19) as expenditure on prevention 
measures and post-border-surveillance (trap-spacing) vary, assuming the exponential relationship between expenditure on prevention and the probability of pest- 
arrivals (solid curve in (e)). Vertical black lines identify the optimal solution. (d) The same comparison as in (d) but for variance (Eq. (15)). In all cases functions Eq.  
(20) are assumed, and costs given in millions of dollars, with variance given in dollars ×1012. (e) Alternative relationships between expenditure on prevention 
measures (cp) and the probability of at least one pest-arrival per year (p): Eq. (26) (solid curve), and a near-linear relationship (dashed curve). (f) Comparison of total 
expected costs associated with a limited budget (Eq. (17)) for a budget of B = 6,4.95,4,3 or 2 million dollars. Results assume the exponential relationship between 
expenditure on prevention and the probability of pest-arrivals (solid curve in (e)). Parameter values: p0 = 0.1, δ = 0.07, CL = 1.6 × 109 (dollars). Parameter values 
for P(E) and CE are provided in Fig. 2 and k = 0.5 × 10−6 in Eq. (26), or k = 0.25 × 10−6 in the linear case. 
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achieve with further expenditure — that is, an increase in the propor
tion searched becomes progressively more expensive (solid curve in  
Fig. 5(e)). In this case we assume 

1 e ,kcp

so that the relationship between expenditure and annual arrival prob
ability Eq. (25) becomes 

= =p f c p( ) 1 (1 ) .p1 0
e kcp

(26) 

In both cases, k is a calibration constant. 
For the linear relationship, Fig. 5(a)–(b) provides the associated 

surfaces for expected present-value costs and variance (analogous to  
Fig. 3). As expected, results demonstrate that the lowest expected cost is 
achieved on the boundary of the solution space, with, for this example, 
all expenditure on prevention reducing the probability of an arrival to 
zero. When the nonlinear relationship Eq. (26) is assumed, Fig. 5(c)–(d) 
illustrates the associated surfaces, with the minimum total expected 
cost and associated optimal expenditure on prevention and surveillance 
identified by the minimum across the surface in Fig. 5(c). In this case a 
minimum total expected cost (cp

∗ = 4.31 × 106 and cs
∗ = 0.64 × 106 

dollars) is established from Eq. (21) and identified by the vertical black 
lines. Results illustrate a tradeoff between the strategies of prevention 
and post-border trapping for the full model. 

It is common that surveillance budgets are constrained and this can 
affect optimal results. For a range of fixed budgets (legend), Fig. 5(f) 
illustrates how total expected costs vary with surveillance expenditure 
(Eq. (17) with budget B), where the remaining budget is allocated to 
prevention measures. The solid curve provides the minimum cost in  
Fig. 5(c), illustrating how both higher and lower expenditures lead to 
an increase in the expected costs, and that lowering the budget has a 
nonlinear effect on total costs. For this application, however, trap- 
spacing for which the minimum expected cost is achieved remains 
consistent (Table 2). These results can also be deduced from Fig. 5(c) 
directly, by restricting prevention and surveillance costs, and alter
native constraints can be explored similarly using Eqs. (16)–(17). 

We do not extend the sensitivity analysis further or interpret these 
results because data were not available to parameterise the relationship 
between expenditure on prevention measures and pest-arrival rates. 
Analysis, however, would follow similarly to that undertaken above for 
the one dimensional case. 

5. Discussion 

Ecological systems are highly complex, and the costs and con
sequences of pest or pathogen infestations extremely difficult to predict. 
Simulation approaches provide a powerful tool with which to model 
complexity; however, adequate supporting data are often unavailable 
or difficult to quantify. Tractable formulations with less complexity can 
offer a more appropriate analysis under uncertainty, or can complement 
simulation approaches with the potential to facilitate a more robust 
interpretation of results — as illustrated in this paper. 

The stochastic economic model formulated in this paper offers a 
tractable framework to guide the partitioning of surveillance resources, 
which can be adapted to data availability and pest characteristics, and 
for which the level of complexity equals, or surpasses, many simulation 
models currently applied to similar problems in the literature. Our 
framework is constructed for general applicability to a variety of these 
problems. Such frameworks provide a fast and accessible means of 
exposing the effect of parameter interactions; they capture the influence 
of rare stochastic events; alternative cost functions, pest-arrival dis
tributions and surveillance efficiencies are easily incorporated; 

management strategies can be readily compared; and transferability 
between applications is straightforward. We also note that the quar
antine of regions is comparable to the implementation of border-mea
sures that reduce pest-arrival rates, and thus our framework is also 
relevant to biosecurity resource partitioning problems of that type (see 
(Moore et al., 2010), for example). Further, the algebraic expression for 
variance enables uncertainty to be incorporated into the decision- 
making process in a systematic way — for example, by combining the 
framework with concepts of portfolio theory (Barnes et al., 2019). 

Greater complexity could be included in the proposed models, such 
as, a variety of pest types and/or further stochasticity in processes and 
cost functions. Or included to address specific biosecurity questions. For 
highly complex systems, however, analytical formulations are not ef
ficient, or even possible to determine in a tractable form — simulations 
are more appropriate. Nevertheless, for systems with a level of com
plexity similar to that considered here, algebraic expressions can re
place simulations, can be combined with simulation results as in our 
application, or can be used to validate simulation outcomes that are 
difficult to test. 

Finally, we highlight that national biosecurity decisions are in
tended to serve the long-term public good, including communities and 
the environment, while present-value economic approaches maximise 
cost-efficiency and can be misleading when considered in isolation. In 
this light, we propose the framework as a versatile means of economic 
assessment that contributes to one facet of an objective decision-making 
process. 
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