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Abstract

Large Language Models (LLMs) have demon-001
strated impressive performance across vari-002
ous mathematical benchmarks. However, con-003
cerns persist over whether these high scores004
indicate genuine mathematical capability or005
merely superficial pattern recognition. Fur-006
thermore, we contend that the commonly used007
metric of final answer accuracy fails to cap-008
ture the performance of LLMs on nuanced fac-009
tors, as it reflects a composite outcome influ-010
enced by multiple factors. This motivates us011
to introduce SMART (Self-Validating Multi-012
Dimensional Assessment Framework), which013
deconstructs the problem-solving process into014
four key dimensions: understanding, reasoning,015
arithmetic, and reflection & refinement. Cru-016
cially, SMART does not evaluate based on final017
answer accuracy but instead designs separate018
tasks and evaluation methods for each dimen-019
sion, enabling detailed and controllable assess-020
ments that decouple individual factors. Addi-021
tionally, we propose a self-validating mecha-022
nism that iteratively generates and verifies test023
data, ensuring benchmark reliability and scala-024
bility. We evaluate 13 open-source and closed-025
source LLMs using SMART, and our findings026
reveal that final answer accuracy is insuffi-027
cient for evaluating true mathematical problem-028
solving capabilities. Our analysis highlights029
symbolic reasoning and reflection & refinement030
as the key factors that distinguish LLM perfor-031
mance. We hope these insights will provide032
valuable guidance for advancing LLMs’ true033
mathematical competence, and we will release034
our code and benchmark upon acceptance.035

1 Introduction036

Large language models (Achiam et al., 2023; Wei037

et al., 2022) have demonstrated impressive perfor-038

mance across various natural language processing039

tasks and are increasingly being integrated into040

real-world applications (Singhal et al., 2023; Wang041

et al., 2024; Jiang et al., 2024), showcasing their042
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Figure 1: Illustration of the SMART framework for
evaluating LLMs. According to Polya’s theory, humans
solve mathematical problems through four steps: under-
standing the problem, devising a plan, carrying out the
plan, and looking back. Based on these steps, we define
four evaluation dimensions and corresponding tasks to
systematically assess LLMs.

ability to perform complex reasoning with human- 043

level accuracy (OpenAI, 2024; Guo et al., 2025). 044

Given their widespread deployment, it is essential 045

to assess LLMs’ reasoning abilities to ensure their 046

reliability, and effectiveness in real-world tasks. 047

Numerous benchmarks (Cobbe et al., 2021; Ling 048

et al., 2017; Patel et al., 2021; Miao et al., 2020; 049

Koncel-Kedziorski et al., 2016) have been proposed 050

to evaluate LLMs on mathematical reasoning tasks. 051

However, a significant concern with these public 052

benchmarks is their susceptibility to data contam- 053

ination, which can lead to inflated performance 054

and skewed evaluations (Oren et al., 2023; Zhu 055

et al., 2023, 2024; Li et al., 2024a). Moreover, 056

most benchmarks primarily focus on final answer 057

accuracy, neglecting the fact that this metric is in- 058

deed an aggregate effect of multiple factors, and 059

fail to adequately measure the underlying reasoning 060

process. (Cobbe et al., 2021; Ling et al., 2017; Patel 061

et al., 2021; Miao et al., 2020; Koncel-Kedziorski 062

et al., 2016). With the rapid advancement of LLMs, 063

traditional accuracy-based metrics have reached sat- 064

uration, limiting the effectiveness of final-answer 065

accuracy as a differentiating metric. For instance, 066
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Llama-3.1-70B achieves an impressive 95.1% ac-067

curacy on the GSM8k dataset (AI@Meta, 2024).068

Thus, it is imperative to broaden the scope of evalu-069

ation metrics to not only assess the accuracy of the070

answers but also to evaluate the depth of reason-071

ing. Furthermore, the construction of high-quality072

benchmark datasets is resource-intensive, requiring073

significant human labor and time for annotation074

(Mirzadeh et al., 2024; Kurtic et al., 2024). When075

leveraging advanced LLMs like GPT-4o for data076

generation, ensuring the correctness and quality of077

the generated content remains a major challenge,078

as LLMs may produce errors or inconsistencies.079

To address this, existing approaches often rely on080

human annotators to rigorously review and refine081

the generated question variations and answers (Zhu082

et al., 2024; Zheng et al., 2023). However, this083

manual refinement process is not scalable, creating084

a significant obstacle to generating reliable, high-085

quality datasets at scale.086

In light of these issues, we propose a novel eval-087

uation framework called the Self-Validating Multi-088

Dimensional Assessment Framework (SMART).089

Inspired by Polya’s problem-solving theory (Polya,090

2014), we deconstruct the process of tackling math-091

ematical problems into four key evaluation dimen-092

sions: understanding, reasoning, arithmetic, and093

reflection & refinement, each addressing a distinct094

aspect of problem-solving performance. We de-095

sign dimension-specific tasks with well-defined096

expected outputs for each evaluation dimension097

of SMART, as shown in Fig. 1. This hierarchi-098

cal structure allows SMART to break down the099

complex cognitive task in depth and assess differ-100

ent aspects of mathematical problem-solving inde-101

pendently. This comprehensive evaluation frame-102

work offers valuable insights into the strengths and103

limitations of models, guiding improvements in104

both algorithmic design and applications. Further-105

more, we introduce a self-validating mechanism106

that automatically verifies the quality of generated107

dimension-specific testing data. This iterative pro-108

cess continues until the generated dataset meets the109

required standards, ensuring both scalability and110

reliability of the SMART benchmark.111

We evaluate 13 recently released open- and112

closed-source LLMs of various scales using our113

SMART framework. Experimental results reveal114

that while all models perform well in the under-115

standing dimension, they struggle significantly in116

the reasoning and reflection & refinement dimen-117

sion. Additionally, we investigate the key factors118

influencing performance across different dimen- 119

sions. Finally, we deeply analyze the relationship 120

between final answer accuracy and the decomposed 121

dimensions, and propose a new metric for measur- 122

ing the truly mathematical capability of LLMs. 123

Our main contributions are as follows: 124

• We propose SMART, a self-validating multi- 125

dimensional assessmemt framework designed 126

to breakdown the problem-solving process of 127

LLMs into four key dimensions: understanding, 128

reasoning, arithmetic, and reflection & refine- 129

ment. This framework allows for a deeper under- 130

standing of the cognitive processes involved in 131

problem-solving, rather than solely emphasizing 132

the accuracy of the final answer. 133

• We introduce a self-validating mechanism that 134

automatically verifies the quality of generated 135

test data, reducing reliance on human annota- 136

tions. This self-validating approach ensures the 137

benchmark’s scalability and reliability. 138

• We conduct extensive evaluation and highlight 139

significant disparities in the mathematical ca- 140

pabilities of different LLMs, with a detailed, 141

dimension-specific, interpretable analysis. We 142

anticipate that these insights will serve as a valu- 143

able foundation for future advancements in the 144

development and optimization of LLMs. 145

2 Related Work 146

Mathematic benchmark. Numerous mathemat- 147

ical benchmarks with varying levels of difficulty 148

have been developed to explore the upper bound 149

of LLMs’ mathematical capabilities. These bench- 150

marks range from grade-school-level datasets, like 151

GSM8K (Cobbe et al., 2021), to high-school-level 152

datasets, like MATH (Hendrycks et al., 2021), and 153

extend to expert-level datasets, like FrontierMath 154

(Glazer et al., 2024). Their scope covers a broad 155

range of mathematical domains, including geome- 156

try, number theory, and real analysis. However, 157

despite the increasing difficulty of these bench- 158

marks, it remains unclear whether LLMs truly com- 159

prehend mathematical concepts or merely rely on 160

probabilistic pattern-matching to generate correct 161

answers (Mirzadeh et al., 2024). Furthermore, the 162

widespread use of these benchmarks increase the 163

risk of data contamination, potentially inflating per- 164

formance evaluations (Li et al., 2024a). 165

Dynamic evaluation. To address these concerns, 166

recent studies have explored dynamic evaluation ap- 167
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A robe takes 2

bolts of blue fiber 

and half that much 

white fiber. How 

many bolts in total 

does it take?

Seed Question

INPUT:

Seed question + Clarify the 

given information in the 

question and identify the 

problem to solve.

OUTPUT:

The problem involves 

determining the total amount 

of fabric needed to make a 

robe, using two different 

colors of fiber.

INPUT:

Seed question + Solving the 

problem with SMT-LIB formula.

OUTPUT:

(declare-fun a () Real)

(declare-fun b () Real)

(declare-fun c () Real)

(assert (= a 2))

(assert (= b (/ a 2)))

(assert (= c (+ a b)))

(get-value (c))

INPUT:

What is the value of c if a is 

equal to 2, b is equal to a 

divided by 2, and c is equal to 

the sum of a and b?

OUTPUT:

3

I1: Seed question + CoT (It takes 2/2=<<2/2=1>> 

1 bolt of white fiber. So, the total amount of fabric 

is 2+2=<<2+2=4>>4 bolt of fabric. #### 3.) + 

Identify which sentence contains errors? 

O1: Sentence 1

I2: Seed question + CoT + Provide the corrected 

solution steps with the error fixed.

O2: It takes 2/2=<<2/2=1>>1 bolt of white fiber. 

So, the total amount of fabric is 2+1 = 

<<2+1=1>>3  bolts of fabric.

I3: Seed question + O2 + Answer the question 

again.

A3: 3

Context Extraction Symbolic Formalization Numeric Calculation Error Correction

3

Final AnswerUnderstanding Reasoning Arithmetic Reflection & Refinement

Figure 2: An overview of the SMART framework for evaluating the mathematical problem-solving process, which
is broken down into four distinct steps: understanding, reasoning, arithmetic, and reflection & refinement. Each step
is evaluated using dimension-specific task and metrics, ensuring a thorough and comprehensive assessment of the
model’s problem-solving capabilities.

proaches (Zhu et al., 2023, 2024; Fan et al., 2023),168

which generate adaptive test data based on pre-169

defined transformation rules. For example, GSM-170

Plus (Li et al., 2024b) introduces eight perturba-171

tion strategies, such as numerical and arithmetic172

variations, while GSM-Symbolic (Mirzadeh et al.,173

2024) generates diverse problem variants using174

symbolic templates. These approaches aim to miti-175

gate data leakage and improve robustness in assess-176

ments. Despite these advancements, current eval-177

uation methodologies remain limited. They pre-178

dominantly focus on final-answer accuracy, which179

fails to capture an LLM’s reasoning process in a180

systematic manner. Additionally, they do not ex-181

plicitly assess the diverse cognitive skills required182

for mathematical problem-solving, nor do they pro-183

vide fine-grained insights into the underlying logi-184

cal reasoning steps.185

These limitations underscore the need for a186

comprehensive, interpretable, and scalable eval-187

uation framework that can decompose the problem-188

solving process, assess reasoning at multiple lev-189

els, and minimize reliance on human verification.190

To bridge this gap, we introduce SMART, a self-191

validating multi-dimensional assessment frame-192

work designed to systematically evaluate LLMs’193

mathematical reasoning abilities while addressing194

benchmark reliability and scalability challenges.195

3 Methodology196

We introduce SMART, a novel evaluation paradigm197

inspired by Polya’s problem-solving theory (Polya,198

2014). SMART systematically assesses the rea-199

soning process in solving mathematical word prob-200

lems by deconstructing problem-solving process201

into a sequence of logical and systematic steps, 202

as illustrated in Fig. 2. The framework evaluates 203

mathematical problem-solving across four key di- 204

mensions: understanding, reasoning, arithmetic, 205

and reflection & refinement. To minimize cross- 206

dimensional interference, we design distinct evalu- 207

ation tasks and metrics tailored to each dimension, 208

ensuring a more granular and interpretable analysis 209

of LLMs’ problem-solving abilities. 210

3.1 SMART Framework 211

3.1.1 Understanding 212

The first dimension of the SMART framework is 213

understanding, which assesses how well LLMs can 214

comprehend the problem with clarity and complete- 215

ness before attempting to solve it. To measure this, 216

we design a context extraction task that asks LLMs 217

to identify the given information or conditions in 218

the problem and clearly determine what needs to 219

be solved. This task focuses solely on assessing 220

LLMs’ ability on understanding of the problem, 221

without requiring reasoning or calculation. The 222

context extracted by GPT-4o (Achiam et al., 2023) 223

serves as the ground truth. To evaluate the under- 224

standing dimension performance of LLMs, we use 225

sentence similarity (Reimers, 2019) between the 226

contexts generated by the models and the ground 227

truth as the understanding dimension metric. 228

3.1.2 Reasoning 229

The second dimension of the SMART framework 230

is reasoning, which evaluates the ability of LLMs 231

to construct a coherent and logical plan for solv- 232

ing a given problem. To assess this, we design a 233

symbolic formalization task where LLMs are asked 234

to model the math word problems via formal sym- 235
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bolic expressions. This task measures the LLM’s236

mathematical modeling ability to capture the prob-237

lem’s logical structure rather than solving it.238

We adopt the SMT-LIB language (Barrett et al.,239

2010), a widely used standardized notation, which240

is compatible with SMT solvers such as Z3241

(De Moura and Bjørner, 2008), SymPy (Meurer242

et al., 2017), and MathSAT (Cimatti et al., 2013).243

These solvers can compute results from the gener-244

ated symbolic formulas, allowing us to compare245

the results of different SMT-LIB expressions to the246

ground truth answers of the problems. We calcu-247

late the accuracy of the correct SMT-LIB formula248

results as the reasoning metric, which serves as an249

indicator of how well the model has captured the250

logical structure and formulation of the problem.251

In our evaluation, LLMs are asked only to gener-252

ate the logical formulas, without being required to253

compute the final answer. By decoupling reasoning254

from arithmetic computation, we ensure that the255

evaluation captures the LLM’s true reasoning ca-256

pabilities. By focusing on symbolic formalization,257

we assess the model’s ability to identify and repre-258

sent the underlying logic, offering a more precise259

evaluation of reasoning performance.260

3.1.3 Arithmetic261

The arithmetic dimension assesses the model’s abil-262

ity to perform pure numerical calculations involv-263

ing basic operations such as addition, subtraction,264

multiplication, and division. Unlike the symbolic265

formalization task, where LLMs are required to266

generate SMT-LIB formulas from the seed ques-267

tion, this phase directly evaluates the model’s abil-268

ity to solve arithmetic problems that follow the269

same reasoning logic and yield the same final an-270

swer as the seed question.271

To generate these arithmetic problems, we uti-272

lize GPT-4o to convert the SMT-LIB formula into273

a corresponding arithmetic expression. This simpli-274

fication reduces the math word problem to one that275

focuses solely on numerical values and their rela-276

tionships, omitting any background information. In277

Fig. 2, the numeric calculation task is to compute278

the sum of a and b if a = 2 and b = a/2.279

This design ensures that the numeric calculation280

task focuses exclusively on basic mathematical op-281

erations, effectively isolating the evaluation of arith-282

metic capabilities while minimizing the influence283

of other dimensions, such as reasoning and under-284

standing. As a result, this task provides a precise285

and targeted assessment of the model’s arithmetic286

proficiency, accurately reflecting its numerical com- 287

putation abilities. 288

3.1.4 Reflection & Refinement 289

The final dimension of the SMART framework is 290

reflection and refinement, which evaluates LLMs’ 291

ability to review their problem-solving process and 292

improve their answers through self-correction. In 293

the error correction task, we deliberately introduce 294

incorrect steps into a chain-of-thought (CoT) solu- 295

tion (Wei et al., 2022), such as altering 2 + 2 = 4 296

to 2 + 1 = 3. LLMs are then tasked with iden- 297

tifying the erroneous statements, correcting them, 298

and generating a refined answer. If the LLMs fail 299

to detect all errors in the CoT, they will not pro- 300

ceed to the subsequent refinement task. LLMs with 301

strong reflection and refinement capabilities can 302

enhance their performance and stability through 303

self-correction, demonstrating the ability to itera- 304

tively improve their problem-solving processes. 305

3.2 The Self-validating Mechanism 306

3.2.1 Dataset construction 307

To construct the SMART benchmark, we aggre- 308

gate five widely used math word problem datasets: 309

GSM8k (Cobbe et al., 2021), SVAMP (Patel et al., 310

2021), ASDiV (Miao et al., 2020), AQuA (Ling 311

et al., 2017), and MAWPS (Koncel-Kedziorski 312

et al., 2016). These datasets collectively form the 313

seed question dataset, comprising 6,862 testing 314

samples. Using GPT-4o, we generate variations 315

of the seed questions tailored to the evaluation di- 316

mensions of the SMART framework, with each 317

variation designed to test a specific aspect of the 318

problem-solving process. Together, the seed ques- 319

tions and their dimension-specific variants consti- 320

tute the SMART benchmark, which includes a total 321

of 34,310 testing samples. Further details on the 322

data generation process and examples can be found 323

in the Appendix B. 324

3.2.2 Dataset Verification 325

While many prior works (Wang et al., 2023; Zhu 326

et al., 2024; Li et al., 2024a,b,c) have employed 327

LLMs to generate variations of seed questions, they 328

often require extensive manual verification by hu- 329

man annotators to ensure the correctness of both 330

the questions and their ground-truth answers. This 331

manual approach is resource-intensive and limits 332

scalability. To overcome this limitation, we pro- 333

pose a self-validating mechanism that automates 334

the verification of generated datasets and their an- 335
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Task Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6
SMT-LIB 86.29 93.37 96.88 97.81 98.17 98.92
Context 88.72 95.78 98.11 99.21 \ \
Arithmetic Problem 85.21 92.42 95.66 97.24 98.32 99.05

Table 1: The pass rate of self-validating process across six iterations.

notations, reducing reliance on human intervention336

while maintaining accuracy and consistency.337

For the context extraction task, our self-338

validating mechanism decomposes the question339

into a SMT-LIB formula and context, then recom-340

bines them to regenerate the question, enabling a341

cycle consistency check. The SMT-LIB formula is342

validated using the Z3 solver to ensure it produces343

the same answer as the original seed question. Sub-344

sequently, the context and the validated SMT-LIB345

formula are input into an LLM to regenerate a math346

word problem. If the regenerated question yields347

the same answer as the seed question, the context348

is deemed valid, as it contains clear and complete349

background information about the problem. Other-350

wise, the context is discarded and regenerated until351

it meets this consistency criterion.352

For the numeric calculation task, LLMs are re-353

quired to re-extract the SMT-LIB formula from354

the generated arithmetic question. The generated355

arithmetic question is deemed consistent if the solu-356

tion obtained from the extracted SMT-LIB formula357

matches the answer to the original seed question.358

Otherwise, it is discarded and regenerated until359

the extracted formula aligns with the original seed360

question’s solution.361

Through this self-validating mechanism, we gen-362

erate high-quality SMT-LIB formulas, context ex-363

tractions, and arithmetic problems for all seed ques-364

tions. Tab. 1 presents the pass rates for generating365

testing data during the self-validation process. Af-366

ter six iterations, a small number of failed cases are367

manually corrected to ensure benchmark reliability.368

4 Experiments369

4.1 Experimental Setup370

We evaluate eight open-source models of varying371

sizes, ranging from 7B to 72B parameters, includ-372

ing Llama3 (AI@Meta, 2024), Qwen2.5 (Yang373

et al., 2024; Team, 2024), Mistral (MistralAITeam,374

2024a,b), Phi4 (Abdin et al., 2024), and Gemma2375

(Team et al., 2024). Additionally, we assess five376

state-of-the-art closed-source models, including377

o1-mini (OpenAI, 2024), GPT-4o (Achiam et al.,378

2023), Gemini 1.5 Pro (Reid et al., 2024), Qwen379

Max (Team, 2024), and DeepSeek-V3 (Liu et al., 380

2024). To ensure a fair comparison, we set the 381

generation temperature to 0.1 for all models. 382

4.2 Performance of LLMs on the SMART 383

Benchmark 384

We evaluate 13 open-source and closed-source 385

models on the SMART benchmark, and the re- 386

sults are presented in Table 2. The final answer 387

dimension measures the accuracy of the model’s 388

direct response to the problem (ACC@An). The 389

understanding dimension quantifies the similarity 390

between the extracted context and the ground truth 391

context (SIM@Un). In the reasoning dimension, 392

we use the Z3 solver to verify the correctness of 393

the generated SMT-LIB formula, with the accuracy 394

of the SMT-LIB output serving as the reasoning 395

evaluation metric (ACC@Reason). The arithmetic 396

dimension evaluates the accuracy of the model in 397

solving pure arithmetic problems (ACC@Ar). The 398

Reflection & Refinement (R & R) dimension com- 399

bines both mistake detection and correction, with 400

accuracy calculated as (ACC@RR). Specifically, 401

the reflection dimension measures the model’s abil- 402

ity to identify mistakes (ACC@Reflect), while the 403

refinement dimension evaluates the accuracy of 404

generating refined answer (ACC@Refine). More 405

details and examples can be found in Appendix C. 406

The SMART benchmark reveals significant per- 407

formance gaps among LLMs. Open-source mod- 408

els with 8B parameters exhibit poor score in rea- 409

soning, arithmetic, and reflection & refinement di- 410

mensions. As the scale of LLMs increases, the 411

performance across these dimensions improves, 412

aligning with the empirical findings of the scaling 413

law (Kaplan et al., 2020). For closed-source mod- 414

els, while both DeepSeek-V3 and o1-mini achieve 415

saturated scores in ACC@An, DeepSeek exhibits 416

a significant gap in ACC@Reason (75.17%) and 417

ACC@RR (19.09%) when compared to o1-mini, 418

which scores 92.84% in ACC@Reason and 61.21% 419

in ACC@RR. Gemini1.5-pro shows a 12.29% 420

lower ACC@An than DeepSeek-V3, primarily 421

due to its 15.55% lower score in ACC@Ar. 422

Thus, the SMART benchmark effectively illustrates 423
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Model Answer Understanding Reasoning Arithmetic R & R Reflection Refinement
ACC@An SIM@Un ACC@Reason ACC@Ar ACC@RR ACC@Reflect ACC@Refine

Open-source models
Qwen2.5-7B 57.75 81.62 31.04 55.02 3.67 4.08 90.50
Llama3.1-8B 63.16 76.47 25.58 60.78 0.57 4.41 12.87
Mistral-Nemo 70.33 83.69 31.79 78.61 6.21 8.62 72.08
Phi-4-14B 93.66 79.47 71.47 95.48 7.22 20.40 35.43
Mistral-Small 70.83 83.66 31.57 78.59 11.63 15.78 71.66
Gemma2-27B 68.62 81.44 61.42 62.36 13.58 14.47 93.86
Qwen2.5-72B 77.48 83.22 79.85 76.48 27.06 28.11 96.31
Llama-3.3-70B 94.08 79.56 76.21 95.92 36.38 37.62 96.71

Closed-source models
o1-mini 94.23 88.56 92.84 96.52 61.21 61.81 99.02
GPT-4o 84.86 90.36 86.29 86.84 32.76 33.44 97.96
Gemini1.5-pro 81.34 80.21 81.78 80.12 29.22 30.08 97.14
Qwen-max 79.23 82.98 76.82 75.16 21.33 22.68 94.04
DeepSeek-V3 93.53 85.19 75.17 95.67 19.09 19.78 96.53

Table 2: The performance of open and closed-source models on SMART benchmark.

dimension-specific performance gaps that are not424

captured by previous benchmarks.425

Data contamination. In the arithmetic dimen-426

sion, we ask LLMs to solve pure arithmetic427

problems that remove the background informa-428

tion and simplify the relationships between vari-429

ables, in contrast to math word problems. There-430

fore, LLMs should theoretically achieve higher431

ACC@Ar scores than ACC@An. However, both432

Qwen2.5-72B and Gemini1.5-pro exhibit lower433

ACC@Ar scores than ACC@An, suggesting the434

possibility of data contamination.435

Reasoning and reflection & refinement as the436

bottleneck. Most LLMs achieve over 80%437

SIM@Un in the context extraction task, indicating438

that they can grasp the relevant information of the439

question and interpret the problem statement. How-440

ever, the scores for the reasoning and reflection &441

refinement dimensions are significantly lower than442

those for other dimensions. For example, Llama3.3-443

70B achieves 76.21% ACC@Reason and 36.38%444

ACC@RR, while reaching 95.92% in ACC@Ar.445

Although DeepSeek-V3 achieves similar scores to446

o1-mini in ACC@An and ACC@Ar, its perfor-447

mance in reasoning and R & R lags significantly448

behind that of o1-mini. Specifically, ACC@Reason449

for DeepSeek-V3 is 17.67% lower than o1-mini,450

and ACC@RR is 42.12% lower. These findings451

highlight that the primary bottleneck in mathemat-452

ical problem-solving lies in the reasoning and re-453

flection & refinement dimensions.454

4.3 How Does Task Difficulty Impact455

Different Dimensions of SMART?456

In this section, we investigate the factors influ-457

encing the performance of each dimension in the458

SMART framework. To do so, we generate sev- 459

eral new, dimension-specific questions with vary- 460

ing difficulty levels and evaluate the performance 461

of LLMs on this new testing data. 462

Difficulty setting. For the understanding dimen- 463

sion, we progressively introduce irrelevant sen- 464

tences from other problems as noise into the seed 465

question. The number of noise sentences controls 466

the difficulty of the context extraction task. For the 467

reasoning dimension, we define the complexity lev- 468

els of questions based on the number of operations 469

(e.g., +,−,×,÷,mod) and classify the questions 470

from the symbolic reasoning task into four levels. 471

In the arithmetic dimension, we alter the number 472

of digits rather than the magnitude of the numbers 473

to generate different levels of complexity. In the 474

reflection & refinement dimension, the difficulty is 475

determined by the number of mistakes in the chain- 476

of-thought solution. Further details of the difficulty 477

settings are presented in the Appendix D.2. 478

Impact of task difficulty on LLMs. Fig. 4 illus- 479

trates the performance of five models across dif- 480

ferent difficulty settings. As the complexity level 481

increases, the performance across all dimensions 482

decreases sharply, indicating that our settings ef- 483

fectively control the difficulty of the testing data. 484

The SIM@Un drops significantly at first and then 485

generally levels off as the number of noise sen- 486

tences increases. GPT-4o achieves only 40% in 487

ACC@Reason and ACC@Ar when the number of 488

reasoning steps exceeds six or the number of digits 489

reaches nine. Therefore, mathematical problems 490

with more reasoning steps and greater number of 491

digits present a significant challenge for LLMs. 492

The primary reason for the drop in ACC@RR as 493

the number of mistakes in the CoT increases is 494
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Figure 3: The performance of dimensions under different question difficulties.

that LLMs fail to detect all the mistakes. However,495

ACC@Refinement remains over 90% for GPT-4o496

even when the CoT contains four mistakes.497

4.4 How do evaluation dimensions influence498

the performance drop of LLMs on499

questions with perturbations?500

Many studies have demonstrated that LLMs experi-501

ence significant performance drops when evaluated502

on question variations generated through perturba-503

tions (Li et al., 2024b; Zhu et al., 2023; Li et al.,504

2024a). However, perturbations that cause perfor-505

mance drops may affect multiple dimensions si-506

multaneously. For example, adding operations may507

impact both the reasoning and arithmetic capabil-508

ities, making it difficult to pinpoint the primary509

factors driving the degradation.510

In this section, we measure the performance511

change across the SMART dimensions when three512

perturbations (Li et al., 2024b) are applied to the513

seed questions. Table 3 shows that all dimensions514

experience noticeable PDR due to the perturbations.515

For the noise insertion perturbation, the understand-516

ing dimension is the most affected, with a 33.5%517

PDR for Llama3.3-70B. Both operation and nu-518

merical variation perturbations lead to significant519

PDR in the arithmetic dimension. Additionally, the520

reasoning and arithmetic dimensions of GPT-4o521

are more susceptible to perturbations than those of522

Llama3.3-70B, with GPT-4o experiencing higher523
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Figure 4: The confusion matrix of final answer and other
dimensions. P means Positive, and N means Negative.

PDR across these dimensions. 524

4.5 Is the Final Answer Accuracy Reliable for 525

Measuring mathematical Capability? 526

We present the confusion matrix for final answer 527

and other dimensions in Fig. 4, which catego- 528

rizes math word problems into four classes based 529

on the dimension results of SMART. True Posi- 530

tive (TP) indicates that the problem is solved cor- 531

rectly in both the final answer and its corresponding 532

dimension-specific evaluation. False Negative (FN) 533

refers to cases where the final answer is correct, 534

but the model fails in the dimension-specific task. 535
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M
od

el
Perturbation

Answer Understanding Reasoning Arithmetic

ACC@An↑ PDR↓ SIM@Un↑ PDR↓ ACC@Reason↑ PDR↓ ACC@Ar↑ PDR↓
L

la
m

a3
.3

-7
0B Seed question 93.8 / 79.4 / 75.8 / 95.3 /

+ Noise insertion 80.5 14.2 52.8 33.5 58.8 22.4 78.8 17.3

+ Adding operation 79.8 14.9 68.4 13.9 59.8 21.1 71.6 24.9

+ Numerical variation 37.2 60.3 75.4 5.0 49.5 30.7 60.4 36.6

G
PT

-4
o

Seed question 84.8 / 90.3 / 86.2 / 86.8 /

+ Noise insertion 80.7 4.8 65.3 27.7 63.8 26.0 77.8 10.4

+ Adding operation 64.5 23.9 83.4 7.6 64.2 25.5 57.2 34.1

+ Numerical variation 33.4 60.6 85.9 4.9 56.8 34.1 49.6 42.9

Table 3: The performance degradation of evaluation dimensions when three types of perturbations are added to the
seed questions. PDR refers to the performance drop rate.

False Positive (FP) represents instances where the536

model arrives at the correct dimension evaluation537

answer but produces incorrect results in final an-538

swer. True Negative (TN) denotes scenarios where539

the model fails to solve both the original problem540

and its dimension-specific variants.541

The FN values are nonzero across all confusion542

matrices, indicating that LLMs can sometimes ar-543

rive at correct answers through shortcuts or un-544

known mechanisms when their intermediate rea-545

soning process is incorrect. Notably, the FN in546

the reasoning dimension for Llama3.3-70B (0.202)547

and DeepSeek-V3 (0.184) is significantly higher548

than their FN in the arithmetic dimension (0.016549

and 0.036). This suggests that errors in reasoning550

contribute more to incorrect problem-solving than551

errors in arithmetic. Meanwhile, the FP scores are552

consistently low across all matrices, demonstrating553

the effectiveness of our dimension-specific evalua-554

tion design in SMART.555

The TP score in the final answer-reasoning &556

rithmetic confusion matrix represents cases where557

LLMs correctly solve both the question and the558

intermediate process of reasoning and arithmetic559

tasks. We consider this score a measure of how well560

LLMs truly master math problem-solving ability.561

In Table 4. Although DeepSeek-V3 and Llama3.3-562

70B achieve similar score in ACC@An compared563

to o1-mini, their TP scores (72.2% and 74.23%) are564

significantly lower than o1-mini’s (88.08%). o1-565

mini also exhibits the smallest performance drop566

rate of 5.76%, indicating the most reliable evalua-567

tion results with no significant overestimation.568

To enhance the actual mathematical reasoning569

abilities of LLMs, we employ a reflection and re-570

finement mechanisms via prompt engineering, with571

results presented as TP+RR scores in Table 4. No-572

Model ACC@An↑ TP↑ PDR↓ TP+RR↑ PIR↑

Llama3.1-8B 63.16 41.42 34.42 42.58 2.80
gemma2-27B 68.62 43.12 37.16 46.58 8.02
Llama3.3-70B 94.08 74.23 21.10 80.75 8.78
DeepSeek-V3 93.53 72.20 22.81 76.11 5.42
GPT-4o 84.34 71.41 15.44 76.54 7.18
o1-mini 94.23 88.08 5.76 92.08 4.54

Table 4: The TP score of the final answer-reasoning
& arithmetic confusion matrix. TP+RR refers to
LLMs that incorporate reflection and refinement mecha-
nisms. PDR denotes the performance drop rate between
ACC@An and TP, while PIR indicates the performance
increase rate from TP to TP+RR.

tably, o1-mini achieves a TP+RR score of 92.08%, 573

which closely approaches its ACC@An of 94.23%. 574

5 Conclusion 575

In this paper, we introduce SMART evaluation 576

framework to systematically assess the mathemati- 577

cal problem-solving capabilities of LLMs. SMART 578

deconstructs problem-solving into four key dimen- 579

sions: understanding, reasoning, arithmetic, and re- 580

flection & refinement, enabling a fine-grained and 581

interpretable evaluation. To ensure benchmark reli- 582

ability and scalability, we propose a self-validating 583

mechanism that iteratively verifies the correctness 584

of generated test data. Through comprehensive ex- 585

periments on 13 LLMs, we reveal that reasoning 586

and reflection & refinement are the primary bottle- 587

necks in mathematical problem-solving. Further- 588

more, our findings demonstrate that final answer 589

accuracy alone is insufficient for assessing true 590

mathematical competence, as models can arrive at 591

correct answers through flawed reasoning process. 592

We believe that SMART provides a more rigorous, 593

interpretable, and scalable evaluation paradigm for 594

advancing LLMs’ mathematical reasoning abilities. 595
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6 Limitations596

First, SMART primarily focuses on grade-school-597

level mathematical problems. More complex math-598

ematical problems, such as those requiring ad-599

vanced symbolic manipulation or multi-step proofs,600

cannot be effectively analyzed within the SMART601

framework. Because their solution processes in-602

volve additional evaluation dimensions beyond the603

current four (understanding, reasoning, arithmetic,604

and reflection & refinement). Extending SMART605

to handle higher-level mathematical reasoning re-606

mains an open challenge.607

Second, Z3 and SMT-LIB are effective tools for608

solving problems involving linear and integer equa-609

tions, and certain types of nonlinear constraints.610

However, due to the limitations of their problem-611

solving scope, Z3 and SMT-LIB are not well-suited612

for addressing highly complex nonlinear problems,613

and certain NP-complete combinatorial problems.614

In the future, we plan to use Lean (Moura and Ull-615

rich, 2021) to formalize and prove complex mathe-616

matical theorems, particularly in areas that involve617

higher-level logic and more intricate proof struc-618

tures, which are beyond the capabilities of SMT619

solvers.620
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A Polya’s Problem-solving Theory822

Polya first propose the four step problem solving823

method in the book ’How to solve it’ (Pólya and824

Conway, 1957) to systematically answer questions.825

According to his theory, it breaks down the process826

of problem-solving into four steps (Fig. 1): 1)827

understanding the problem. 2) make a plan. 3)828

carry out the plan. 4) look back and review.829

Inspired by Polya’s problem-solving theory, we830

evaluate the mathematical capability in four key831

dimensions:832

• The understanding dimension assesses the833

model’s ability to comprehend the problem834

accurately and clearly.835

• The reasoning dimension evaluates the836

model’s capacity for symbolic reasoning and837

logical deduction.838

• The arithmetic dimension measures the839

model’s proficiency in performing numerical840

computations.841

• The reflection & refinement dimension exam-842

ines the model’s ability to identify errors in843

the solution process and make corrections to844

improve the final answer.845

B SMART Benchmark846

B.1 Seed Question Dataset of SMART847

We construct the seed question dataset of SMART848

benchmark containing 6862 testing data from five849

widely used grade-school-level math word problem850

dataset from GSM8k (Cobbe et al., 2021), SVAMP851

(Patel et al., 2021), ASDiV (Miao et al., 2020),852

AQuA (Ling et al., 2017) and MAWPS (Koncel-853

Kedziorski et al., 2016). The seed questions and854

their dimension-specific variations construct the 855

SMART benchmark which contains 34310 testing 856

questions. 857

The concrete data source distribution is illus- 858

trated in the Tab. 5. It is important to note that we 859

convert the question type of AQuA testing dataset, 860

which is a multiple-choice question, into an open- 861

ended question type to ensure consistency with 862

other datasets. We use the content of the correct 863

option from the multiple-choice question as the 864

ground truth for the question in the AQuA testing 865

dataset. In addition, problems involving the great- 866

est common divisor (GCD), least common multiple 867

(LCM), or finding the maximum or minimum val- 868

ues cannot be expressed or automatically solved 869

using SMT-LIB. Therefore, such questions will be 870

excluded from the seed question dataset. 871

B.2 Dimension Specific Testing Dataset of 872

SMART 873

We generate different question variants and its cor- 874

responding ground truth from each seed question to 875

evaluate four problem-solving processes of LLMs. 876

B.2.1 Understanding 877

We use the GPT-4o the extract the context informa- 878

tion as the ground truth. The prompt for GPT-4o 879

to extract context as ground truth are shown in Fig. 880

7. We use the GPT-4o to check the quality of the 881

extracted context. The self-validating mechanism 882

as illustrated in the sec. 3.2. The prompt for verify 883

the extracted context are shown in Fig. 10. 884

B.2.2 Arithmetic 885

We measure the arithmetic ability of LLMs in terms 886

of its performance on solving pure numeric calcu- 887

lation problem, which has the same reasoning logic 888

and final answer to the seed question. Directly 889

converting the seed question to the arithmetic prob- 890

lem is challenging for LLMs because it requires 891

simplifying complex natural language into struc- 892

tured mathematical operations while maintaining 893

the logical relationships between variables. This 894

transformation is not straightforward, as the model 895

needs to accurately interpret the problem’s intent, 896

handle ambiguous phrasing, and correctly map it 897

to arithmetic operations. Thus, we first generate 898

the SMT-LIB of the seed question to simplify the 899

reasoning logic among variables and then convert 900

the SMT-LIB to the arithmetic problem via GPT-4o. 901

The prompt for that process is shown in Fig. 8 and 902

Fig. 9. 903
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Dataset Number
GSM8k-test 1325
SVAMP 997
ASDiV 1987
AQuA-test 187
MAWPS 2366
All 6862

Table 5: Seed question dataset source distribution
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Figure 5: The number of reasoning step statistics of
seed question dataset.

We verify the effectiveness of the generated arith-904

metic problem through the self-validating mecha-905

nism as illustrated in the sec. 3.2. The prompt for906

verify the generated arithmetic problem are shown907

in Fig. 8.908

B.2.3 Reflection & Refinement909

We randomly select a sentence from the chain-of-910

thought (CoT) and modify the number within that911

sentence to generate wrong CoT. The ID of the912

chosen sentence serves as the ground truth for the913

mistake detection task.914

Fig. 6 presents a data sample in the SMART915

benchmark, which contains the seed question, the916

extracted context, the symbolic expression, the917

arithmetic question, the CoT and the final answer.918

C Details for SMART Framework919

Evaluation920

C.1 Understanding921

We propose a context extraction task to measure922

the capability of LLMs in understanding math prob-923

lems. The input for this task consists of seed ques-924

tions, and the model is asked to extract the context925

of the question based on the prompt shown in Fig. 7.926

The evaluation metric for this task is the sentence927

similarity between the extracted context and the 928

ground truth context. 929

C.2 Reasoning 930

"For the reasoning dimension, we introduce a sym- 931

bolic formalization task to evaluate the symbolic 932

reasoning capability of LLMs. The input for this 933

task is the seed question, and LLMs are asked to 934

generate the SMT-LIB expression of the question, 935

without solving the problem. The prompt for this 936

task is shown in Fig. 8. Subsequently, the Z3 solver 937

is used to compute the results of the generated SMT- 938

LIB expression. The evaluation metric for this task 939

is the accuracy of the SMT-LIB formula results. 940

C.3 Arithmetic 941

For the arithmetic dimension, we introduce a nu- 942

meric calculation task to assess the arithmetic abil- 943

ity of LLMs. The input for this task is an arithmetic 944

problem, and LLMs are asked to solve it using the 945

prompt shown in Fig. 11. The arithmetic problem 946

is designed to have the same answer and reasoning 947

logic as its corresponding seed question. 948

C.4 Reflection & Refinement 949

For the reflection & refinement dimension, we pro- 950

pose an error correction task that requires LLMs 951

to detect mistakes in the chain-of-thought (CoT) of 952

seed questions, correct these mistakes, and generate 953

a new answer for the seed question. This task con- 954

sists of three steps. The first step involves detecting 955

errors in the CoT, given the question and CoT, with 956

the answer being the position index of the erro- 957

neous sentence, as specified in the prompt shown 958

in Fig. 12. If LLMs fail to detect all mistakes, they 959

do not need to attend the following refinement task. 960

The second step is to fix errors in CoT and generate 961

corrected CoT with given seed question and CoT 962

with prompt shown in Fig.13. The final step is to 963

refine the answer based on the corrected CoT and 964

the seed question, using the prompt in Fig. 14. If 965

LLMs successfully detect all mistakes and gener- 966

ate the correct final answer based on the corrected 967

CoT, we consider the model to have passed the 968

error correction task. 969

D Experiments 970

D.1 Experiment Setting 971

D.1.1 Environment Setting. 972

All experiments were conducted on a Linux server 973

equipped with two NVIDIA H800 GPUs (80GB). 974
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The Seed Question:

John invited 20 people to a birthday party.  Each guest will eat 2 hot dogs.  He already has 4 hot dogs 

left over from a previous party.  If a pack of hot dogs contains 6 hot dogs and costs $2, how much does

he need to spend on hot dogs?

The Extracted Context:

John is hosting a birthday party and needs to ensure he has enough hot dogs for his guests. He is 

calculating the cost based on the number of guests, the hot dogs he already has, and the price per pack

The Symbolic Expression: 

(set-logic QF_NRA)                                                  

(declare-fun a () Real) 

(declare-fun b () Real) 

(declare-fun c () Real) 

(declare-fun d () Real)

(declare-fun e () Real) 

(declare-fun f () Real) 

(declare-fun g () Real) 

(declare-fun h () Real) 

(declare-fun i () Real) 

The Arithmetic Question:

What is the value of i, if a is equal to 20, b is equal to 2, c is equal to 4, d is equal to 6, e is equal to 2, 

f is equal to the product of a and b, g is equal to f minus c, h is equal to g divided by d, and i is equal 

to h multiplied by e?

The CoT:

He needs 2*20=<<2*20=40>>40 hot dogs. So he needs another 40-4=<<40-4=36>>36 hot dogs. So 

he needs to buy 36/6=<<36/6=6>>6 packs of hotdogs. That means he needs to spend 6*2=$<<6*2=12>>

12. #### 12.

The Final Answer:

12.0

(assert (= a 20))

(assert (= b 2))

(assert (= c 4))

(assert (= d 6))

(assert (= e 2))

(assert (= f (* a b)))

(assert (= g (- f c)))

(assert (= h (/ g d)))

(assert (= i (* h e)))

(check-sat)

(get-value (i))

Figure 6: A data sample in the SMART benchmark.

The GPUs were used for deploying and perform-975

ing inference on open-source models. The Python976

version used was 3.9.20, and the version of the977

Transformers package was 4.46.0.978

D.1.2 Prompt Setting.979

For our experiments, we leverage prompt templates980

to generate evaluation questions, with examples981

provided in Figures 7 through 14. Once the model982

outputs are obtained, we convert them into JSON983

format for subsequent analysis, using regular ex-984

pressions to ensure the transformation process is985

robust.986

D.2 Examples for question with different 987

difficulty setting 988

Fig.15 shows examples of different difficulty set- 989

tings for the understanding dimension evaluation. 990

The sentences with a red background in the image 991

represent irrelevant noise sentences, and the more 992

noise sentences there are, the harder the task of 993

extracting the effective context becomes. 994

Fig.16 shows examples of question with differ- 995

ent reasoning steps, which indicates different rea- 996

soning difficulties. 997

Fig.17 presents arithmetic questions with num- 998

bers in different digits. Numbers with more digits 999

means more difficult for arithmetic evaluation task. 1000

Fig.18 presents CoT with different number of 1001

error steps. CoT with more mistakes are more 1002
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert, and contextual analyzer. Your task is to analyze a 

natural language math problem and extracting the background information. 

The context extraction task is to extract non-mathematical information that provides context for the 

problem. Avoid including any numbers, variables, or explicit mathematical details. Focus only on 

descriptive and contextual information (e.g., the scenario, characters, or events). 

The Given Question: 

[Seed question]

Now, analyze the next math word problem. Extract the background information, strictly following the 

steps and formatting provided. Be precise, logical, and concise in your responses.

The Extracted Context:

[Question context ]

Figure 7: The prompt for LLMs to extract context from seed question.

difficult for reflection evaluation task.1003
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert, and reasoning analyzer. Your task is to convert a 

Math word problem into an SMT-LIB expression. Follow these instructions:

1. Define Variables: Use abstract variable names (e.g., a, b, c) that do not reflect the actual meaning of 

    the variables in the problem. 

2. Formulate Constraints: Use mathematical relationships from the problem to establish constraints for 

    the SMT-LIB formula.

3. SMT-LIB Syntax: Use proper SMT-LIB syntax. The logic should be set to QF_NRA or QF_NIA as

    appropriate. Include (check-sat) and (get-value ...) commands to verify satisfiability and extract the result.

4. Check: Ensure all the variables in SMT-LIB formula are declared. 

5. Do not write comments.

The Given Question: 

[Seed question]

Now, analyze the next math word problem. Generate the symbolic expression of the math word problem. 

Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Symbolic Expression:

[SMT-LIB]

Figure 8: The prompt for LLMs to convert the seed question to a symbolic expression.

Perturbation Answer Understanding Reasoning Arithmetic
ACC@An↑ PDR↓ ACC@Un↑ PDR↓ ACC@Reason↑ PDR↓ ACC@Ar↑ PDR↓

Seed question 68.3 / 81.4 / 61.2 / 62.5 /
+ Noise insertion 54.6 20.1 56.1 31.1 47.3 13.9 60.0 4
+ Adding operation 23.7 65.3 74.1 9.0 41.8 19.3 40.2 35.7
+ Numerical variation 21.6 68.4 78.9 3.1 38.6 22.5 38.4 38.6

Table 6: The performance degradation of evaluation dimensions for gemma2-27B when three types of perturbations
are added to the seed questions. PDR refers to the performance drop rate.
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, and your task 

is to convert the original SMT-LIB formula into a pure arithmetic problem in natural language, 

accurately reflecting the relationships and modified values without adding any additional background 

information. I will also give you the answer of the SMT-LIB formula, and you have to check that the 

answer of the math word problem is same to the SMT-LIB' answer. Do not mention answer in the new 

generated question.

The Given Symbolic Expression : 

[SMT-LIB]

The Given Answer:

[Final answer]

Now, analyze the next SMT-LIB expression. Generate arithmetic problem of the SMT-LIB expression. 

Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Arithmetic Problem:

[Arithmetic problem]

Figure 9: The prompt for LLMs to conver the SMT-LIB expression to arithmetic problem.
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a SMT-LIB expression, and a 

question context. Your task is to create a math word problem based on the provided SMT-LIB 

expression and background information. Follow these guidelines:

1. Use the SMT-LIB expression:  The expression defines variables, equations, and constraints. Extract 

      the logic and numerical values from the SMT-LIB expression.

2. Incorporate the background information: Use the provided context to create a realistic and meaningful 

story for the word problem. Align the narrative with the relationships and values in the SMT-LIB 

expression.

3. Ensure correctness:  The math word problem must logically match the SMT-LIB expression. 

4. Structure the problem: Include all necessary details for solving the problem in a clear and concise 

     manner. Avoid introducing additional irrelevant information.

The Given Symbolic Expression : 

[SMT-LIB]

The Given Context:

[Context]

Now, analyze the next SMT-LIB expression. Generate a math word problem based on the SMT-LIB 

expression and background information. Strictly following the steps and formatting provided. Be precise, 

logical, and concise in your responses.

The Generated Math Word Problem:

[Math word problem]

Figure 10: The prompt for LLMs to generated math word problem based on the SMT-LIB expression and the
extracted context.

System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, and your task 

is to calculate the answer of the problem. The answer should not include any units or formulas. If there 

are multiple answers, separate them with a comma and a space. Additionally, ensure that your answer is 

rounded to five decimal places.

The Given Question: 

[Question]

Now, analyze the next math problem. Generate answer of the math problem. Strictly following the steps 

and formatting provided. Be precise, logical, and concise in your responses.

The Answer of Question:

[Answer]

Figure 11: The prompt for LLMs to solve the Mathematic problem.
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, ant its 

corresponding solution steps (Chain-of-Thought, CoT). If there is an error in the solution steps, identify 

which sentence contains the error. The error sentence number should be based on the order of sentences

in the CoT, starting from 0. If no error is found, return False. 

The Given Question: 

[Seed question]

The Given CoT:

[CoT]

Now, analyze the next math word problem and its CoT. Find the errors in the CoT. Strictly following the 

steps and formatting provided. Be precise, logical, and concise in your responses.

The Position of Error:

[Sentence ID]

Figure 12: The prompt for LLMs to detect mistakes in the CoT.

System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. I will provide you with an math word problem, and 

its corresponding solution steps (CoT) with error. Your task is to provide the corrected CoT (solution steps) 

with the error fixed. 

The Given Question: 

[Seed question]

The Given CoT:

[CoT]

Now, analyze the next math problem and its CoT. Generate fixed CoT of the math problem. Strictly 

following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Corrected of CoT:

[C-CoT]

Figure 13: The prompt for LLMs to correct the mistaks in the CoT.
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System Prompt:

You are a helpful assistant and good at following instructions.  

User Prompt:

You are a highly skilled mathematician, NLP expert. I will provide you with a math word problem, its 

revised solution steps (CoT). Your task is to provide new answer of the problem. The answer should not 

include any units or formulas. If there are multiple answers, separate them with a comma and a space. 

Additionally, ensure that your answer is rounded to five decimal places.

The Given Question: 

[Seed question]

The Given Corrected CoT:

[C-CoT]

Now, analyze the next math problem and its corrected CoT. Generate the answer of the math problem again. 

Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Answer of Question:

[Answer]

Figure 14: The prompt for LLMs to refine the anwer of the seed question based on the correct CoT.

The Seed Question:

Adam bought 13 boxes of chocolate candy and gave 7 to his little brother . If each box has 6 pieces inside 

it , how many pieces did Adam still have ?

The Question with one noise sentence:

Adam bought 13 boxes of chocolate candy and gave 7 to his little brother. If each box has 6 pieces inside 

it , how many pieces did Adam still have ? Mary is baking a cake. She already put in 12 cups of flour.

The Question with three noise sentences:

Adam bought 13 boxes of chocolate candy and gave 7 to his little brother. If each of them had the same 

number of cookies. Anna is able to buy 5 more articles for $300 after the price of each article decreased

by 15%. If each box has 6 pieces inside it , how many pieces did Adam still have ? Mary is baking a cake. 

She already put in 12 cups of flour.

The Question with five noise sentences:

He has a total of 40 cannolis in his house. Adam bought 13 boxes of chocolate candy and gave 7 to his 

little brother. If each of them had the same number of cookies. At Allan's house, there is twice as much

corn as cannolis. Anna is able to buy 5 more articles for $300 after the price of each article decreased

by 15%. Sam 's dog had puppies and 8 had spots. If each box has 6 pieces inside it , how many pieces 

did Adam still have?

Figure 15: Example of questions with different number of noise sentences.
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The Question with One or Two Reasoning Steps:

James decides to run 3 sprints 3 times a week.  He runs 60 meters each sprint.  How many total meters 

does he run a week?

The Question with Three or Four Reasoning Steps:

Josh decides to try flipping a house.  He buys a house for $80,000 and then puts in $50,000 in repairs.  

This increased the value of the house by 150%.  How much profit did he make?

The Question with Five or Six Reasoning Steps:

John drives for 3 hours at a speed of 60 mph and then turns around because he realizes he forgot 

something very important at home.  He tries to get home in 4 hours but spends the first 2 hours in 

standstill traffic.  He spends the next half-hour driving at a speed of 30mph, before being able to drive 

the remaining time of the 4 hours going at 80 mph.  How far is he from home at the end of those 4 hours?

The Question with more than Six Reasoning Steps:

Adrien's total salary was 30 percent higher than Lylah's. Four years later, his salary had increased, and 

he was earning 40% more than what he was making four years ago. If Adrien's and Lylah's salary 

increased simultaneously, and Adrien earned $40000 four years ago, calculate the total salary the two 

were receiving four years later?

Figure 16: Example of questions with different reasoning steps.

The Arithmetic Question :

What is the value of d if a is equal to 36, b is equal to 13, c is equal to 49, and d is the sum of a, b, and c?

The Arithmetic Question with Numbers in Three digits:

What is the value of d if a is equal to -29.6, b is equal to -6.34, c is equal to 976, and d is the sum of a, b, 

and c?

The Arithmetic Question with Numbers in Five digits:

What is the value of d if a is equal to 7938.7, b is equal to 74.180, c is equal to -21327, and d is the sum of

a, b, and c?

The Arithmetic Question with Numbers in Seven digits:

What is the value of d if a is equal to 1,323,984, b is equal to 1,823,649, c is equal to 3.683971, and d is 

the sum of a, b, and c?

The Arithmetic Question with Numbers in Nine digits:

What is the value of d if a is equal to -732716160, b is equal to 2330874.42, c is equal to -340169802, and 

d is the sum of a, b, and c?

Figure 17: Example of arithmetic questions with number in different digits.
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The Seed Question:

Peter has 54 tickets and 4 pencils. If he shares the tickets among 9 friends, how many tickets does each 

friend get?", "background": "Peter has a collection of tickets and pencils. He decides to share his tickets 

with his friends, specifically dividing them among a group. The scenario revolves around the distribution 

of these tickets and how many each friend receives.

The CoT with One Mistake:

To determine how many tickets each of Peter’s 12 friends receives, we need to divide the total number of 

tickets by the number of friends. First, we identify the total number of tickets Peter has, which is 54. Next, 

we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how 

many tickets each friend gets: 54 tickets ÷ 9 friends = 6 tickets per friend. Thus, each friend receives 6 

tickets. #### 6.0

The CoT with Two Mistakes:

To determine how many tickets each of Peter’s 12 friends receives, we need to divide the total number of 

tickets by the number of friends. First, we identify the total number of tickets Peter has, which is 52. Next, 

we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how 

many tickets each friend gets: 54 tickets ÷ 9 friends = 6 tickets per friend. Thus, each friend receives 6 

tickets. #### 6.0

The CoT with Three Mistakes:

To determine how many tickets each of Peter’s 12 friends receives, we need to divide the total number of 

tickets by the number of friends. First, we identify the total number of tickets Peter has, which is 52. Next, 

we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how 

many tickets each friend gets: 54 tickets ÷ 9 friends = 8 tickets per friend. Thus, each friend receives 6 

tickets. #### 6.0

The CoT with Four Mistakes:

To determine how many tickets each of Peter’s 12 friends receives, we need to divide the total number of 

tickets by the number of friends. First, we identify the total number of tickets Peter has, which is 52. Next, 

we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how 

many tickets each friend gets: 54 tickets ÷ 9 friends = 8 tickets per friend. Thus, each friend receives 6 

tickets. #### 12.0

Figure 18: Example of CoT with different number of error steps.
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