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Abstract

Large Language Models (LLMs) have demon-
strated impressive performance across vari-
ous mathematical benchmarks. However, con-
cerns persist over whether these high scores
indicate genuine mathematical capability or
merely superficial pattern recognition. Fur-
thermore, we contend that the commonly used
metric of final answer accuracy fails to cap-
ture the performance of LLMs on nuanced fac-
tors, as it reflects a composite outcome influ-
enced by multiple factors. This motivates us
to introduce SMART (Self-Validating Multi-
Dimensional Assessment Framework), which
deconstructs the problem-solving process into
four key dimensions: understanding, reasoning,
arithmetic, and reflection & refinement. Cru-
cially, SMART does not evaluate based on final
answer accuracy but instead designs separate
tasks and evaluation methods for each dimen-
sion, enabling detailed and controllable assess-
ments that decouple individual factors. Addi-
tionally, we propose a self-validating mecha-
nism that iteratively generates and verifies test
data, ensuring benchmark reliability and scala-
bility. We evaluate 13 open-source and closed-
source LLMs using SMART, and our findings
reveal that final answer accuracy is insuffi-
cient for evaluating true mathematical problem-
solving capabilities. Our analysis highlights
symbolic reasoning and reflection & refinement
as the key factors that distinguish LLM perfor-
mance. We hope these insights will provide
valuable guidance for advancing LLMSs’ true
mathematical competence, and we will release
our code and benchmark upon acceptance.

1 Introduction

Large language models (Achiam et al., 2023; Wei
et al., 2022) have demonstrated impressive perfor-
mance across various natural language processing
tasks and are increasingly being integrated into
real-world applications (Singhal et al., 2023; Wang
et al., 2024; Jiang et al., 2024), showcasing their

Human 7 LLMs Tasks

Understanding . Context
the Problem Ll el Extraction
Devising a Plan Reasoning Symbgllc .

Formularization

Carrying out . . Numeric

the Plan AR Calculation
. Reflection & Error

Leatdig ERE S Refinement Correction

Figure 1: Illustration of the SMART framework for
evaluating LLMs. According to Polya’s theory, humans
solve mathematical problems through four steps: under-
standing the problem, devising a plan, carrying out the
plan, and looking back. Based on these steps, we define
four evaluation dimensions and corresponding tasks to
systematically assess LLMs.

ability to perform complex reasoning with human-
level accuracy (OpenAl, 2024; Guo et al., 2025).
Given their widespread deployment, it is essential
to assess LLMs’ reasoning abilities to ensure their
reliability, and effectiveness in real-world tasks.
Numerous benchmarks (Cobbe et al., 2021; Ling
et al., 2017; Patel et al., 2021; Miao et al., 2020;
Koncel-Kedziorski et al., 2016) have been proposed
to evaluate LLMs on mathematical reasoning tasks.
However, a significant concern with these public
benchmarks is their susceptibility to data contam-
ination, which can lead to inflated performance
and skewed evaluations (Oren et al., 2023; Zhu
et al., 2023, 2024; Li et al., 2024a). Moreover,
most benchmarks primarily focus on final answer
accuracy, neglecting the fact that this metric is in-
deed an aggregate effect of multiple factors, and
fail to adequately measure the underlying reasoning
process. (Cobbe et al., 2021; Ling et al., 2017; Patel
et al., 2021; Miao et al., 2020; Koncel-Kedziorski
et al., 2016). With the rapid advancement of LLMs,
traditional accuracy-based metrics have reached sat-
uration, limiting the effectiveness of final-answer
accuracy as a differentiating metric. For instance,



Llama-3.1-70B achieves an impressive 95.1% ac-
curacy on the GSM8k dataset (Al@Meta, 2024).
Thus, it is imperative to broaden the scope of evalu-
ation metrics to not only assess the accuracy of the
answers but also to evaluate the depth of reason-
ing. Furthermore, the construction of high-quality
benchmark datasets is resource-intensive, requiring
significant human labor and time for annotation
(Mirzadeh et al., 2024; Kurtic et al., 2024). When
leveraging advanced LLMs like GPT-40 for data
generation, ensuring the correctness and quality of
the generated content remains a major challenge,
as LL.Ms may produce errors or inconsistencies.
To address this, existing approaches often rely on
human annotators to rigorously review and refine
the generated question variations and answers (Zhu
et al., 2024; Zheng et al., 2023). However, this
manual refinement process is not scalable, creating
a significant obstacle to generating reliable, high-
quality datasets at scale.

In light of these issues, we propose a novel eval-
uation framework called the Self-Validating Multi-
Dimensional Assessment Framework (SMART).
Inspired by Polya’s problem-solving theory (Polya,
2014), we deconstruct the process of tackling math-
ematical problems into four key evaluation dimen-
sions: understanding, reasoning, arithmetic, and
reflection & refinement, each addressing a distinct
aspect of problem-solving performance. We de-
sign dimension-specific tasks with well-defined
expected outputs for each evaluation dimension
of SMART, as shown in Fig. 1. This hierarchi-
cal structure allows SMART to break down the
complex cognitive task in depth and assess differ-
ent aspects of mathematical problem-solving inde-
pendently. This comprehensive evaluation frame-
work offers valuable insights into the strengths and
limitations of models, guiding improvements in
both algorithmic design and applications. Further-
more, we introduce a self-validating mechanism
that automatically verifies the quality of generated
dimension-specific testing data. This iterative pro-
cess continues until the generated dataset meets the
required standards, ensuring both scalability and
reliability of the SMART benchmark.

We evaluate 13 recently released open- and
closed-source LLMs of various scales using our
SMART framework. Experimental results reveal
that while all models perform well in the under-
standing dimension, they struggle significantly in
the reasoning and reflection & refinement dimen-
sion. Additionally, we investigate the key factors

influencing performance across different dimen-

sions. Finally, we deeply analyze the relationship

between final answer accuracy and the decomposed

dimensions, and propose a new metric for measur-

ing the truly mathematical capability of LLMs.
Our main contributions are as follows:

e We propose SMART, a self-validating multi-
dimensional assessmemt framework designed
to breakdown the problem-solving process of
LLMs into four key dimensions: understanding,
reasoning, arithmetic, and reflection & refine-
ment. This framework allows for a deeper under-
standing of the cognitive processes involved in
problem-solving, rather than solely emphasizing
the accuracy of the final answer.

e We introduce a self-validating mechanism that
automatically verifies the quality of generated
test data, reducing reliance on human annota-
tions. This self-validating approach ensures the
benchmark’s scalability and reliability.

e We conduct extensive evaluation and highlight
significant disparities in the mathematical ca-
pabilities of different LLMs, with a detailed,
dimension-specific, interpretable analysis. We
anticipate that these insights will serve as a valu-
able foundation for future advancements in the
development and optimization of LLMs.

2 Related Work

Mathematic benchmark. Numerous mathemat-
ical benchmarks with varying levels of difficulty
have been developed to explore the upper bound
of LLMs’ mathematical capabilities. These bench-
marks range from grade-school-level datasets, like
GSMSK (Cobbe et al., 2021), to high-school-level
datasets, like MATH (Hendrycks et al., 2021), and
extend to expert-level datasets, like FrontierMath
(Glazer et al., 2024). Their scope covers a broad
range of mathematical domains, including geome-
try, number theory, and real analysis. However,
despite the increasing difficulty of these bench-
marks, it remains unclear whether LLMs truly com-
prehend mathematical concepts or merely rely on
probabilistic pattern-matching to generate correct
answers (Mirzadeh et al., 2024). Furthermore, the
widespread use of these benchmarks increase the
risk of data contamination, potentially inflating per-
formance evaluations (Li et al., 2024a).

Dynamic evaluation. To address these concerns,
recent studies have explored dynamic evaluation ap-
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Figure 2: An overview of the SMART framework for evaluating the mathematical problem-solving process, which
is broken down into four distinct steps: understanding, reasoning, arithmetic, and reflection & refinement. Each step
is evaluated using dimension-specific task and metrics, ensuring a thorough and comprehensive assessment of the

model’s problem-solving capabilities.

proaches (Zhu et al., 2023, 2024; Fan et al., 2023),
which generate adaptive test data based on pre-
defined transformation rules. For example, GSM-
Plus (Li et al., 2024b) introduces eight perturba-
tion strategies, such as numerical and arithmetic
variations, while GSM-Symbolic (Mirzadeh et al.,
2024) generates diverse problem variants using
symbolic templates. These approaches aim to miti-
gate data leakage and improve robustness in assess-
ments. Despite these advancements, current eval-
uation methodologies remain limited. They pre-
dominantly focus on final-answer accuracy, which
fails to capture an LLM’s reasoning process in a
systematic manner. Additionally, they do not ex-
plicitly assess the diverse cognitive skills required
for mathematical problem-solving, nor do they pro-
vide fine-grained insights into the underlying logi-
cal reasoning steps.

These limitations underscore the need for a
comprehensive, interpretable, and scalable eval-
uation framework that can decompose the problem-
solving process, assess reasoning at multiple lev-
els, and minimize reliance on human verification.
To bridge this gap, we introduce SMART, a self-
validating multi-dimensional assessment frame-
work designed to systematically evaluate LLMs’
mathematical reasoning abilities while addressing
benchmark reliability and scalability challenges.

3 Methodology

We introduce SMART, a novel evaluation paradigm
inspired by Polya’s problem-solving theory (Polya,
2014). SMART systematically assesses the rea-
soning process in solving mathematical word prob-
lems by deconstructing problem-solving process

into a sequence of logical and systematic steps,
as illustrated in Fig. 2. The framework evaluates
mathematical problem-solving across four key di-
mensions: understanding, reasoning, arithmetic,
and reflection & refinement. To minimize cross-
dimensional interference, we design distinct evalu-
ation tasks and metrics tailored to each dimension,
ensuring a more granular and interpretable analysis
of LLMs’ problem-solving abilities.

3.1 SMART Framework

3.1.1 Understanding

The first dimension of the SMART framework is
understanding, which assesses how well LLMs can
comprehend the problem with clarity and complete-
ness before attempting to solve it. To measure this,
we design a context extraction task that asks LLMs
to identify the given information or conditions in
the problem and clearly determine what needs to
be solved. This task focuses solely on assessing
LLMs’ ability on understanding of the problem,
without requiring reasoning or calculation. The
context extracted by GPT-40 (Achiam et al., 2023)
serves as the ground truth. To evaluate the under-
standing dimension performance of LLMs, we use
sentence similarity (Reimers, 2019) between the
contexts generated by the models and the ground
truth as the understanding dimension metric.

3.1.2 Reasoning

The second dimension of the SMART framework
is reasoning, which evaluates the ability of LLMs
to construct a coherent and logical plan for solv-
ing a given problem. To assess this, we design a
symbolic formalization task where LLMs are asked
to model the math word problems via formal sym-



bolic expressions. This task measures the LLM’s
mathematical modeling ability to capture the prob-
lem’s logical structure rather than solving it.

We adopt the SMT-LIB language (Barrett et al.,
2010), a widely used standardized notation, which
is compatible with SMT solvers such as Z3
(De Moura and Bjgrner, 2008), SymPy (Meurer
et al., 2017), and MathSAT (Cimatti et al., 2013).
These solvers can compute results from the gener-
ated symbolic formulas, allowing us to compare
the results of different SMT-LIB expressions to the
ground truth answers of the problems. We calcu-
late the accuracy of the correct SMT-LIB formula
results as the reasoning metric, which serves as an
indicator of how well the model has captured the
logical structure and formulation of the problem.

In our evaluation, LL.Ms are asked only to gener-
ate the logical formulas, without being required to
compute the final answer. By decoupling reasoning
from arithmetic computation, we ensure that the
evaluation captures the LLM’s true reasoning ca-
pabilities. By focusing on symbolic formalization,
we assess the model’s ability to identify and repre-
sent the underlying logic, offering a more precise
evaluation of reasoning performance.

3.1.3 Arithmetic

The arithmetic dimension assesses the model’s abil-
ity to perform pure numerical calculations involv-
ing basic operations such as addition, subtraction,
multiplication, and division. Unlike the symbolic
formalization task, where LLMs are required to
generate SMT-LIB formulas from the seed ques-
tion, this phase directly evaluates the model’s abil-
ity to solve arithmetic problems that follow the
same reasoning logic and yield the same final an-
swer as the seed question.

To generate these arithmetic problems, we uti-
lize GPT-40 to convert the SMT-LIB formula into
a corresponding arithmetic expression. This simpli-
fication reduces the math word problem to one that
focuses solely on numerical values and their rela-
tionships, omitting any background information. In
Fig. 2, the numeric calculation task is to compute
the sumof g and bif @ = 2 and b = a/2.

This design ensures that the numeric calculation
task focuses exclusively on basic mathematical op-
erations, effectively isolating the evaluation of arith-
metic capabilities while minimizing the influence
of other dimensions, such as reasoning and under-
standing. As a result, this task provides a precise
and targeted assessment of the model’s arithmetic

proficiency, accurately reflecting its numerical com-
putation abilities.

3.1.4 Reflection & Refinement

The final dimension of the SMART framework is
reflection and refinement, which evaluates LLMs’
ability to review their problem-solving process and
improve their answers through self-correction. In
the error correction task, we deliberately introduce
incorrect steps into a chain-of-thought (CoT) solu-
tion (Wei et al., 2022), such as altering 2 + 2 =4
to 2+ 1 = 3. LLMs are then tasked with iden-
tifying the erroneous statements, correcting them,
and generating a refined answer. If the LLMs fail
to detect all errors in the CoT, they will not pro-
ceed to the subsequent refinement task. LLMs with
strong reflection and refinement capabilities can
enhance their performance and stability through
self-correction, demonstrating the ability to itera-
tively improve their problem-solving processes.

3.2 The Self-validating Mechanism
3.2.1 Dataset construction

To construct the SMART benchmark, we aggre-
gate five widely used math word problem datasets:
GSMS8k (Cobbe et al., 2021), SVAMP (Patel et al.,
2021), ASDiV (Miao et al., 2020), AQuA (Ling
et al.,, 2017), and MAWPS (Koncel-Kedziorski
et al., 2016). These datasets collectively form the
seed question dataset, comprising 6,862 testing
samples. Using GPT-40, we generate variations
of the seed questions tailored to the evaluation di-
mensions of the SMART framework, with each
variation designed to test a specific aspect of the
problem-solving process. Together, the seed ques-
tions and their dimension-specific variants consti-
tute the SMART benchmark, which includes a total
of 34,310 testing samples. Further details on the
data generation process and examples can be found
in the Appendix B.

3.2.2 Dataset Verification

While many prior works (Wang et al., 2023; Zhu
et al., 2024; Li et al., 2024a,b,c) have employed
LLMs to generate variations of seed questions, they
often require extensive manual verification by hu-
man annotators to ensure the correctness of both
the questions and their ground-truth answers. This
manual approach is resource-intensive and limits
scalability. To overcome this limitation, we pro-
pose a self-validating mechanism that automates
the verification of generated datasets and their an-



Task Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6
SMT-LIB 86.29 93.37 96.88 97.81 98.17 98.92
Context 88.72 95.78 98.11 99.21 \ \
Arithmetic Problem 85.21 92.42 95.66 97.24 98.32 99.05

Table 1: The pass rate of self-validating process across six iterations.

notations, reducing reliance on human intervention
while maintaining accuracy and consistency.

For the context extraction task, our self-
validating mechanism decomposes the question
into a SMT-LIB formula and context, then recom-
bines them to regenerate the question, enabling a
cycle consistency check. The SMT-LIB formula is
validated using the Z3 solver to ensure it produces
the same answer as the original seed question. Sub-
sequently, the context and the validated SMT-LIB
formula are input into an LLM to regenerate a math
word problem. If the regenerated question yields
the same answer as the seed question, the context
is deemed valid, as it contains clear and complete
background information about the problem. Other-
wise, the context is discarded and regenerated until
it meets this consistency criterion.

For the numeric calculation task, LLMs are re-
quired to re-extract the SMT-LIB formula from
the generated arithmetic question. The generated
arithmetic question is deemed consistent if the solu-
tion obtained from the extracted SMT-LIB formula
matches the answer to the original seed question.
Otherwise, it is discarded and regenerated until
the extracted formula aligns with the original seed
question’s solution.

Through this self-validating mechanism, we gen-
erate high-quality SMT-LIB formulas, context ex-
tractions, and arithmetic problems for all seed ques-
tions. Tab. 1 presents the pass rates for generating
testing data during the self-validation process. Af-
ter six iterations, a small number of failed cases are
manually corrected to ensure benchmark reliability.

4 Experiments

4.1 Experimental Setup

We evaluate eight open-source models of varying
sizes, ranging from 7B to 72B parameters, includ-
ing Llama3 (Al@Meta, 2024), Qwen2.5 (Yang
et al., 2024; Team, 2024), Mistral (MistralAlTeam,
2024a,b), Phi4 (Abdin et al., 2024), and Gemma?2
(Team et al., 2024). Additionally, we assess five
state-of-the-art closed-source models, including
ol-mini (OpenAl, 2024), GPT-40 (Achiam et al.,
2023), Gemini 1.5 Pro (Reid et al., 2024), Qwen

Max (Team, 2024), and DeepSeek-V3 (Liu et al.,
2024). To ensure a fair comparison, we set the
generation temperature to 0.1 for all models.

4.2 Performance of LLMs on the SMART
Benchmark

We evaluate 13 open-source and closed-source
models on the SMART benchmark, and the re-
sults are presented in Table 2. The final answer
dimension measures the accuracy of the model’s
direct response to the problem (ACC@ An). The
understanding dimension quantifies the similarity
between the extracted context and the ground truth
context (SIM@Un). In the reasoning dimension,
we use the Z3 solver to verify the correctness of
the generated SMT-LIB formula, with the accuracy
of the SMT-LIB output serving as the reasoning
evaluation metric (ACC@Reason). The arithmetic
dimension evaluates the accuracy of the model in
solving pure arithmetic problems (ACC@Ar). The
Reflection & Refinement (R & R) dimension com-
bines both mistake detection and correction, with
accuracy calculated as (ACC@RR). Specifically,
the reflection dimension measures the model’s abil-
ity to identify mistakes (ACC@Reflect), while the
refinement dimension evaluates the accuracy of
generating refined answer (ACC @Refine). More
details and examples can be found in Appendix C.
The SMART benchmark reveals significant per-
formance gaps among LLMs. Open-source mod-
els with 8B parameters exhibit poor score in rea-
soning, arithmetic, and reflection & refinement di-
mensions. As the scale of LLMs increases, the
performance across these dimensions improves,
aligning with the empirical findings of the scaling
law (Kaplan et al., 2020). For closed-source mod-
els, while both DeepSeek-V3 and ol-mini achieve
saturated scores in ACC@ An, DeepSeek exhibits
a significant gap in ACC@Reason (75.17%) and
ACC@RR (19.09%) when compared to ol-mini,
which scores 92.84% in ACC@Reason and 61.21%
in ACC@RR. Geminil.5-pro shows a 12.29%
lower ACC@An than DeepSeek-V3, primarily
due to its 15.55% lower score in ACC@Ar.
Thus, the SMART benchmark effectively illustrates



Model Answer | Understanding Reasoning Arithmetic R &R Reflection Refinement
ACC@An SIM@Un ACC@Reason ACC@Ar ACC@RR | ACC@Reflect ACC@Refine
Open-source models
Qwen2.5-7B 57.75 81.62 31.04 55.02 3.67 4.08 90.50
Llama3.1-8B 63.16 76.47 25.58 60.78 0.57 4.41 12.87
Mistral-Nemo 70.33 83.69 31.79 78.61 6.21 8.62 72.08
Phi-4-14B 93.66 79.47 71.47 95.48 7.22 20.40 35.43
Mistral-Small 70.83 83.66 31.57 78.59 11.63 15.78 71.66
Gemma2-27B 68.62 81.44 61.42 62.36 13.58 14.47 93.86
Qwen2.5-72B 77.48 83.22 79.85 76.48 27.06 28.11 96.31
Llama-3.3-70B 94.08 79.56 76.21 95.92 36.38 37.62 96.71
Closed-source models
ol-mini 94.23 88.56 92.84 96.52 61.21 61.81 99.02
GPT-40 84.86 90.36 86.29 86.84 32.76 33.44 97.96
Geminil.5-pro 81.34 80.21 81.78 80.12 29.22 30.08 97.14
Qwen-max 79.23 82.98 76.82 75.16 21.33 22.68 94.04
DeepSeek-V3 93.53 85.19 75.17 95.67 19.09 19.78 96.53

Table 2: The performance of open and closed-source models on SMART benchmark.

dimension-specific performance gaps that are not
captured by previous benchmarks.

Data contamination. In the arithmetic dimen-
sion, we ask LLMs to solve pure arithmetic
problems that remove the background informa-
tion and simplify the relationships between vari-
ables, in contrast to math word problems. There-
fore, LLMs should theoretically achieve higher
ACC@Ar scores than ACC@An. However, both
Qwen2.5-72B and Geminil.5-pro exhibit lower
ACC@Ar scores than ACC@ An, suggesting the
possibility of data contamination.

Reasoning and reflection & refinement as the
bottleneck. Most LLMs achieve over 80%
SIM@Un in the context extraction task, indicating
that they can grasp the relevant information of the
question and interpret the problem statement. How-
ever, the scores for the reasoning and reflection &
refinement dimensions are significantly lower than
those for other dimensions. For example, Llama3.3-
70B achieves 76.21% ACC@Reason and 36.38%
ACC@RR, while reaching 95.92% in ACC@Ar.
Although DeepSeek-V3 achieves similar scores to
ol-mini in ACC@An and ACC@Ar, its perfor-
mance in reasoning and R & R lags significantly
behind that of o1-mini. Specifically, ACC@Reason
for DeepSeek-V3 is 17.67% lower than ol-mini,
and ACC@RR is 42.12% lower. These findings
highlight that the primary bottleneck in mathemat-
ical problem-solving lies in the reasoning and re-
flection & refinement dimensions.

4.3 How Does Task Difficulty Impact
Different Dimensions of SMART?

In this section, we investigate the factors influ-
encing the performance of each dimension in the

SMART framework. To do so, we generate sev-
eral new, dimension-specific questions with vary-
ing difficulty levels and evaluate the performance
of LLMs on this new testing data.

Difficulty setting. For the understanding dimen-
sion, we progressively introduce irrelevant sen-
tences from other problems as noise into the seed
question. The number of noise sentences controls
the difficulty of the context extraction task. For the
reasoning dimension, we define the complexity lev-
els of questions based on the number of operations
(e.g., +, —, X, +, mod) and classify the questions
from the symbolic reasoning task into four levels.
In the arithmetic dimension, we alter the number
of digits rather than the magnitude of the numbers
to generate different levels of complexity. In the
reflection & refinement dimension, the difficulty is
determined by the number of mistakes in the chain-
of-thought solution. Further details of the difficulty
settings are presented in the Appendix D.2.

Impact of task difficulty on LLMs. Fig. 4 illus-
trates the performance of five models across dif-
ferent difficulty settings. As the complexity level
increases, the performance across all dimensions
decreases sharply, indicating that our settings ef-
fectively control the difficulty of the testing data.
The SIM@Un drops significantly at first and then
generally levels off as the number of noise sen-
tences increases. GPT-40 achieves only 40% in
ACC@Reason and ACC@Ar when the number of
reasoning steps exceeds six or the number of digits
reaches nine. Therefore, mathematical problems
with more reasoning steps and greater number of
digits present a significant challenge for LLMs.
The primary reason for the drop in ACC@RR as
the number of mistakes in the CoT increases is
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Figure 3: The performance of dimensions under different question difficulties.

that LLMs fail to detect all the mistakes. However,
ACC @Refinement remains over 90% for GPT-40
even when the CoT contains four mistakes.

4.4 How do evaluation dimensions influence
the performance drop of LLLMs on
questions with perturbations?

Many studies have demonstrated that LLMs experi-
ence significant performance drops when evaluated
on question variations generated through perturba-
tions (Li et al., 2024b; Zhu et al., 2023; Li et al.,
2024a). However, perturbations that cause perfor-
mance drops may affect multiple dimensions si-
multaneously. For example, adding operations may
impact both the reasoning and arithmetic capabil-
ities, making it difficult to pinpoint the primary
factors driving the degradation.

In this section, we measure the performance
change across the SMART dimensions when three
perturbations (Li et al., 2024b) are applied to the
seed questions. Table 3 shows that all dimensions
experience noticeable PDR due to the perturbations.
For the noise insertion perturbation, the understand-
ing dimension is the most affected, with a 33.5%
PDR for Llama3.3-70B. Both operation and nu-
merical variation perturbations lead to significant
PDR in the arithmetic dimension. Additionally, the
reasoning and arithmetic dimensions of GPT-40
are more susceptible to perturbations than those of
Llama3.3-70B, with GPT-40 experiencing higher
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Figure 4: The confusion matrix of final answer and other
dimensions. P means Positive, and N means Negative.

PDR across these dimensions.

4.5 Is the Final Answer Accuracy Reliable for
Measuring mathematical Capability?

We present the confusion matrix for final answer
and other dimensions in Fig. 4, which catego-
rizes math word problems into four classes based
on the dimension results of SMART. True Posi-
tive (TP) indicates that the problem is solved cor-
rectly in both the final answer and its corresponding
dimension-specific evaluation. False Negative (FN)
refers to cases where the final answer is correct,
but the model fails in the dimension-specific task.



% Perturbation Answer Understanding Reasoning Arithmetic

= ACC@Ant PDR| | SIM@Unt PDR| ACC@Reasont PDR| ACC@Arf PDR]

8 | Seed question 93.8 / 79.4 / 75.8 / 95.3 /

:z + Noise insertion 80.5 14.2 52.8 33.5 58.8 224 78.8 17.3

Cé + Adding operation 79.8 14.9 68.4 13.9 59.8 21.1 71.6 24.9

~ | + Numerical variation 37.2 60.3 75.4 5.0 49.5 30.7 60.4 36.6
Seed question 84.8 / 90.3 / 86.2 / 86.8 /

i + Noise insertion 80.7 4.8 65.3 27.7 63.8 26.0 77.8 104

% + Adding operation 64.5 23.9 83.4 7.6 64.2 25.5 57.2 34.1
+ Numerical variation 334 60.6 85.9 4.9 56.8 34.1 49.6 429

Table 3: The performance degradation of evaluation dimensions when three types of perturbations are added to the

seed questions. PDR refers to the performance drop rate.

False Positive (FP) represents instances where the
model arrives at the correct dimension evaluation
answer but produces incorrect results in final an-
swer. True Negative (TN) denotes scenarios where
the model fails to solve both the original problem
and its dimension-specific variants.

The FN values are nonzero across all confusion
matrices, indicating that LL.Ms can sometimes ar-
rive at correct answers through shortcuts or un-
known mechanisms when their intermediate rea-
soning process is incorrect. Notably, the FN in
the reasoning dimension for Llama3.3-70B (0.202)
and DeepSeek-V3 (0.184) is significantly higher
than their FN in the arithmetic dimension (0.016
and 0.036). This suggests that errors in reasoning
contribute more to incorrect problem-solving than
errors in arithmetic. Meanwhile, the FP scores are
consistently low across all matrices, demonstrating
the effectiveness of our dimension-specific evalua-
tion design in SMART.

The TP score in the final answer-reasoning &
rithmetic confusion matrix represents cases where
LLMs correctly solve both the question and the
intermediate process of reasoning and arithmetic
tasks. We consider this score a measure of how well
LLMs truly master math problem-solving ability.
In Table 4. Although DeepSeek-V3 and Llama3.3-
70B achieve similar score in ACC@ An compared
to ol-mini, their TP scores (72.2% and 74.23%) are
significantly lower than ol-mini’s (88.08%). ol-
mini also exhibits the smallest performance drop
rate of 5.76%, indicating the most reliable evalua-
tion results with no significant overestimation.

To enhance the actual mathematical reasoning
abilities of LLMs, we employ a reflection and re-
finement mechanisms via prompt engineering, with
results presented as TP+RR scores in Table 4. No-

Model ACC@Ant| TPt PDR| TP+RR? PIRT
Llama3.1-8B | 63.16 |41.42 3442 4258 2.80
gemma2-27B | 68.62 [43.12 37.16 46.58 8.02
Llama3.3-70B| 94.08 [74.23 21.10 80.75 8.78
DeepSeek-V3 | 93.53 (7220 22.81 76.11 5.42
GPT-40 8434 |71.41 1544 7654 17.18
ol-mini 94.23 [88.08 5.76 92.08 4.54

Table 4: The TP score of the final answer-reasoning
& arithmetic confusion matrix. TP+RR refers to
LLM:s that incorporate reflection and refinement mecha-
nisms. PDR denotes the performance drop rate between
ACC@An and TP, while PIR indicates the performance
increase rate from TP to TP+RR.

tably, ol-mini achieves a TP+RR score of 92.08%,
which closely approaches its ACC@An of 94.23%.

5 Conclusion

In this paper, we introduce SMART evaluation
framework to systematically assess the mathemati-
cal problem-solving capabilities of LLMs. SMART
deconstructs problem-solving into four key dimen-
sions: understanding, reasoning, arithmetic, and re-
flection & refinement, enabling a fine-grained and
interpretable evaluation. To ensure benchmark reli-
ability and scalability, we propose a self-validating
mechanism that iteratively verifies the correctness
of generated test data. Through comprehensive ex-
periments on 13 LLMs, we reveal that reasoning
and reflection & refinement are the primary bottle-
necks in mathematical problem-solving. Further-
more, our findings demonstrate that final answer
accuracy alone is insufficient for assessing true
mathematical competence, as models can arrive at
correct answers through flawed reasoning process.
We believe that SMART provides a more rigorous,
interpretable, and scalable evaluation paradigm for
advancing LLMs’ mathematical reasoning abilities.



6 Limitations

First, SMART primarily focuses on grade-school-
level mathematical problems. More complex math-
ematical problems, such as those requiring ad-
vanced symbolic manipulation or multi-step proofs,
cannot be effectively analyzed within the SMART
framework. Because their solution processes in-
volve additional evaluation dimensions beyond the
current four (understanding, reasoning, arithmetic,
and reflection & refinement). Extending SMART
to handle higher-level mathematical reasoning re-
mains an open challenge.

Second, Z3 and SMT-LIB are effective tools for
solving problems involving linear and integer equa-
tions, and certain types of nonlinear constraints.
However, due to the limitations of their problem-
solving scope, Z3 and SMT-LIB are not well-suited
for addressing highly complex nonlinear problems,
and certain NP-complete combinatorial problems.
In the future, we plan to use Lean (Moura and Ull-
rich, 2021) to formalize and prove complex mathe-
matical theorems, particularly in areas that involve
higher-level logic and more intricate proof struc-
tures, which are beyond the capabilities of SMT
solvers.
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A Polya’s Problem-solving Theory

Polya first propose the four step problem solving
method in the book "How to solve it” (Pdlya and
Conway, 1957) to systematically answer questions.
According to his theory, it breaks down the process
of problem-solving into four steps (Fig. 1): 1)
understanding the problem. 2) make a plan. 3)
carry out the plan. 4) look back and review.

Inspired by Polya’s problem-solving theory, we
evaluate the mathematical capability in four key
dimensions:

e The understanding dimension assesses the
model’s ability to comprehend the problem
accurately and clearly.

* The reasoning dimension evaluates the
model’s capacity for symbolic reasoning and
logical deduction.

e The arithmetic dimension measures the
model’s proficiency in performing numerical
computations.

* The reflection & refinement dimension exam-
ines the model’s ability to identify errors in
the solution process and make corrections to
improve the final answer.

B SMART Benchmark

B.1 Seed Question Dataset of SMART

We construct the seed question dataset of SMART
benchmark containing 6862 testing data from five
widely used grade-school-level math word problem
dataset from GSMS8Kk (Cobbe et al., 2021), SVAMP
(Patel et al., 2021), ASDiV (Miao et al., 2020),
AQuA (Ling et al., 2017) and MAWPS (Koncel-
Kedziorski et al., 2016). The seed questions and
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their dimension-specific variations construct the
SMART benchmark which contains 34310 testing
questions.

The concrete data source distribution is illus-
trated in the Tab. 5. It is important to note that we
convert the question type of AQuA testing dataset,
which is a multiple-choice question, into an open-
ended question type to ensure consistency with
other datasets. We use the content of the correct
option from the multiple-choice question as the
ground truth for the question in the AQuA testing
dataset. In addition, problems involving the great-
est common divisor (GCD), least common multiple
(LCM), or finding the maximum or minimum val-
ues cannot be expressed or automatically solved
using SMT-LIB. Therefore, such questions will be
excluded from the seed question dataset.

B.2 Dimension Specific Testing Dataset of
SMART

We generate different question variants and its cor-
responding ground truth from each seed question to
evaluate four problem-solving processes of LLMs.

B.2.1 Understanding

We use the GPT-4o0 the extract the context informa-
tion as the ground truth. The prompt for GPT-40
to extract context as ground truth are shown in Fig.
7. We use the GPT-40 to check the quality of the
extracted context. The self-validating mechanism
as illustrated in the sec. 3.2. The prompt for verify
the extracted context are shown in Fig. 10.

B.2.2 Arithmetic

We measure the arithmetic ability of LLMs in terms
of its performance on solving pure numeric calcu-
lation problem, which has the same reasoning logic
and final answer to the seed question. Directly
converting the seed question to the arithmetic prob-
lem is challenging for LLMs because it requires
simplifying complex natural language into struc-
tured mathematical operations while maintaining
the logical relationships between variables. This
transformation is not straightforward, as the model
needs to accurately interpret the problem’s intent,
handle ambiguous phrasing, and correctly map it
to arithmetic operations. Thus, we first generate
the SMT-LIB of the seed question to simplify the
reasoning logic among variables and then convert
the SMT-LIB to the arithmetic problem via GPT-4o.
The prompt for that process is shown in Fig. 8 and
Fig. 9.



Dataset Number
GSM8k-test 1325
SVAMP 997
ASDiV 1987
AQuA-test 187
MAWPS 2366
All 6862

Table 5: Seed question dataset source distribution
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Figure 5: The number of reasoning step statistics of
seed question dataset.

We verify the effectiveness of the generated arith-
metic problem through the self-validating mecha-
nism as illustrated in the sec. 3.2. The prompt for
verify the generated arithmetic problem are shown
in Fig. 8.

B.2.3 Reflection & Refinement

We randomly select a sentence from the chain-of-
thought (CoT) and modify the number within that
sentence to generate wrong CoT. The ID of the
chosen sentence serves as the ground truth for the
mistake detection task.

Fig. 6 presents a data sample in the SMART
benchmark, which contains the seed question, the
extracted context, the symbolic expression, the
arithmetic question, the CoT and the final answer.

C Details for SMART Framework
Evaluation

C.1 Understanding

We propose a context extraction task to measure
the capability of LLMs in understanding math prob-
lems. The input for this task consists of seed ques-
tions, and the model is asked to extract the context
of the question based on the prompt shown in Fig. 7.
The evaluation metric for this task is the sentence
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similarity between the extracted context and the
ground truth context.

C.2 Reasoning

"For the reasoning dimension, we introduce a sym-
bolic formalization task to evaluate the symbolic
reasoning capability of LLMs. The input for this
task is the seed question, and LLMs are asked to
generate the SMT-LIB expression of the question,
without solving the problem. The prompt for this
task is shown in Fig. 8. Subsequently, the Z3 solver
is used to compute the results of the generated SMT-
LIB expression. The evaluation metric for this task
is the accuracy of the SMT-LIB formula results.

C.3 Arithmetic

For the arithmetic dimension, we introduce a nu-
meric calculation task to assess the arithmetic abil-
ity of LLMs. The input for this task is an arithmetic
problem, and LLMs are asked to solve it using the
prompt shown in Fig. 11. The arithmetic problem
is designed to have the same answer and reasoning
logic as its corresponding seed question.

C.4 Reflection & Refinement

For the reflection & refinement dimension, we pro-
pose an error correction task that requires LLMs
to detect mistakes in the chain-of-thought (CoT) of
seed questions, correct these mistakes, and generate
a new answer for the seed question. This task con-
sists of three steps. The first step involves detecting
errors in the CoT, given the question and CoT, with
the answer being the position index of the erro-
neous sentence, as specified in the prompt shown
in Fig. 12. If LLMs fail to detect all mistakes, they
do not need to attend the following refinement task.
The second step is to fix errors in CoT and generate
corrected CoT with given seed question and CoT
with prompt shown in Fig.13. The final step is to
refine the answer based on the corrected CoT and
the seed question, using the prompt in Fig. 14. If
LLMs successfully detect all mistakes and gener-
ate the correct final answer based on the corrected
CoT, we consider the model to have passed the
error correction task.

D Experiments

D.1 Experiment Setting
D.1.1 Environment Setting.

All experiments were conducted on a Linux server
equipped with two NVIDIA H800 GPUs (80GB).



The Seed Question:

John invited 20 people to a birthday party. Each guest will eat 2 hot dogs. He already has 4 hot dogs
left over from a previous party. If a pack of hot dogs contains 6 hot dogs and costs $2, how much does
he need to spend on hot dogs?

The Extracted Context:
John is hosting a birthday party and needs to ensure he has enough hot dogs for his guests. He is
calculating the cost based on the number of guests, the hot dogs he already has, and the price per pack

The Symbolic Expression:
(set-logic QF_NRA)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun c () Real)
(declare-fun d () Real)
(declare-fun e () Real)
(declare-fun f () Real)
(declare-fun g () Real)
(declare-fun h () Real)

(assert (= a 20))
(assert (= b 2))
(assert (= c 4))
(assert (= d 6))
(assert (= e 2))
(assert (=f (* ah)))
(assert (=g (- fc)))
(assert (=h (/g d)))
(assert (=i (*he)))

(declare-fun i () Real) (check-sat)

(get-value (i))

The Arithmetic Question:

What is the value of i, if a is equal to 20, b is equal to 2, c is equal to 4, d is equal to 6, e is equal to 2,
f is equal to the product of a and b, g is equal to f minus c, h is equal to g divided by d, and i is equal

to h multiplied by e?

The CoT:

He needs 2*20=<<2*20=40>>40 hot dogs. So he needs another 40-4=<<40-4=36>>36 hot dogs. So
he needs to buy 36/6=<<36/6=6>>6 packs of hotdogs. That means he needs to spend 6*2=$<<6*2=12>>

12. #HHH 12,

The Final Answer:
12.0

Figure 6: A data sample in the SMART benchmark.

The GPUs were used for deploying and perform-
ing inference on open-source models. The Python
version used was 3.9.20, and the version of the
Transformers package was 4.46.0.

D.1.2 Prompt Setting.

For our experiments, we leverage prompt templates
to generate evaluation questions, with examples
provided in Figures 7 through 14. Once the model
outputs are obtained, we convert them into JSON
format for subsequent analysis, using regular ex-
pressions to ensure the transformation process is
robust.
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D.2 Examples for question with different
difficulty setting

Fig.15 shows examples of different difficulty set-
tings for the understanding dimension evaluation.
The sentences with a red background in the image
represent irrelevant noise sentences, and the more
noise sentences there are, the harder the task of
extracting the effective context becomes.

Fig.16 shows examples of question with differ-
ent reasoning steps, which indicates different rea-
soning difficulties.

Fig.17 presents arithmetic questions with num-
bers in different digits. Numbers with more digits
means more difficult for arithmetic evaluation task.

Fig.18 presents CoT with different number of
error steps. CoT with more mistakes are more



System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert, and contextual analyzer. Your task is to analyze a
natural language math problem and extracting the background information.

The context extraction task is to extract non-mathematical information that provides context for the
problem. Avoid including any numbers, variables, or explicit mathematical details. Focus only on
descriptive and contextual information (e.g., the scenario, characters, or events).

The Given Question:
[Seed question]

Now, analyze the next math word problem. Extract the background information, strictly following the
steps and formatting provided. Be precise, logical, and concise in your responses.

The Extracted Context:
[Question context ]

Figure 7: The prompt for LLMs to extract context from seed question.

difficult for reflection evaluation task.
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System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert, and reasoning analyzer. Your task is to convert a

Math word problem into an SMT-LIB expression. Follow these instructions:

1. Define Variables: Use abstract variable names (e.g., a, b, c) that do not reflect the actual meaning of
the variables in the problem.

2. Formulate Constraints: Use mathematical relationships from the problem to establish constraints for
the SMT-LIB formula.

3. SMT-LIB Syntax: Use proper SMT-LIB syntax. The logic should be set to QF _NRA or QF_NIA as
appropriate. Include (check-sat) and (get-value ...) commands to verify satisfiability and extract the result.

4. Check: Ensure all the variables in SMT-LIB formula are declared.

5. Do not write comments.

The Given Question:
[Seed question]

Now, analyze the next math word problem. Generate the symbolic expression of the math word problem.
Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Symbolic Expression:
[SMT-LIB]

Figure 8: The prompt for LLMs to convert the seed question to a symbolic expression.

Perturbation Answer Understanding Reasoning Arithmetic
ACC@AnT PDR|] | ACC@UnT PDR] ACC@Reasont PDR| ACC@Arft PDRJ

Seed question 68.3 / 81.4 / 61.2 / 62.5 /

+ Noise insertion 54.6 20.1 56.1 31.1 47.3 13.9 60.0 4

+ Adding operation 23.7 65.3 74.1 9.0 41.8 19.3 40.2 35.7

+ Numerical variation 21.6 68.4 78.9 3.1 38.6 22.5 38.4 38.6

Table 6: The performance degradation of evaluation dimensions for gemma2-27B when three types of perturbations
are added to the seed questions. PDR refers to the performance drop rate.
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System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, and your task
is to convert the original SMT-LIB formula into a pure arithmetic problem in natural language,
accurately reflecting the relationships and modified values without adding any additional background
information. | will also give you the answer of the SMT-LIB formula, and you have to check that the
answer of the math word problem is same to the SMT-LIB' answer. Do not mention answer in the new
generated question.

The Given Symbolic Expression :
[SMT-LIB]

The Given Answer:
[Final answer]

Now, analyze the next SMT-LIB expression. Generate arithmetic problem of the SMT-LIB expression.
Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Arithmetic Problem:
[Arithmetic problem]

Figure 9: The prompt for LLMs to conver the SMT-LIB expression to arithmetic problem.
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System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a SMT-LIB expression, and a

question context. Your task is to create a math word problem based on the provided SMT-LIB

expression and background information. Follow these guidelines:

1. Use the SMT-LIB expression: The expression defines variables, equations, and constraints. Extract
the logic and numerical values from the SMT-LIB expression.

2. Incorporate the background information: Use the provided context to create a realistic and meaningful

story for the word problem. Align the narrative with the relationships and values in the SMT-LIB

expression.

Ensure correctness: The math word problem must logically match the SMT-LIB expression.

4. Structure the problem: Include all necessary details for solving the problem in a clear and concise
manner. Avoid introducing additional irrelevant information.

w

The Given Symbolic Expression :
[SMT-LIB]

The Given Context:
[Context]

Now, analyze the next SMT-LIB expression. Generate a math word problem based on the SMT-LIB
expression and background information. Strictly following the steps and formatting provided. Be precise,
logical, and concise in your responses.

The Generated Math Word Problem:
[Math word problem]

Figure 10: The prompt for LLMs to generated math word problem based on the SMT-LIB expression and the
extracted context.

System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, and your task
is to calculate the answer of the problem. The answer should not include any units or formulas. If there
are multiple answers, separate them with a comma and a space. Additionally, ensure that your answer is
rounded to five decimal places.

The Given Question:
[Question]

Now, analyze the next math problem. Generate answer of the math problem. Strictly following the steps
and formatting provided. Be precise, logical, and concise in your responses.

The Answer of Question:
[Answer]

Figure 11: The prompt for LLMs to solve the Mathematic problem.
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System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. You will be given a math problem, ant its
corresponding solution steps (Chain-of-Thought, CoT). If there is an error in the solution steps, identify
which sentence contains the error. The error sentence number should be based on the order of sentences
in the CoT, starting from 0. If no error is found, return False.

The Given Question:
[Seed question]

The Given CoT:
[CoT]

Now, analyze the next math word problem and its CoT. Find the errors in the CoT. Strictly following the
steps and formatting provided. Be precise, logical, and concise in your responses.

The Position of Error:
[Sentence 1D]

Figure 12: The prompt for LLMs to detect mistakes in the CoT.

System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. | will provide you with an math word problem, and
its corresponding solution steps (CoT) with error. Your task is to provide the corrected CoT (solution steps)
with the error fixed.

The Given Question:
[Seed question]

The Given CoT:
[CoT]

Now, analyze the next math problem and its CoT. Generate fixed CoT of the math problem. Strictly
following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Corrected of CoT:
[C-CoT]

Figure 13: The prompt for LLMs to correct the mistaks in the CoT.
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System Prompt:
You are a helpful assistant and good at following instructions.

User Prompt:

You are a highly skilled mathematician, NLP expert. | will provide you with a math word problem, its
revised solution steps (CoT). Your task is to provide new answer of the problem. The answer should not
include any units or formulas. If there are multiple answers, separate them with a comma and a space.
Additionally, ensure that your answer is rounded to five decimal places.

The Given Question:
[Seed question]

The Given Corrected CoT:
[C-CoT]

Now, analyze the next math problem and its corrected CoT. Generate the answer of the math problem again.
Strictly following the steps and formatting provided. Be precise, logical, and concise in your responses.

The Answer of Question:
[Answer]

Figure 14: The prompt for LLMs to refine the anwer of the seed question based on the correct CoT.

The Seed Question:
Adam bought 13 boxes of chocolate candy and gave 7 to his little brother . If each box has 6 pieces inside
it, how many pieces did Adam still have ?

The Question with one noise sentence:
Adam bought 13 boxes of chocolate candy and gave 7 to his little brother. If each box has 6 pieces inside

it how many pieces did Adam still have NSRRGSR

The Question with three noise sentences:
Adam bought 13 boxes of chocolate candy and gave 7 to his little brother. If each of them had the same
number of cookies.

BYBEAN f each box has 6 pieces inside it , how many pieces did Adam still have ? NS ISIBERINGIIGERE .
She already put in 12 cups of flour.

The Question with five noise sentences:

e ReISNRIRSIEISE. Adam bought 13 boxes of chocolate candy and gave 7 to his
little brother. If each of them had the same number of cookies. At Allan's house, there is twice as much
corn as cannolis. Anna is able to buy 5 more articles for $300 after the price of each article decreased
S SRS PESIERCIBIEREEEE. 11 cach box has 6 pieces inside it , how many pieces

did Adam still have?

Figure 15: Example of questions with different number of noise sentences.
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The Question with One or Two Reasoning Steps:
James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters
does he run a week?

The Question with Three or Four Reasoning Steps:
Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs.
This increased the value of the house by 150%. How much profit did he make?

The Question with Five or Six Reasoning Steps:

John drives for 3 hours at a speed of 60 mph and then turns around because he realizes he forgot
something very important at home. He tries to get home in 4 hours but spends the first 2 hours in
standstill traffic. He spends the next half-hour driving at a speed of 30mph, before being able to drive
the remaining time of the 4 hours going at 80 mph. How far is he from home at the end of those 4 hours?

The Question with more than Six Reasoning Steps:

Adrien's total salary was 30 percent higher than Lylah's. Four years later, his salary had increased, and
he was earning 40% more than what he was making four years ago. If Adrien's and Lylah's salary
increased simultaneously, and Adrien earned $40000 four years ago, calculate the total salary the two
were receiving four years later?

Figure 16: Example of questions with different reasoning steps.

The Arithmetic Question :
What is the value of d if a is equal to . b is equal to . cisequal to . and d is the sum of a, b, and ¢?

The Arithmetic Question with Numbers in Three digits:
What is the value of d if a is equal to 52956, b is equal to 56184, c is equal to 876, and d is the sum of a, b,
and c?

The Arithmetic Question with Numbers in Five digits:
What is the value of d if a is equal to 798817, b is equal to 74¥80, c is equal to 228827, and d is the sum of
a, b, and c?

The Arithmetic Question with Numbers in Seven digits:

What is the value of d if a is equal to 1j328)984, b is equal to 1j828)649, c is equal to 81688971, and d is
the sum of a, b, and c?

The Arithmetic Question with Numbers in Nine digits:

What is the value of d if a is equal to E782746160, b is equal to 238087442, c is equal to E340169802, and

d is the sum of a, b, and c?

Figure 17: Example of arithmetic questions with number in different digits.
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The Seed Question:

Peter has 54 tickets and 4 pencils. If he shares the tickets among 9 friends, how many tickets does each
friend get?", "background": "Peter has a collection of tickets and pencils. He decides to share his tickets
with his friends, specifically dividing them among a group. The scenario revolves around the distribution
of these tickets and how many each friend receives.

The CoT with One Mistake:

To determine how many tickets each of Peter’s [lBlifriends receives, we need to divide the total number of
tickets by the number of friends. First, we identify the total number of tickets Peter has, which is 54. Next,
we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how
many tickets each friend gets: 54 tickets + 9 friends = 6 tickets per friend. Thus, each friend receives 6
tickets. #### 6.0

The CoT with Two Mistakes:

To determine how many tickets each of Peter’s [l@lfriends receives, we need to divide the total number of
tickets by the number of friends. First, we identify the total number of tickets Peter has, which is [J. Next,
we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how
many tickets each friend gets: 54 tickets + 9 friends = 6 tickets per friend. Thus, each friend receives 6
tickets. ### 6.0

The CoT with Three Mistakes:

To determine how many tickets each of Peter’s .friends receives, we need to divide the total number of
tickets by the number of friends. First, we identify the total number of tickets Peter has, which is [J. Next,
we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how
many tickets each friend gets: 54 tickets + 9 friends = [ tickets per friend. Thus, each friend receives 6
tickets. #### 6.0

The CoT with Four Mistakes:

To determine how many tickets each of Peter’s [l@llfriends receives, we need to divide the total number of
tickets by the number of friends. First, we identify the total number of tickets Peter has, which is . Next,
we note that Peter is sharing these tickets among 9 friends. Now, we perform the division to find out how
many tickets each friend gets: 54 tickets + 9 friends = [ tickets per friend. Thus, each friend receives 6
tickets. ### 1B

Figure 18: Example of CoT with different number of error steps.
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