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Abstract

This paper investigates the potential of Large Language Models (LLMs), such as
GPT-4, Cohere, and Gemini, to generate synthetic samples of time-series sensor
data using only a few-shot learning (3 samples) without fine-tuning. We aim to
highlight their viability in augmenting datasets with minimal data, addressing data
scarcity and class imbalance challenges. We evaluate Human Activity Recognition
(HAR) tasks from wearable device sensors as a use case in this investigation. Our
findings demonstrate that LLMs can produce high-quality synthetic samples in less
imbalanced datasets, achieving competitive results compared to traditional gener-
ative models. However, the LLM performance decreases with more imbalanced
datasets, where the generated synthetic data lacks diversity. We also observed that
classification models trained with LLM-generated samples showed more stability
in terms of confidence intervals, with the Gemini model consistently producing
more stable data. We also present a framework for evaluating synthetic data gener-
ation methods, showing the trade-off between synthetic and real-world data and
suggesting practical directions for future work addressing data scarcity and balance
limitations.

1 Introduction

Developing accurate Machine Learning and Deep Learning models often requires large, well-labeled
datasets [1], which are time-consuming and expensive to collect. In response to these challenges, data
augmentation techniques have gained attention as a way to artificially expand datasets, thus improving
model performance [2]. Some of them have relied on methods such as time-series transformations,
signal processing techniques [3], and noise injection. However, recent advancements in natural
language processing (NLP) and the advent of Large Language Models (LLMs) have opened new
avenues for data generation beyond text, including synthesizing realistic sensor data [4, 5].

LLMs, particularly models like GPT-4 [6], have shown promise in generating high-quality data
across a range of domains (see [7, 8]), leveraging contextual understanding and pattern recognition
[9]. This work investigates whether LLMs can generate useful synthetic samples for time-series
sensor data with only few (three) samples provided as input. This setting poses a special challenge,
as it requires the generative models to capture the underlying distributions of complex sensor data
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Figure 1: A summary of our proposal: Starting from an original labeled dataset, we compare
the performance of a classification model with and without the use of data augmentation. In this
work, we examine the performance of classifiers of human activities. The classification is based on
sensor data from wearable devices. To augment data, we used synthetic samples generated by two
distinct types of generative models - traditional generative models and large language models. This
evaluation is conducted through cross-validation, with the analyses incorporating both quantitative
and qualitative metrics.
with minimal examples. We also investigate the potential of LLMs to enhance Human Activity
Recognition (HAR) datasets, what remains largely unexplored, especially in scenarios with limited
data— such as few-shot learning— we selected HAR as our case study. We selected the HAR
scenario as it is a critical field for advancing healthcare and well-being [10].

In this study, we evaluate the effectiveness of LLM-generated synthetic data in augmenting datasets
using the metrics: Mixed, TSTR (Train on Synthetic, Test on Real), and TRTS (Train on Real, Test on
Synthetic) [11] and Predictive Capacity (PC) [12]. These metrics provide a comprehensive evaluation
of the predictive power, generalizability, and robustness of the synthetic data when integrated with
real-world datasets. By comparing the performance of models trained on synthetic data generated
by different LLMs, including GPT-4 [6], Command R+ (Cohere) [13], and Gemini [14], without
fine-tuning, we aim to assess whether LLMs can effectively support data augmentation in a samples
and computational resources scarcity scenario. Figure 1 summarizes our approach. Specifically, we
address the key question: Are LLMs useful for time-series data augmentation?. The key contributions
of this paper are as follows:

• We demonstrated that LLMs, such as GPT-4 and Cohere, can generate synthetic samples
for time-series sensors from only 3-shot samples without fine-tuning, relying solely on the
LLM’s inference capabilities.

• By leveraging different metrics like F1-score, accuracy, and analyzing the confidence
intervals, our experiments showed where each LLM excelled (e.g., Gemini providing more
stable data) and identified their limitations, particularly in more unbalanced datasets.

• We evaluated the diversity of the synthetic data and its ability to capture the characteristics
of time-serie sensors. Our findings underscore the representativeness and practical utility of
LLM-generated data in improving HAR model performance.

• We compared the performance of various LLMs and traditional generative models, assessing
the practical value of these approaches in HAR tasks, particularly in augmenting limited
training data.

• We examine under which conditions LLMs outperform or complement generative models
like Generative Adversarial Networks (GANs) or diffusion models.

• We analyzed the trade-offs between the costs of acquiring and annotating real-world data
versus the use of LLM-generated synthetic data. This comparison provides practical insights
into LLMs’ scalability and resource efficiency for data augmentation.

2 Related Works

The TimeGAN model [15] is a foundational approach for generating time-series data, especially in
HAR. An advancement on this is the DroppelGANger [16], which enhances TimeGAN’s capabilities.
A recent method using transformers is the TTS-GAN [17], which effectively generates high-quality
temporal data. Diffusion Models [18], such as the SSSDS4 (SSSD) [19], have gained attention
for their ability to manage complex, high-dimensional data distributions and incorporate temporal
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information. In the context of large language models (LLMs), pretrained models like Gemini [14]
and GPT-4 [6] have emerged as influential tools. These models have significantly impacted various
applications, including healthcare [20] and time-series tasks [4]. Additionally, the Command R+
model from Cohere [13] is a new entrant LLM with an ongoing exploration of its potential (see more
in supplementary materials).

3 Methodology

3.1 Evaluation

We used the evaluation framework proposed by Souza et al. (2023) [11], a protocol that combines both
quantitative (employing recall, accuracy, and the F1 score) and qualitative metrics [21]. Focusing on
the analysis of the samples generated from the LLMs is useful to address HAR scarcity we analyzed
the metric Predictive Capacity (PC) [12]. The protocols can be summarized as follows:

• Train on Synthetic, Test on Real data (TSTR): Verifying the efficiency of the synthetic
samples to model the original data distribution, allowing training an ML classifier using
only synthetic samples [21].

• Train on Real, Test on Synthetic (TRTS): Assures the realism of the synthetic samples. It
evaluates if the generated sample is able to mirror the original training data [21].

• MIXED: Evaluating the capacity of synthetic data to augment the original dataset. The
evaluation ensures the validity of this artificial data for expanding the training dataset. This
protocol evaluates if the synthetic data does not fully capture the data’s diversity due to
inherent biases. This challenge is frequently referred to as the Domain Shift dilemma
[22][23].

• Data quality: Based on three criteria proposed by Fekri et al. (2019) [24], we evaluate
the quality of the synthetic data samples. The criteria are Fidelity (accuracy), Diversity, and
Generalization. Souza et al. (2023) demonstrate that adequate data samples met all of them.

• Predictive Capacity (PC): The metric [12] assesses the capacity and quality of the synthetic
data to train the model. PC ≤ 0.9 as having synthetic data with inferior quality and PC ≥
0.9 as having synthetic data with good quality. PC is measured as:

PC(Score) =
Score of model trained on synthetic data

Score of model trained on real data

In TSTR, we trained the HAR using 30 synthetic samples in each fold (for each class), and the
baseline for comparison was also trained using only 30 samples (chosen randomly). Due to the cost,
this was the maximum amount of data we could collect from the LLMs. In TRTS, we used 30 samples
for each category in train set, for a fairer comparison with the LLMs, for which we requested only this
amount of samples. For the MIXED protocol, we systematically combined synthetic samples with the
original training sample and randomly selected the samples for inclusion. The Tables that summarize
the results present the “#Baseline" model, which means we adopt the approach of Training the model
on Real data and Testing on Real data (TRTR). Due to space constraints in this paper, we only present
the average from the protocols when comparing LLMs to traditional generative models. Nevertheless,
complete results will be made available in the supplementary materials. Usually, the PC is measured
on accuracy, but we assessed for accuracy and F1 scores due to the class imbalance.

Table 1: Results per model and datasets under the Mixed protocol.

Dataset Model Added Accuracy Recall F1 Dataset Model Added Accuracy Recall F1
Baseline – 94.74±0.87 95.20±0.79 95.14±0.80 Baseline – 69.55±2.42 68.40±2.48 68.53±2.41

100 84.11 ± 2.28 81.27 ± 3.10 81.31 ± 2.99 100 68.75 ± 2.36 62.52 ± 3.66 62.38 ± 2.83
Cohere 150 83.30 ± 3.11 80.5 ± 3.11 80.51 ± 2.99 Cohere 150 69.48 ± 3.30 63.21 ± 4.91 62.89 ± 4.42

300 81.91 ± 2.15 79.52 ± 3.12 79.74 ± 3.02 300 69.17 ± 3.49 64.36 ± 4.62 63.50 ± 4.47
100 83.31 ±0.94 80.37 ±2.66 80.32±2.58 100 70.42 ± 2.38 63.99 ± 4.76 63.7 ± 4.14

MHEALTH Gemini 150 84.27 ± 2.23 80.53 ± 3.06 80.73 ± 2.95 MHAD2 Gemini 150 69.69 ± 2.55 66.26 ± 4.74 65.83 ± 4.20
300 81.68 ±1.88 79.01 ±2.72 78.65 ±1.88 300 71.35 ± 4.07 70.1 ± 5.8 67.16 ± 5.36
100 95.26 ±1.05 95.68 ±0.93 95.60 ±0.98 100 70.54±2.59 69.57±3.06 69.79±3.14

GPT-4 150 95.46 ±0.87 95.86 ±0.84 95.78 ±0.82 GPT-4 150 70.80±2.98 69.81±3.19 69.84±3.68
300 96.13 ±1.29 96.54 ±1.13 96.44 ±1.15 300 68.57±2.23 67.88±1.39 67.53±2.88
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3.2 LLM Prompt

We used a prompt to request LLMs to generate time-series data from a wearable device. The generated
data samples were designed to follow the same distribution as the original data provided within the
prompt. To achieve this, we randomly selected three data instances from the desired class and the
same dataset fold, resulting in nd-arrays with a shape of (3, temporal window, 3). We used these
arrays as the context for the prompt given to LLMs (see supplementary materials for more details).

4 Experiment Setup

4.1 Dataset

The study employed the UTD-MHAD dataset [25], featuring 27 different actions performed by eight
individuals. This dataset comprised data from accelerometer and gyroscope sensors and divided
into two subsets, UTD-MHAD1 (21 activities) and UTD-MHAD2 (6 activities). The experiments
specifically focused on the MHAD2 subset and accelerometer data. We also incorporated the Mobile
HEALTH (MHEALTH) dataset, which includes 12 distinct activities performed by ten participants
each. Data was collected from various sensors, including an accelerometer and ECG. Both data
processing followed the procedures detailed in Dclassifier [26], specifically focusing on accelerometer
data.

4.2 Evaluated Models

We utilized three large language models (LLMs) in the data generation experiments: GPT-4 [6],
Command R+ (Cohere) [13], and Gemini 1.5 flash [14]. All models were employed with their
default temperature settings to maintain consistency across the tests. To evaluate the effectiveness of
these models, we also compared their performance with traditional generative approaches, selecting
four state-of-the-art Generative Adversarial Networks (GANs): TimeGAN [15], DGAN [16], Time-
LogCosh-GAN (TLCGAN) [11], and TTS-GAN [27], as well as a diffusion model, SS [19]. These
GANs were trained for 200 epochs, while the diffusion model was trained for 1,000 iterations.
Additionally, we assessed performance using a DeepConv LSTM classifier (Dclassifier ) [26] the
state-of-art HAR for various datasets, including MHAD2 and MHEALTH, employing a 10-fold
cross-validation method over 16 epochs, with all models set to their default parameters. For further
technical details, please refer to the supplementary material.

5 Results and Discussion

5.1 Do LLMs contribute to the classifier’s performance ?

LLMs, such as GPT-4, have been shown to positively contribute to classification tasks. However,
their impact varies depending on the dataset and the performance metric being considered. As shown
in Table 1, GPT-4 is particularly useful for improving metrics like accuracy, F1-score, recall, and
stability, as indicated by narrower confidence intervals. Nevertheless, there is a limit to how much
synthetic data should be added before performance begins to degrade due to saturation. As traditional
models (see [11]), beyond a certain point, adding more data can lead to redundant or low-diversity
samples, which negatively impact the model’s effectiveness. In contrast, the other models tested, such
as Gemini and Cohere, were less effective at generating high-quality synthetic data.

In some cases, they even reduced overall performance. This may be because, unlike GPT-4, these
models are less capable of following prompt instructions [9] accurately and fail to generate data that
meaningfully balances the dataset or improves the representation of minority classes. In particular,
Cohere produced synthetic data that harmed performance by introducing more redundancy and less
diversity (see Figure 7 in the Section A.5), which hindered the model’s ability to learn effectively.
When applied to more complex and unbalanced datasets like MHAD2 (more details in Section A.4),
GPT-4 still contributed positively by improving the F1-score. However, its overall impact diminished
in terms of accuracy and robustness. This suggests that while GPT-4 excels at capturing general
patterns, it struggles with properly representing minority classes in skewed distributions. As a result,
the model’s ability to improve performance in such datasets is limited [28]. In summary, while GPT-4
improves HAR performance by generating useful synthetic data, its benefits are constrained by the
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Figure 2: Comparison of model performance across different datasets using TSTR and TRTS
protocols. The thin lines centered on the bars represent the confidence intervals, while the bars depict
the assessed metrics. The y-axis shows the metric values, and the x-axis indicates the evaluated
datasets. A notable disparity between accuracy and F1 scores highlights how class imbalance affects
model performance. The Gemini model stands out, having the smallest gap between the two metrics.

complexity and balance of the dataset. Care must be taken to avoid data saturation, and challenges
with minority class representation persist, particularly in more difficult scenarios like MHAD2.

5.2 How do synthetic data generated by LLMs impact the classifier’s stability?

The analysis (see Table 1) suggests that the synthetic data generated impacts the stability of metrics
like recall and F1-score. In the experiments, adding synthetic data led to increased variability in
model performance. However, GPT-4 demonstrated greater consistency, showing less variation in the
metrics, with narrower confidence intervals compared to the other models. This suggests that the data
generated by GPT-4 is of higher quality, contributing more reliably to the models’ performance. In
contrast, synthetic data generated by Gemini and Cohere introduced higher variability, especially in
the MHAD2 dataset. This indicates that their synthetic data may not contribute as effectively and
could negatively impact the robustness of the model’s predictions [29]. In certain scenarios, synthetic
data provided more stability, as seen in the MHEALTH dataset under the TSTR (see Figure 2). In
this case, most results showed narrower confidence intervals than the baseline, indicating that the
synthetic data contributed positively to model stability [30]. However, in datasets with more complex
or unbalanced distributions, such as MHAD2, synthetic data tended to introduce greater variability in
the model’s predictions. This was particularly evident in the TRTS metric (see Figure 2), where wider
confidence intervals suggested that models trained on synthetic data exhibited greater uncertainty
when tested on real data. This suggests that while LLMs like GPT-4 can capture general patterns
effectively, their ability to represent minority or less frequent classes may be limited, especially in
datasets with skewed class distributions, leading to decreased stability [31].

5.3 Does synthetic data help improve minority class classification?

Yes, synthetic data generated by LLMs has proven useful for balancing datasets and improving
the classification of minority classes. In both MHEALTH and MHAD2 datasets, models trained
with synthetic data showed improved recall and F1-scores, indicating dealing better with minority
class [32], particularly when using the GPT-4 model. However, despite these improvements in class
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distinction, a noticeable discrepancy between accuracy and F1 scores was observed. This suggests
that while synthetic data helps in distinguishing between classes (improving F1), it does not always
lead to better overall predictive accuracy. This discrepancy highlights the complexity of the data and
the impact of the imbalance. In the more imbalanced MHAD2 dataset, GPT-4 achieved the highest F1
score but also exhibited a larger discrepancy between accuracy and F1 (around 10%). This indicates
that, while the model performs well on minority class identification, it struggles to maintain overall
accuracy, likely due to the dataset’s class imbalance. On the other hand, although the Gemini model
did not achieve the highest F1 score, showed a much smaller discrepancy between F1 and accuracy
(around 3%), suggesting it handles imbalanced data more robustly. The impact of synthetic data was
more consistent in the less imbalanced MHEALTH dataset, where models like GPT-4 significantly
improved accuracy and F1-score compared to the baseline. This reinforces the idea that synthetic
data is more effective when the dataset is more balanced [33]. In summary, while synthetic data helps
improve minority class classification, the degree of dataset imbalance and the specific model used
significantly affect the overall performance.

5.4 What are the trade-offs between the synthetic data amount and the classifier’s
performance?

LLMs, such as GPT-4, can effectively generate useful augmentation data for HAR tasks. However,
this contribution is sensitive to the volume of data added. GPT-4 demonstrates better generalization
and stability compared to other models, but the quality of synthetic data must be closely monitored
to avoid saturation and performance degradation. The experiments reveal a critical balance point
regarding synthetic data generation (see Table 1). Moderate amounts of data—specifically between
100 and 150 samples per class—significantly enhance performance metrics. However, increasing
the amount beyond 300 samples can lead to diminished returns and, in some cases, a decrease in
performance. This decline is often due to reduced diversity or the creation of less relevant data,
highlighting the importance of regulating the amount of generated data to prevent overfitting or loss
of quality. For GPT-4, adding between 150 to 300 samples can improve performance on certain
metrics. Conversely, other models like Gemini and Cohere experienced a drop in performance when
faced with excessive synthetic data, likely due to the lack of diversity among samples. This suggests
a saturation point in synthetic data generation, where additional data begins to negatively impact
overall performance.

Table 2: Predictive Capacity (PC) for Accuracy and F1

Dataset Model PC (Accuracy) PC (F1)
GPT-4 ≈ 1.41 ≈ 1.69

MHAD2 Gemini ≈ 0.80 ≈ 1.26
Cohere ≈ 1.27 ≈ 1.55
GPT-4 ≈ 2.16 ≈ 2.46

MHEALTH Gemini ≈ 1.90 ≈ 2.72
Cohere ≈ 1.57 ≈ 2.21

5.5 Is it possible to generate diverse synthetic data using only three-shot samples ?

The experiments demonstrated that while LLMs, such as GPT-4, can generate synthetic data from
a limited number of initial samples, the effectiveness of this data is highly dependent on the task -
Figure 2 and Table 1 express that - and the complexity of the original dataset. In certain scenarios,
the generated data captures relevant aspects of the original distribution (see Figures 7 and 6 in the
Section A.5); however, in others, it exhibits limited diversity and representativeness, negatively
impacting model learning. For data augmentation to be effective, the generated synthetic data must
provide diverse and novel information to the model [11, 34]. GPT-4 largely succeeds in this regard,
as evidenced by performance improvements observed when synthetic data is added, particularly
within specific thresholds—300 samples for the MHEALTH dataset and 150 samples for the MHAD2
dataset. Nonetheless, the results indicate that exceeding these amounts can degrade performance,
suggesting a limit to the diversity and usefulness of the generated data.

In contrast, the Cohere model appears to generate data with reduced diversity. This is reflected in
performance declines as more data is added across both datasets, implying that the generated data
may be excessively redundant or poorly aligned with the classification model. Additionally, the
observed decrease in F1-score and recall relative to accuracy indicates that Cohere’s synthetic data
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might distort class balance or fail to be effectively utilized by the model. Gemini exhibited similar
trends, showing a slight decline in quality with increased data, reinforcing concerns regarding the
lack of diversity in the synthetic samples produced by various models. While it is feasible to generate
synthetic data from only three initial samples, the resultant diversity and effectiveness depend on the
model used and the management of the data volume.

5.6 Can LLMs generate useful synthetic data ?

Generating synthetic data from only three samples is challenging due to the limited context available
for the model to learn from. This often results in a lack of diversity in the generated data, as
observed in several scenarios. However, LLMs like GPT-4 have demonstrated an impressive ability
to generalize, even with minimal data. Their large-scale pretraining allows them to infer key patterns
and characteristics from a few samples, generating synthetic data that retains essential aspects of
the original dataset. In experiments, LLM-generated data showed good fidelity (see Section A.5),
especially when evaluated using the TSTR metric, which revealed that the real data’s characteristics
were well reproduced. However, despite this fidelity, the synthetic data often lacked diversity, limiting
its usefulness in data augmentation and model robustness. For instance, the TRTS metric indicated
that while the synthetic data captured certain patterns, it did not surpass the baseline in complex
or unbalanced datasets like MHAD2, where diversity is crucial for better generalization. LLM-
generated data has been more effective for simpler and more balanced datasets, such as MHEALTH.
GPT-4, in particular, was able to generate useful data with just three initial samples, improving
model performance in specific metrics. This suggests that, under the right conditions, synthetic data
generated by LLMs can still be valuable for training. However, models like Gemini struggled to
provide diverse synthetic data, leading to a drop in performance when more samples were added,
suggesting redundancy or lack of variation. In contrast, GPT-4 showed greater diversity in its synthetic
data, contributing to improved model robustness, especially in scenarios requiring mixed data sources.
Overall, metrics like TSTR and PC(Table 2) indicated that LLMs are capable of generating high-
quality synthetic data, with several models achieving a PC above 0.9. This suggests that, while
synthetic data may not always surpass real data in performance, it is still useful for training [12],
particularly when generated by GPT-4.

5.7 Does class balancing affect LLMs ?

The previous sections show that the synthetic data tested achieved the best performance on the
MHEALTH dataset. Both datasets are imbalanced, but MHAD2 is more imbalanced than MHEALTH
(see Section A.4), which impacts the variability of the results. When randomly selecting three samples
from each class in the MHEALTH dataset, the sampling process favors overrepresented classes. This
increases the likelihood of producing a subset that accurately represents the overall data distribution
[35]. Such a representative subset allows LLMs to generate synthetic data that better captures key
patterns and features of the original data, leading to superior augmentation and enhanced classifier
performance. Conversely, in a more imbalanced dataset like MHAD2, randomly selecting three
samples per class is less likely to capture a representative cross-section of the data [35]. In these
datasets, certain classes have far fewer examples, which increases the risk that the chosen samples
may not adequately reflect the diversity and distribution of the dataset. Consequently, the synthetic
data generated by LLMs may fail to capture the full spectrum of the data’s complexity, resulting in
poorer performance. Thus, the degree of dataset imbalance directly impacts the representativeness of
the samples available to the LLMs. In more balanced datasets (like MHEALTH), the synthetic data
generated from a small, random sample set is more likely to reflect the overall dataset, leading to
better model performance. In contrast, in more imbalanced datasets (like MHAD2), the same number
of randomly selected samples is less likely to be representative, resulting in less effective synthetic
data and lower performance.

5.8 Traditional models vs. GPTs

Traditional models still tend to outperform LLMs in some contexts. However, considering that a small
number of samples is available, LLMs provide a significant advantage by generating additional data
to improve classifier performance. GPT-4 outperforms the baseline, introducing synthetic samples
to the MHAD2 training set, in two of the three demonstrated scenarios (see Figure 3). In these
scenarios, considering accuracy, it surpasses both TimeGAN and SSSD. However, when considering
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Figure 3: Average performance of the models per dataset. Each plot corresponds to one of the metrics
evaluated; each color represents the incremental volume of synthetic data added to both original
datasets, while each row corresponds to the method applied for blending synthetic and real data. The
metrics correspond to the average of the metric in each dataset.

the arithmetic mean, TTS-GAN also falls within this category. TLCGAN demonstrated the highest
performance, with nearly 3% more accuracy and a higher average. With respect to the MHEALTH
dataset, GPT-4 outperforms the baseline in all scenarios. Within these, it surpasses TLCGAN in
two out of three scenarios, thus becoming the top-performing model. This holds true both in terms
of average and accuracy, implying that GPT’s performance is notably high since the average was
maintained and the datasets are unbalanced. GPT-4 is not the best-performing model on TSTR at
the MHAD2 and MHEALTH datasets. Still, it enhances the baseline by approximately 10% on the
MHAD2 TSTR evaluation and almost 28% on the MHEALTH TSTR evaluation. It outperforms
SSSD (with an improvement of around 14%) and TTS-GAN (with a gain of roughly 8%) on MHAD2
and TimeGAN (with a gain of roughly 32%), DGAN (more than 40%), and TTS-GAN (more than
30%) on MHEALTH. The TLCGAN showed the most exceptional performance, exceeding the
baseline in both scenarios in MHAD2. In MHEALTH, it was the second best on TSTR but the best
model on TRTS, even without outperforming the baseline. Even though it is not the top-performing
model in all scenarios, GPT-4 is competitive compared to other models. Like the others, augmenting
data improves the model’s performance to a certain extent, suggesting a consistency in the results
produced when employing this model. Section A.6 provides more discussion about it.

5.9 Data Acquisition Costs and LLM Usage

As highlighted earlier, we employed a Large Language Model (LLM) to generate synthetic data
without fine-tuning, using just three samples per class as input. Despite the limited initial data, the
LLM’s ability to generate useful synthetic datasets proves to be a cost-effective solution in data-scarce
environments. Our results suggest that LLMs can sometimes rival or even outperform traditional
models, which typically require extensive datasets for comparable generalization performance [36].
This highlights a significant trade-off: while traditional models rely heavily on large-scale data
collection, incurring higher computational and financial costs, LLMs achieve similar results with
minimal data and computational resources. LLMs also present an advantage in terms of monetary
investment. Synthetic data can be generated using trial API keys from various LLM providers. For
instance, using the Cohere API, it is possible to generate two and a half folds of synthetic data for a
dataset with twelve classes, collecting 30 samples per class, entirely with a free key. Similarly, Gemini
allows the creation of five folds under the same conditions, while GPT-4 can generate only half a fold
before reaching usage limits. Therefore, in scenarios where data is limited, the cost-effectiveness
and reduced resource requirements of LLMs make them a viable and attractive option for synthetic
data generation, offering a compelling balance between data acquisition costs and computational
efficiency.

6 Conclusion

Our study investigated the effectiveness of LLMs like GPT-4, Cohere, and Gemini in generating
synthetic samples for data augmentation through a few-shot learning (three samples). The results
show that LLMs, while not consistently outperforming real-world data, offer certain advantages and
can be considered useful for HAR augmentation in specific contexts. For datasets like MHEALTH,
LLMs— especially Gemini—generated data that closely resembled real distributions, leading to more
stable performance with narrower confidence intervals. However, in more unbalanced datasets such
as MHAD2, the effectiveness of LLM-generated data diminished, indicating limitations in handling
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class imbalance. GPT-4, in particular, improved the baseline performance when considering metrics
like F1-score, suggesting its potential for enhancing classifier performance. While LLM-generated
data may not always surpass the utility of real-world data in terms of diversity, they offer a viable
solution in data and computational resource scarcity scenarios. Additionally, their ability to generate
useful data without fine-tuning presents a cost-effective method for augmenting HAR datasets.
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Sharman, Paul Natsev, Paul Michel, Yamini Bansal, Siyuan Qiao, Kris Cao, Siamak Shakeri,
Christina Butterfield, Justin Chung, Paul Kishan Rubenstein, Shivani Agrawal, Arthur Mensch,
Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan Pope, Loren Maggiore, Jackie Kay,
Priya Jhakra, Shibo Wang, Joshua Maynez, Mary Phuong, Taylor Tobin, Andrea Tacchetti,
Maja Trebacz, Kevin Robinson, Yash Katariya, Sebastian Riedel, Paige Bailey, Kefan Xiao,
Nimesh Ghelani, Lora Aroyo, Ambrose Slone, Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena
Gribovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music Li, Thais Kagohara, Jay Pavagadhi,
Sophie Bridgers, Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed, Tianqi Liu, Richard
Powell, Vijay Bolina, Mariko Iinuma, Polina Zablotskaia, James Besley, Da-Woon Chung,

10



Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaël Lopez Kaufman, Simon Tokumine, Hexiang Hu, Elena Buchatskaya, Yingjie Miao,
Mohamed Elhawaty, Aditya Siddhant, Nenad Tomasev, Jinwei Xing, Christina Greer, Helen
Miller, Shereen Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Angelos Filos, Milos Besta,
Rory Blevins, Ted Klimenko, Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang,
Mantas Pajarskas, Carrie Muir, Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit
Marathe, Steven Hansen, Sholto Douglas, Rajkumar Samuel, Mingqiu Wang, Sophia Austin,
Chang Lan, Jiepu Jiang, Justin Chiu, Jaime Alonso Lorenzo, Lars Lowe Sjösund, Sébastien
Cevey, Zach Gleicher, Thi Avrahami, Anudhyan Boral, Hansa Srinivasan, Vittorio Selo, Rhys
May, Konstantinos Aisopos, Léonard Hussenot, Livio Baldini Soares, Kate Baumli, Michael B.
Chang, Adrià Recasens, Ben Caine, Alexander Pritzel, Filip Pavetic, Fabio Pardo, Anita Gergely,
Justin Frye, Vinay Ramasesh, Dan Horgan, Kartikeya Badola, Nora Kassner, Subhrajit Roy,
Ethan Dyer, Víctor Campos Campos, Alex Tomala, Yunhao Tang, Dalia El Badawy, Elspeth
White, Basil Mustafa, Oran Lang, Abhishek Jindal, Sharad Vikram, Zhitao Gong, Sergi Caelles,
Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng, Wojciech Stokowiec, Ce Zheng, Phoebe
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A Supplementary Material

A.1 Related Works

The TimeGAN model [15] represents a foundational approach to generating time-series data and is
widely employed in the field of Human Activity Recognition (HAR). It has significantly influenced
subsequent research as one of the pioneering works in applying Generative Adversarial Networks
(GANs) to time-series data. An advancement in this area is the DroppelGANger model [16], which
enhances the TimeGAN framework by introducing techniques that improve data generation quality
and efficiency.

A more recent trend in this domain involves the use of transformers, exemplified by the TTS-GAN
[17]. This approach leverages the strengths of transformer architectures to generate high-quality
temporal data, reflecting the evolving landscape of generative models.

Another noteworthy model gaining traction in the context of temporal data is the Diffusion Model
[18]. Its ability to modulate complex and high-dimensional data distributions makes it particularly
effective for handling the inherent uncertainty present in time-series data. The SSSDS4 (SSSD)
model [19] serves as a prime example of how diffusion models can incorporate temporal information.

In recent years, the practice of pretraining Natural Language Processing (NLP) models using a
language modeling objective has gained substantial attention [37]. Notable instances include Gemini
[14] and the GPT series [6], with GPT-4 emerging as one of the most popular variants. These
models have been widely utilized across various tasks, impacting numerous fields beyond academia,
as evidenced by studies on their applications in education [38], editorial processes [39], software
debugging [40], and healthcare [20].

Additionally, the Command R+ model from Cohere [13] represents a new and influential develop-
ment in large language models (LLMs). Its recent introduction has sparked community interest as
researchers explore its potential applications and capabilities.

A.2 Models details

This section presents some details about the models employed in the main paper.

The GPT-4 [6] is an LLM developed by OpenAI that excels at natural language processing (NLP)
tasks, such as text generation, summarization, translation, and more. It improves upon its predecessors
with enhanced reasoning capabilities, a larger context window, and better performance in nuanced
tasks like dialogue comprehension and text-based reasoning.

Command R+ by Cohere [13] is an advanced version of Cohere’s language models focused on
retrieval-augmented generation (RAG). It specializes in tasks that involve recalling external knowl-
edge, offering better precision in generating text-based responses grounded in factual retrieval. This
model is particularly optimized for business applications like customer support, content generation,
and summarization.

Gemini 1.5 Flash [14] is part of Google’s Gemini family of AI models, combining strengths in
both generative and reasoning tasks. It focuses on multimodal applications, integrating language,
vision, and reasoning in a powerful and efficient framework. The "Flash" version likely indicates
improvements in speed and adaptability, making it suitable for real-time tasks and interactive AI
applications.

Time-LogCosh-GAN (TLCGAN) is a traditional GAN model that uses two separate random noise
inputs, z1 and z2, generated in a time-series format[11]. This model was trained using 10-fold
stratified data over 200 epochs, with a learning rate of lr = 0.0001 and a batch size of 5.

The Time-series GAN (TimeGAN) is a generative model trained adversarially and jointly. It uses a
learned embedding space with both supervised and unsupervised losses. It comprises four network
components: an embedding function, a recovery function, a sequence generator, and a sequence
discriminator. In this study, we set the maximum sequence length and the hidden dimension size
to 50. The model underwent training over 200 epochs with all other parameters set to their default
values.
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Transformer-based Time-Series Generative Adversarial Network (TTS-GAN) architecture comprises
two primary components: a generator and a discriminator. Both components are built using the
transformer encoder architecture [6]. The encoder comprises two compound blocks. The first block
utilizes a multi-head self-attention module, while the second block is a feed-forward MLP with
a GELU activation function. The model was trained for 200 iterations, with the sequence length
matching the size of the temporal windows from the utilized dataset. All other parameters were kept
at their default values.

The Structured State Space Diffusion SSSDS4 (SSSD) model [19] is a diffusion model designed for
time-series data, drawing inspiration from a generative model for audio - DiffWave [41]. The model
was trained using the default configuration for 1,000 iterations.

DroppelGANger (DGAN) is a synthetic data generation framework based on generative adversarial
networks (GANs) [16], consisting of a metadata generator and a min/max generator. We adjusted it
to set the max sequence length and sample length equal to the temporal window length from the used
dataset. The batch size was 5, and the learning rate was lr = 10−4 for both the discriminator and the
generator. The model was trained for 200 epochs.

A.3 Prompting details

As previously mentioned, we selected three data instances from the desired class and from the same
dataset fold, which resulted in nd-arrays with a shape of (3, temporal window, 3). We used these
arrays as the context for the prompt given to the LLMs (Figure 4 illustrates it). All the LLMs received
the same samples as context to ensure fairness.

ChatGPT-4

I need you to generate data with shape (50,3) in the same distribution as the ones I'm giving you: 

[[array([-0.97998,  0.11694,  0.34668]),
  array([-0.98779,  0.13257,  0.33862]),
...   .....  ...        ....       ....         ... 
  array([-0.98657 ,  0.091797,  0.32495 ]

First 
Prompt

Chat answer...

Send a message

Figure 4: Illustration of the prompt given to ChatGPT-4: We provide an nd-array data with a shape of
(3,50,3). Here, ‘3’ represents the number of examples, ‘50’ denotes the time-series window size, and
the final ‘3’ corresponds to the number of accelerometer attributes. We then ask it to generate a set of
points with dimensions (50,3) that follow the same distribution as the input data. We intentionally
maintain the prompt straightforward to evaluate the zero-shot performance of the language model in
understanding the data distribution. The strategy to generate one sample at a time is employed to
reduce the chance of errors or misunderstandings by the LLM when interpreting the prompt.

A.4 On the datasets imbalacement

In this section, we discuss the improvement of the adopted datasets. Figure5 displays two histograms
representing the distribution of two variables, MHAD2 and MHEALTH. The x-axis likely represents
different categories or classes, while the y-axis represents the count of observations within each class.

In both datasets, some classes are significantly overrepresented (e.g., class 11 in MHAD1 and class 4
in MHAD2). This imbalance can lead to biased model performance. For instance, a model might
perform well in the majority classes but fail to learn adequately in the minority classes.

For the MHAD2 dataset, the imbalance is more pronounced, with class 4 having the highest count
(around 220), followed by class 5 with a slightly lower count. On the other hand, classes 2 and 3 have
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Figure 5: Mean number of samples per class across datasets. The datasets are divided into stratified
10-folds, with the bars representing the mean number of samples per class across all folds.

much lower counts (around 100), while classes 0 and 1 show an intermediate count. The imbalance
could likely bias models towards predicting classes 4 and 5 more frequently, as they dominate the
dataset. Minority classes like 2 and 3 could be underrepresented in the model’s learning process,
leading to poor classification for those specific classes.

The imbalance in the MHEALTH model is less severe compared to MHAD2. Most classes (except
class 0 and class 3) have around 250 examples. Class 0 is significantly underrepresented, with less
than 50 examples, and class 3 has around 100 examples. Although there is still some imbalance,
especially with class 0, it is not as extreme as in MHAD2. The model is likely to perform more
evenly across most classes, though it might struggle to correctly classify examples of class 0 due to
the low representation.

A.5 LLMs data’s distribution

In this section, we provide plots about the LLMs data’s distributions. It is possible to compare the
original distribution of the data from fold 0 and category 0 with the synthetic for the same fold and
category. For a better visualization, we divided the figure in two, allowing the reader to see the details
and avoiding shrinking the figures.

Figure 6: Comparative analysis of synthetic (orange) and real (blue) distributions using the MHAD2
Dataset. The GPT-4 model provides the synthetic data. There are noticeable similarities in trends
between synthetic and real distributions. However, these synthetic datasets diverge from each other in
terms of data range and statistics metrics.

It is evident that the synthetic data generally follows the same distribution pattern as the real data,
although some discrepancies can be observed. For instance, in the case of Gemini (see Figure 7),
the synthetic data has a lower minimum value and a higher maximum compared to the original.
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Conversely, for Cohere and GPT, the minimum values are higher, and the maximum values are lower
than the original data. Notably, the data generated by Cohere and Cohere are quite similar, while
GPT’s data stands out with more divergence (see Figure 6). Despite this, both Cohere and Gemini
closely resemble the real data, indicating a strong fidelity to the original distribution, with some
variability—albeit confined to specific regions where the shape of the violin plot shows noticeable
differences. On the other hand, GPT’s data appears less similar and exhibits greater diversity, as
indicated by the shape of its violin plot, a finding that quantitative metrics can corroborate. The
graphs also reinforce our previous observations: LLM-generated data tends to lack diversity, which
is understandable given the model’s limited access to only three samples as examples of the target
distribution.

The real and synthetic data medians are quite similar for all three groups. This suggests that the
synthetic data generators have captured the real data’s central tendency. The IQR, which represents
the spread of the middle 50% of the data, also seems to be comparable between real and synthetic
data. This indicates that the synthetic data generators have maintained the overall variability of the
real data.

Figure 7: Comparative analysis of synthetic (orange) and real (blue) distributions using the MHAD2
Dataset.

However, the violin plots reveal some differences in the distribution shapes between real and synthetic
data. For instance, the real data for Gemini appears to have a slightly wider distribution than the
synthetic data, while Cohere’s synthetic data seems to have a slightly narrower distribution than the
real data.

Overall, the violin plots suggest that the synthetic data generated by Gemini and Cohere is reasonably
similar to the real data in terms of central tendency and variability. However, there are some
differences in the distribution shapes and the presence of outliers.

A.6 GPT-4 vs. Traditional models

In this section, we provide the full results of the comparison between the best-performing LLM and
traditional generative models.

A.6.1 TRTS and TSTR protocols

In TSTR, we trained the classifier in each fold using 30 synthetic samples (for each class), and the
baseline for comparison was also trained using only 30 samples (chosen randomly). This was the
maximum amount of data we could collect from GPT-4. In TRTS, we used the number of synthetic
samples as the number of real test samples. Table 3 presents the performance of all methods since the
number of samples in the testing set is fewer than 30.

GPT-4 is not the best-performing model on TSTR at the MHAD2 and MHEALTH datasets. Still,
it enhances the baseline by approximately 10% on the MHAD2 TSTR evaluation and almost 28%
on the MHEALTH TSTR evaluation. It significantly outperforms SSSD (with an improvement of
around 14%) and TTS-GAN (with a gain of roughly 8%) on MHAD2 and TimeGAN (with a gain of
roughly 32%), DGAN (more than 40%), and TTS-GAN (more than 30%) on MHEALTH. Regarding
TRTS, it does not exceed the baseline but still proves superior to most models in the TSTR protocol.
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Table 3: Results of each model under the evaluated protocols.

Eval. Dataset Model Add Accuracy Eval. Dataset Model Add Accuracy
#Baseline - 69.55 ± 2.42 #Baseline - 24.46 ±2.07
GPT-4 150 70.80 ± 2.98 TLCGAN - 47.08 ±4.50±4.50±4.50
DGAN 100 70.98 ± 1.88 DGAN - 45.63±6.16

MHAD2 SSSD 100 68.93 ± 2.65 MHAD2 TimeGAN - 45.52±2.83
TLCGAN 150 72.23 ± 3.14± 3.14± 3.14 SSSD - 20.73±2.73
TTS-GAN 100 70.45 ± 2.91 TTS-GAN - 26.15±5.30

MIXED TimeGAN 100 70.63 ± 3.11 TSTR GPT-4 - 34.38±3.46
#Baseline - 94.74 ± 0.87 #Baseline - 24.33±3.17
GPT-4 300 96.13 ± 1.29± 1.29± 1.29 TLCGAN - 55.25±3.37
DGAN 150 95.34 ± 0.75 DGAN - 11.61±2.73

MHEALTH SSSD 300 96.12 ± 0.57 MHEALTH TimeGAN - 20.80±2.56
TLCGAN 300 95.83 ± 0.33 SSSD - 63.47 ±1.66±1.66±1.66
TTS-GAN 300 96.04 ± 0.91 TTS-GAN - 12.94 ±3.30
TimeGAN 300 95.83 ± 0.94 GPT-4 - 52.61 ±2.13

Eval. Dataset Model Add Accuracy Recall F1
#Baseline - 69.55±2.42 68.40±2.48 68.53±2.41
TLCGAN - 69.17 ±4.59±4.59±4.59 68.20±4.81±4.81±4.81 68.17±4.94±4.94±4.94
DGAN - 55.83±3.54 54.81±3.74 53.96±4.17

MHAD2 TimeGAN - 68.33±6.62 65.96±7.27 60.96±8.05
SSSD - 17.92±0.94 19.38±1.16 10.58±2.25
TTS-GAN - 20.73±3.55 23.29±3.98 12.21±3.78

TRTS GPT-4 - 36.56±4.82 36.06±4.47 27.66±5.63
#Baseline - 98.12±1.75 96.82±3.71 96.66±3.76
TLCGAN - 78.26 ±3.77±3.77±3.77 78.28 ±3.78±3.78±3.78 74.79 ±4.53±4.53±4.53
DGAN - 70.03±2.73 70.09±2.73 68.44±3.00

MHEALTH TimeGAN - 25.99±4.21 25.83±4.23 18.66±3.53
SSSD - 70.03 ±2.73 70.10±2.73 68.44±3.00
TTS-GAN - 8.92 ±0.49 8.80 ±0.48 1.88±0.47
GPT-4 - 59.43 ±2.12 59.44 2.17 50.10 ±2.93

In the “#Baseline" model, we adopt the approach of Training the model
on Real data and Testing on Real data (TRTR). For both the MHAD2 and
MHEALTH datasets, we utilize 30 samples from each class for training.
However, in the case of the MHEALTH dataset, we restrict our testing to
only 30 samples. The term ‘add’ refers to the number of synthetic examples
incorporated into the existing training set. Due to space constraints in
this paper, we only present the best results from the MIXED protocol.
Nevertheless, complete results will be made available in the supplementary
materials accompanying this paper for a comprehensive view.

TLCGAN showed the most exceptional performance, exceeding the baseline in both scenarios in
MHAD2. In MHEALTH, it was the second best on TSTR but the best model on TRTS, even without
outperforming the baseline.

A.6.2 Mixed

We systematically combined synthetic samples with the original training samples and evaluated the
performance of the Dclassifier [26] when trained on this mixed data. Given that the generated dataset
is larger than the data to be incorporated, we randomly selected the samples for inclusion. Figures
3 and 3 summarize this procedure. Due to being the best LLM in the tasks evaluated in the paper,
our analysis will concentrate on the data generated by GPT-4 (our primary focus) and TLCGAN (the
baseline).

Upon introducing synthetic samples to the MHAD2 training set (refer to figure 3), GPT-4 outperforms
the baseline in two of the three demonstrated scenarios. In these scenarios, considering accuracy, it
surpasses both TimeGAN and SSSD. However, when considering the arithmetic mean, TTS-GAN
also falls within this category. TLCGAN demonstrated the highest performance, with nearly 3%
more accuracy and a higher average.

With respect to the MHEALTH dataset, GPT-4 outperforms the baseline in all scenarios. Within
these, it surpasses TLCGAN in two out of three scenarios, thus becoming the top-performing model.
This holds true both in terms of average and accuracy, implying that GPT’s performance is notably
high since the average was maintained and the datasets are unbalanced.

The performance of both models varies according to the amount of data added, and depending on
the dataset, it may negatively affect model performance as more synthetic data is added. Too many
synthetic samples might introduce noise or overfitting, diminishing the benefits of augmentation
(see table 3 for the best results in this evaluation). Even though it is not the top-performing model
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in all scenarios, GPT-4 is competitive compared to other models. Like the others, augmenting data
improves the model’s performance to a certain extent, suggesting a consistency in the results produced
when employing this model.

A.7 Limitations and Future works

Our current work primarily focuses on three LLMs. While GPT-4 demonstrated strong performance in
synthetic data generation, the study would benefit from evaluating additional LLM models, including
earlier versions and other state-of-the-art generative models. Also, fine-tuning LLM models on
domain-specific data could potentially enhance their performance and generate more accurate and
representative synthetic data. Future research should explore the impact of fine-tuning on synthetic
data quality and in the classifier’s performance.
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