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Molecular Generative Model via Retrosynthetically Prepared
Chemical Building Block Assembly

Seonghwan Seo, Jaechang Lim,* and Woo Youn Kim*

Deep generative models are attracting attention as a smart molecular design
strategy. However, previous models often render molecules with low
synthesizability, hindering their real-world applications. Here, a novel
graph-based conditional generative model which makes molecules by
tailoring retrosynthetically prepared chemical building blocks until achieving
target properties in an auto-regressive fashion is proposed. This strategy
improves the synthesizability and property control of the resulting molecules
and also helps learn how to select appropriate building blocks and bind them
together to achieve target properties. By applying a negative sampling method
to the selection process of building blocks, this model overcame a critical
limitation of previous fragment-based models, which can only use molecules
from the training set during generation. As a result, the model works equally
well with unseen building blocks without sacrificing computational efficiency.
It is demonstrated that the model can generate potential inhibitors with high
docking scores against the 3CL protease of SARS-COV-2.

1. Introduction

The design of molecules with desired properties is at the heart of
chemistry. Deep learning-based molecular design has attracted
great attention as a new strategy for various applications includ-
ing drug design.[1–5] The so-called deep generative models aim
to precisely control multiple properties at the same time while
navigating the vast chemical space. That becomes possible by
learning the structure–property relationships directly from raw
data implying both structure and property information on di-
verse molecules. Recent studies demonstrated that such models
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can be applied to designing drug candidates
in early-stage drug discovery such as hit
generation and lead optimization. For ex-
ample, Zhavoronkov et al. designed focused
molecules as inhibitors against discoidin
domain receptor family member 1, and
their potency and physicochemical proper-
ties measured by experiments indeed satis-
fied conditions as lead candidates.[6]

The architectures of various deep
generative models rely on molecular
representations employed as input for
molecular structures. Language mod-
els and variational autoencoders with
simplified molecular input line entry
system (SMILES) molecular represen-
tation have been widely used.[7–13] The
language models are trained to construct
new SMILES strings by sequentially adding
new characters to a given piece of SMILES
string. Then, the models can generate
novel molecules not in the training set by

exploring the chemical space learned from the training. Varia-
tional autoencoder (VAE) is also a popular architecture.[11] In
VAE, the encoder converts a given molecular representation as
input to an embedding vector in the latent space, and the de-
coder recovers the original molecule from the latent vector. After
training, the VAE model can generate new molecules by decod-
ing latent vectors sampled from the resulting latent space. The
controlled sampling of latent vectors allows us to manipulate the
structural diversity and similarity of the generated molecules. It
is also possible to control the molecular properties of the gen-
erated molecules by adopting additional training strategies such
as reinforcement learning,[14–18] transfer learning,[7] conditional
generation,[19–21] and Bayesian optimization.[11,22–25] Other kinds
of deep generative models utilizing molecular graphs have been
proposed.[26,27] The graph-based models can be readily modified
for specialized purposes such as scaffold-based design and 3D
linker design through specifically controlling molecular graph
structures because their nodes and edges directly correspond to
atoms and chemical bonds.[28–34] Lim et al.[30] and Li et al.[31] pro-
posed scaffold-based molecule generation algorithms for early
stage drug discovery such as hit-to-lead and lead optimization in
which molecular structures can be adjusted without changing a
designated core scaffold. Imrie et al. proposed a linker generation
model while conserving given fragments and their coordinates,
which can assist to combine small molecules in fragment-based
drug discovery.[32]

Despite the promising results of previous models, their com-
mon design strategy, which sequentially adds atoms and bonds
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in graph-based models or characters in SMILES-based models,
would be chemically less intuitive. Also, many molecules gener-
ated via the previous models have low synthesizability.[35] Human
experts mostly perceive a molecule as a connected set of chem-
ical building blocks rather than a simple assembly of atoms. In
terms of designing molecules, this conceptual perception is more
practical because molecular properties are finely tuned by tailor-
ing those building blocks. It is also advantageous in considering
the synthetic feasibility of generated molecules. The direct con-
sideration of synthesizability can be done, for example, by prepar-
ing synthetically accessible building blocks using known reaction
templates and letting the model learn the implied synthetic valid-
ity from the resulting data.

In this regard, we propose a novel deep generative model
for molecular generation, namely building block-based autore-
gressive generative model (BBAR) which aims to design new
molecules with target properties by sequentially adding build-
ing blocks to any given starting molecule. Our building block-
based molecule generation is theoretically in line with the com-
monly used concepts such as synthons and synthetic equivalents
in retrosynthesis.[36] In a training phase, the model learns to re-
cover original molecules by adding building blocks to an arbitrar-
ily given core structure. In a generation phase, it predicts a pos-
sible building block and corresponding atom pairs for making a
bond between the building block and the core structure. At the
end, a novel molecule with desired properties can be obtained by
repeating the process.

We expect that the sequential addition of building blocks
also helps the model learn how each building block affects
the molecular properties, rather than simply memorizing the
relationship between whole molecular structures and their
properties in an end-to-end fashion. That is, the model can
learn how to select appropriate building blocks and bind them
with given core molecules to achieve target properties. More-
over, learning the contribution of each building block to tar-
get properties can encourage the model to produce novel
molecules even with rare property values in the training set.
In this perspective, the sequential addition of molecular build-
ing blocks is more beneficial than the sequential addition of
atoms for learning the structure–property relationship with
high generalization ability, because molecular properties are
more correlated with functional molecular substructures than
individual atoms.

To our best knowledge, there are a few fragment-based molec-
ular generative models, though the definition of fragments in
those works is different from the building block in this work.
Podda et al. proposed a language model which sequentially gen-
erates fragments and combining them into a single molecule.[37]

They could achieve the high validity and uniqueness of gener-
ated molecules. Chen et al. proposed a deep generative model for
molecule optimization via one fragment modification.[38] Yang
et al. developed a reinforcement learning model that sequen-
tially adds fragments to a given core molecule to improve the
binding affinity of the resulting molecule to a target protein.[39]

The example study in the work showed a possibility of design-
ing potential drug candidates with strong binding to the target.
Despite the conceptual advance of these models, they have fun-
damental limitations in dealing with diverse fragments. Yang
et al. sampled fragments from a predefined library which con-

tains only 66 fragments. Podda et al. explicitly considered only
a small number of frequent molecular fragments in a dataset.
Furthermore, these models cannot accept novel fragments that
are not in the training set, because they used fixed libraries.
Chen et al. solved the limitations by representing fragments
with latent vectors and searching fragments in the resulting
latent space.[3] However, sampling fragments from the latent
space does not guarantee the synthetic accessibility of gener-
ated molecules especially when the fragments are not readily
available.

It is suspected that formulating the building block selection
problem from a library into a classification task may provoke
such a limitation with the following problems. First, represent-
ing the whole set of building blocks as a single vector and train-
ing the classification model are computationally inefficient un-
less using a small number of selected building blocks. Previ-
ous fragment-based models reduced the computational burdens
by using a fixed size of restricted building block library.[33,37,39]

However, the use of a small number of building blocks reduces
the diversity of generated molecules. Second, the model must
be retrained whenever a new building block is added to the li-
brary. We resolve these problems by splitting the building block
selection process into two steps. We first sample a building
block randomly from a predefined library. Then, we determine
whether the sampled building block will be added to a given
core molecule, which can be done using a deep neural network
that predicts the probability of connecting between the given
molecule and the building block. The neural network can take
any building blocks as an embedding vector obtained by encod-
ing the molecules using another deep neural network, so one
can add new building blocks in the library without retraining the
model. This strategy allows us to handle an unlimited number of
building blocks in theory while maintaining high computational
efficiency.

2. Experimental Section

Here, the goal is to generate functional molecules for a spe-
cific purpose by sequentially adding building blocks to any given
core molecule as input until satisfying desired properties. To
this end, the model learned to reproduce the original molecule
by sequentially adding building blocks to a given scaffold in an
auto-regressive manner. The process was similar to the language
model in natural language processing.

This model has three sub-modules: a building block selection
module, an atom selection module, and a termination prediction
module. The building block selection module predicted an ap-
propriate building block to be added. The atom selection module
found an atom pair for making a bond between the predicted
building block and the core molecule: one from the predicted
building block and the other from the core molecule. The ter-
mination prediction module determined whether the generation
process should be terminated or repeated. Figure 1 schematically
shows the model architecture and the process of the training and
generation. The details of each sub-module and the processes
are described in the following subsections. All source code and
data can be available at https://github.com/jaechang-hits/BBAR-
pytorch.
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Figure 1. a) The schematic representation of the model. b) The training procedure (1) and the sampling procedure of the model (2).

2.1. Dataset

An important prerequisite for developing building block-based
deep generative models was the preparation of an appropriate
building block library. The library should contain all building
blocks of the molecules in the training set, preferably many
molecules, so that the model could learn chemical diversity.
There would be various definitions of building blocks such
as BRICS,[40] RECAP,[41] Bemis–Murcko,[42] and so on. There
would be various definitions of building blocks. One straightfor-
ward way was to prepare building blocks by decomposing whole

molecules using fragmentation methods such as BRICS, RE-
CAP, Bemis-Murcko, and so on. In principle, the proposed model
works with any definition. In this work, the BRICS decomposi-
tion was adopted. The algorithm of the BRICS decomposition
was breaking the covalent bonds which corresponded to prede-
fined SMILES arbitrary target specification (SMARTS) strings.
These SMARTS strings corresponded to synthetically accessible
bonds, so BRICS decomposition was similar to retrosynthesis.
The resulting building blocks had labels on their atoms indicat-
ing whether the formation of chemical bonds at the atom was
possible. These labels helped the model generate synthetically
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more feasible molecules in the generation process. 249 456
molecules were divided from the ZINC15 dataset[43] into the
training set of 220 011, the validation set of 24 445, and the test
set of 5000 molecules. The BRICS decomposition was applied to
those molecules, resulting in 42 255 unique building blocks.

2.2. Building Block Selection

To handle many building blocks efficiently in the dataset, the
building block selection task was formulated into a matching
problem of two molecular graphs for connection. The selection
module took two molecular graphs Gcore = (Vcore, Ecore), Gblock =
(Vblock, Eblock) and a as input, where V and E denote a set of nodes
(or atoms) and edges (or bonds) in a given graph (molecule),
and a denotes condition. The condition vector a target properties,
such as molecular weight, in the core molecule, and a null vector
in the building blocks. The target properties were the properties
of the original molecule in the training process. Then module
predicted the probability of binding Gcore and Gblock. Each graph
G had nodes vi ∈ V and edges eij ∈ E, where i and j denote node
indices. In this work, Gcore and Gblock were the molecular graph
of a core molecule given as input or from the previous step and a
building block sampled randomly from the building block library,
respectively. A revised version of the graph convolution network
proposed by Kipf et al. was used[44] and the modified model was
defined as follows:

h′
i = 𝜙1(hi‖a) (1)

h′′
i = ReLU(

∑
j∈Ni

𝜙2(h′
j )) (2)

ci = 𝜎(𝜙3(h′′
i ‖h′

i )) (3)

h′′′
i = cih

′
i + (1 − ci)h

′′
i (4)

where hi is a n-dimensional embedding vector of vi, RELU is a
ReLU activation function, 𝜎 is a sigmoid activation function, Ni
is the neighboring nodes of the ith node, and 𝜙1, 𝜙2, and 𝜙3 are
fully connected layers, respectively. The output embedding vector
h′′′

i of a graph convolution layer was used as an input embedding
vector of the next graph convolution layer (hi := h′′′

i ). The pur-
pose of Equation (1) was to embed a condition vector with hi into
a vector and to achieve enough expressive power by adopting a
linear layer. Then, the model learned the joint probability distri-
bution of the given molecule and its properties. After applying
the graph convolution layers several times, a graph vector g of G
was obtained from the weighted summation of the final embed-
ding vectors;

gsum =
∑

i

𝜎(𝜙4(hi))𝜙5(hi) (5)

g = 𝜙6(gsum‖a) (6)

where 𝜙4 , 𝜙5, and 𝜙6 are fully connected layers. By applying the
graph convolution layers to each of Gcore and Gblock, the two re-
spective graph vectors gcore and gblock were obtained. To train the
conditional model, molecular properties were incorporated into

the condition vectors of Gcore. The probability value for building
block selection pblock was evaluated as a function of gcore and gblock

as follows.

pblock = 𝜎(𝜙7((gcore‖gblock))) (7)

where 𝜙7 is a neural network made of fully connected layers.
The training dataset made by the BRICS decomposition intrin-

sically included only positive samples, where “positive” means
that building blocks of a molecule could be properly added to the
other building blocks of the same molecule prepared by the de-
composition method. To make the model select such building
blocks over others, it was also needed to train the model with
namely the negative samples which were unlikely to be added. To
prepare the negative samples for each positive sample, ten build-
ing blocks proportional to their occurrence to the power of 3/4 as
proposed in ref. [45] was randomly chosen. This training strategy,
called the negative sampling, was often used in the Word2Vec
model in the natural language processing.[45] The model was
trained to predict the building block probability pblock as 1.0 for
the positive samples and 0.0 for the negative samples. The binary
cross-entropy loss was used for this task. The objective function
Jblock of the building block selection module is as follows:

Jblock = log pblock
pos + 1

N

N∑
i

log
(

1 − pblock
neg,i

)
(8)

where N is the number of negative samples per each positive
sample, and pblock

pos and pblock
neg are predicted probability values for

positive samples and negative samples, respectively. In this re-
search, N is set to 10.

2.3. Atom Selection

The atom selection module predicted the bonding probability
between vcore

i ∈ V(Gcore) and vblock
j ∈ V(Gblock). The atom for the

bonding in the selected building block Gblock was already labeled
when it was prepared by the BRICS decomposition. Hence, the
need was to choose the counterpart atom from Gcore. The atom
selection module accepted output node embedding vectors from
the building block selection module and applied the graph convo-
lution layers to them. After applying the graph convolution layers,
the connection probability pcxn

i of vcore
i ∈ V(Gcore) was calculated

using fully connected layers with a softmax layer at the end. The
model was trained to predict pcxn

i as 1 for a positive atom and 0
for negative atoms. The cross-entropy loss for this task was used.
The objective function Jselection is as follows

Jselection = 1
∣ V(Gcore) ∣

∑
vi∈V(Gcore)

ycxn
i log pcxn

i (9)

where ycxn
i is the true label of vi indicating whether the atom is

positive or negative.

2.4. Termination Prediction

The termination prediction module predicted the probability of
terminating the generation process. The module produced a
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graph vector gcore by applying the graph convolution layers (Equa-
tions (1)–(4)) and weighted summation of embedding vectors
(Equations (5) and (6)). Then, the termination probability can be
evaluated by applying fully connected layers 𝜙8 with the sigmoid
activation function to the graph vector gcore, which is given by

pterm = 𝜎(𝜙8(gcore)) (10)

In the training process, the module was trained to predict the
termination probability pterm as 1.0 when the original molecules
were recovered and otherwise as 0.0. The objective function
Jtermination is given by

Jtermination = yterm log pterm + (1 − yterm) log (1 − pterm), (11)

where yterm is the termination label.

2.5. Molecular Generation after Training the Model

The model accepted a starting molecule as input to generate a
larger molecule by adding building blocks to it. If the starting
molecule was not given, a building block was randomly selected
from the building block library as a starting molecule. The
conditional molecule generation additionally needed target
properties as input. The generation process began to predict
the termination probability of the starting molecule. Then, the
termination sign was sampled in proportion to the termination
probability given by Equation (10). If not terminating, the model
executed the building block selection and the atom selection
modules subsequently. In the building block selection step, the
model randomly samples a set of building blocks proportional
to their populations in the training. This stochastic sampling
enhanced the efficiency of the generation process. The number
of building blocks in each sampling was a hyper-parameter, and
here 2000 building blocks were sampled at each time. After sam-
pling the building blocks, the building block selection module
predicted the matching probability of every building block for
addition and stochastically selected one of them in proportion
to its predicted probability. Then, the atom selection module
predicted the connection probability of all possible atoms in
the starting molecule. One atom was stochastically chosen in
proportion to the predicted probability. Finally, the labeled atom
of the building block was connected with the chosen atom. These
procedures were repeated until the termination sign was on.
Figure 1a shows the model structure, and the hyper-parameters
are summarized in Section S1, Supporting Information.

3. Results and Discussion

3.1. Controlling Molecular Properties of Generated Molecules

One criterion of assessing the performance of deep generative
models for molecule generation is comparing the designated
target property and the actual property of generated molecules.
For this purpose, we trained five instances of the model with
four properties: molecular weight (MW), simple log water-
octanol partition coefficient (LogP),[46] topological polar surface
area (TPSA),[47] and quantitative estimation of drug-likeness

Figure 2. The property distributions of the molecules generated by the
model conditioned on LogP, MW, TPSA, and QED, respectively. The black
line indicates the property distribution of the training set, while the color
lines denote those of the generated molecules with various target proper-
ties.

(QED).[48] All these properties were calculated by RDKit.[49] After
training, we obtained 100 core structures from the test set that are
not included in the training and validation set and generated 100
molecules for each core structure. For the property control task,
we only tested the molecule generation starting from given core
structures because it is more challenging than de novo design
due to the constraint imposed by the fixed starting molecules.
We repeated the process for the four target properties. Because it
is unphysical to reduce MW or TPSA by adding building blocks,
we randomly chose 100 molecules where MWs are smaller than
200 and TPSA values are small than 40.

Figure 2 shows the property distribution of the generated
molecules with different target properties. For the case of LogP,
MW, and TPSA, their peak positions are at the target property,
indicating that the model successfully learned the structure–
property relationship in terms of controlling the molecular prop-
erties. Even in regions where training data points are sparse, the
distribution is as sharp as in data-rich regions. It was possible
because the model learns the contribution of each building
block to the target molecular properties instead of learning the
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Table 1. Comparison of the performance in the conditional generation task. The validity, uniqueness, and average property of the conditional generation.

Ours (BBAR) Lim et al.

Target Validity Uniqueness Average property Validity Uniqueness Average property

MW = 250 1.000 0.808 251.217 ± 2.925 0.981 0.431 248.358 ± 4.103

TPSA = 140 1.000 0.999 139.428 ± 4.611 0.904 0.970 136.729 ± 7.654

LogP = 2.0 1.000 0.960 1.970 ± 0.211 0.973 0.763 2.188 ± 0.657

QED = 1.0 1.000 0.871 0.818 ± 0.099 0.961 0.761 0.795 ± 0.097

end-to-end mapping between the whole molecular structure and
its property, as mentioned in the introduction. Moreover, our
model can control more complex properties such as QED. For
instance, the top five QED scores of 10 000 generated molecules
whose target QED value was set to 1.0 were 0.948. The value of
0.948 is equal to the highest value reported in the QED maxi-
mization task using optimization models such as reinforcement
models and Bayesian optimization.[18,25,50–53] This result shows
the feasibility of that our conditional generation model can also
be used for optimization if the target value has a well-defined
range like QED. The full results for validity, uniqueness, and aver-
age property are available in Section S3, Supporting Information.

Also, it is meaningful to compare our model with the previous
scaffold-based GGM proposed by Lim et al.,[30] which generates
new molecules by sequentially adding atoms and bonds to a given
scaffold. For comparison, we calculated the validity, uniqueness,
and average property of the generated molecules. The exact defi-
nitions of the validity and the uniqueness can be found in ref. [54].
These metrics indicate not only the efficiency of molecule gener-
ation but also the quality of learned distributions. The average
property shows the mean value and the standard deviation of cal-
culated properties. We estimated the performance of the scaffold-
based GGM for the four conditions using the same dataset.
Table 1 shows that our model outperformed the previous scaffold
based model in all aspects.

We further tested whether the model can control multiple
molecular properties of generated molecules. For that purpose,
we trained the instance of the model with LogP and TPSA,
and generated 100 molecules for each of the same 100 starting
molecules used in the previous experiment. Figure 3 shows the
property distributions of the molecules as a function of the tar-
get values. The gray points indicate molecules in the training set.
Though the distributions are more spread out than the case of the
single property control, their peak positions are at the target val-
ues. It supports that the model can correctly learn the structure-
multiple properties relationship. In addition, the model performs
well for the extreme targeted values around TPSA of 160 and
LogP of 6, though the training data is rare around these target
values as depicted in Figure 3.

3.2. Generalization of Model on Unseen Building Blocks

One distinctive advantage of our model is that any building
blocks not necessarily in the training set can be used for molecule
generation because the model takes the embedding vectors of
building blocks converted by a neural network as input. To ver-

Figure 3. The LogP and TPSA values of the molecules generated by the
model conditioned on both LogP and TPSA. The gray dots are for the train-
ing set, while the color dots are for the generated molecules. We used RD-
Kit to calculate the LogP and TPSA of the molecules.

ify the feasibility, we tested the model whether it can generate
new molecules with target properties at a high success rate by
adding unseen building blocks. We first excluded randomly cho-
sen 14 085 building blocks out of 42 255 building blocks during
the training process and used them as the unseen building blocks
in the generation process. The generation process is identical to
that of the previous experiment described in Section 3.1 except
using only the excluded building blocks for addition. After train-
ing the model conditioned on TPSA, we generated 100 molecules
using the same 100 starting molecules used in the previous ex-
periments but with the excluded building blocks. Figure 4 shows
the result. The red and blue lines show the property distributions
of the generated molecules with the seen and unseen building
blocks, respectively. For both cases, the distribution peaks place
at the respective target properties, which proves that the model
equally well performs with unseen building blocks.
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Figure 4. The TPSA distribution of the generated molecules with the seen
(blue line) and unseen (red line) building blocks.

Figure 5. The MW distribution of the generated molecules with the hy-
drophobic (blue lines) and hydrophilic (red lines) unseen building block.

In the real-world application of molecule generation, it is likely
to impose certain constraints in molecule design. For example,
in drug discovery, medicinal chemists may want to add a hy-
drophobic fragment or linker to a core structure according to
their structure–activity relationship analysis. The atom addition
strategy needs several steps to meet the condition, leading to
a low success rate. In contrast, our model can readily offer a
practical strategy. For instance, we can force the model to add
only hydrophilic building blocks by providing only hydrophilic
building blocks for addition. Our model is particularly suitable
for this purpose because it works well with unseen building
blocks.

For demonstration, we prepared two sets containing unseen
hydrophilic and hydrophobic building blocks, respectively. The
hydrophobic building block set is made of 2000 building blocks
with relatively low TPSA values, which appear more than five
times in the dataset. For the hydrophilic building block set,
we chose the top 2000 building blocks in terms of the TPSA
value also with more than five times occurrences in the dataset.
Figure 5 shows the MW distribution of the molecules generated
by the model conditioned on MW when we design new molecules
with the hydrophilic and hydrophobic building block sets, respec-
tively. The blue and red lines indicate the generated molecules
with hydrophilic and hydrophobic building blocks, respectively.
Like the previous result shown in Figure 2, each distribution peak

Figure 6. The examples of the generated molecules with the hydropho-
bic and hydrophilic building blocks. The molecules on the left side are
starting molecules. The top and bottom molecules on the right side were
obtained from the molecule generation with hydrophilic and hydrophobic
building blocks, respectively. The molecules generated with the hydrophilic
building blocks include more nitrogen and oxygen atoms. In contrast, the
molecules generated with the hydrophobic building blocks have more hy-
drocarbons.

locates at the respective target value for both hydrophilic and hy-
drophobic building block sets. Figure 6 shows the several exam-
ples of the generated molecules and their starting molecules.
The molecules generated with the hydrophilic building blocks
include more nitrogen and oxygen atoms as intended, whereas
those generated with the hydrophobic building block have more
hydrocarbons.
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Figure 7. The docking score distributions of the training set (ZINC), the start core structures (scaffold), and the molecules generated by our model
(BBAR) and the scaffold-based generative model proposed by Lim et al.[30] a) The total distributions of 10 000 molecules generated from 100 core
structures. 100 molecules were generated from each core. b) The distributions of molecules generated from the five randomly chosen core structures
which are shown below the respective curve.

3.3. Application to Drug Design: Demonstration of Designing a
Novel Inhibitor against the 3CL Protease of SARS-CoV-2

As a real-world application, we applied our model to designing
novel inhibitors against the 3CL protease of SARS-CoV-2. The
3CL protease is one of the most widely studied biological targets
for the development of anti-SARS-CoV-2 drug. The objective of
this experiment is to let the model learn the relationship between
molecular structures and their binding affinities against the tar-
get protein. In other words, the model learns which building
blocks should be added to a given molecule to increase the bind-
ing affinity. For model training, we used the same dataset in the
previous experiment, which contains the training set of 220 011,
the validation set of 24 445, and the test set of 5000 molecules. Af-
ter training, this model produces molecules that are more likely
to bind to the target. Considering more than millions of learn-
able parameters in the model, we need a large amount of data for
training. However, experimental data is not sufficient. Instead,
we used simulation data as a demonstration. We performed dock-
ing calculations with the same molecular library used in the pre-
vious experiments in Section 3.1 and the 3CL protease of SARS-
CoV-2 whose PDB id is 7L13. We used Smina,[55] the fork of
Autodock Vina,[56] for the docking calculations with the default
setting. The initial conformers of the molecules in the library
were obtained by the universal force field[57] calculation of RD-
Kit. The calculated docking scores have used as the labeled data
for conditional generation. Note that the lower the docking score,
the higher the binding affinity, due to the negative sign of the
docking score. Figure 7 shows the docking score distribution of
the molecules in the training set. The molecules with docking
scores lower than −9.0 kcal mol−1 are in the top 0.049% of the
training set.

The generation started with the randomly chosen building
blocks of test molecules, yielding 10 000 molecules with a tar-

get docking score of −10.0 kcal mol−1. Figure 7 compares the
docking score distributions of molecules generated by our model
and the scaffold-based GGM model with that of the training
set. The distribution of the generated molecules substantially
shifts toward lower docking scores from that of the training set.
As a result, the portion of molecules with docking scores lower
than −9.0 kcal mol−1 increased about 170 times from 0.049% to
8.55%, which manifests the feasibility of our model for practi-
cal applications to drug design. Since each building block repre-
sents unique chemical functionality, it is easier for our model to
create additional protein-ligand interaction than the atom-based
model does.

We also evaluated the chemical diversity of the generated
molecules with high binding affinities in terms of docking
scores. The definition of chemical diversity is the average pair-
wise Tanimoto distance between Morgan fingerprints[58] of the
molecules.[5] The high diversity value means that the molecular
set includes more diverse chemical structures in terms of molec-
ular similarity. The diversity of the generated molecules and the
training molecules with high binding affinities are 0.871 and
0.858. It means that the generated molecules are as diverse as the
training set that includes a variety of chemical structures, and the
model produces various chemical structures, which are not sim-
ply the same core with slightly different small residues. In addi-
tion, the novelty value of the generated molecules is 1.0, meaning
that the generated molecules are unique, not in the training set.

Despite the success of designing molecules with the target
docking score to some extents, the distribution peak deviates sig-
nificantly from the target value, which is contrast to the previous
cases of targeting MW, LogP, and TPSA. MW, LogP, and TPSA
can be determined solely by the properties of each building block
for addition. In contrast, the docking score is determined not
by the building block itself but by its interaction with the target
protein. Even a single building block addition may change the
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entire interaction mode of a molecule by altering its binding
pose. Since we did not consider the target protein structure
explicitly in the generation process, the model needs to learn all
possible interaction changes upon the building block addition,
which is not straightforward. Therefore, the success rate of
designing molecules with a target docking core is substantially
lower than that of the previous cases.

4. Conclusion

Chemical building blocks such as functional groups are closely
related to molecular properties and synthetic accessibility. Thus,
building block-based molecular design can facilitate better con-
trolling molecular properties with high synthetic accessibility.
Here, we proposed a novel deep generative model that aims to
design desired molecules by assembling retrosynthetically pre-
pared chemical building blocks. It generates new molecules by
sequentially adding building blocks to a given starting molecule.
Dealing with many building blocks including unseen is essen-
tial for a high diversity of the resulting molecules. This cannot be
achieved if representing building blocks with a fixed vector and
applying a classifier to the vector. Instead, we devised a model
that predicts the bonding probability of any two molecules: one
from the given core molecule and the other from a building
block library. Therefore, the model does not limit the number
of building blocks in the library. Furthermore, the model takes
the embedding vector of building blocks encoded by a deep neu-
ral network as input, which enables the model to accept unseen
building blocks after training. This strategy leads to a high gen-
eralization ability of the model in term of building block diver-
sity. Building blocks for training and generation were prepared
using the BRICS decomposition method which explicitly takes
into account synthetic feasibility when decomposing complete
molecules. Hence, the model can implicitly learn synthetic ac-
cessibility from the data prepared as such.

Our model consists of three modules: building block selec-
tion, atom selection, and termination prediction modules. The
building block selection module evaluates the bonding probabil-
ity between a given molecule and a building block. Then, the
atom selection module finds out the most probable atom pairs
for making a chemical bond between the two molecules. Finally,
the termination prediction gives the probability of terminating
the molecule generation process.

We assessed the model performance in various tasks. First, the
model was able to control the molecular weight, topological polar
surface area, LogP, and QED while generating molecules with a
high success rate. Such high performance retained with unseen
core molecules or unseen building blocks. This result supports
that the model achieved a good generalization ability to some
extents rather than simply memorizing the hidden pattern of
the training set. This generalization ability comes from learning
how to tune molecular properties by adding appropriate build-
ing blocks in a step-wise manner. For instance, the model can
design molecules with target properties out of the distribution of
the training set. We also demonstrated that target properties can
be achieved by adding only hydrophobic or hydrophilic building
blocks. These cases cannot be done with previous models that
generate molecules by adding atoms and bonds. As a practical ap-
plication, we successfully designed candidate inhibitors showing

high binding affinities against the 3CL protease of SARS-CoV-2
in terms of docking score. We believe that our building block-
based deep generative model paves a practical way of molecular
design with high synthesizability for various chemical applica-
tions such as drug discovery.
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