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ABSTRACT

Invertible neural networks (INNs) have gained significant traction in tasks requiring
reliable bidirectional inferences, such as data encryption, scientific computing, and
real-time control. However, iterative methods like i-ResNet face notable limitations,
including instability on non-contractive mappings and failure in scenarios requir-
ing strict one-to-one mappings. In contrast, analytical approaches like DipDNN
guarantee invertibility but at the expense of performance, particularly in tasks
demanding rich feature extraction (e.g., convolutional operations in complex image
processing). This work presents a detailed analysis of the limitations in current
invertible architectures, examining the trade-offs between iterative and analytical
approaches. We identify key failure modes, particularly when handling information
redundancy or strict bijections, and propose a meta-inverse framework that dynam-
ically combines the advantages of both i-ResNet and DipDNN. Our framework
adapts in real-time based on task-specific signals, ensuring both flexibility and
guaranteed invertibility. Extensive experiments across diverse domains demon-
strate that our hybrid approach outperforms existing methods in forward accuracy,
inverse consistency, and computational efficiency. Our results highlight the utility
of this meta-inverse strategy for critical applications where precision, stability, and
adaptability are crucial.

1 INTRODUCTION

In recent years, invertible neural networks (INNs) have become essential for a broad range of applica-
tions that require consistent bidirectional inference, such as data encryption, scientific computing,
and real-time control systems Raissi et al. (2019); Devlin et al. (2019). In these settings, the ability to
precisely compute forward and inverse mappings is crucial for tasks like data recovery, state estima-
tion, and adaptive control. Ensuring robust, accurate inverse computations underlies the reliability of
these applications Levine et al. (2016); Lewis et al. (2012).

While iterative approaches such as i-ResNet Behrmann et al. (2019) offer flexibility and have been
successful in complex, high-dimensional mappings (e.g., image processing and generative models),
they come with significant drawbacks. i-ResNet depends on the Lipschitz condition for convergence,
which is often difficult to guarantee in practice, especially in tasks requiring strict one-to-one mappings
or non-redundant information. Furthermore, i-ResNet suffers from performance issues, particularly
when the mappings are non-contractive, leading to unstable or inaccurate inverse estimations Zhang
et al. (2020a). In some cases, it may even produce outputs that fall outside the valid range, further
degrading its reliability in critical systems Kingma & Dhariwal (2018).

On the other hand, analytical methods like DipDNN (Yuan et al., 2024) ensure strict one-to-one
invertibility at every layer through architectural constraints Dinh et al. (2014). These models are
particularly well-suited for applications demanding high precision and exact inversions, such as real-
time control and physics simulations. However, this architectural rigidity comes at a cost. DipDNN
often underperforms in scenarios where flexible feature extraction—especially through convolutional
layers—is necessary, such as in complex image processing tasks. The lack of convolutional layers,
which are key for hierarchical feature learning, limits DipDNN’s expressiveness and ability to handle
high-dimensional, intricate data structures.

Given the complementary nature of iterative and analytical inverse methods, we argue that a single
model may not perform optimally across all scenarios. Our extensive analysis of i-ResNet and
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Figure 1: Contrast and Complement of i-ResNet’s iterative inverse approximation and DipDNN’s
closed-form inverse. MetaInv. A switching algorithm to adapt model on diverse inverse problems.

DipDNN reveals that each method excels in different tasks but also suffers from critical shortcomings
in others. Motivated by this observation, we propose a novel meta-inverse (MetaInv in Fig. 1) frame-
work that dynamically switches between i-ResNet and DipDNN based on task-specific requirements.
This approach leverages the strengths of both architectures—using i-ResNet for tasks requiring
flexibility and feature extraction, while relying on DipDNN for tasks demanding strict, one-to-one
invertibility. By incorporating a task-driven signal to select between models during inference, the
framework adapts to the demands of different applications, ensuring robustness, precision, and
computational efficiency.

Our meta-inverse framework provides a more generalized solution for a wide range of inverse
learning tasks. The flexibility and adaptability of our approach allow for broader applicability,
making it particularly useful in real-world scenarios that require both invertibility guarantees and
high performance in feature-rich domains. In this paper, we present a thorough evaluation of our
framework across various benchmarks, demonstrating that it significantly outperforms both i-ResNet
and DipDNN individually. The results underscore the utility of combining iterative and analytical
methods to tackle the diverse challenges faced in inverse learning.

2 RELATED WORK

Invertible Neural Networks (INNs). Invertible neural networks (INNs) have emerged as essential
tools for a variety of applications that require consistent bidirectional inferences, such as inverse
problems, density estimation, and generative modeling. One of the earliest models, NICE Dinh et al.
(2014), proposed a coupling layer design that ensures exact invertibility, followed by extensions like
RealNVP Dinh et al. (2016), which allowed more expressive feature transformation through affine
coupling. Glow Kingma & Dhariwal (2018) further improved these architectures by incorporating 1x1
convolutional layers, making it more suitable for high-dimensional image tasks. Another prominent
line of research is iResNet Behrmann et al. (2019), which introduces iterative inversion based on
residual blocks, providing flexibility for complex mappings. However, these models have limitations
in handling strict one-to-one mappings and suffer from numerical instabilities when dealing with
non-contractive mappings.

Analytical vs. Iterative Inversion Methods. In the context of inverse problems, there are two main
categories of methods: iterative and analytical. Iterative methods like iResNet Behrmann et al. (2019)
rely on residual connections and iterative approximation to compute the inverse. While this approach
is highly flexible and well-suited for complex tasks, it often struggles with stability and may produce
inaccurate inverse mappings, particularly in scenarios where strict one-to-one correspondences are
required. On the other hand, analytical inversion methods, such as DipDNN Dupont et al. (2019),
enforce strict bijection through architectural constraints. This guarantees invertibility but at the cost
of flexibility, particularly in tasks requiring convolutional feature extraction. Analytical approaches
also suffer from reduced performance in tasks that require high-dimensional feature extraction, such
as image generation and classification.
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Meta-Learning and Hybrid Architectures. Meta-learning has been explored as a way to dynam-
ically adapt neural network architectures based on the task requirements. Recent works in online
control Christianson et al. (2023b) and hybrid models Blum & Burch (1997b) have demonstrated
the potential of combining model-based and learning-based approaches. This inspired our hybrid
meta-inverse framework, which leverages the strengths of both iterative and analytical methods.
Specifically, our method dynamically switches between iResNet and DipDNN layers based on
task-specific cues, improving performance in diverse inverse learning tasks. This is similar in spirit
to works such as AdaNet Cortes et al. (2017) that adaptively grow neural architectures based on
performance metrics, but our approach focuses on invertibility and bidirectional consistency.

Applications in Real-Time Systems and Inverse Problems. The need for accurate and efficient
inverse mappings is especially pronounced in applications such as scientific computing Raissi et al.
(2019), real-time control Levine et al. (2016), and robotics Ziebart et al. (2021). These domains
require models that can ensure robustness, precision, and real-time performance, particularly when
working with non-contractive or non-bijective mappings. While iterative methods like iResNet
provide flexibility, they often fail in applications with strict requirements for inverse consistency
and accuracy, such as fluid dynamics and physical system identification. Conversely, analytical
methods like DipDNN excel in these scenarios by providing exact inversions, although they lack
the flexibility required for more complex tasks like image generation or tasks that involve redundant
information. Our meta-inverse framework addresses these limitations by automatically selecting the
best method based on the problem requirements, leading to improved robustness and efficiency in
real-time applications.

3 BACKGROUND: INVERSE PROBLEM AND INVERTIBLE MODELS

3.1 PROBLEM STATEMENT AND DISTINCT DEMANDS

Inverse problems span numerous applications that involve recovering original variables from observed
outputs This work focuses on inverse learning through invertible mapping recovery, which is for point
estimates of images or physical system states. The problem is typically formulated as approximating
a forward mapping fθ : Rn → Rn, where y = fθ(x) is invertible. The goal is to find the relative
inverse mapping gϑ such that x = gϑ(y) = f−1

θ (y), ensuring consistency with the forward process.
The demands for such two-way mapping rule recovery are distinct and varied even in one task. Thus,
this work evaluates them using the following performance metrics.

• Forward Prediction Error (Fwd): Same as common one-way learning, it measures the
ability of the model to predict y from x. The invertible model is trained by minimizing the
forward prediction loss (any discriminative learning loss ℓfwd):

f∗ = argmin
θ

ℓfwd (y, fθ(x)) .

• Inverse Reconstruction Error (Inv): The reconstruction error evaluates the model’s
invertibility to recover the original inputs (ℓinv is mean square error for point estimates),

ℓinv (x, gϑ (fθ(x))) .

• Inverse Consistency (Inv-Consist): It assesses the consistency between forward and inverse
mappings by comparing the inverse predictions with the true labels y, rather than just the
forward outputs:

ℓfwd (x, gθ(y)) .

It is important to note the distinction between inverse accuracy and consistency. Inverse accuracy, or
reconstruction error, indicates only the model’s invertibility to compute the inverse, where analyt-
ical invertibility yields an error-free result, and numerical invertibility minimizes round-off errors.
Consistency, on the other hand, evaluates the model’s capability of two-way learning. It reveals the
precision of global inversion, e.g., minimizing reconstruction error doesn’t necessarily need a low
forward approximation error, while the consistency error integrates errors from both forward and
inverse processes. Most works involving approximate one-to-one mappings focus on inverse accuracy
alone, such as the image classification and recovery (Behrmann et al., 2019).
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3.2 REVIEW OF INVERSE LEARNING MODELS

Existing invertible neural networks (INNs) can be broadly categorized into two approaches: iterative
numerical approximations and analytical inverse solutions.

Iterative Numerical Methods: I-ResNet (Behrmann et al., 2019) and related models compute
inverse mappings iteratively. I-ResNet guarantees numerical stability in inversion by designing
residual blocks f

(k)
i-ResNet(z

k) = zk+1 = zk + h(k)(zk), where h(k) is a nonlinear function that
satisfies Lip(h(k)) < 1 to ensure a contractive transformation. While this approach is computationally
flexible, the inverse zk =

(
f (k)

)−1
(zk+1) is obtained through iterative refinement, which can be

inefficient and prone to convergence issues, especially in scenarios where the Lipschitz condition
fails to hold.

Analytical Inverse Methods: These methods aim to provide closed-form inverses through algebraic
constructions. For instance, NICE (Dinh et al., 2014) and Glow (Kingma & Dhariwal, 2018) achieve
bijective transformations by using coupling layers that split input and output variables. The forward
transformation is given by: zk+1

1 = azk
1 , zk+1

2 = bzk
2 + t(zk

1 ), and the inverse is computed as:

zk
1 =

zk+1
1

a , zk
2 =

zk+1
2 −t(zk

1 )
b . Here, a, b ̸= 0 are constants, and t(·) is a nonlinear function (e.g.,

NN). While this ensures an analytical inverse, it imposes significant structural constraints that can
limit expressiveness, especially in complex, high-dimensional tasks such as feature extraction and
image modeling.

Decomposed Invertible Pathway DNN (DipDNN): DipDNN (Yuan et al., 2024) avoids strict
partitioning by introducing a layer-wise decomposition with triangular weight matrices. The forward
mapping in DipDNN is expressed as:

f
(k)
DipDNN(z

k) = g
(k)
2 (W

(k)
tri g

(k)
1 (W

(k)
tril z

k + b
(k)
1 ) + b

(k)
2 ).

The triangular structure of Wtril and Wtri ensures strict bijection, while the use of monotonic ac-
tivation functions such as LeakyReLU or ELU preserves expressiveness. DipDNN offers a more
flexible architecture that avoids the constrained coupling layers of NICE and Glow, enabling efficient
inversions without sacrificing approximation power.

4 INVERTIBILITY VS. APPROXIMATION LIMITATIONS OF I-RESNET

I-ResNet and its variants have achieved substantial success
in tasks such as image classification and density estimation
by addressing the challenge of invertibility. However, these
models struggle with the trade-off between expressive power
and the need for stable inversion, imposed by the Lipschitz
condition. This constraint forces each residual block to make
minimal adjustments to the input, limiting the model’s ability
to approximate complex mappings that involve significant
changes or intricate dependencies (Zhang et al., 2020b). This
section provides theoretical analysis to explore these limita-
tions in depth.

4.1 CONTRASTING INVERTIBILITY BETWEEN
I-RESNET AND DIPDNN

Figure 2: Fwd approximation capa-
bility on synthetic example.

Layer-Wise Contraction and Limited Scaling. The following theorem formalizes the limitation
of i-ResNet in terms of its ability to approximate functions with high Lipschitz constants:

Theorem 1. For a K-layer i-ResNet, where each residual block h(k) satisfies the Lipschitz constraint
Lip(h(k)) < 1. Let fT : Rd → Rd be a multi-dimensional mapping that may be nonlinear, with a
Lipschitz constant Lip(fT ) = LT > 1. Then, a K-layer i-ResNet cannot adequately approximate fT
if LT > 2K , and the relative approximation error is bounded by: ϵ = Ω

(
1− 2K

LT

)
.
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The proof are included in Appendix A.1 and A.2. This result indicates that as the complexity of the
target function increases (i.e., as LT grows), i-ResNet’s ability to represent it deteriorates unless the
number of layers is increased accordingly. For real-world applications, the number of layers required
can be approximated as:

KT ≥ log(K̂)

log(1 + Lip(fi-ResNet))
,

where K̂ = maxi
max(yi)−min(yi)
max(xi)−min(xi)

. Detailed derivations of this estimate can be found in Appendix
A.2. Empirical evidence suggests that adaptive layer estimation is effective when evaluated on small
data batches.

Inadequacy for Sign-Flipping. While deeper architectures can mitigate the limitation of layer-wise
contraction, i-ResNet faces an additional challenge in modeling mappings that involve sign-flipping
in the inputs. The following theorem establishes that i-ResNet cannot approximate functions where
input and output vectors have opposite signs. The corresponding proof is included in Appendix A.3.

Theorem 2. For a K-layer i-ResNet, where each residual block h(k) satisfies the Lipschitz constraint
Lip(h(k)) < 1, let fT : Rd → Rd be a multi-dimensional mapping such that x · fT (x) < 0 (i.e., the
signs of x and fT (x) are opposite in at least one dimension). We claim that i-ResNet fi-ResNet cannot
approximate such a mapping fT .

Non-Strict One-to-One Mapping Approx-
imation via Iterative Inverse. The layer-
wise contraction of i-ResNet limits the degree
to which input space can be scaled or bent dur-
ing forward transformations. However, this
approach to enforcing invertibility provides
flexibility in the network’s architecture, e.g.,
convolution layers within the residual blocks.
Specifically, the convolution operation is non-
invertible due to its many-to-one mapping:
y[i] = (x ∗w)[i] =

∑k
j=1 w[j] · x[i− j],

Figure 3: (a) & (b) MNIST & CIFAR-10 classi-
fication accuracy; (c) Physical system modeling
performance.

where w is the convolution filter or kernel. With padding, convolution aims to extract features from
redundant information in the input, which is advantageous for tasks like classification involving
high-dimensional images. In particular, convolution helps distill features and reduce dimensionality,
improving performance (e.g., Fig. 3 shows improved accuracy due to dimensionality reduction.

Nonetheless, there are many inverse problems where the redundancy of the information is minimal,
such as in fluid dynamics, sonar sensor assimilation, and power flow analysis. In these cases, either
the system states (spatial position, time) or physical properties (velocity, pressure, etc.) are loosely
dependent on one another. Importantly, physical systems typically have explicit forward functions,
and the ability to produce accurate point estimates for modeling and control is more critical than
generating qualitative results such as images. In fluid flow modeling, for instance, Navier-Stokes
equations govern the system, and any loss of information leads to ambiguous results or reconstruction
errors. Under such scenarios, as Fig. 3 (c) indicates, i-ResNet’s iterative approximation of non-strict
one-to-one mappings may result in inaccuracies and lack of exactness in the inverse computations.

Layer-Wise Bijective Transformation for Analytical Inverse. In contrast to the iterative nature
of i-ResNet, DipDNN enforces invertibility through layer-wise one-to-one transformations. The
proposition to guarantee bijective layer-wise transformation is in Appendix A.4. Unlike i-ResNet’s
Lipschitz constraints, which limit flexibility, DipDNN imposes no limitations on the network’s ability
to scale features or flip the signs of inputs.

Equivalence & Conflict Between i-ResNet and DipDNN. While the strict bijective transforma-
tions of DipDNN provide guaranteed invertibility, this structure can be overly restrictive for some
inverse problems where approximate inverses suffice. i-ResNet, with its flexibility (e.g., convolution
layers), may outperform DipDNN in these cases. This raises an important question: can DipDNN
achieve similar performance for these tasks?

5
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To address this, we aim to show an equivalence between convolution-based residual networks and
DipDNN based on fully connected layers, for which the proof is in Appendix A.5.

Theorem 3. Consider a K-layer convolution-based i-ResNet. Let each convolution layer h(k)
i (zk) =

g(W
(k)
conv ∗ zk + b), where Wconv ∈ Rk×k. Then:

1) Each residual block h
(k)
i can be represented in an equivalent form in DipDNN, satisfying

Proposition 1.

2) The residual connection f
(k)
i-ResNet(z

k) = zk + h(k)(zk) inherently violates the strict invert-
ibility of DipDNN.

4.2 META-INVERSE ALGORITHM FOR COMPLEMENTARY SELECTION

From Sections 4 and 4.1, we observe the contrasting strengths and weaknesses of i-ResNet and
DipDNN. i-ResNet excels in providing flexible architectures, such as non-bijective convolutional
feature extraction, but struggles to maintain strict one-to-one mappings and compensates poorly when
faced with contraction limitations. On the other hand, DipDNN guarantees analytical invertibility
through its structured, layer-wise design, but this strictness can be overly limiting for inverse problems
that exhibit redundancy in the data. These differences highlight the need for a hybrid approach capable
of dynamically adapting to task-specific characteristics, e.g., complexity, redundancy, and precision
requirements of inverse problems.

To address this, we propose the Meta-Inverse
(MetaInv) algorithm, which dynamically switches be-
tween i-ResNet and DipDNN based on the specific
characteristics of the task at hand. The MetaInv al-
gorithm in Fig. 4 is inspired by learning-augmented
switching methods in online control (Christianson
et al., 2023a; Blum & Burch, 1997a), where an agent al-
ternates between a learning-based approach with high
expressive power (i-ResNet) and a model-based ap-
proach with lower risk (DipDNN).
Specifically, as outlined in Section 3.1, the MetaInv
algorithm is designed to balance four key requirements
of inverse learning:

Figure 4: Meta-Inverse Algorithm: Switch-
ing between i-ResNet and DipDNN based
on task characteristics.

(a) Forward expressive power: Modeling complex mappings correctly with high fidelity.
(b) Tight error bounds on the inverse: Minimizing inverse reconstruction error, ideally

achieving values close to zero (theoretically) or minimizing numerical round-off errors.
(c) Consistency of bi-directional mappings: Ensuring that both forward and inverse mappings

are consistent when true labels are used for inverse predictions.
(d) Computational efficiency: Optimizing resource usage to ensure that the model is both

computationally efficient and scalable to large datasets.

Trust-Weighted Switching Mechanism: The core of the MetaInv algorithm (Algorithm 2) is a
trust-weighted switching mechanism that integrates task-specific performance metrics (Fwd, Inv,
Inv-Consist) defined in Sec. 3.1 with computational cost into a single evaluation function: Vmodel =
Jmodel, total + λCmodel, where Jmodel, total is the weighted combination of performance metrics, λ is the
weight for computational cost, and Cmodel includes time complexity and model size.

To ensure stability and prevent trivial convergence, the trust-weight parameter β is updated iteratively
based on the performance difference between i-ResNet and DipDNN: βt+1 = βt + ηt(Vi-ResNet −
VDipDNN), where ηt is the learning rate (empirically set to 0.01). Additionally, Jthreshold sets an
acceptable range of performance, preventing the algorithm from stagnating when inverse learning is
sensitive to noise or data uncertainties. This mechanism allows the algorithm to smoothly adapt to
the optimal model for an arbitrary task.

The evaluation of task-specific metrics is not fixed and evolves dynamically during learning dynami-
cally switches between the two architectures, optimizing both forward and inverse computation. This
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Algorithm 1 Meta-Inverse Algorithm Between i-ResNet and DipDNN

Input: {xi,yi}Ni=1 (data), Jthreshold (performance threshold), λ (weights for performance and cost),
T (iterations)
Output: Optimal selection of i-ResNet or DipDNN for computations
Initialize β0, λ
for t = 1, . . . , T do

Forward and Inverse Computation
Compute forward, inverse (reconstruction and ablation) outputs: ymodel, x̂model, x̂

′
model for

model ∈ {i-ResNet,DipDNN},
Metric Evaluation
Calculate Fwd Acc, Inv Acc, and Inv Consist losses and compute combined scores:
Jmodel, total =

∑3
k=1 λkJmodel, k, where Jmodel, k represents the respective metrics for k = 1, 2, 3.

Model Selection
if JDipDNN, total < Ji-ResNet, total and JDipDNN, total < Jthreshold then

Use DipDNN: y = yDipDNN, xreconstructed = xDipDNN
else

Use i-ResNet: y = yi-ResNet, xreconstructed = xi-ResNet
end if
Trust-Weight Update
Compute computational cost Cmodel for both models: Cmodel = α1Tmodel +α2Mmodel +α3Smodel
Compute total evaluation cost Vmodel for each model: Vmodel = Jmodel, total + λCmodel
Update trust-weight βt+1 = βt + ηt(Vi-ResNet − VDipDNN)

end for

approach corrects the limitations of prior evaluations that were either incomplete or misaligned with
the actual data characteristics and task-specific requirements. Details of the MetaInv algorithm’s
implementation and evaluation can be found in the Appendix.

5 NUMERICAL EXPERIMENTS

Throughout experiments on diverse inverse problems, we aim to answer the following questions: 1)
For non-contractive cases (scaling & sign-flipping), can DipDNN outperform i-ResNet on bidirec-
tional mappings? 2) Iterative inverse approximation vs. analytical inverse on non-strict bijective cases
of different information redundancy, which wins out? 3) Can MetaInv switch to the optimal model
for arbitrary Inverse problems? To answer these questions, we perform our experiments on different
inverse problems: synthetic examples, image classification (Fwd) and reconstruction (Inv) from last
features (Behrmann et al., 2019), image transformation with inverted colors for reversible data hiding
(Zhang et al., 2024), power flow modeling (Fwd) and state estimation (Inv), and Navier-Stokes flow
dynamics modeling (Fwd) and initial condition inference (Inv) (Langtangen & Logg, 2017). Each
task represents important application needs in inverse problems.

For comparison, we test 1) i-ResNet, which is representative of iterative inverse approximation;
2) ResNet, a baseline to reveal the standard approximation capability compared with contractive
i-ResNet; 3) NICE, a baseline analytical inverse model with strict architecture constraint; 4) DipDNN,
an improved analytical inverse with layer-wise bijective transformation. Finally, we compare them
with the MetaInv, the proposed switching algorithm to adaptively select between i-ResNet and
DipDNN. Note that we select the most representative invertible NN structures, whose variants have
not shown significant differences for the targeted broad applications in both image-related and
physical system tasks. For example, although Glow (based on NICE) is not directly tested, we
implement its invertible ActNorm and 1× 1 convolution in experiments. For all the testing scenarios,
all the inverse learning models contain similar numbers of parameters in each comparison for a fair
evaluation. For each inverse learning method, we equally evaluate the performance using the error
metrics of forward prediction, inverse reconstruction, and inverse consistency, as defined in Sec. 3.1.
Specially for image tasks, we show qualitative results for intuitive visualization.
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5.1 INVERTIBILITY VS. EXPRESSIVE POWER ON NON-CONTRACTIVE CASES

Based on the theoretical analysis in Sec. 4, i-ResNet imposes limitations in expressive power. We
start with synthetic datasets to quantify the limitations. Further, we conduct sensitivity analysis
and visualize qualitative results to understand the trade-off between invertibility and approximation
capability.

Sensitivity Analysis of Invertible NN Depth. To test the number of layers needed for i-ResNet,
we evaluate the performance of synthetic data (Fig. 2) and power flow cases (Fig. 5), which exhibit
non-contractive mappings. It’s obvious that while DipDNN approaches a similar fwd error as ResNet,
i-ResNet has a much higher error. It requires a deeper model to reach the same performance as others.

Color Inversion Mixed with Complex Transformation.
The invertibility enforced by contraction imposes the inabil-
ity to approximate xf(x) < 0. Except for the synthetic data
with the flipped sign of inputs and outputs (Fig. 10), we
generalize such a property to more complex image examples.
It is a reversible data-hiding task that mixes color inversion
(e.g., white to black and black to white) and class transfor-
mation (e.g., one item to another) to cover the privacy infor-
mation of original images Fig. 6. The data-hiding process
needs to be lossless to recover back to the original data.
In the synthetic example with flipped signs, Fig. 10 in the
Appendix shows that the error of i-ResNet cannot decrease
no matter how many more layers are used. Other invertible
NNs successfully capture this relationship but NICE cannot
maintain the inverse performance on both reconstruction
(middle column) and independent prediction (last column).

Figure 5: Fwd approximation capabil-
ity on power flow example.

In a similar context, we construct the data-hiding case in images (Fig. 6) using images from MNIST,
FashionMNIST, and CIFAR-10. Regular images are used as inputs; we create outputs by combining
half of the color-converted MNIST images with half of the FashionMNIST images and, alternatively,
a quarter of color-converted MNIST images with three-quarters of FashionMNIST images. When
gradually mixing image class transformation and color inversion (a portion of {0, 1/2, 1/4}), i-
ResNet is hard to find the correct mapping. Specifically, the 3rd and 4th rows in Fig. 6 indicate
that i-ResNet merely learns. Analytical invertible NNs like NICE and DipDNN not only have no
restrictions but also learn the nonlinear transformation well. Moreover, DipDNN has superior inverse
consistency for balanced performances of bi-directional mappings.

Figure 6: Performance of different models on color inversion mixed with complex transformation.

8
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5.2 APPROXIMATED INVERSE VS. CLOSED-FORM INVERSE ON DIFFERENT INFORMATION
REDUNDANCY

In Sec. 4.1, we analyze that the performances of invertible NNs depend on the data and problem
need. Thus, we test on two representative physical and engineering systems other than the previous
image-related tasks. Unlike the image classification case, the data of power system measurements
and fluid dynamics observations have limited information redundancy as they are clearly defined
system states or conditions.

Figure 7: Performance comparison of different methods on the power flow case. Top-left: forward
voltage predictions (Fwd); Bottom plots: inverse load recovery (Inv and Inv-Consist); Top-right
Table: numerical error metrics. I-ResNet achieves tightly bounded errors but predicts deviate from
the ground truth. DipDNN captures system dynamics more effectively, which MetaInv selected to
balance predictive accuracy and inverse alignment.

As for the power flow case, the data is generated from the simulation of grid power flow equations,
which govern the system-wide power injections based on voltage phasors and the system’s topology
and parameters. The power flow dataset is built on the load inputs to estimate the voltage at different
buses in an 8-bus system for forward mapping. In this case, inverse learning is essential to recover
the underlying system physics and estimate load conditions for better interpretability and consistency
in power flow analysis.

The power system experiment shows how different methods predict voltage (Fwd) and load (Inv)
under limited measurements Fig. 7. DipDNN and MetalInv outperform i-ResNet using the iterative
inverse. Although their errors are similar in the table at the top-right corner, DipDNN fits individual
points much better. This is because i-ResNet has the contractive property enforced by Lip < 1: even
though the point estimates are bad, the average error is bounded tightly. DipDNN is selected by
MetaInv for the power flow case. The voltage plot (Fwd) reveals that I-ResNet, despite contracting
the error, produces a pattern that does not align with the ground truth. Conversely, DipDNN achieves
better consistency and captures the essential dynamics of the system, especially in the inverse
problem (Inv-Consist). This demonstrates how critical it is for the method to maintain a balance
between predictive power and inverse accuracy. Moreover, convolutional layers, while useful for
forward problems, might introduce excessive contraction in systems with low redundancy, leading to
distortions in the inverse process.

As for the fluid dynamics case, the data is generated from the simulation of a chemical reaction
between species A and B, which form species C, while considering advection and diffusion in a
domain governed by a coupled system of partial differential equations. The dataset is built on the
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Figure 8: Forward and inverse performance of different models on Navier-Stokes flow dynamics.

Figure 9: Performance of convolutional models on Navier-Stokes flow dynamics.

concentrations of these species, along with the velocity field, to capture the spatio-temporal evolution
of the chemical reaction and the dynamics of fluid flow. In this case, inverse learning is needed to
recover system dynamics and parameters from observed concentration data for interpretability and
consistency. With dense observation data, Fig. 8 depicts the surface plots for forward (Fwd) and
inverse consistency (Inv-Consist) of the velocity fields (wx and uA) for multiple models. DipDNN
shows a superior fit for both forward and inverse consistency, especially in cases where the information
redundancy is higher, and the system is more over-determined. For i-ResNet, although it attempts
to approximate the inverse, its surface predictions deviate significantly, reflecting its struggle with
preserving the intricate dynamics of the fluid flow.

The error plots comparing prediction and truth further reinforce this. DipDNN maintains a low mean
squared error (MSE) across both forward and inverse mappings, while i-ResNet struggles with a high
inverse consistency error. This discrepancy highlights the limitation of iterative inverse approximation,
especially when the system’s redundant information is minimal. In this case, DipDNN’s layer-wise
bijective transformations enable a more robust handling of both the advection and diffusion terms in
the PDEs, capturing the fluid dynamics more precisely.

Figure 9 provides insights into the impact of convolutional layers when information redundancy
is low. As seen in the forward and inverse consistency surface plots, both ResNet and I-ResNet
produce distorted surfaces. Convolutional layers introduce locality in modeling, which is beneficial
with high information redundancy. However, in systems like Navier-Stokes dynamics with limited
information, the imposed locality leads to contracted errors and incorrect surfaces. The experiments
show that DipDNN, which avoids heavy convolutional operations, performs significantly better in
such low-redundancy cases.
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6 CONCLUSION

In this paper, we analyze the complementary strengths and inherent limitations of typical invertible
models DipDNN and i-ResNet, highlighting the challenges of applying either model individually
across a wide range of inverse problems. DipDNN ensures strict analytical inversion with precise
one-to-one mapping but lacks the flexibility to incorporate convolutional layers for feature extraction,
whereas i-ResNet effectively integrates convolution with residual connections, enhancing feature
extraction and scalability; however, its Lipschitz constraints limit forward approximation, compro-
mising inverse accuracy in non-contractive scenarios. Thus, we propose a meta-inverse algorithm
to leverage their respective strengths on specific inverse problems. MetaInv balances three critical
metrics—forward accuracy, inverse consistency, and inverse accuracy—addressing the shortcomings
of prior work that focused on a subset of these metrics. By coupling i-ResNet and DipDNN effectively,
our solution ensures a more comprehensive evaluation and a fairer comparison for diverse inverse
problems.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Given that Lip(h(k)) < 1, the Lipschitz constant of each residual layer satisfies Lip(f (k)) < 2.
Hence, for a K-layer i-ResNet, the overall Lipschitz constant of the network is bounded by:

Lip(f) =
K∏

k=1

(1 + Lip(h(k))) < 2K .

If the target function fT has a Lipschitz constant LT > 2K , the i-ResNet is unable to approximate it
accurately since its representation capacity is limited by 2K . The relative approximation error across
ϵ dimensions is thus bounded by:

ϵ =
∥f(x)− fT (x)∥

∥fT (x)∥
= Ω

(
1− 2K

LT

)
.

A.2 ESTIMATING THE NUMBER OF LAYERS NEEDED FOR I-RESNET

To approximate a target mapping fT with fi-ResNet, the effective Lipschitz constant K̂ can be empiri-
cally estimated from the data as:

K̂ = max
i

Vi, Vi =
max(yi)−min(yi)

max(xi)−min(xi)
, i = 1, . . . , d.

For an i-ResNet with K layers, the effective Lipschitz constant can be approximated as:

Lip(fi-ResNet) ≈ (1 + Lip(h(k)))K .

Note that Lip(h(k)) can be adjusted close to a number < 1 in experiments and we use it for estimation.
To approximate fT (x), the number of layers KT necessarily needed is estimated by:

KT ≥ log(K̂)

log(1 + Lip(h(k)))
.

If K̂ ≫ 1, then KT has to be sufficiently large for forward accuracy, compared to ResNet (without
constraints) and DipDNN.
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A.3 SUPPLEMENTARY PROOF OF FLIP-SIGN MAPPING FOR I-RESNET IN THEOREM 2

Proof. Consider a target mapping fT (x) where the dot product x · fT (x) < 0, indicating that the
inputs and outputs have opposite signs in at least one dimension. To demonstrate that i-ResNet cannot
model this mapping, we show that for any x, x · fi-ResNet(x) ≥ 0 holds.

From (Zhang et al., 2020b), consider two inputs x0
1 and x0

2 = x0
1 + δ0. After one residual block, the

outputs are x1
1 = x0

1 + h(1)(x0
1) and x1

2 = x0
1 + δ0 + h(1)(x0

1 + δ0). The difference between x1
1 and

x1
2 is given by:

δ1 = x1
2 − x1

1 = δ0 +
(
h(1)(x0

1 + δ0)− h(1)(x0
1)
)
.

Since Lip(h(1)) < 1, it follows that:
|δ1| < |δ0|,

implying that the transformation preserves the sign relationships between x0
1 and x0

2. Applying
this logic iteratively to deeper layers shows that for any input x, the residual layers maintain
x · fi-ResNet(x) ≥ 0.

Thus, i-ResNet cannot model mappings where x · fT (x) < 0. The relative approximation error for
such mappings is quantified by:

ϵ = inf
fi-ResNet

∥fT (x)− fi-ResNet(x)∥
∥fT (x)∥

≥ Ω(1),

where the error is dominated by the components with flipped signs.

A.4 GUARANTEE INVERTIBILITY OF DIPDNN

Proposition 1. The neural network model fDipDNN : Rn → Rn, defined as fDipDNN = f
(1)
DipDNN ◦ · · · ◦

f
(K)
DipDNN, is invertible if the weight matrices W k

tril and W k
triu, for k ∈ [1,K], are lower and upper

triangular matrices with non-zero diagonal elements. Each block f
(k)
DipDNN(z

k) is given by:

f
(k)
DipDNN(z

(k)) = gk2 (W
k
trilg

k
1 (W

k
triuz

k + bk1) + bk2),

where W k
tril,W

k
triu ∈ Rn×n, and the non-zero diagonal elements of W k

tril and W k
triu ensure invertibility

via the triangular structure. The activation functions gk1 and gk2 are strictly monotonic, ensuring
bijective transformations for each layer.

The inverse of the DipDNN transformation can be computed in closed form as follows:

f
(k)−1

DipDNN(z
k+1) =

(
W k

triu

)−1 (
gk1

)−1
((

W k
tril

)−1
((

gk2
)−1

(zk+1 − bk2)
)
− bk1

)
.

A.5 PROOF OF THEOREM 3

Proof. For 1), we rewrite the convolution operation as matrix multiplication, with T (W
(k)
conv) repre-

senting the convolution kernel as a Toeplitz matrix:

h
(k)
i (zk) = g(W (k)

conv ∗ zk + b) = g(T (W (k)
conv)z

k + b) = g(L(k)
convU

(k)
convz

k + b).

Applying LU decomposition to the Toeplitz matrix, we obtain lower and upper triangular matrices,
ensuring invertibility. Therefore, in DipDNN, we assign W k

tril = L
(k)
conv,W k

triu = U
(k)
conv, and gk1 as

identity, resulting in:

f
(k)
DipDNN(z

k) = gk2 (W
k
trilg

k
1 (W

k
triuz

k + bk1) + bk2) = g(L(k)
convU

(k)
convz

k) = h
(k)
i (zk).

For 2), the residual connection f
(k)
i-ResNet(z

k) = zk + h(k)(zk) introduces an additive identity term
that violates DipDNN’s strict triangular structure. The addition imposes ambiguity, as the nonlinear
dependency between h

(k)
i (z) and z precludes a closed-form inverse solution. Thus, DipDNN’s

architecture conflicts with i-ResNet’s residual addition, as DipDNN requires strict bijective mappings.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.6 DETAILS OF META-INVERSE ALGORITHM IMPLEMENTATION

We take inspiration from trust-region policy optimization and learning-augmented switching algo-
rithms for selecting control agents. MetaInv aims to dynamically select between i-ResNet (analogous
to a learning-based, higher-expressive-power agent) and DipDNN (analogous to a model-based,
lower-risk agent) similarly so that the overall system’s performance is optimized with stability
guarantees.

Algorithm 2 Meta-Inverse Algorithm Between i-ResNet and DipDNN

Input: {xi,yi}Ni=1 (data), Jthreshold (performance threshold), λ (weights for performance and cost),
T (iterations)
Output: Optimal selection of i-ResNet or DipDNN for computations
Initialize β0, λ
for t = 1, . . . , T do

Forward and Inverse Computation
Compute forward, inverse (reconstruction and ablation) outputs: ymodel, x̂model, x̂

′
model for

model ∈ {i-ResNet,DipDNN},
Metric Evaluation
Calculate Fwd Acc, Inv Acc, and Inv Consist losses and compute combined scores:
Jmodel, total =

∑3
k=1 λkJmodel, k, where Jmodel, k represents the respective metrics for k = 1, 2, 3.

Model Selection
if JDipDNN, total < Ji-ResNet, total and JDipDNN, total < Jthreshold then

Use DipDNN: y = yDipDNN, xreconstructed = xDipDNN
else

Use i-ResNet: y = yi-ResNet, xreconstructed = xi-ResNet
end if
Trust-Weight Update
Compute computational cost Cmodel for both models: Cmodel = α1Tmodel +α2Mmodel +α3Smodel

Compute total evaluation cost Vmodel for each model: Vmodel = Jmodel, total + λCmodel
Update trust-weight βt+1 = βt + ηt(Vi-ResNet − VDipDNN)

end for

In the following, we summarize the setups of parameters in implementation.

• Jthreshold indicates the acceptable value range of the inverse learning performance in certain
tasks. The value is determined by cross-validation to prevent being trapped in the local
optimum when training invertible models. It is used as we observe both models may
experience trivial convergences in training.

• Weighting factors λi, I = 1, 2, 3 are the most important to the switching results and are
task-specific to combine the three metrics of inverse learning. Without prior knowledge of
the datasets, we use equal weights (λ1 = λ2 = λ3).

• We set the number of iterations for switching T = 500 to allow the model to fully adapt.

• The weights α1, α2 balance different components in the combination of computational cost:
time complexity (forward and inverse computation time) and model size (parameter memory
that mainly depends on NN depth in inverse problems).

• ηt = 0.01 ηt is used to control the speed of updating the trust-weight parameter β by
evaluating i-ResNet and DipDNN. In our implementation, 0.01 is empirically found stable
in adaptation.

Specifically, we adopt trust-weight β to make the switching process stable and converge to an optimal
selection, which has been proven to improve online control in switching agents. β is updated based
on the difference in the combined evaluations of i-ResNet and DipDNN.

For image classification tasks, the algorithm gravitates towards i-ResNet because of its lower compu-
tational cost and acceptable accuracy, reflected by the trust-weight parameter favoring i-ResNet. For
tasks requiring exact inversion, such as lossless data hiding or power system state estimation, the
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algorithm shifts towards DipDNN due to its ability to provide a more accurate inverse, which results
in a consistently lower evaluate function value for DipDNN.

A.7 NUMERICAL RESULTS

Table 1: Comparison of ResNet, I-ResNet, and DipDNN for MNIST Classification

Model Config. Acc.

ResNet Conv 97.89%
MLP 97.65%

I-ResNet Conv 96.32%
MLP 97.20%

DipDNN MLP 97.69%

Table 2: Comparison of ResNet, I-ResNet, and DipDNN for CIFAR-10 Classification

Model Block Channels Accuracy (CIFAR-10)

ResNet - Conv

12 16, 64, 256 89.64%
12 64, 64, 64 89.21%
12 16, 64, 256 90.79%
39 12, 12, 12 88.06%
39 12, 48, 192 90.69%

I-ResNet - Conv

12 64, 64, 64 83.22%
12 16, 64, 256 87.79%
39 12, 12, 12 84.69%
39 16, 64, 256 90.00%
39 12, 48, 192 90.26%

DipDNN - Conv
12 12, 12, 12 84.29%
39 12, 12, 12 88.06%
39 12, 48, 192 90.69%

ResNet - MLP 12 - 66.97%
I-ResNet - MLP 12 - 66.69%

Table 3: Comparison of ResNet, i-ResNet, and DipDNN for physical system tasks.

(a) ResNet vs. DipDNN

ResNet ResNet k = 1 ResNet k = 2 DipDNN
NS 0.00022 0.01498 0.0553 0.1258
Power Flow 5.79e-07 1.84e-05 3.19e-05 2.01e-06

(b) i-ResNet vs. DipDNN

i-ResNet i-ResNet k = 1 i-ResNet k = 2 DipDNN
NS 0.1635 7.7005 0.3343 0.1258
Power Flow 5.73e-05 2.08e-05 6.95e-05 2.01e-06
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Figure 10: Fwd and Inv approximation on synthetic data.
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Figure 11: Forward and inverse performance of different models on Navier-Stokes flow dynamics.

Figure 12: Performance of convolutional models on Navier-Stokes flow dynamics.
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Figure 13: Performance of different models on different image convert tasks.
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