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Abstract
Recently, most of the state-of-the-art001
keyphrase prediction models are based on002
a supervised generative model. It shows003
significantly better than before. Nevertheless,004
it still faces domain robustness and building005
datasets on high-resource. To overcome these006
limitations, unsupervised methods have also007
been critical and studied. We analyzed it also008
have a defect in a necessary process, which009
extracts candidates beforehand selecting010
keyphrase. As not including various forms of011
phrases, we note that the unsupervised method012
can’t ensure oracle keyphrase. In this paper,013
we present zero-shot constrained keyphrase014
generation by leveraging a large-scale lan-015
guage model. To generate diverse keyphrases,016
we explore controlling a phrase during the017
generation. Finally, we evaluate benchmark018
datasets of the scholar domain. It results in019
better performances than unsupervised meth-020
ods on several datasets without going through021
the candidate extraction stage. For domain022
robustness, we evaluate out-of-domain DUC023
compare with NUS. Since our method doesn’t024
fine-tune to a corpus of a specific domain,025
it’s better than supervised methods based on026
Sequence-to-Sequence.027

1 Introduction028

Natural Language Processing (NLP) research has029

been intensive and remarkable progress recently030

with a large-scale language model. Autoregressive031

language models (ALM) (Radford et al., 2019; Raf-032

fel et al., 2019; Brown et al., 2020; Lewis et al.,033

2020), such as GPT-2, T5 and GPT-3, show im-034

proved performance in zero-shot and few-shot in035

various NLP’s tasks with the prompt-based multi-036

task learning (McCann et al., 2018). These lan-037

guage models are capable of another task by giving038

the context from some examples connected with039

the source text. But since the input length limited040

by each model is not scalable (Schick and Schütze,041

2020). Especially, it’s difficult in the keyphrase042

prediction task to feed the target source text into 043

the model with not-short documents as examples. 044

Due to this limitation, we focus on zero-shot 045

rather than few-shot to solve problems of the exist- 046

ing keyphrase prediction system with a challenging 047

approach. 048

In this work, we present a zero-shot constrained 049

keyphrase generation method. Our proposed 050

method aims to generate a keyphrase from a large- 051

scale language model by finding out the prompt 052

that describes the task from real-world structured 053

documents. With several benchmark datasets, we 054

compare them with existing supervised and unsu- 055

pervised methods. We also evaluate out-of-domain 056

whether the proposed method is robust. 057

2 Related Work 058

Unsupervised Methods Heuristic (Witten et al., 059

1999; Liu et al., 2011) and statistical (Ramos, 2003; 060

El-Beltagy and Rafea, 2010) methods of extract- 061

ing candidates are traditionally used for present 062

keyphrases. Candidates are selected by using Part- 063

Of-Speech (POS) tags or spans consisting of mul- 064

tiple words. Recently, embedding-based methods 065

(Bennani-Smires et al., 2018; Sun et al., 2020) has 066

also been studied along with graph-based meth- 067

ods (Mihalcea and Tarau, 2004; Wan and Xiao, 068

2008; Bougouin et al., 2013; Florescu and Caragea, 069

2017). 070

(Bennani-Smires et al., 2018) mentions low 071

performances with boundless candidates and topics 072

in the long document. We define that problem 073

as difficult to ensure oracle keyphrases during 074

processing. It’s described in Section 4. 075

076

Supervised Methods On the other hand, super- 077

vised methods are free from forms of the phrase, 078

and can predict the absent keyphrase of out-of- 079

document (Meng et al., 2017; Zhao and Zhang, 080

2019; Chen et al., 2019b,a; Liu et al., 2020). (Meng 081

et al., 2017) successfully settles a DNN-based gen- 082
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Figure 1: The proposed method’s flow for the constrained keyphrase generation during 2-phases.

erative model for the keyphrase generation with083

Copy Mechanism (Gu et al., 2016).084

In the following studies, the keyphrase gener-085

ation is studied from various perspectives. Most086

recent (Meng et al., 2020) studied related factors087

for filling the gap of performances from differences088

in model design. With the comprehensive compar-089

ison, we note that supervised methods fit specific090

domain isn’t robust despite the using huge datasets.091

This problem is also mentioned in (Gallina et al.,092

2019).093

3 Methods094

Manual Prompt Design A keyphrase sometimes095

appears sequentially with "Keywords" and "Index096

Terms" in real-world structured documents like097

papers and news. As the prompt connected with098

the special token ’:’, a language model generates099

from conditional distribution P (y|x, T ) using the100

prompt as tokens T to describe the task. We finally101

use "Keywords" as the final prompt, which has102

higher performance for generating keyphrases.103

104

Constrained Keyphrase Generation Our work105

is inspired by (Pascual et al., 2020). To satisfy106

lexical constraints during the decoding process, a107

language model forces to generate a certain word.108

To generate a suitable keyphrase, a strategy is de-109

vised by generating keyphrases in a lexicon. It’s110

shown as a graphical summary in Figure 1.111

With Byte Pair Encoding (BPE) (Sennrich et al.,112

2015) tokenizer, we build a set Vs composed of113

tokens of phrases. During 2-phases according to114

the specified number k, 1. To focus on a present115

keyphrase, only a set Vp composed of tokens that116

appeared in the source text is allowed when the117

number of generated phrases are equal to or less118

than k. 2. Only Vs is allowed when the number of119

generated phrases is greater than k. To encourage120

a diverse keyphrase, the set Vprefix composed of121

the first prefix’s tokens of each phrase generated at 122

the previous steps is concurrently constrained. 123

According to number t of delimiter token 124

Sidx, which separates each phrase, allowed tokens 125

Vallowed are given by: 126

Vallowed =

{
Vp t ≤ k

Vs − Vprefix t > k
(1) 127

The number of minimum and maximum phrases, 128

which are Pmin and Pmax respectively, are con- 129

trolled by the end-of-decoding token Eidx during 130

the generation. Vallowed according to the number 131

of the currently generated t is given by: 132

Vallowed =

{
Vallowed − Eidx t ≤ Pmin

Eidx t > Pmax
(2) 133

If the token generated at the previous step t− 1 is a 134

plural noun, Sidx is generated by force to complete 135

the concatenation of the phrase on the next step. 136

To generate not verbose keyphrase, location 137

prepositions1, such as "in", "with", are additionally 138

constrained at all steps. 139

140

Phrase Control This section describes several 141

phrase control methods that alleviate the problem 142

that ALM repeats the same word (Holtzman et al., 143

2019) and encourage diverse keyphrases. 144

For handling the phrase, generated tokens are 145

split as phrase-level by Sidx. Then the last phrase 146

PCur currently being generated is controlled by 147

tokens computed from previous phrases PGen. For 148

alleviating a language model stuck when repeating 149

copiously, tokens of the last phrase in PGen and 150

tokens of PCur are constrained. For dealing 151

with diversity, we use exhausting vocabulary and 152

1https://www.cambridge.org/kr/
academic/subjects/languages-linguistics/
grammar-and-syntax/
cambridge-grammar-english-language
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Dataset Domain #Doc #AvgTok #Present #Absent #Candidate #Gain %Gain
KP20k Scholar 19982 156.4 65936 39004 640891/753835/646925 31253/33495/28945 47.4/50.8/43.9
Inspec Scholar 500 121.9 3836 1064 12948/15238/12983 2424/2470/2351 63.2/64.4/61.3
NUS Scholar 211 164.4 1106 1173 6975/8347/7084 585/602/527 52.9/54.5/47.7
Krapivin Scholar 460 159.3 1473 1163 14515/17181/14765 799/811/776 54.3/55.1/52.7
DUC News 308 686.0 2314 165 38724/45996/39091 1779/1832/1733 76.9/79.2/74.9

Table 1: Statistics of 4 scholars and 1 news test dataset. #AvgTok is the average number of words in documents,
and #Present and #Absent are each number of present and absent keyphrases. #Candidate denotes the number
according to three forms of the phrase: the first allows only noun phrase, the second allows also the gerund or
present participle, and the third allows up to the past participle. #Gain and %Gain are the number and ratio of
candidates that correspond to oracle keyphrases respectively.

expanding the phrase. As the last word connected153

with modifier is significant determining semantics154

of the phrase, used tokens of the last word of each155

phrase in PGen are constrained. And if PCur was156

used, Sidx and Eidx are constrained for expanding157

phrase to not duplicated.158

159

Preferred N-gram We manipulate the generation160

of a concise or lengthy keyphrase. The initial pre-161

ferred size of n-gram β and weight of penalty α,162

the negative log probability log P̃s of Sidx adjusted163

by the penalty ρ computed by the size of the n-gram164

of PCur, which is n, is given by:165

log P̃s (y|x, T ) = logPs (y|x, T ) ∗
1

ρ
(3)166

167

ρ =
(1 + n)α

(1 + β)α
(4)168

If n is less than β, the generation of a longer phrase169

is encouraged, and if it is greater than β, Sidx is170

encouraged.171

4 Experiments and Results172

Datasets Our proposed method is evaluated on 4173

benchmark datasets, namely KP20k (Meng et al.,174

2017), Inspec (Hulth, 2003), Krapivin (Krapivin175

et al., 2009) and NUS (Nguyen and Kan, 2007),176

consisting of scientific publications commonly177

used in the keyphrase prediction. And we use178

additionally one news dataset is used as the out-179

of-domain, namely DUC (Wan and Xiao, 2008).180

Scholar datasets include title and abstract only181

(Meng et al., 2017). Table 1 shows statistics of182

documents in each dataset and of a present and183

absent keyphrase.184

As mentioned in Section 2, statistics of candi-185

dates that can be ensured according to each noun186

and participial phrase using CoreNLP2 as POS187

2https://github.com/stanfordnlp/
CoreNLP

tagger are also included. Existing unsupervised 188

extractive methods can obtain 47.4 (%Gain) less 189

than half of oracle keyphrases in KP20k, and 190

about half of NUS and Krapivin can be obtained, 191

compared with DUC and Inspec. As unsupervised 192

methods encounter the upper limit, these are 193

difficult to achieve a perfect score. 194

195

Details and Performance Comparison Vs de- 196

scribed in Section 3 is composed of tokens of 197

phrases appearing in KP20k’s training dataset, 198

which is VKP20k. We use a beam search with 199

width 6 during the inference, and macro average F1 200

score as evaluation metrics proposed in (Bennani- 201

Smires et al., 2018). We build a benchmark on 202

several datasets comparing with traditional and re- 203

cent methods in supervised (Meng et al., 2017; 204

Chen et al., 2019b,a; Yuan et al., 2020; Meng 205

et al., 2020) and unsupervised (Mihalcea and Tarau, 206

2004; Boudin, 2018; Bennani-Smires et al., 2018) 207

methods. Table 2 shows performances on scholar 208

datasets. It shows that larger language model (GPT- 209

2 xl) improves F1@10 from 19.0 to 25.3 compared 210

to smaller model (GPT-2 base). 211

To verify that our method has domain robustness, 212

we compare our method to supervised methods. 213

We evaluate additionally DUC of out-of-domain, 214

consisting of news articles. Also, since VKP20k 215

is composed of phrases in the scholar domain, we 216

build additionally VDUC composed of phrases ap- 217

pearing in DUC. Table 3 shows that our approach 218

is more robust to out-of-domain, compared with 219

S2S-based Recurrent Neural Network (Gu et al., 220

2016) and Transformer (Vaswani et al., 2017; Meng 221

et al., 2020) incorporated by Copy Mechanism that 222

is trained on KP20k. 223

Existing unsupervised methods achieve lower 224

performance on Krapivin and NUS compared to 225

Inspec. They tend to show better performance on 226

the dataset with the high ratio of oracle keyphrases 227
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KP20k Inspec Krapivin NUS

Supervised Methods

F1@5 F1@10 F1@O F1@5 F1@10 F1@O F1@5 F1@10 F1@O F1@5 F1@10 F1@O

CopyRNN (Meng et al., 2017) 31.7 27.3 33.5 24.4 28.9 29.0 30.5 26.6 32.5 37.6 35.2 40.6
TG-Net (Chen et al., 2019b) 37.2 31.5 - 31.5 38.1 - 34.9 29.5 - 40.6 37.0 -

KG-KE-KR-M (Chen et al., 2019a) 31.7 28.2 38.8 25.7 28.4 31.4 27.2 25.0 31.7 28.9 28.6 38.4
CatSeqD(RNN) (Yuan et al., 2020) - 26.1 31.2 - 38.7 38.8 - 26.9 33.5 - 36.6 39.2

CatSeqD(TRANS) (Meng et al., 2020) - 29.0 36.2 - 36.6 36.9 - 28.1 36.4 - 37.3 42.3

Unsupervised Methods

TextRank (Mihalcea and Tarau, 2004) 6.6† 9.5† - 14.7 15.2 - 7.4† 11.0† - 9.5† 15.1† -
Multipartite (Boudin, 2018) 16.0† 13.7† - 25.7 30.0 - 15.4† 13.6† - 22.7† 20.0† -

EmbedRank d2v (Bennani-Smires et al., 2018) - - - 31.5 37.9 - - - - 2.3 3.5 -
EmbedRank s2v (Bennani-Smires et al., 2018) 10.2† 10.4† - 29.8 37.0 - 11.7† 11.7† - 14.8† 16.1† -

GPT-2 base (Ours) 14.6 15.5 12.4 20.8 22.3 21.1 14.7 15.4 12.1 21.7 23.0 22.7
GPT-2 xl (Ours) 17.7 19.4 15.0 25.9 27.6 26.3 20.9 22.4 18.3 29.8 32.0 29.2

Table 2: Present keyphrase prediction results in 4 scholar datasets. The highest F1@10 among super-
vised/unsupervised methods is marked bold in red/blue. And the performance with † represents it is evaluated
by us using only title and abstract.

DUC NUS
F1@5 F1@10 F1@5 F1@10

RNN-O2S-KP20k (Meng et al., 2020) 11.9 16.0 37.3 36.6
TF-O2S-KP20k (Meng et al., 2020) 10.1 11.4 40.1 37.3

VKP20k 15.3 18.0 29.8 32.0
VDUC 17.0 20.0 29.1 31.4

Table 3: Performance comparison of NUS of scholar
domain and DUC of out-of-domain.

in candidates shown in Table 2. Since the proposed228

method doesn’t go through the process of extract-229

ing candidates in advance, F1@10 is improved on230

NUS by 12.0 compared to Multipartite (Boudin,231

2018). And KP20k and Krapivin are evaluated232

by us to directly compare existing unsupervised233

methods with ours, the proposed method improves234

performances on them.235

236

Ablation Study Table 4 shows performances237

on NUS according to several combinations of238

proposed constraints. R@10 is 15.2 higher with239

the constraint of phrase controls than without240

any constraints. If the minimum number of241

phrases isn’t limited, performance is more precise.242

However, we evaluated final performances using243

all constraints for the diverse keyphrase generation.244

Examples for absent keyphrases are provided245

respectively in appendix A.246

247

Performances per Preferred N-gram We fix α =248

1.7 and compare β according to integers from [1, 5]249

range. Since the length of each phrase is different250

for annotators, it is significant to use a parameter251

to control it in the keyphrase generation. Figure 2252

shows the Average F1 score with different values253

of beta on NUS dataset.254

P@10 R@10 F1@10
+All Constraint 34.4 36.5 32.0
-Minimum Number of Phrases 39.9 32.8 32.2
-Phrase Control 37.3 28.4 28.1
-Minimum Number of Phrases
No Phrase Control 39.1 26.1 27.4

-All Constraints 39.8 21.3 25.1

Table 4: Performance comparison on NUS according
to a combination of several constraints.

Figure 2: Performance comparison on NUS according
to preferred N-gram.

5 Conclusion 255

In this work, we explore how to generate a 256

keyphrase using ALM. The proposed method 257

builds up the model aware of the keyphrase pre- 258

diction task with a prompt found out from real- 259

world structured documents and can generate di- 260

verse keyphrases using several constraints. The 261

proposed method is novel compared to existing 262

methods, and our results show improving the per- 263

formance when utilizing more large language mod- 264

els. It shows that the improved effect is feasible by 265

leveraging future language models with our method. 266

Our method shows better domain robustness than 267

supervised methods. Moreover, it overcomes an un- 268

supervised method performance that can’t ensure 269

oracle keyphrases during the extraction process. 270
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A Examples 442

Title: Learning Query Languages of Web Interfaces.

Abstract: This paper studies the problem of automatic acquisition of the query languages supported by
a Web information resource. We describe a system that automatically probes the search interface of a
resource with a set of test queries and analyses the returned pages to recognize supported query operators.
The automatic acquisition assumes the availability of the number of matches the resource returns for a
submitted query. The match numbers are used to train a learning system and to generate classification rules
that recognize the query operators supported by a provider and their syntactic encodings. These
classification rules are employed during the automatic probing of new providers to determine query
operators they support. We report on results of experiments with a set of real Web resources.
Oracle Keyphrases: query operators, automatic acquisition, learning, hidden web, search interface,
web resources, machine learning, search engine, query languages, hidden web, web interfaces
Predicted Keyphrases: query operators, learning system, web information resources, query language,
automatic acquisition, ..., web information resource, web search interface, search engines

Table 5: Example 1. Keyphrases in the document are bold. Present/Absent Keyphrases by the proposed method
are marked bold in blue/red.

Title: Web Taxonomy Integration through Co-Bootstrapping.

Abstract: We address the problem of integrating objects from a source taxonomy into a master taxonomy.
This problem is not only currently pervasive on the web, but also important to the emerging semantic web.
A straightforward approach to automating this process would be to learn a classifier that can classify objects
from the source taxonomy into categories of the master taxonomy. The key insight is that the availability of
the source taxonomy data could be helpful to build better classifiers for the master taxonomy if their
categorizations have some semantic overlap. In this paper, we propose a new approach, co-bootstrapping,
to enhance the classification by exploiting such implicit knowledge. Our experiments with real-world web
data show substantial improvements in the performance of taxonomy integration.
Oracle Keyphrases: taxonomy integration, bootstrapping, semantic web, classification, ontology mapping,
machine learning, boosting
Predicted Keyphrases: semantic search, semantic webs, taxonomy, web classification, ...,
machine learning

Table 6: Example 2. Keyphrases in the document are bold. Present/Absent Keyphrases by the proposed method
are marked bold in blue/red.
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