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Abstract

We introduce a formalization and benchmark for the unsupervised anomaly detec-
tion task in the distribution-shift scenario. Our work builds upon the iWildCam
dataset, and, to the best of our knowledge, we are the first to propose such an
approach for visual data. We empirically validate that environment-aware methods
perform better in such cases when compared with the basic Empirical Risk Mini-
mization (ERM). We next propose an extension for generating positive samples for
contrastive methods that considers the environment labels when training, improving
the ERM baseline score by 8.7%.

1 Introduction and related work

Identifying and following novelty [31] is an intriguing human ability that could trigger scientific
discoveries [21]. Machine learning models that can mimic this behavior and detect novelty when
facing unfamiliar situations are vital for fields like video surveillance [15], intrusion detection in
cybersecurity [22], manufacturing inspection [30], and many others [40]. Anomaly Detection (AD)
is an umbrella term [48] for methods whose goal is to identify samples that deviate from an assumed
notion of normality. Normals and anomalies are supposed to come from different distributions. But
how and up to what limit do they differ? Defining what changes constitute anomalies and what
changes should be ignored is essential.

Deep learning methods proved their representation power in multiple fields [13, 36, 37, 10, 16, 11,
7, 47] and were assumed to become invariant to irrelevant aspects under the big data regime. Yet,
recent works proved that these representations are susceptible to unwanted biases [4] and prone to
finding shortcuts [14], relying on spurious features while failing to capture relevant aspects of the
data. Consequently, those models exhibit poor performance when dealing with slightly different,
out-of-distribution (OOD) settings, where spurious features are no longer informative. Avoiding
spurious correlations is a challenging problem, impossible to solve in the in-distribution (ID) training
setup [42]. Recent works [33, 34, 18, 24, 27, 12, 2, 49] tackle this problem by using an informative
process that splits the dataset into multiple environments, extracting additional information. Except
for AnoShift [12], which focuses on network traffic data, all those benchmarks and approaches
address supervised scenarios.
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Figure 1: OOD Content and Style Setup. a) Dataset: The samples’ input distribution varies on the
Content and Style axis. In training, we have only normal data, while in the testset we also have a
3rd (anomalous) class. b) Step 1: Pretraining algos learn its parameters using the training data, with
labels for the two normal classes. c) Step 2: AD methods use the embeddings learned in Step 1 to
transform their input.

We follow the same line to enable robust AD and exploit the multi-environments approach in
unsupervised anomaly detection from visual data. Moreover, we formalize the notion of anomaly
under the distribution shift paradigm.

To summarize, our main contributions are the following:

• We propose a benchmark for unsupervised anomaly detection in images, focusing on real-
world cases, where the input distribution is different in sub-groups of data. We formally
emphasize the differences between anomaly detection and classical (supervised) distribution
shift analysis.

• We validate that shallow AD methods can benefit from working on top of embeddings
pretrained using environment-aware methods (like Fish, IRM, LISA). We prove consistent
improvements over ERM pretraining over a wide range of AD methods.

• We introduce a way of adjusting the contrastive methods to be aware of multiple environ-
ments, making them more robust in out-of-distribution setups. Empirical validation over
MoCo v3, shows an 8.7% increase in ROC-AUC w.r.t. ERM, on iWildsCam dataset, in the
anomaly detection setup.

2 Generalization facets for Anomaly Detection

Latent factorization of the data It is useful to formalize the data samples x as being determined by
two latent factors: Content and Style [32, 46]. The Content should determine the task at hand, i.e.,
it should be the cause of the desired target. At the same time, the Style could represent unrelated
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Figure 2: Positive samples in contrastive learning. In EA-MoCo, our env-aware baseline over Mo-
Cov3, for the positive samples we use: the basic augmented anchor (left) and the closest sample from
another, randomly chosen, environment (right). We compute distances over representations obtained
with an diffusion based autoencoder, learned under ERM, over samples from all environments.

features spuriously correlated with the target. Inferring these latent factors is an extremely difficult
problem, seen as a goal of representation learning [32]. It is impossible in the unsupervised setting
without additional inductive biases, or other information [17, 29] and it is outside our scope. Instead,
we start from a weaker assumption, that we have data in which only the Style is changed. We aim
to use this factorization in AD to highlight directions toward building methods that are robust to
irrelevant changes (involving Style) while capable of detecting relevant changes (involving Content).

Environments We call domains or environments [18, 2] sub-groups of the data, each with a different
distribution, but all respecting some common basic rules. Namely, the Content is shared, but Style or
relations involving Style change. Examples of domains include pictures taken indoor vs. outdoor
[51], or in different locations [5], real photos vs sketches [25], or images of animals with changing
associations in each environments [26]. Our goal is to be robust to the Style differences between
different environments while identifying the Content changes as anomalies.

2.1 Out-of-distribution regimes

When dealing with real-world data, the test distributions usually differ from the training ones,
encountering changes in Style or/and Content. We provide next an in-depth characterization of
possible scenarios for AD in those regimes, linking them to common methods that work in each
category for supervised tasks. For explicit examples and details, see Appendix A.2.

A. ID setting The default paradigm in Machine Learning, both in supervised and unsupervised
learning. Although this is the default paradigm, the usual assumption that train and test data come from
the same distribution is very strong and almost never true for real-world datasets [9, 45, 12, 27, 18].

B. Style OOD Most works that develop methods robust to some (i.e. Style) distribution changes
reside in this category [43, 2, 19, 49]. Environments have differences based on Style, but have the
same Content and the goal is to learn representations that are invariant across environments.

C. Content OOD The assumption here is that environments contain changes in distribution that are
always relevant (i.e. changes in Content) for the task and should be noticed. Methods in this category
must detect such changes while optionally performing another basic task. Anomaly, novelty, or OOD
detection methods work in this regime [48].

D. Style and Content OOD Here, environments bring changes in both Content and Style. We argue
that this is the most realistic setting and it is mainly unaddressed in the anomaly detection literature.
An ideal anomaly detection method will only detect Content anomalies, while being robust to Style
changes. Our main analyses and experiments are performed in this setting, showing the blind spots of
current approaches and possible ways forward.

We formalize and detail the distribution shifting scenarios in Appendix A.2. To the best of our
knowledge, we are the first to cover this topic for anomaly detection in particular and for unsupervised
learning in general.
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Figure 3: Scores for multiple unsupervised AD methods (left, in different colors) and their mean
(right) trained on top of embeddings obtained under different pretrainings (OX axis). Notice that env-
aware ones (Fish, IRM, and LISA) show significant improvement over ERM. More, our contrastive
adaptation EA-MoCo for env-awareness outperforms all the others.

2.2 Our approach

We are interested in detecting anomalies in the most realistic scenario, D. Style and Content OOD,
where both the Style and the Content can change between environments, and our goal is to detect
Content changes, while learning to be robust to Style changes. Generally, AD methods work on
top of pretrained embeddings. We first show how to adapt envs-aware methods [2, 43, 49] to an
unsupervised AD task (using a non-AD task for pretraining). Next, we introduce our self-supervised
environment-aware method: EA-MoCo, for pretraining the AD embeddings.

Proposed setup We propose a pretraining approach for learning env-aware embeddings that takes
advantage of the env information in some way or another. Current methods are using the environment
labels in training, to build env-invariance. Similarly to them, but unlike other AD methods, we
use envs in the pretraining phase to learn better representations for the downstream task (anomaly
detection in our case). We empirically prove (Sec. 3) that learning embeddings robust to domain
changes (Style) in the pretraining phase improves the overall performance of the downstream AD
task. For a better understanding of the setup, we present a visual representation in Fig. 1.

Supervised non-AD pretraining First, we adapt already existing env-aware solutions for supervised
learning (e.g. IRM [2]) to anomaly detection. For creating the supervised task needed for these
methods, one can use additional labels found in the dataset or can create pretext tasks. In particular,
we divide the dataset samples into 3 sets: 2 normal classes and 1 anomalous. We use the normal ones
for modeling a binary classification task. Please note that the task is supervised to predict one of the
two normal classes, not directly supervised for the Anomaly Detection task. This way, we do not
need or use anomaly labels. We train the env-aware method on this binary classification task to learn
embeddings and apply AD methods on top of those learned embeddings.

Fully unsupervised pretraining To overcome the need for supervision, we propose EA-MoCo,
an env-aware contrastive learning approach. Briefly, we train an diffusion based autoencoder [38]
over all training envs, and based on the learned representations, we compute distances between
all samples. Next, we define the contrastive learning objective by selecting pairs of samples from
different randomly sampled domains which are close to each other, considering our previously defined
distances. See Fig. 2 and Appendix A.3 for details.

We employ AD methods on top of our supervised and unsupervised embeddings, proving large
improvements when using the env information in pretraining (Sec. 3)

3 Experimental results

iWildCam dataset Ideally, for testing the robustness of an algorithm in our setup, we would need a
dataset with multiple environments annotations, but also with anomalies. Since there is none tackling
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Table 1: ROC-AUC scores for AD in Style OOD setup, where an anomaly is defined as Content OOD.
In rows we have AD methods, applied on top of embeddings learned using pretraining algorithm
named in each column. See how our env-aware contrastive solution, EA-MoCo, outperforms the
others. Max values per row in bold.

Pretrain None Supervised Unsupervised Other dataset
Random ERM Fish IRM Lisa EA-MoCo MoCo v3 MoCo v3 ResNet

A
no

m
.D

et
ec

t.
m

et
ho

d IsoForest [28] 65.2 63.1 68.0 64.3 75.2 70.9 68.4 64.6 61.8
INNE [3] 50.1 67.7 66.1 68.7 76.5 77.0 71.9 68.7 57.8
LODA [35] 65.1 63.8 66.7 66.2 73.9 71.1 66.9 67.1 69.9

OCSVM [41] 57.9 67.5 65.5 64.5 78.4 71.4 68.5 57.1 62.1
PCA [44] 64.1 40.4 63.3 64.4 55.6 67.7 63.9 60.9 63.2

LOF5 [6] 43.2 61.0 59.7 61.3 65.1 60.9 68.3 58.5 53.2
KNN [1] 73.2 75.7 72.0 77.7 66.9 77.0 78.9 76.5 57.8

KDE [23] 62.6 65.1 59.4 67.0 77.4 77.8 76.3 57.4 63.6

Mean AD (OOD) 60.2 63.0 65.1 66.8 71.1 71.7 70.4 63.8 61.2

both aspects, we chose to start with a multi-environment dataset, on top of which we define the
Content anomalies in a standard way, as classes unseen at training time [48, 39]. iWildCam [5] is a
dataset used for studying robustness at distribution shifts, containing images from various camera
traps placed in the wild, exhibiting drastic distribution shifts in image Style (e.g. illumination,
background, vegetation). We present in Appendix A.4 the details for building the AD setup on top of
the dataset.

3.1 Environment-aware algorithms in pretraining

We learn image embeddings in several ways, comparing the downstream performance of the AD
methods applied in an unsupervised manner on top of them. As backbone, we use ResNet-18 [16]. a)
Empirical Risk Minimization (ERM [20]) is the main baseline, which we compare against several
env-aware methods: b) Fish [43], c) Invariant Risk Minimization (IRM [2]), and d) LISA [49]. As
shown in Tab. 1, LISA proves to be the best out of the supervised algos. Also see that in general, all
embeddings learned from env-aware algorithms perform better in the downstream task: content OOD
detection (anomaly). We also pretrained the embeddings using a contrastive, unsupervised solution
(e) MoCo v3 [8]), which proved to be a strong baseline. Since we noticed before that env-aware
capabilities improve the robustness, we add them on top of the contrastive method, as detailed in
Sec. 2.2. On average, our Env-Aware MoCo perform best, as seen in Fig. 3 and Tab. 1.

3.2 AD methods

For detecting anomalies, we feed the embeddings to a variety of anomaly detectors, covering most
of the AD types. As a) ensemble-based methods, we test IsolationForest [28], INNE [3] and
LODA [35]. For b) linear models, we test the classics: OCSVM [41] and PCA [44]. The delegates
for c) proximity-based are LOF [6] and KNN [1], while for d) probabilistic detectors we have
KDE [23]. We use pyod [50] implementations and validated the dataset-related hyper-parameters
(e.g. number of trees, neighbours, bins, gamma, standardization). We detail in Appendix A.1 and will
make the code publicly available.

4 Conclusions

This work tackles the unsupervised anomaly detection task in the Style distribution shift scenario.
First, we formally analyze the task in connection to existing frameworks. Next, we prove that
employing env-aware pretraining methods can boost the performance of shallow AD methods in
this setup. Finally, we propose an env-aware contrastive method, with up to 8.7% improvement on
iWildsCam AD setup, over the ERM baseline.
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Table 2: Shifting paradigm relation to Anomaly detection. We emphasize the current algorithms
working in each paradigm. pe(x) is the probability distribution for env e.

Style Content Description

A. ID ID

Assumption:
pe(xS , xC , y), pe(xS , xC) are constant

Goal/Task:
model pe(y|x) or pe(x, y) or pe(x)

e.g. algorithms following the ERM paradigm

B. OOD ID

Assumption:
pe(xS) changes over envs - closer to real-world scenarios

Goal/Task:
same as A., while being robust to Style changes

e.g. IRM, V-Rex, Fish, Lisa

C. ID OOD

Assumption:
pe(xC) changes over envs

Goal/Task:
detect Content changes

e.g. open set recognition; detect semantic anomalies or novelties

D. OOD OOD

Assumption:
both pe(xS), pe(xC) change over envs - closer to real-world scenarios

Goal/Task:
same as C.,while being robust to Style changes

e.g. EA-MoCo (our approach)

A Appendix

A.1 AD methods hyper-parameters

We chose for each method (loaded from pyOD library [50]) the proper hyper-parameters for iWildCam,
by maximizing the score for the basic (ERM) setup. Those are the following:

"IsoForest":iforest.IForest(behaviour="new")␣without_scaler
"INNE":inne.INNE(n_estimators=51)␣without_scaler
"LODA":loda.LODA(n_bins=25,␣n_random_cuts=100)␣with_scaler
"OCSVM":ocsvm.OneClassSVM(gamma="auto")␣with_scaler
"PCA":pca.PCA(standardization=False,␣whiten=True)␣with_scaler
"LOF5":neighbors.LocalOutlierFactor(n_neighbors=5,␣novelty=True,␣metric=’euclidean’,␣n_jobs=-1)␣with_scaler
"KNN":knn.KNN(n_jobs=-1)␣without_scaler
"KDE":kde.KDE()␣without_scaler

A.2 Set-up formalization details

We showcase the different set-ups in which machine learning algorithms are used at present, with
respect to the different types of changes these algorithms are designed to capture. In addition, we
proposed a new set-up that, to our knowledge, has never been addressed before, all to be observed in
Tab. 2.

A.3 Env-Aware MoCo algorithm: EA-MoCo

We summarize our proposed env-aware method of anomaly detection in distribution shift scenarios in
an easy-to-follow algorithm. We use only one positive sample per anchor, chosen from a different,
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Algorithm 1 - Env-aware contrastive learning
Xea - input samples from env a xi_ea - input sample i, from env a
e1, e2, ...et - train envs et+1, et+2, ...et+k - test envs

Results: 1) style-robust embeddings XSR; 2) anomalies prediction Y AD

// Step 1. Compute distances between all samples
1: XAE

e1..et ← train_autoencoder(Xe1..et ) // train an autoencoder over all training envs
2: disti_ea,j_eb ← l2(xAE

i_ea , x
AE
j_eb),∀xi_ea ̸= xj_eb , a, b ∈ 1, t // use embeddings for distances

// Step 2. Contrastive approach based on envs - Moco v3
3: x+ ← argmin∀xj_eb∈Xeb

,ea ̸=eb
dist(xi_ea , xj_eb) // closest, from another domain

4: x− ← {xj_ea |j ∼ batchi} // usual negative samples, the rest of the batch
5: xSR

i_ea ← train_contrastive(xi_ea , x−, x+) //SR = Style-Robust; train similar to MoCov3

// Step 3. Downstream task (anomaly detection)
6: ω∗ ← AD(XSR

e1...et) ; // Train AD on the new Style-Robust embeddings
7: Y AD

et+1..et+k
← ω∗(XSR

et+1..et+k
) // Apply AD on the testset

random environment, at the smallest distance defined by the previously trained autoencoder (over all
envs), as described in Alg. 1. We do not further augment the positive sample.

A.4 iWildCam

For building the anomaly detection setup from the existing classification setup in iWildCam, we
group the classes in 3 buckets (two for normality - with class label < 125 - and one with the rest, being
used as anomalies). We keep only the domains present in each bucket, with sufficient samples each.
Samples belonging to the normal classes are used in pretraining and AD training. The test set contains
both normal and abnormal samples, but only from envs unseen at training time (out-of-distribution
from the Style point of view). We will make the split publicly available.
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