
Automated Knowledge Base Construction (2020) Conference paper

Syntactic Question Abstraction and Retrieval
for Data-Scarce Semantic Parsing

Wonseok Hwang WONSEOK.HWANG@NAVERCORP.COM

Jinyeong Yim JINYEONG.YIM@NAVERCORP.COM

Seunghyun Park SEUNG.PARK@NAVERCORP.COM

Minjoon Seo MINJOON.SEO@NAVERCORP.COM

Clova AI, NAVER Corp.

Abstract
Deep learning approaches to semantic parsing require a large amount of labeled data, but anno-

tating complex logical forms is costly. Here, we propose SYNTACTIC QUESTION ABSTRACTION
& RETRIEVAL (SQAR), a method to build a neural semantic parser that translates a natural lan-
guage (NL) query to a SQL logical form (LF) with less than 1,000 annotated examples. SQAR
first retrieves a logical pattern from the train data by computing the similarity between NL queries
and then grounds a lexical information on the retrieved pattern in order to generate the final LF. We
validate SQAR by training models using various small subsets of WikiSQL train data achieving
up to 4.9% higher LF accuracy compared to the previous state-of-the-art models on WikiSQL test
set. We also show that by using query-similarity to retrieve logical pattern, SQAR can leverage a
paraphrasing dataset achieving up to 5.9% higher LF accuracy compared to the case where SQAR
is trained by using only WikiSQL data. In contrast to a simple pattern classification approach,
SQAR can generate unseen logical patterns upon the addition of new examples without re-training
the model. We also discuss an ideal way to create cost efficient and robust train datasets when the
data distribution can be approximated under a data-hungry setting.

1. Introduction

Semantic parsing is the task of translating natural language into machine-understandable formal
logical forms. With the help of recent advance in deep learning technology, neural semantic parsers
have achieved state-of-the-art results in many tasks [Dong and Lapata, 2016, Jia and Liang, 2016,
Iyer et al., 2017b]. However, their training requires the preparation of a large amount of labeled data
(questions and corresponding logical forms) which is often not scalable due to the requirement of
expert knowledge necessary in writing logical forms.

Here, we develop a novel approach SYNTACTIC QUESTION ABSTRACTION & RETRIEVAL (SQAR)
for semantic parsing task under data-hungry setting. The model constrains the logical form search
space by retrieving logical patterns from the train set using natural language similarity with assis-
tance of a pre-trained language model. The subsequent grounding module only needs to map the
retrieved pattern to the final logical form.

We evaluate SQAR on various subsets of WikiSQL train data [Zhong et al., 2017] consisting of
850∼2750 samples which occupies 1.5–4.9% of the full train data. SQAR shows up to 4.9% higher
logical form accuracy compared to the previous best open sourced model SQLOVA [Hwang et al.,
2019]. Also, we show that natural language sentence similarity dataset can be leveraged in SQAR
by pre-training the backbone of SQAR using Quora pharaphrasing data which results in up to 5.9%
higher logical form accuracy.

HWANG, YIM, PARK, & SEO

In general, the retrieval approach causes the limitation on dealing with unseen logical patterns.
In contrast, we show that SQAR can generate unseen logical patterns by collecting new exam-
ples without re-training opening an interesting possibility of generalizable retrieval-based semantic
parser.

Our contributions are summarized as follows:

• Compared to the previous best open-sourced model [Hwang et al., 2019], SQAR achieves
the state-of-the-art performance on the WikiSQL test data under data-scarce environment.

• We show that SQAR can leverage natural language query similarity datasets to improve log-
ical form generation accuracy.

• We show that retrieval-based parser can handle unseen new logical patterns on the fly without
re-training.

• For the maximum cost-effectiveness, we find that it is important to carefully design the train
data distribution, not merely following the (approximated) data distribution.

2. Related work

WikiSQL [Zhong et al., 2017] is a large semantic parsing dataset consisting of 80,654 natural lan-
guage utterances and corresponding SQL annotations. Its massive size has invoked the development
of many neural semantic parsing models [Xu et al., 2017, Yu et al., 2018, Dong and Lapata, 2018,
Wang et al., 2017, 2018, McCann et al., 2018, Shi et al., 2018, Yin and Neubig, 2018, Xiong and
Sun, 2018, Hwang et al., 2019, He et al., 2019]. Berant and Liang [Berant and Liang, 2014] built the
semantic parser that uses the query similarity between an input question and paraphrased canonical
natural language representations generated from candidate logical forms. In our study, candidate
logical forms and corresponding canonical forms do not need to be generated as input questions
are directly compared to the questions in the training data, circumventing the burden of full logi-
cal form generation. Dong and Lapata [Dong and Lapata, 2018] developed the two step approach
for logical form generation, similar to SQAR using sketch representation as intermediate logical
forms. In SQAR, intermediate logical forms are retrieved from train set using question similarity
being specialized for data-hungry setting. Finegan-Dollak et al. [Finegan-Dollak et al., 2018] de-
veloped the model that first finds corresponding logical pattern and fills the slots in the template.
While their work resembles SQAR, there is a fundamental difference between two approaches. The
model from [Finegan-Dollak et al., 2018] classifies input query into logical pattern whereas we use
query-to-query similarity to retrieve logical pattern non-parametrically. By retrieving logical pat-
tern using the similarity in natural language space, paraphrasing datasets can be employed during
training which is relatively easy to label compared to semantic parsing datasets. Also, in contrast
to classification methods, SQAR can handle unseen logical patterns by including new examples
into the train set without re-training the model during inference stage (see section. 5.5). Also our
focus is developing competent model with small amount of data which has not been studied in
[Finegan-Dollak et al., 2018]. Hwang et al. [Hwang et al., 2019] developed SQLOVA that achieves
state-of-the-arts result in the WikiSQL task. SQLOVA consits of table-aware BERT encoder and
NL2SQL module that generate SQL queries via slot-filling approach.

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

Table

Q: What is the points of South Korea player?
L: select Points where Country = South Korea
l: select #1 where #2 = #3
Answer: 5400

Figure 1: Example of WikiSQL semantic parsing task. For given question (Q) and table headers,
the model generates corresponding SQL query (L) and retrieves the answer from the
table.

3. Model

The model generates the logical form L (SQL query) for a given NL query Q and its corresponding
table headers H (Fig. 1). First, the logical pattern l is retrieved from the train set by finding the
most similar NL query with Q. For example in Fig. 1, Q is “What is the points of South Korea
player?”. To generate logical form L, SQAR retrieves logical pattern l = SELECT #1 WHERE
#2 = #3 by finding the most similar NL query from the train set, for instance [“Which fruit has
yellow color?”, SELECT Fruit WHERE Color = Yellow]. Then #1, #2, and #3 in l are
grounded to Point, Country, and South Korea respectively by the grounding module using
information from Q and table headers. The process is depicted schematically in Fig. 2a. The detail
of each step is explained below.

3.1 Syntactic Question Abstractor

The syntactic question abstractor generates two vector representation q and g of an input NL query
Q (Fig. 2b). q is trained to represent syntactic information of Q and used in the retriever module
(Fig. 2c). g is trained to represent lexical information of Q by being used in the grounder (Fig. 2d).

The logical patterns of the WikiSQL dataset consist of combination of six aggregation operators
(none, max, min, count, sum, and avg), and three where operators (=, >, and <). The number
of conditions in where clause is ranging from 0 to 4. Each condition is combined by and unit. In
total, there are 210 possible SQL patterns (6 select clause patterns × 35 where clause patterns,
see Fig. A1). To extract these syntactic information from NL query, both an input NL query Q and
the queries in train set {Qt,i} are mapped to a vector space (represented by q and {qt,i}, respec-
tively) via table-aware BERT encoder [Devlin et al., 2018, Hwang et al., 2019] (Fig. 2b). The input
of the encoder consists of following tokens:

[CLS], E, [SEP], Q, [SEP], H , [SEP]

where E stands for SQL language element tokens such as [SELECT], [MAX], [COL], · · ·) sepa-
rated by [SEP] (a special token in BERT), Q represents question tokens, and H denotes the tokens

HWANG, YIM, PARK, & SEO

of table headers in which each header is separated by [SEP]. E is included to contextualize and
use them during grounding process (section 3.3). Segment ids are used to distinguish E (id = 0)
from Q (id = 1) and H (id = 1) as in BERT [Devlin et al., 2018]. Next, two vectors q ≡ v[CLS]0:dq

and
g ≡ v[CLS]dq :(dq+2dh)

are extracted from the (linearly projected) encoding vector of [CLS] token where
i : j notation indicates the elements of vector between ith and jth indices. In this study, dq = 256
and dh = 100.

3.2 Retriever

To retrieve logical pattern of Q, the questions from the train set ({Qt,i}) are also mapped to the
vector space ({qt,i}) using the syntactic question abstractor. Next, the logical pattern is found by
measuring Euclidean L2 distance between q and {qt,i}.

qt,i∗ = argmin
qt,i

||q − qt,i||L2 (1)

Since qt,i∗ has corresponding Qt,i∗ and logical form Lt,i∗ , the logical pattern l∗ can be obtained
from Lt,i∗ after delexicalization. The process is depicted in Fig. 2c. In SQAR, maximum 10 closest
qt,i∗ are retrieved and the most frequently appearing logical pattern is selected for the subsequent
grounding process. SQAR is trained using the negative sampling method. First, one positive sample
(having the same logical pattern with input query Q), and 5 negative samples (having different
logical pattern) are randomly sampled from the train set. Then six L2 distances are calculated as
above and interpreted as approximate probability by using softmax function after multiplied by -1.
The cross entropy function is employed for the training.

3.3 Grounder

To ground retrieved logical pattern l∗, following LSTM-based pointer network is used [Vinyals
et al., 2015].

Dt = LSTM(Pt−1, (ht−1, ct−1))

h0 = g0:dh
c0 = gdh:2dh

st(i) =W(WHi +WDt)

pt(i) = softmax st(i),

(2)

where Pt−1 stands for the one-hot vector (pointer to the input token) at time t−1, ht−1 and ct−1 are
hidden- and cell-vectors of the LSTM decoder,W’s denote (mutually different) affine transforma-
tions, and pt(i) is the probability of observing ith input token at time t. Here dh (=100) is the hidden
dimension of the LSTM. Compared to a conventional pointer network, our grounder has three cus-
tom properties: (1) as logical pattern is already found from the retriever, the grounder does not feed
the output as the next input when the input token is already present in the logical pattern whereas
lexical outputs like column and where values are fed into the next step as an input (Fig. 2d); (2) to
generate conditional values for where clause, the grounder infers only the beginning and the end
token positions from the given question to extract the condition values for where clause; (3) the
multiple generation of same column on where clause is avoided by constraining the search space.
The syntactic question abstractor, the retriever, and the grounder are together named as SYNTACTIC

QUESTION ABSTRACTION & RETRIEVAL (SQAR).

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

Table-aware BERT Encoder

a

b

c

d

SQL queryGrounder

Grounder

Examples

Question
v

Logical pattern

Abstractor

Retriever

Retriever

g
q

Similarity search
(L2 Norm)

Retrieved questions from examples

Corresponding logical forms

Corresponding logical patterns

Most frequent logical pattern

▼

▼

▼ ▼ ▼
▼

▼

▼

▼

▼

▼ ▼

SELECT COUNT [COL]

Player

Player WHERE

...

: LSTM

: The initial hidden and cell vectors of LSTM
from the abstractor

▼

▼

▼

▼
▼

▼▼ ▼ ▼▼▼

▼ ▼

▼

▼

▼ ▼ ▼ ▼ ▼

Black: Retrieved logical patterns (l*)
Red: Grounded tokens

▼

Abstractor

Abstractor
[CLS] E [SEP] Q [SEP] H [SEP]

Q1, Q2, ..., Qn

L1, L2, ..., Ln

l1, l2, ..., ln

l*

Figure 2: (a) The schematic representation of SQAR. (b) The scheme of the syntactic question
abstractor. (c) The retriever. (d) The grounder. Only lexical tokens (red-colored) are
predicted and used as the next input token.

4. Experiments

To train SQAR and SQLOVA, the pytorch version of pre-trained BERT model1 (BERT-Base-Uncased2)
is loaded and fine-tuned using ADAM optimizer. The NL query is first tokenized by using Standford
CoreNLP [Manning et al., 2014]. Each token is further tokenized (into sub-word level) by Word-
Piece tokenizer [Devlin et al., 2018, Wu et al., 2016]. FAISS [Johnson et al., 2017] is employed
for the retrieval process. For the experiments with Train-Uniform-85P-850, Train-Rand-881, Train-
Hybrid-85P-897, and Train-Rand-3523, only single logical pattern is retrieved from the retriever due
to the scarcity of examples per pattern. Otherwise 10 logical patterns are retrieved. All experiments

1. https://github.com/huggingface/transformers
2. https://github.com/google-research/bert

HWANG, YIM, PARK, & SEO

Table 1: Comparison of models under data-hungry environment. Logical pattern accuracy (P) and
full logical form accuracy (LF) on test set of WikiSQL are shown. The errors are estimated
by three independent experiments with different random seeds except SQLOVA-GLOVE

where the error is estimated from two independent experiments.

Model Train set Dev set P (%) LF (%)

COARSE2FINEa Train-Rand-881 Dev-Rand-132 - 2.1± 0.0

SQLOVA-GLOVEb Train-Rand-881 Dev-Rand-132 66.6± 0.4 17.6± 0.3

SQLOVAb Train-Rand-881 Dev-Rand-132 75.3± 0.4 45.1± 0.7
SQAR w/o Quora Train-Rand-881 Dev-Rand-132 74.1± 0.8 49.1± 0.9
SQAR Train-Rand-881 Dev-Rand-132 75.5± 0.6 50.0± 0.6

a The source code is downloaded from https://github.com/donglixp/coarse2fine
b The source code is downloaded from https://github.com/naver/sqlova.

were performed with WikiSQL ver. 1.1 3. The accuracy is measured by repeating three independent
experiments in each condition with different random seeds unless particularly mentioned. To further
pre-train BERT-backbone of SQAR, we use Quora paraphrase detection dataset [Iyer et al., 2017a].
The further details of experiments are summarized in Appendix.

5. Result and Analysis

5.1 Preparation of data scarce environment

The WikiSQL dataset consists of 80,654 examples (56,355 in train set, 8,421 in dev set, and 15,878
in test set). The examples are not uniformly distributed over 210 possible SQL logical patterns in
train, dev, and test sets while they have similar logical pattern distributions (see Fig. A1, Table 6).
To mimic original pattern distribution while preparing data scarce environemnts, we prepare Train-
Rand-881 by randomly sampling 881 examples from the original WikiSQL train set (1.6%). The
validation set Dev-Rand-132 is prepared by the same way from the WikiSQL dev set.

5.2 Accuracy Measurement

SQAR retrieves SQL logical pattern for a given question Q by finding most syntactically similar
question from the train set and ground the retrieved logical pattern using LSTM-based grounder
(Fig. 2a). The model performance is tested over the full WikiSQL test set by using two metrics: (1)
logical pattern accuracy (P) and (2) logical form accuracy (LF). P is computed by ignoring difference
in lexical information such as predicted columns and conditional values whereas LF is calculated
by comparing full logical forms. The execution accuracy of SQL query is not compared as different
logical forms can generate identical answer hindering fair comparison. Table 1 shows P and LF
of several models over the WikiSQL original test set conveying following important messages: (1)
SQAR outperforms SQLOVA by +4.0% in LF (3rd and 4th rows); (2) Quora pre-training improves
the performance of SQAR further by 0.9% (4th and 5th rows); (3) Under data-scarce condition, the
use of pre-trained language model (BERT) is critical (1st and 2nd rows vs 3–5th rows);

It is of note that COARSE2FINE [Dong and Lapata, 2018] shows much lower accuracy compared
to SQLOVA-GLOVE although both models use GLoVe [Pennington et al., 2014]. One possible

3. https://github.com/salesforce/WikiSQL

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

explanation will be that COARSE2FINE first classify SQL patterns of where clause (sketch gen-
eration) while SQLOVA generate SQL query via slot-filling approach. The classification involves
abstraction of whole sentence and this process can be a data-hungry step.

5.3 Generalization test I: dependency on logical pattern distribution

When the size of train set is fixed, assigning more examples to frequently appearing logical pat-
terns (in test environment) to the train set will increase the chance for correct SQL query gener-
ation as trained model would have a higher performance for frequent patterns (Train-Rand-881 is
constructed in this regard). On the other hand, including diverse patterns in train set will help the
model to distinguish similar patterns. Considering these two aspects, we prepare additional two sub-
sets Train-Uniform-85P-850, and Train-Hybrid-85P-897. Train-Uniform-85P-850 consists of 850
uniformly distributed examples over 85 patterns whereas Dev-Uniform-80P-320 consists of 320
uniformly distributed examples over 80 patterns. Train-Hybrid-85P-897 is prepared by randomly
sampling examples from top most frequent 85 logical patterns. Each pattern has approximately 128
times smaller number of examples compared to the full WikiSQL train set as in Train-Rand-881. In
addition, all patterns are forced to have at least 7 examples for the diversity (Fig. A1, and Table 6)
resulting in total 897 examples. Only 85 patterns out of 210 patterns are considered because (1) 85
patterns occupy 98.6% of full train set, and (2) only these patterns have at least 30 corresponding
examples (Fig. A1, Table 6). A dev set Dev-Hybrid-223 is constructed similarly by extracting 223
examples from the WikiSQL dev set (Fig. A1, Table 6). The difference between three types of train
sets are shown schematically in Fig. 3 (orange: Train-Uniform-85P-850, purple: Train-Rand-881,
black: Train-Hybrid-85P-897).

Figure 3: The schematic plot of logical pattern distribution of three types of train sets: uniform
set (orange), random set (magenta), and hybrid set (black). In hybrid set, examples are
distributed on logical patterns similar to random set but each logical pattern must include
at least certain number of examples.

Table 2 shows following important information: (1) SQAR outperforms SQLOVA again by
+4.1% LF in Train-Uniform-85P-850 (3rd and 5th rows of upper panel) and +4.0% LF in Train-
Hybrid-85P-897 (3rd and 5th rows of bottom panel); (2) the Quora pre-training improves model
performance +5.9% LF in Train-Uniform-85P-850 and by +0.5% LF in Train-Hybrid-85P-897(4th
and 5th rows of each panel).

Both SQAR and SQLOVA show good performance when they are trained using either Train-
Rand-881 or Train-Hybrid-85P-897(3rd and 5th columns of Table 1, 2). In real service delivering
scenario, the data distribution in test environment could vary with time. In regard of this, we prepare

HWANG, YIM, PARK, & SEO

Table 2: Comparison of models with two additional train sets: Train-Uniform-85P-850 and Train-
Rand-881.

Model Train set Dev set P (%) LF (%)

SQLOVA Train-Uniform-85P-850 Dev-Uniform-80P-320 62.2± 1.6 33.8± 1.2
SQAR w/o Quora Train-Uniform-85P-850 Dev-Uniform-80P-320 55.1± 3.0 32.0± 1.7
SQAR Train-Uniform-85P-850 Dev-Uniform-80P-320 65.7± 0.4 37.9± 0.4

SQLOVA Train-Hybrid-85P-897 Dev-Hybrid-223 77.0± 0.6 45.9± 0.4
SQAR w/o Quora Train-Hybrid-85P-897 Dev-Hybrid-223 78.5± 0.8 49.4± 1.2
SQAR Train-Hybrid-85P-897 Dev-Hybrid-223 78.2± 0.3 49.9± 1.1

an additional test set Test-Uniform-81P-648 by extracting 8 examples from top most frequent 81
logical patterns from the WikiSQL test. The resulting test set has completely different logical pattern
distribution with the WikiSQL test set. The table 3 shows that both models show best overall
performance when they are trained with Train-Hybrid-85P-897 being remained robust to the change
of test environment (4th columns). The result highlights the two important properties for train set
to have: reflecting test environment (more examples for frequent logical patterns), and including
diverse patterns.

Table 3: Comparison of models with Test-Uniform-81P-648 having uniform pattern distribution.
The numbers in the table indicates LF of two models. The model with higher score in each
condition is indicated by bold face.

Model & Test set Train-Rand-881 Train-Uniform-85P-850 Train-Hybrid-85P-897

SQLOVA, Test-Full-15878 45.1± 0.7 33.8± 1.2 45.9± 0.4
SQLOVA, Test-Uniform-81P-648 18.9 ± 1.5 32.3± 1.3 31.7± 1.3

SQAR, Test-Full-15878 50.0 ± 0.6 37.9 ± 0.4 49.9 ± 1.1
SQAR, Test-Uniform-81P-648 17.2± 1.3 39.2 ± 1.2 37.6 ± 1.7

5.4 Generalization test II: dependency on dataset size

To further test generality of our findings under change of train set size, we prepare three ad-
ditional train sets: Train-Uniform-85P-2550, Train-Rand-2677, and Train-Hybrid-96P-2750 (Ta-
ble 6). Train-Uniform-85P-2550 consists of 2550 uniformly distributed examples over 85 patterns,
Train-Rand-2677 consists of 2667 examples randomly sampled from the WikiSQL train data, and
Train-Hybrid-96P-2750 is larger version of Train-Hybrid-85P-897 in which each logical pattern in-
cludes at least 15 examples for 96 logical patterns (Table. 6). Table 4 shows following information:
(1) SQAR shows marginally better performance than SQLOVA showing +1.9%, +0.5%, and -0.7%
in LF when Train-Rand-2677, Train-Uniform-85P-2550, and Train-Hybrid-96P-2750 are used as
the train sets (1st and 3rd rows of each panel); (2) Again, the pre-training using Quora paraphrasing
datset increases LF by +0.5%, +3.3%, and +2.7% in Train-Rand-2677, Train-Uniform-85P-2550,
and Train-Hybrid-96P-2750 respectively (2nd and 3th rows of each panel); (3) Both SQAR and
SQLOVA show best performance when they are trained over hybrid dataset. Observing that the
performance gap between SQAR and SQLOVA becomes marginal as increasing the size of train

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

set, we train both models using full WikiSQL train set. The result shows that again, there is only
marginal difference between two models (SQLOVA LF: 79.2± 0.1, SQAR LF = 78.4± 0.2). The
overall results are summarized in Fig. 4.

Table 4: Comparison of model with three WikiSQL train subsets: Train-Rand-2677, Train-
Uniform-85P-2550 and Train-Hybrid-96P-2750).

Model Train set Dev set P (%) LF (%)

SQLOVA Train-Rand-2677 Dev-Rand-527 81.2± 0.2 60.9± 0.4
SQAR w/o Quora Train-Rand-2677 Dev-Rand-527 82.0± 0.2 62.3± 0.5
SQAR Train-Rand-2677 Dev-Rand-527 81.4± 0.5 62.8± 0.3

SQLOVA Train-Uniform-85P-2550 Dev-Uniform-80P-320 68.2± 1.6 49.7± 1.2
SQAR w/o Quora Train-Uniform-85P-2550 Dev-Uniform-80P-320 66.2± 4.5 47.0± 3.3
SQAR Train-Uniform-85P-2550 Dev-Uniform-80P-320 69.0± 1.2 50.3± 0.7

SQLOVA Train-Hybrid-96P-2750 Dev-Hybrid-446 83.1± 0.2 66.1± 0.6
SQAR w/o Quora Train-Hybrid-96P-2750 Dev-Hybrid-446 82.2± 0.2 62.7± 0.2
SQAR Train-Hybrid-96P-2750 Dev-Hybrid-446 82.8± 0.4 65.4± 1.0

U-850
R-881

H-897
U-2550

R-2667
H-2750 Full

Train set

30
40
50
60
70
80

LF
 (%

)

SQLova
SQAR w/o Quora
SQAR

Figure 4: Logical form accuracy of two models: SQLOVA (magenta), SQAR without Quora train-
ing (cyan), and SQAR (orange) over various subsets (U-850: Train-Uniform-85P-850,
R-881: Train-Rand-881, H-897: Train-Hybrid-85P-897, U-2550: Train-Uniform-85P-
2550, R-2667: Train-Rand-2677, H-2750: Train-Hybrid-96P-2750, Full: the WikiSQL
train set)

5.5 Generalization test III: parsing unseen logical forms

In general, retrieval-based approach cannot handle new type of questions when corresponding log-
ical patterns are not presented in the train set. However, unlike simple classification approach
[Finegan-Dollak et al., 2018], SQAR has interesting generalization ability originated from the use
of query-to-query similarity in natural language space. The train data in SQAR has two roles: (1)
supervision examples at training stage, and (2) a database to retrieve the logical pattern (a retrieval
set) from which the most similar natural language query will be found during inference stage. Once
the model is trained, the second role can be improved by including more examples into the train set

HWANG, YIM, PARK, & SEO

Table 5: Parsing unseen logical forms. SQAR is trained by using Train-Rand-881 and P and LF
are measured while using a different set for query retrieval in the inference stage. R-881,
H-897, H-2750, and Full stand for Train-Rand-881, Train-Hybrid-85P-897, Train-Hybrid-
96P-2750, and Train-Full-56355 respectively. R-capacity indicates the number of success-
fully retrieved logical pattern types whereas RG-capacity indicates that of successfully
parsed logical pattern types.

Model Train set Set for retrieval P (%) LF (%) R-capacity RG-capacity

SQAR R-881 R-881 75.5± 0.6 50.0± 0.6 57.5± 2.2 47.3± 0.4
SQAR R-881 R-881 + H-897 76.6± 0.4 50.6± 0.5 79.3± 1.9 58.8± 3.9
SQAR R-881 R-881 + H-2750 77.5± 0.4 50.7± 0.6 91.0± 2.3 67.0± 1.7
SQAR R-881 Full 79.6± 0.4 51.7± 0.5 102± 2 67.3± 2.5

SQAR R-881 H-2750 77.2± 0.5 50.5± 0.5 92.0± 2.1 67.5± 2.2

later. Particularly, by adding examples with new logical patterns, the model can handle questions
with unseen logical patterns without re-training.

To experimentally show this, we measured P and LF of SQAR while changing the retrieval set
during an inference stage (Table. 5). The train set is fixed to Train-Rand-881 consisting of 67 logical
patterns. The result shows that upon addition of Train-Hybrid-85P-897 into the template set, which
includes 18 more logical patterns compared to Train-Rand-881, P and LF increases by 1.1% and
0.6% respectively (2nd row of the table). Similar results are observed with Train-Hybrid-96P-2750
(+2.0% in P and +0.7% LF, 3rd row of the table) and with Test-Full-15878 (+4.1% in P and +1.7% in
LF, 4th row of the table). To further show the power of using query-to-query similarity, we replaced
the entire retrieval set from Train-Rand-881 to Train-Hybrid-96P-2750 where only 43 examples are
overlapped between them. Again, P and LF increase by 1.7% and 0.5% respectively (5th row of
the table). To further confirm the addition of examples enables parsing of unseen logical patterns,
we introduce two additional metrics: R-capacity and RG-capacity. R-capacity is defined by the
number of successfully retrieved logical pattern types by SQAR in the test set whereas RG-capacity
indicates the number of successfully generated (retrieved and grounded) logical pattern types. The
table shows both R- and RG-capacities increases upon addition of examples into the retrieval set
(5th and 6th columns). It should be emphasized that, during the training stage, SQAR observed
only 67 logical patterns. Collectively, these results show that, SQAR can be easily generalized to
handle new logical patterns by simply adding new examples without re-training. This also shows the
possibility of transfer learning, even between semantic parsing tasks using different logical forms
as intermediate logical patterns can be obtained from the natural language space.

6. Conclusion

We found that our retrieval-based model using query-to-query similarity can achieve high perfor-
mance in WikiSQL semantic parsing task even when labeled data is scarce. We also found, pre-
training using natural language paraphrasing data can help generation of logical forms in our query-
similarity-based-retrieval approach. We also show that retrieval-based semantic parser can generate
unseen logical forms during training stage. Finally, we found careful design of data distribution is
necessary for optimal performance of the model under data-scarce environment.

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

References

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1415–1425, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:
10.3115/v1/P14-1133. URL https://www.aclweb.org/anthology/P14-1133.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. NAACL, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 33–43, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1004. URL https://www.aclweb.org/anthology/P16-1004.

Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 731–742, Melbourne, Australia, July 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P18-1068.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sada-
sivam, Rui Zhang, and Dragomir Radev. Improving text-to-sql evaluation methodology. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 351–360. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/P18-1033.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. X-sql: Reinforce context into
schema representation. Technical report, 2019. URL https://www.microsoft.com/
en-us/research/uploads/prod/2019/03/X_SQL-5c7db555d760f.pdf.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. A comprehensive exploration
on wikisql with table-aware word contextualization. CoRR, abs/1902.01069, 2019. URL http:
//arxiv.org/abs/1902.01069.

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. First quora dataset release: Question pairs.
2017a. URL https://data.quora.com.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
963–973, Vancouver, Canada, July 2017b. Association for Computational Linguistics. doi:
10.18653/v1/P17-1089. URL https://www.aclweb.org/anthology/P17-1089.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 12–22, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1002. URL https://www.aclweb.org/anthology/P16-1002.

https://www.aclweb.org/anthology/P14-1133
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/P16-1004
https://www.aclweb.org/anthology/P18-1068
http://aclweb.org/anthology/P18-1033
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/X_SQL-5c7db555d760f.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/X_SQL-5c7db555d760f.pdf
http://arxiv.org/abs/1902.01069
http://arxiv.org/abs/1902.01069
https://data.quora.com
https://www.aclweb.org/anthology/P17-1089
https://www.aclweb.org/anthology/P16-1002

HWANG, YIM, PARK, & SEO

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. The Stanford CoreNLP natural language processing toolkit. In Associa-
tion for Computational Linguistics (ACL) System Demonstrations, pages 55–60, 2014. URL
http://www.aclweb.org/anthology/P/P14/P14-5010.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–
1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti, Yi Mao, Oleksandr Polozov, and Weizhu
Chen. Incsql: Training incremental text-to-sql parsers with non-deterministic oracles. CoRR,
abs/1809.05054, 2018. URL http://arxiv.org/abs/1809.05054.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates, Inc., 2015. URL http://papers.nips.
cc/paper/5866-pointer-networks.pdf.

Chenglong Wang, Marc Brockschmidt, and Rishabh Singh. Pointing out SQL
queries from text. Technical Report MSR-TR-2017-45, Microsoft, November 2017.
URL https://www.microsoft.com/en-us/research/publication/
pointing-sql-queries-text/.

Wenlu Wang, Yingtao Tian, Hongyu Xiong, Haixun Wang, and Wei-Shinn Ku. A transfer-learnable
natural language interface for databases. CoRR, abs/1809.02649, 2018.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

Hongyu Xiong and Ruixiao Sun. Transferable natural language interface to structured queries aided
by adversarial generation. CoRR, abs/1812.01245, 2018. URL http://arxiv.org/abs/
1812.01245.

Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from natu-
ral language without reinforcement learning. CoRR, abs/1711.04436, 2017. URL http:
//arxiv.org/abs/1711.04436.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1809.05054
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://www.microsoft.com/en-us/research/publication/pointing-sql-queries-text/
https://www.microsoft.com/en-us/research/publication/pointing-sql-queries-text/
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1812.01245
http://arxiv.org/abs/1812.01245
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax parser
for semantic parsing and code generation. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations, pages 7–12, Brus-
sels, Belgium, November 2018. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D18-2002.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. TypeSQL: Knowledge-based
type-aware neural text-to-SQL generation. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 588–594, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-2093. URL https://www.aclweb.
org/anthology/N18-2093.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

https://www.aclweb.org/anthology/D18-2002
https://www.aclweb.org/anthology/D18-2002
https://www.aclweb.org/anthology/N18-2093
https://www.aclweb.org/anthology/N18-2093

HWANG, YIM, PARK, & SEO

Appendix A. Appendix

A.1 Experiments

A.1.1 MODEL TRAINING

To train SQAR, pre-trained BERT model (BERT-Base-Uncased4) is loaded and fine-tuned us-
ing ADAM optimizer with learning rate of 2×10−5 except the grounding module where the learning
rate is set to 1× 10−3. The decay rates of ADAM optimizer are set to β1 = 0.9, β2 = 0.999. Batch
size is set to 12 for all experiment. SQLOVA is trained similarly using pre-trained BERT model
(BERT-Base-Uncased). The learning rate is set to 1 × 10−5 except NL2SQL layer which is
trained with the learning rate 10−3. Batch size is set to 32 for all experiment.

Natural language utterance is first tokenized by using Standford CoreNLP [Manning et al.,
2014]. Each token is further tokenized (into sub-word level) by WordPiece tokenizer [Devlin et al.,
2018, Wu et al., 2016]. The headers of the tables and SQL vocabulary are tokenized by WordPiece
tokenizer directly. FAISS [Johnson et al., 2017] is employed for the retrieval process. The PyTorch
version of BERT code5 is used. The model performance of COARSE2FINE was calculated by using
the code6 published by original authors [Dong and Lapata, 2018]. Our training of COARSE2FINE

with the full WikiSQL train data results in 72± 0.3 logical form accuracy on WikiSQL test set.
All experiments were performed with WikiSQL ver. 1.1 7. The model performance of SQAR

SQLOVA and COARSE2FINE was measured by repeating three independent experiments in each
condition with different random seeds. The errors are estimated by calculating standard devia-
tion. The performance of SQLOVA-GLOVE was measured from two independent experiment with
different random seeds. For the experiments with Train-Uniform-85P-850, Train-Rand-881, Train-
Hybrid-85P-897, and Train-Rand-3523, only single logical pattern is retrieved from the retriever
due to the scarcity of examples per pattern. Otherwise 10 logical patterns are retrieved. The models
are trained until the logical form accuracy is saturated waiting up to maximum 1000 epochs.

A.1.2 PRE-TRAINING WITH QUORA DATASET

To further pre-trained BERT-backbone used in SQAR, we use Quora paraphrase detection dataset
[Iyer et al., 2017a]. The dataset contains more than 405,000 question pairs with a corresponding
binary indicator that represents whether two questions are a pair of paraphrase or not. The task
setting is analogous to the retriever of SQAR which detects the similarity of two given input NL
queries and can be seen as fine-tuning in perspective of paraphrase detection task. During the
training, two queries are given to the BERT model along with [CLS] and [SEP] tokens as in the
original BERT training setting [Devlin et al., 2018]. The output vector of [CLS] token was used
for the binary classification to predict whether given two queries are a paraphrase pair or not. The
model was trained until the classification accuracy converges using using ADAM optimizer.

4. https://github.com/google-research/bert
5. https://github.com/huggingface/pytorch-pre-trained-BERT
6. https://github.com/donglixp/coarse2fine
7. https://github.com/salesforce/WikiSQL

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

101 103
select AVG(#) (210)

select MIN(#) where # > # and # > # and # > # (209)
select AVG(#) where # > # and # > # and # < # and # < # (208)

select SUM(#) (207)
select MIN(#) where # > # and # > # and # > # and # > # (206)

select MAX(#) where # < # and # < # and # < # and # < # (205)
select COUNT(#) where # < # and # < # and # < # and # < # (204)

select AVG(#) where # < # and # < # and # < # and # < # (203)
select MAX(#) where # = # and # < # and # < # and # < # (202)
select MAX(#) where # > # and # > # and # > # and # > # (201)
select SUM(#) where # = # and # < # and # < # and # < # (200)
select SUM(#) where # > # and # > # and # > # and # < # (199)
select MAX(#) where # > # and # > # and # > # and # < # (198)
select MIN(#) where # > # and # < # and # < # and # < # (197)

select MAX(#) where # = # and # = # and # > # and # > # (196)
select MIN(#) where # = # and # < # and # < # and # < # (195)

select (#) where # < # and # < # and # < # and # < # (194)
select AVG(#) where # = # and # < # and # < # and # < # (193)
select MIN(#) where # > # and # > # and # > # and # < # (192)

select (#) where # > # and # < # and # < # and # < # (191)
select MAX(#) where # = # and # = # and # = # and # < # (190)
select MAX(#) where # = # and # = # and # = # and # = # (189)
select AVG(#) where # > # and # > # and # > # and # > # (188)

select (#) where # > # and # > # and # > # and # > # (187)
select SUM(#) where # > # and # > # and # > # and # > # (186)

select COUNT(#) where # = # and # = # and # = # and # = # (185)
select SUM(#) where # = # and # = # and # = # and # > # (184)
select SUM(#) where # = # and # = # and # = # and # = # (183)

select COUNT(#) where # = # and # < # and # < # and # < # (182)
select SUM(#) where # < # and # < # and # < # and # < # (181)

select COUNT(#) (180)
select COUNT(#) where # > # and # > # and # > # and # > # (179)

select MIN(#) where # < # and # < # and # < # and # < # (178)
select SUM(#) where # = # and # > # and # > # and # > # (177)
select MAX(#) where # > # and # > # and # < # and # < # (176)
select MIN(#) where # = # and # = # and # = # and # > # (175)

select COUNT(#) where # > # and # > # and # > # and # < # (174)
select AVG(#) where # = # and # = # and # > # and # > # (173)

select COUNT(#) where # = # and # = # and # = # and # < # (172)
select COUNT(#) where # = # and # = # and # = # and # > # (171)

select AVG(#) where # = # and # = # and # = # and # > # (170)
select MIN(#) where # > # and # > # and # < # and # < # (169)

select COUNT(#) where # > # and # < # and # < # and # < # (168)
select AVG(#) where # = # and # = # and # = # and # < # (167)
select SUM(#) where # > # and # > # and # < # and # < # (166)

select (#) where # > # and # > # and # < # and # < # (165)
select AVG(#) where # > # and # < # and # < # and # < # (164)
select MAX(#) where # = # and # = # and # < # and # < # (163)
select MAX(#) where # = # and # = # and # = # and # > # (162)
select MIN(#) where # = # and # = # and # > # and # < # (161)

select COUNT(#) where # = # and # > # and # > # and # > # (160)
select AVG(#) where # = # and # = # and # < # and # < # (159)
select MIN(#) where # = # and # > # and # > # and # > # (158)

select COUNT(#) where # > # and # > # and # < # and # < # (157)
select (#) where # = # and # > # and # > # and # > # (156)

select MIN(#) where # = # and # = # and # = # and # < # (155)
select AVG(#) where # > # and # > # and # > # and # < # (154)
select AVG(#) where # = # and # > # and # > # and # > # (153)
select SUM(#) where # = # and # = # and # > # and # > # (152)
select MAX(#) where # > # and # < # and # < # and # < # (151)

select (#) where # = # and # < # and # < # and # < # (150)
select SUM(#) where # > # and # < # and # < # and # < # (149)

select MAX(#) where # > # and # > # and # > # (148)
select SUM(#) where # = # and # = # and # = # and # < # (147)

select (#) where # > # and # > # and # > # and # < # (146)
select MIN(#) where # < # and # < # and # < # (145)

select COUNT(#) where # = # and # > # and # > # and # < # (144)
select MIN(#) where # = # and # = # and # = # and # = # (143)

select (#) where # < # and # < # and # < # (142)
select SUM(#) where # = # and # = # and # > # and # < # (141)
select AVG(#) where # = # and # = # and # = # and # = # (140)
select AVG(#) where # = # and # > # and # < # and # < # (139)

select AVG(#) where # < # and # < # and # < # (138)
select (#) where # = # and # = # and # > # and # > # (137)

select COUNT(#) where # = # and # = # and # < # and # < # (136)
select COUNT(#) where # < # and # < # and # < # (135)

select MAX(#) where # = # and # > # and # > # and # < # (134)
select COUNT(#) where # = # and # = # and # > # and # > # (133)

select (#) where # > # and # > # and # > # (132)
select SUM(#) where # = # and # > # and # > # and # < # (131)

select SUM(#) where # < # and # < # and # < # (130)
select COUNT(#) where # > # and # > # and # > # (129)

select MAX(#) where # = # and # > # and # > # and # > # (128)
select MAX(#) where # = # and # > # and # < # and # < # (127)

select AVG(#) where # > # and # > # and # > # (126)
select SUM(#) where # = # and # = # and # < # and # < # (125)

select SUM(#) where # > # and # > # and # > # (124)
select SUM(#) where # = # and # > # and # < # and # < # (123)
select MAX(#) where # = # and # = # and # > # and # < # (122)
select MIN(#) where # = # and # = # and # > # and # > # (121)

select (#) (120)
select MAX(#) where # < # and # < # and # < # (119)

select MIN(#) where # = # and # = # and # < # and # < # (118)
select COUNT(#) where # = # and # > # and # < # and # < # (117)
select COUNT(#) where # = # and # = # and # > # and # < # (116)

select MIN(#) where # = # and # > # and # < # and # < # (115)
select AVG(#) where # > # and # < # and # < # (114)

select (#) where # = # and # > # and # > # and # < # (113)
select (#) where # > # and # < # and # < # (112)

select AVG(#) where # = # and # = # and # > # and # < # (111)
select COUNT(#) where # > # and # < # and # < # (110)

select MIN(#) where # > # and # < # and # < # (109)
select AVG(#) where # = # and # > # and # > # and # < # (108)

select (#) where # = # and # = # and # < # and # < # (107)
select SUM(#) where # > # and # < # and # < # (106)
select SUM(#) where # > # and # > # and # < # (105)

select MIN(#) where # = # and # > # and # > # and # < # (104)
select (#) where # = # and # > # and # < # and # < # (103)

select MIN(#) where # > # and # > # and # < # (102)
select MAX(#) where # > # and # > # and # < # (101)

select (#) where # > # and # > # and # < # (100)
select AVG(#) where # > # and # > # and # < # (99)
select MAX(#) where # > # and # < # and # < # (98)
select AVG(#) where # = # and # = # and # = # (97)
select MAX(#) where # = # and # = # and # = # (96)
select MIN(#) where # = # and # = # and # = # (95)

select COUNT(#) where # > # and # > # and # < # (94)
select MIN(#) where # < # and # < # (93)

select COUNT(#) where # = # and # = # and # = # (92)
select SUM(#) where # = # and # = # and # = # (91)

select SUM(#) where # > # and # > # (90)
select (#) where # = # and # = # and # > # and # < # (89)

select AVG(#) where # < # and # < # (88)
select MAX(#) where # > # and # > # (87)

select MIN(#) where # = # and # < # and # < # (86)
select SUM(#) where # = # and # > # and # > # (85)

select SUM(#) where # < # and # < # (84)
select MIN(#) where # > # and # > # (83)

select AVG(#) where # = # and # < # and # < # (82)
select COUNT(#) where # > # and # > # (81)

select (#) where # = # and # = # and # = # and # < # (80)
select (#) where # < # and # < # (79)

select COUNT(#) where # < # and # < # (78)
select MAX(#) where # = # and # < # and # < # (77)
select MAX(#) where # = # and # > # and # > # (76)
select AVG(#) where # = # and # > # and # > # (75)

select MAX(#) where # < # and # < # (74)
select MAX(#) where # = # and # = # and # > # (73)

select AVG(#) where # > # and # > # (72)
select COUNT(#) where # = # and # < # and # < # (71)

select MIN(#) where # = # and # = # and # > # (70)
select SUM(#) where # = # and # < # and # < # (69)
select MAX(#) where # = # and # = # and # < # (68)

select COUNT(#) where # = # and # = # and # > # (67)
select (#) where # = # and # = # and # = # and # > # (66)

select COUNT(#) where # = # and # > # and # > # (65)
select MIN(#) where # = # and # > # and # > # (64)
select AVG(#) where # = # and # = # and # > # (63)
select AVG(#) where # = # and # = # and # < # (62)

select COUNT(#) where # = # and # = # and # < # (61)
select SUM(#) where # = # and # = # and # > # (60)
select SUM(#) where # = # and # = # and # < # (59)

select (#) where # > # and # > # (58)
select MIN(#) where # = # and # = # and # < # (57)

select (#) where # = # and # > # and # > # (56)
select (#) where # = # and # < # and # < # (55)

select SUM(#) where # > # (54)
select AVG(#) where # > # and # < # (53)

select MAX(#) where # = # and # > # and # < # (52)
select MIN(#) where # > # and # < # (51)

select MAX(#) where # > # and # < # (50)
select SUM(#) where # > # and # < # (49)

select COUNT(#) where # > # and # < # (48)
select COUNT(#) where # > # (47)

select (#) where # = # and # = # and # = # and # = # (46)
select MAX(#) where # > # (45)

select MIN(#) where # = # and # > # and # < # (44)
select SUM(#) where # = # and # > # and # < # (43)

select COUNT(#) where # < # (42)
select SUM(#) where # < # (41)

select COUNT(#) where # = # and # > # and # < # (40)
select (#) where # > # and # < # (39)

select AVG(#) where # > # (38)
select AVG(#) where # = # and # > # and # < # (37)

select MIN(#) where # > # (36)
select MIN(#) where # < # (35)

select MAX(#) where # < # (34)
select AVG(#) where # < # (33)

select (#) where # = # and # > # and # < # (32)
select SUM(#) where # = # and # = # (31)
select AVG(#) where # = # and # = # (30)

select MAX(#) (29)
select MAX(#) where # = # and # = # (28)

select (#) where # < # (27)
select (#) where # = # and # = # and # < # (26)

select MIN(#) where # = # and # = # (25)
select MIN(#) (24)

select (#) where # = # and # = # and # > # (23)
select (#) where # > # (22)

select SUM(#) where # = # and # > # (21)
select COUNT(#) where # = # and # = # (20)

select MAX(#) where # = # and # < # (19)
select AVG(#) where # = # and # > # (18)
select SUM(#) where # = # and # < # (17)
select MIN(#) where # = # and # > # (16)

select COUNT(#) where # = # and # < # (15)
select AVG(#) where # = # and # < # (14)

select COUNT(#) where # = # and # > # (13)
select MAX(#) where # = # and # > # (12)
select MIN(#) where # = # and # < # (11)

select SUM(#) where # = # (10)
select AVG(#) where # = # (9)

select (#) where # = # and # = # and # = # (8)
select (#) where # = # and # < # (7)
select (#) where # = # and # > # (6)

select MIN(#) where # = # (5)
select MAX(#) where # = # (4)

select COUNT(#) where # = # (3)
select (#) where # = # and # = # (2)

select (#) where # = # (1)

Pa
tte

rn
s

101 103

Counts
101 103

(a) Train (b) Dev (c) Test

Figure A1: SQL logical patterns and their frequency in the (a) train, (b) dev, and (c) test sets of
WikiSQL. The index of each pattern is represented in the parentheses on the y-axis
labels.

HWANG, YIM, PARK, & SEO

Appendix B. Supplementary tables

Table 6: The count of SQL logical patterns in the WikiSQL subsets used in this paper. The subset names are denoted
by following shorthand notations: U-850 (Train-Uniform-85P-850), R-881 (Train-Rand-881), H-897 (Train-Hybrid-
85P-897), U-2550 (Train-Uniform-85P-2550), R-2667 (Train-Rand-2677), H-2670 (Train-Hybrid-85P-2670), H-2750
(Train-Hybrid-96P-2750), UD-320 (Dev-Uniform-80P-320), RD-132 (Dev-Rand-132), HD-223 (Dev-Hybrid-223), RD-
527 (Dev-Rand-527), HD-446 (Dev-Hybrid-446)

Pattern
index Train Dev Test U-850 R-881 H-897 U-2550 R-2667 H-2670 H-2750 UD-320 RD-132 HD-223 RD-527 HD-446

1 30128 4419 8269 10 484 236 30 1425 471 942 4 84 35 305 70
2 6050 964 1798 10 95 48 30 263 95 190 4 10 8 52 16
3 3430 480 972 10 61 27 30 159 54 108 4 4 4 23 8
4 1476 235 419 10 23 12 30 84 25 47 4 5 2 19 4
5 1412 202 413 10 22 12 30 65 25 45 4 3 2 7 4
6 1116 158 339 10 14 9 30 53 25 35 4 3 2 15 4
7 858 138 240 10 14 7 30 55 25 27 4 4 2 10 4
8 794 92 229 10 13 7 30 30 25 25 4 1 2 3 4
9 653 104 178 10 9 7 30 27 25 21 4 2 2 8 4
10 619 105 173 10 11 7 30 30 25 20 4 0 2 3 4

11 374 57 91 10 8 7 30 25 25 15 4 2 2 6 4
12 369 59 107 10 5 7 30 23 25 15 4 0 2 5 4
13 360 70 103 10 7 7 30 21 25 15 4 0 2 3 4
14 357 55 88 10 9 7 30 17 25 15 4 1 2 2 4
15 341 46 75 10 7 7 30 11 25 15 4 1 2 2 4
16 334 55 92 10 5 7 30 17 25 15 4 0 2 0 4
17 330 59 109 10 3 7 30 16 25 15 4 0 2 1 4
18 329 48 89 10 3 7 30 19 25 15 4 0 2 1 4
19 324 62 120 10 7 7 30 21 25 15 4 0 2 4 4
20 319 50 97 10 2 7 30 9 25 15 4 1 2 5 4

21 312 48 93 10 5 7 30 12 25 15 4 0 2 0 4
22 309 45 83 10 2 7 30 15 25 15 4 0 2 0 4
23 247 42 69 10 4 7 30 11 25 15 4 1 2 2 4
24 234 35 76 10 3 7 30 10 25 15 4 1 2 1 4
25 225 30 59 10 3 7 30 12 25 15 4 1 2 3 4
26 222 35 59 10 2 7 30 9 25 15 4 0 2 0 4
27 197 22 58 10 2 7 30 10 25 15 4 1 2 2 4
28 188 36 59 10 3 7 30 7 25 15 4 0 2 0 4
29 180 29 55 10 2 7 30 9 25 15 4 1 2 1 4
30 179 16 61 10 2 7 30 12 25 15 4 0 2 0 4

31 165 15 34 10 0 7 30 6 25 15 4 0 2 2 4
32 123 16 33 10 1 7 30 6 25 15 4 0 2 2 4
33 116 14 28 10 1 7 30 7 25 15 4 0 2 0 4
34 100 10 31 10 1 7 30 3 25 15 4 0 2 0 4
35 93 14 24 10 2 7 30 6 25 15 4 0 2 2 4
36 91 14 29 10 2 7 30 4 25 15 4 0 2 1 4
37 89 12 23 10 1 7 30 5 25 15 4 0 2 0 4
38 89 6 21 10 0 7 30 4 25 15 4 0 2 0 4
39 86 12 21 10 2 7 30 7 25 15 4 0 2 0 4
40 84 14 28 10 2 7 30 6 25 15 4 1 2 1 4

41 83 18 31 10 1 7 30 2 25 15 4 0 2 2 4
42 82 24 25 10 3 7 30 3 25 15 4 0 2 1 4
43 81 14 18 10 1 7 30 6 25 15 4 0 2 0 4
44 81 8 17 10 2 7 30 3 25 15 4 1 2 1 4
45 80 9 28 10 0 7 30 5 25 15 4 0 2 1 4
46 77 10 25 10 1 7 30 3 25 15 4 2 2 2 4
47 76 15 29 10 0 7 30 2 25 15 4 0 2 0 4
48 74 5 18 10 0 7 30 3 25 15 4 0 2 0 4
49 68 9 21 10 2 7 30 2 25 15 4 0 2 0 4
50 66 13 14 10 1 7 30 3 25 15 4 0 2 0 4

51 66 4 18 10 2 7 30 4 25 15 4 0 2 0 4
52 66 8 27 10 0 7 30 5 25 15 4 0 2 0 4
53 63 13 15 10 2 7 30 5 25 15 4 0 2 0 4
54 62 19 21 10 2 7 30 4 25 15 4 0 2 1 4
55 59 6 15 10 0 7 30 4 25 15 4 0 2 1 4
56 56 7 17 10 1 7 30 1 25 15 4 0 2 0 4
57 52 3 16 10 0 7 30 2 25 15 0 0 0 1 0
58 51 6 7 10 1 7 30 1 25 15 4 0 2 0 4
59 50 1 14 10 0 7 30 0 25 15 0 0 0 0 0
60 46 7 17 10 0 7 30 2 25 15 4 0 2 0 4

61 44 14 10 10 1 7 30 3 25 15 4 0 2 1 4
62 44 9 15 10 0 7 30 3 25 15 4 0 2 2 4
63 43 11 17 10 0 7 30 3 25 15 4 0 2 1 4
64 43 8 10 10 1 7 30 4 25 15 4 0 2 0 4
65 43 7 10 10 0 7 30 1 25 15 4 0 2 1 4
66 41 5 8 10 0 7 30 2 25 15 4 0 2 2 4
67 40 8 21 10 2 7 30 1 25 15 4 0 2 1 4
68 39 5 15 10 0 7 30 3 25 15 4 0 2 0 4

SYNTACTIC QUESTION ABSTRACTION AND RETRIEVAL

69 38 4 9 10 1 7 30 3 25 15 4 0 2 0 4
70 38 9 10 10 0 7 30 4 25 15 4 0 2 1 4

71 36 11 8 10 0 7 30 1 25 15 4 0 2 3 4
72 36 7 9 10 0 7 30 0 25 15 4 0 2 0 4
73 36 6 15 10 0 7 30 1 25 15 4 2 2 2 4
74 36 7 10 10 0 7 30 0 25 15 4 0 2 1 4
75 36 10 10 10 0 7 30 2 25 15 4 0 2 2 4
76 36 5 12 10 1 7 30 2 25 15 4 0 2 0 4
77 36 4 12 10 0 7 30 1 25 15 4 0 2 0 4
78 35 8 15 10 1 7 30 2 25 15 4 0 2 0 4
79 35 8 10 10 1 7 30 2 25 15 4 0 2 0 4
80 34 3 6 10 0 7 30 2 25 15 0 0 0 0 0

81 33 2 7 10 0 7 30 2 25 15 0 0 0 0 0
82 33 4 8 10 0 7 30 2 25 15 4 0 2 0 4
83 31 3 14 10 2 7 30 1 25 15 0 0 0 0 0
84 30 4 4 10 0 7 30 2 25 15 4 0 2 0 4
85 30 6 10 10 0 7 30 2 25 15 4 0 2 0 4
86 29 11 14 0 0 0 0 2 0 15 0 0 2 2 4
87 29 5 10 0 0 0 0 0 0 15 0 0 2 0 4
88 29 2 11 0 0 0 0 0 0 15 0 0 0 0 0
89 27 5 7 0 2 0 0 1 0 15 0 0 2 0 4
90 26 3 12 0 0 0 0 0 0 15 0 0 0 0 0

91 24 1 4 0 0 0 0 0 0 15 0 0 0 0 0
92 22 5 7 0 1 0 0 1 0 15 0 0 2 0 4
93 22 5 9 0 0 0 0 2 0 15 0 0 2 0 4
94 21 4 4 0 0 0 0 1 0 15 0 0 2 0 4
95 20 3 8 0 0 0 0 1 0 15 0 0 0 0 0
96 20 2 8 0 0 0 0 0 0 15 0 0 0 1 0
97 18 5 3 0 0 0 0 0 0 0 0 0 2 0 4
98 16 4 7 0 1 0 0 1 0 0 0 0 2 0 4
99 16 1 2 0 0 0 0 0 0 0 0 0 0 0 0
100 14 3 2 0 0 0 0 1 0 0 0 0 0 0 0

101 14 2 7 0 0 0 0 0 0 0 0 0 0 0 0
102 14 2 4 0 0 0 0 0 0 0 0 0 0 0 0
103 13 4 3 0 0 0 0 1 0 0 0 0 2 0 4
104 12 1 4 0 0 0 0 1 0 0 0 0 0 0 0
105 11 2 3 0 0 0 0 1 0 0 0 0 0 0 0
106 11 2 3 0 0 0 0 0 0 0 0 0 0 0 0
107 11 3 5 0 0 0 0 1 0 0 0 0 0 1 0
108 11 0 5 0 0 0 0 0 0 0 0 0 0 0 0
109 11 2 9 0 0 0 0 1 0 0 0 0 0 0 0
110 11 2 6 0 1 0 0 0 0 0 0 0 0 0 0

111 10 0 2 0 0 0 0 1 0 0 0 0 0 0 0
112 10 5 3 0 0 0 0 1 0 0 0 0 2 0 4
113 9 2 3 0 0 0 0 0 0 0 0 0 0 0 0
114 9 5 7 0 0 0 0 0 0 0 0 0 2 1 4
115 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0
116 9 3 2 0 0 0 0 0 0 0 0 0 0 0 0
117 8 1 3 0 0 0 0 0 0 0 0 0 0 0 0
118 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0
119 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0
120 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

121 7 1 1 0 0 0 0 1 0 0 0 0 0 0 0
122 7 1 5 0 0 0 0 0 0 0 0 0 0 0 0
123 7 1 2 0 0 0 0 2 0 0 0 0 0 0 0
124 7 1 1 0 0 0 0 1 0 0 0 0 0 0 0
125 7 0 2 0 0 0 0 1 0 0 0 0 0 0 0
126 7 1 0 0 1 0 0 1 0 0 0 0 0 0 0
127 7 0 1 0 0 0 0 2 0 0 0 0 0 0 0
128 6 0 2 0 0 0 0 1 0 0 0 0 0 0 0
129 6 1 2 0 0 0 0 1 0 0 0 0 0 0 0
130 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0

131 6 1 1 0 0 0 0 1 0 0 0 0 0 0 0
132 6 1 1 0 1 0 0 0 0 0 0 0 0 0 0
133 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0
134 6 1 1 0 1 0 0 0 0 0 0 0 0 1 0
135 6 1 3 0 0 0 0 0 0 0 0 0 0 0 0
136 6 0 3 0 0 0 0 1 0 0 0 0 0 0 0
137 5 1 7 0 0 0 0 0 0 0 0 0 0 0 0
138 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
139 5 0 3 0 0 0 0 0 0 0 0 0 0 0 0
140 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0

141 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0
142 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0
143 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
144 4 3 1 0 0 0 0 1 0 0 0 0 0 1 0
145 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0
146 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0
147 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0
148 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

HWANG, YIM, PARK, & SEO

149 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0

151 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
152 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
153 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0
154 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
155 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0
156 3 2 3 0 0 0 0 1 0 0 0 0 0 0 0
157 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
158 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
159 3 1 0 0 0 0 0 1 0 0 0 0 0 0 0
160 3 1 0 0 0 0 0 1 0 0 0 0 0 0 0

161 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0
162 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0
163 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
164 2 1 3 0 0 0 0 0 0 0 0 0 0 1 0
165 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
166 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
167 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
168 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
169 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
170 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0

171 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
172 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
173 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0
174 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
175 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
176 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
177 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
178 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
179 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
180 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

181 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
182 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
183 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
184 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
185 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
186 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
187 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
188 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
189 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
190 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

191 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
192 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
193 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
194 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
195 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
196 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
197 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
198 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
202 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
203 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
208 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
209 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Introduction
	Related work

	Model
	 Syntactic Question Abstractor
	 Retriever
	Grounder

	Experiments
	Result and Analysis
	 Preparation of data scarce environment
	 Accuracy Measurement
	 Generalization test I: dependency on logical pattern distribution
	Generalization test II: dependency on dataset size
	 Generalization test III: parsing unseen logical forms

	Conclusion
	Appendix
	Experiments
	Model training
	Pre-training with Quora dataset

	Supplementary tables

