
Under review as a conference paper at ICLR 2023

GRADIENTMIX: A SIMPLE YET EFFECTIVE REGULAR-
IZATION FOR LARGE BATCH TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic gradient descent (SGD) is the core tool for training deep neural networks.
As modern deep learning tasks become more complex and state-of-the-art architec-
tures grow as well, network training with SGD takes a huge amount of time; for
example, training ResNet on the ImageNet dataset or BERT pre-training can take
days to dozens of days. To reduce the network training time, distributed learning
using a large batch size for SGD has been one of the main active research areas in
recent years, but this approach entails a significant degradation in generalization.
To address this issue, in this paper, we propose a simple yet effective regularization
technique, GradientMix, for large-scale distributed learning. GradientMix can
enhance the generalization in large batch regimes by giving appropriate noise
through a mixup of local gradients computed at multiple devices, which is contrary
to the conventions that simply average local gradients. Furthermore, GradientMix
is optimizer-agnostic, hence can be applied to any popular optimization algorithm
as long as the overall loss is expressed as the sum of the subgroup losses. Our ex-
tensive experiments show the effectiveness in both small and large-scale problems,
and especially we consistently achieve state-of-the-art performance for various
optimizers on training ResNet-50 on the ImageNet dataset with 32K batch size.

1 INTRODUCTION

Stochastic gradient descent (SGD) is a classical training approach commonly used for training most
deep learning models, in which model parameters are updated in the opposite direction of the gradient
of the loss function computed on a mini-batch. The recent developments in hardware such as GPU
and TPU enables several complex and state-of-the-art models to be trained using large batch whose
gradient is computed efficiently via data parallelism. Unfortunately, however, it is known that large
batch training typically suffers from severe degradation in generalization compared to small batch
training. The reason for poor generalization of large batch training still has not been fully uncovered,
which leads many researchers to investigate this phenomenon actively in several directions.

For that reason, many efforts have been made to shed light on whether generalization has to do with
sharp minima in the perspective of loss landscape. As one of pioneering work, Keskar et al. (2016)
argued that the generalization gap is primarily due to the sharp local minima obtained from large
batch training. Another study He et al. (2019a) further showed that local minima as well as sharp
minima lie on an asymmetric valley and that a local minimum biased towards the flat side generalizes
better than the exact empirical minimizer. Despite some evidence of the relationship between sharp
minima and generalization, Dinh et al. (2017) substantiated that the performance degradation in large
batch training has nothing to do with sharp minima by showing that all minima of the neural networks
can be arbitrarily sharp according to the reparametrization that does not change the network output.

Given that there are limitations to enhance generalization using the curvature information of the
loss function, designing an optimization algorithm specific to large batch regime arises as another
dimension. The first representative in this line of work is LARS optimizer You et al. (2017), which
exploits the ratio of the parameter size to gradient size. Yet, as pointed out in Zhang et al. (2020),
LARS performs poorly for attention-based model such as Transformer on the ground that LARS is
an algorithm based on vanilla SGD. In order to address the issue, the second representative optimizer
LAMB is proposed in You et al. (2019), which inherits the spirit of LARS and one of the adaptive
gradient methods, Adam Kingma & Ba (2015). The aforementioned optimizers make it possible

1

Under review as a conference paper at ICLR 2023

to train ResNet-50 on the ImageNet dataset and BERT around an hour by scaling the batch size to
more than 32K. However, Nado et al. (2021) empirically confirmed that traditional optimizers such as
Nesterov can achieve as high performance as large batch optimizers (e.g. LARS, LAMB, AdaScale
SGD, and etc.) if one puts the same effort into the hyperparameter tuning for each optimizer. Owing
to such an observation, it is debatable whether the superiority of large-batch optimizers like LARS
and LAMB is due to their well-designed concepts or just merely due to dense hyperparameter tuning.

Last but not least, there have been several studies to elucidate how the noise can enhance generaliza-
tion. Bottou (1991); Neelakantan et al. (2015) showed that noise can play a significant role in training
neural networks although they do not focus on large batch training. In addition, Zhou et al. (2019)
theoretically demonstrated that adding noise to the gradient is helpful in circumventing a spurious
local optimum, thus allowing for converging to a global optimum, and Liu et al. (2021) showed that
noisy gradient descent finds a flat minimum in a non-convex matrix factorization. Smith et al. (2020)
empirically corroborated that noise in stochastic gradients can enhance generalization and Wen et al.
(2018) dipped into how injecting curvature noise can be useful in large batch training.

In the light of previous studies regarding gradient noise, one can say “certain noise can regularize the
gradient descent procedure well”. However, most of the aforementioned studies on gradient noise are
restricted to the Gaussian-type noise. Therefore, it is still questionable whether other types of noise
could be beneficial in the aspect of generalization especially for a large batch regime.

In this paper, we focus on the approach to improve generalization for large batch training with the use
of the mixup Zhang et al. (2018) technique that has been recently highlighted in the data augmentation
context. Toward this, we propose the novel way of adding noise for the optimizer by mixing up the
gradients and show that this technique in fact encourages convergence to a flat minimum.

Our main contributions with some details are as follows:

• We propose a simple yet effective regularization GradientMix for large batch training. Gradient-
Mix performs a linear combination of local gradients computed at each device (or each sample)
with arbitrary mixing rates. Our GradientMix is optimizer-agnostic, hence it can be applied to any
optimization algorithms including LARS or LAMB for large batch training.

• We mathematically investigate that the optimization with GradientMix could reduce the trace of
generalized Gauss-Newton matrix of the objective. Then, we provide the convergence analysis of
the optimization with GradientMix in a non-convex regime under the standard assumptions.

• We validate the GradientMix popular problems in deep learning communities. Our extensive
experiments show that GradientMix could result in better generalization especially for the large
batch settings. Specifically, various optimizers with GradientMix consistently achieve state-of-
the-art performance on the task of training ResNet-50 on the ImageNet with 32K batch size.

2 METHOD

In this section, we introduce our main regularization technique, GradientMix. Then, we show that
GradientMix encourages reducing the trace of generalized Gauss-Newton (GGN) of the loss function.

2.1 GRADIENTMIX: MIXING GRADIENTS WITH RANDOM MIXING RATE

As a motivating example, we start from the distributed training with multiple GPU machines. Let
D be the training dataset with n inputs X = {x : (x, y) ∈ D} and the corresponding labels
Y = {y : (x, y) ∈ D}. We study solving the optimization problem under the distributed environment:

minimize
θ∈Rd

L(θ) := 1

n

n∑
i=1

ℓ(f(xi; θ), yi) (1)

where θ ∈ Rd is the model parameter and ℓ(ŷ, y) denotes the instance-wise loss function between the
prediction ŷ and the true label y. Given K devices, the vanilla SGD updates the model parameter θ as

gfinal =
1

K

K∑
k=1

[1
B

B∑
b=1

∇ℓkb

(
f(θ)

)]
︸ ︷︷ ︸

local gradient

, θt+1 = θt − ηtgfinal (2)

2

Under review as a conference paper at ICLR 2023

Algorithm 1 A general optimization framework with GradientMix

1: Input: Training dataset D, stepsize {ηt}Tt=1, variance κ > 0, noise distribution P(π) satisfying
Eq. 12, and optimization algorithm A (e.g. SGD, Adam, ...), momentum parameter µ ∈ [0, 1).

2: Initialize: Model parameter θ1 ∈ Rd, (Nesterov) momentum v1 ∈ Rd.
3: for t = 1, 2, . . . , T do
4: θt+ 1

2
← θt + µvt

5: for b = 1, 2, · · · , B do
6: Randomly sample a b-th datapoint x(b)

t from D ▷ This can be done in a parallel way
7: g

(b)
t ←∇θL(x(b)

t ; θt+ 1
2
) ▷ Sample-wise gradient

8: end for
9: Sampling random noise from noise distribution, (π1, π2, · · · , πB) ∼ P(π)

10: gt ←
B∑

b=1

πbg
(b)
t ▷ GradientMix in a sample-wise manner

11: vt+1← µvt − ηt
B∑

b=1

π
(b)
t ∇fb(θt+ 1

2
) ▷ Nesterov momentum construction

12: θt+1← θt −A(g1, g2, · · · , gt; ηt) ▷ Parameter update
13: end for
14: Output: θT+1

where B is the local batch size for each device and kb represents the b-th datapoint at device k (hence,
b ∈ [B]). For convenience, we abbreviate the gradient ∇ℓ(f(xi; θ), yi) evaluated at the datapoint
(xi, yi) as ∇ℓi

(
f(θ)

)
. In Eq. 2, the local gradient computed at device k are averaged across all

devices to yield the final gradient. Inspired by several studies (Srivastava et al., 2014; Zhu et al.,
2019; Simsekli et al., 2019; Smith et al., 2020) on the importance of noise on generalization, we
propose mixing up local gradients at each device k. Toward this, we first generate the random noise
πk from some distribution P(π) at each device k every iteration and perform linear combination of
local gradients using πk as a mixing coefficient. In summary, the final gradient is computed by

πk ∼ P(π) with E[πk] = 1/K ∀k ∈ [K], gfinal =

K∑
k=1

πk

B

B∑
b=1

∇ℓkb

(
f(θ)

)
(3)

Preserving the unbiasedness of the stochastic gradient, we further assume that each noise πk satisfies
E[πk] = 1/K in Eq. 3, for example, Gaussian distribution with mean 1/K.

In the one hand, the gradient mixing in Eq. 3 could also be applied in a sample-wise manner. Suppose
that the gradient is computed with the batch size B, then the sample-wise gradient mixing would be

πb ∼ P(π) with E[πb] = 1/B ∀b ∈ [B], gfinal =

B∑
b=1

πb∇ℓb
(
f(θ)

)
(4)

where πb is a sample-wise noise. The mixing gradients in a sample-wise manner Eq. 4 is a generalized
extension of the batch-wise version in Eq. 3. We call the procedures in Eq. 4 as GradientMix.

Note that GradientMix is optimizer-agnostic since it does not require any specific update rule;
therefore, it can be applicable to any popular optimizers such as Adam, LARS, LAMB, and etc. Thus,
we consider a unified framework for GradientMix. We let A be a randomized optimization algorithm
(e.g. SGD) and A(g1, g2, · · · , gt) produce the update vector at time t where gτ means the gradient
computed at time τ . Algorithm 1 summarizes an optimization framework with GradientMix.

One of the important properties of GradientMix is that the variance of mixed gradient is always
higher than the traditional averaged gradient since the variance of mixed gradient in Eq. 4 is smallest
when the noise πb in Eq. 4 satisfies πb = 1/B for all b ∈ [B]. We will investigate how this noisy
property affect the loss landscape and the convergence of optimization in the following section.

2.2 GRADIENTMIX CAN REDUCE THE TRACE OF GENERALIZED GAUSS-NEWTON MATRIX

In this section, we provide more intuition of GradientMix. To this end, we consider an L-layer deep
neural network following the notations in (Lee et al., 2019) defined by

h(l+1) = x(l)W (l+1) + b(l+1), x(l+1) = ϕ(h(l+1))

3

Under review as a conference paper at ICLR 2023

for x(0) = x and l = 0, 1, · · · , L. Here, ϕ(·) is an element-wise (non-linear) activation function
such as ReLU, W (l) and b(l) are the weight and bias parameter of appropriate shape at l-th layer,
respectively. For simplicity, let θ ∈ Rd be the vector of all network parameters and f(x; θ) =
h(L+1)(x) ∈ Rk denote the network output (or logit). Under this setup, we first introduce the
generalized Gauss-Newton (GGN) matrix. Toward this, we revisit an optimization problem in Eq. 1:

minimize
θ

L(θ) := 1

n

n∑
i=1

ℓ
(
f(xi; θ), yi

)
=

1

n

n∑
i=1

ℓi
(
f(θ)

)
.

Thanks to (Schraudolph, 2002; Kunstner et al., 2019), the Hessian of the objective (with respect to θ)
can be written as

H(θ) := ∇2
θL(θ) =

1

n

n∑
i=1

Ĵθ(xi)
T∇2

f ℓi
(
f(θ)

)
Ĵθ(xi)︸ ︷︷ ︸

G(θ)

+ Remaining term (5)

where Ĵθ(xi) represents the sample-wise Jacobian ∂f
∂θ evaluated at single datapoint (xi, yi) and

∇2
f ℓi
(
f(θ)

)
is the Hessian of ℓi with respect to the network output. The matrix G(θ) defined in Eq. 5

is known to be the generalized Gauss-Newton (GGN) matrix. In case of convex loss ℓ, the GGN is
always positive (semi)definite and well-justified approximation of the Hessian H(θ) Kunstner et al.
(2019), so it is a popular curvature approximation in the non-convex problems.

We study the relationship between the GradientMix and the GGN matrix. The gradient of objective
function can be written as

∇θL(θ) =
1

n

n∑
i=1

∇θℓi
(
f(θ)

)
=

1

n

n∑
i=1

Ĵθ(xi)
T∇f ℓi

(
f(θ)

)
= Az (6)

where A is the matrix of all sample-wise gradients A = [∇θℓ1
(
f(θ)

)
| · · · | ∇θℓn

(
f(θ)

)
] ∈ Rd×n

and z = (1/n, · · · , 1/n) = 1
n1 ∈ Rn is a vector of 1

n ’s. Under this formulation, GradientMix in
effect replaces the deterministic vector z with the noisy one z̃ as

∇θL̃(θ) = Az̃ (7)

where the vector z̃ is a random variable satisfying E[z̃] = 1
n1 for the unbiasedness of the gradient

estimator as in Eq. 3. We call Eq. 7 a mixed gradient.

In the optimization analysis, the convergence is generally measured by how fast the gradient norm
∥∇θL(θ)∥2 approaches to zero. GradientMix would change this convergence criterion to

∥∇θL̃(θ)∥2 → 0. (8)

Plugging the mixed gradient Eq. 7 into Eq. 8, the convergence measure Eq. 8 is nothing but

E
[
z̃TATAz̃

]
→ 0 (9)

Provided that z̃ satisfies Cov[z̃] = κ2I for some positive constant κ > 0, owing to Hutchinson’s
trace estimator Hutchinson (1989), Eq. 9 is equivalent to

Tr(ATA)→ 0 (10)

Rearranging the matrix in the trace operator, we finally arrive at the following:

Tr
(n∑

i=1

Ĵθ(xi)
T∇f ℓi

(
f(θ)

)
∇f ℓi

(
f(θ)

)T
Ĵθ(xi)

)
→ 0 (11)

In case of a negative log-likelihood loss ℓ (as is many cases in deep learning problems), the matrix
in the trace in equation Eq. 11 is the GGN matrix G(θ) (refer to Proposition 1 in Kunstner et al.
(2019)). Consequently, the convergence with GradientMix roughly boils down to reducing the trace
of GGN matrix, which could represents the shaprness of minima to some extent as in several previous
work (Zhu et al., 2019; Simsekli et al., 2019; Lin et al., 2020). Hence, it might be possible that
GradientMix could help to find the flatter solution than the one obtained via usual averaged gradient.

4

Under review as a conference paper at ICLR 2023

Note that this equivalence does not rely on the batch size, but we expect that GradientMix would be
most helpful in a large batch regime, which is crucially vulnerable to the sharpness of the curvature.

The remaining question is that which noise class can reduce the trace of GGN matrix and whether the
gradient norm really goes to zero when the optimization is equipped with GradientMix. For the first
question, we already assume the mild conditions on the noise given the batch size B:

E[π] =
1

B
1B and Cov[π] = κ2IB (12)

where 1B ∈ RB is just a vector of ones. There are several distributions that satisfy Eq. 12, and we
adopt two practical distributions: (i) Gaussian and (ii) Rademacher.

Table 1: The trace comparison for trained ResNet-
18 on CIFAR-10 dataset.

Method log(Tr(G(θ)))

SGD Baseline 5.87

SGD + GradientMix (Gaussian) 4.21
SGD + GradientMix (Rademacher) 4.58

Based on our mathematical intuition, we give
the empirical evidence on the trace of GGN ma-
trix. We train ResNet-18 on CIFAR-10 dataset
with 8K batch size for large batch setting. The
table 1 report the trace of GGN matrix of the
final models trained with each method. As ex-
pected, GradientMix indeed reduces the trace of
GGN to a meaningful extent, which means that
GradientMix could find a flatter solution than
the usual average approach with almost no additional computation overhead.

We show the effectiveness of GradientMix with these noise structures in large batch training in the
experimental section. Now, we answer the second question in the next section.

3 CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of optimization with GradientMix in Algorithm
1. Our goal is to find an ϵ-stationary point for the problem Eq. 1. For this purpose, we need the
standard assumptions for the analysis in non-convex optimization:

(C-1) (L-smoothness) The loss function f is differentiable, L-smooth, and lower-bounded:
∀x, y, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ and f(x∗) > −∞ for the optimal solution x∗.

(C-2) (Bounded variance) The stochastic gradient gt at time t is unbiased and has the bounded
variance: Eξ

[
gt
]
= ∇f(θt), Eξ

[
∥gt − ∇f(θt)∥2

]
≤ σ2 where ξ represents the randomness

from data distribution.

The conditions (C-1) and (C-2) are standard in the analysis of non-convex optimization Ghadimi &
Lan (2013); Zaheer et al. (2018); Chen et al. (2019); Yun et al. (2022). Also, GradientMix preserves
the unbiasedness of the stochastic gradient, thereby satisfying the condition (C-2). Since Algorithm 1
presents the general framework with GradientMix, we specifically provide the convergence analysis
for vanilla SGD with Nesterov momentum, which is the state-of-the-art optimizer used in deep
learning communities. The update rule for SGD + Nesterov momentum with GradientMix would be

θt+ 1
2
= θt + µvt, vt+1 = µvt − η

B∑
b=1

π
(b)
t ∇fb(θt+ 1

2
), θt+1 = θt + vt+1 (13)

where µ denotes the momentum parameter, π(b)
t is the sampled noise of b-th datapoint at time t

satisfying Eq. 12. We further define the quantities γt and γ̄ as

γt = B

B∑
b=1

(π
(b)
t)2, γ̄ =

1

T

T−1∑
t=0

γt

where T is the total iterations. Note that the quantity γt roughly measures the total amount of noise
injected to the gradient at time t and γ̄ means the average amount of noise over all time. Now, we are
ready to state our main theorem.
Theorem 1 (Convergence for SGD + Nesterov momentum with GradientMix). Let θa denote an
iterate uniformly randomly chosen from {θ 1

2
, · · · , θT+ 1

2
}. Under the conditions (C-1) and (C-2) with

5

Under review as a conference paper at ICLR 2023

the stepsize η ≤ 2(1−µ)2

L(µ3+1) , the Algorithm 1 with SGD + Nesterov momentum yields

Ea

[
∥∇f(θa)∥2

]
≤ O

(
L∆(µ3 + 1)

T (1− µ)
+

√
2L∆σ2γ̄

BT (1− µ)

)
(14)

where ∆ = f(θ0)− f(θ∗) with optimal point θ∗.

Remarks. Our Theorem 1 is a generalized version of Theorem 4.2 in Lin et al. (2020). Importantly,
the second term in the upper bound in Eq. 14 is asymptotically dominant under the batch size
condition B = O

(
1−µ

(µ3+1)2 ×
σ2T γ̄
L∆

)
. In this regime, we can obtain a linear speedup as increasing

the batch size with the total iteration of order O
(

Lσ2∆γ̄
Bϵ2

)
for ϵ-stationary point. Note that the second

term in the batch size condition involves the average noise γ̄ attaining the smallest value 1 (so, γ̄ ≥ 1)
when the sampled probability is π

(b)
t = 1/B for all b and t, which corresponds to the traditional

averaged gradients. In other words, the mixed gradient with random noise π
(b)
t has always higher

value of γ̄ than the averaged gradient, which in effect allows larger critical batch size but with
requiring more iterations. For this reason, GradientMix might show performance degradation in a
tight budget of epochs, but tuning the variance κ in Eq. 12, which affects γ̄ in result, can play a role
to balance the batch size and the number of total iterations.

Since GradientMix do not hurt the unbiasedness of the stochastic gradient but with a little higher
variance, one can easily show the convergence of each optimizer with GradientMix upon the previous
results. We defer the convergence analysis on LARS and LAMB with GradientMix in the Appendix.

4 RELATED WORK

Large batch training. Many researchers have paid attention to large-scale training to speed up
training and achieve as high accuracy as small minibatch training. To reduce the generalization gap,
Goyal et al. (2017) propose a linear scaling rule to increase the learning rate proportionally to the
minibatch size. As exploiting a large learning rate can cause a neural network to diverge, You et al.
(2017) suggest Layer-wise Adaptive Rate Scaling (LARS) to scale updates by multiplying the ratio
of the ℓ2-norm of weights to that of gradients for each layer. Furthermore, You et al. (2019) apply
this strategy to the Adam optimizer (Kingma & Ba, 2015), which is called LAMB, so as to accelerate
training attention-based models, especially BERT, by using large batch sizes. In contrast to (You
et al., 2017; 2019), without any layer-wise normalization, Nado et al. (2021) show that standard
optimizers are enough for large batch training given sufficient hyperparmeter tuning. Apart from
them, in order to narrow the generalization gap, Lin et al. (2020) employ an extragradient technique
for smoothing and stabilizing optimization dynamics, and Johnson et al. (2020) propose AdaScale
SGD that reliably and automatically adjusts the learning rate depending on the variance of gradients.
However, all these methods mentioned above are based on the average of gradients, which is likely to
preclude the possibility of exploration during training.
Mixup. Mixup Zhang et al. (2018) is one of the popular methods for enhancing the generalization
and robustness of a neural network. Taking advantage of the beta distribution, Zhang et al. (2018)
interpolates two inputs and their corresponding labels linearly to generate new data, and Verma et al.
(2019) interpolates hidden representations linearly for a smooth decision boundary. Following these
works, several extensions Yun et al. (2019); Kim et al. (2020) have been proposed to substitute some
area of input for another input’s patch, but all the aforementioned studies are discussed only in the
context of data augmentation.
Benefit of noise for network training. In recent years, there have been several attempts to figure
out connections between noise and generalization. Zhu et al. (2019) showed that noise in stochastic
gradients helps escape from sharp minima and converge to flat minima which generalize well.
Simsekli et al. (2019) analyze the dynamics of stochastic gradient descent driven by noise and showed
that stochatic gradient descent prefers wide minima that performs better than narrow minima on the
test set. Smith et al. (2020) verify that the noise in the stochastic gradient can improve generalization.
Wu et al. (2020) showed that injecting multiplicative noise to the full-batch gradient generalizes as
the usual stochastic gradient evaluated on mini-batch, but the noise structure they consider is not
applicable to reducing the trace of curvature as we discussed in Section 2.2. Also, the effect of noise
on the generalization is guaranteed in theory only in terms of the linear regression.

6

Under review as a conference paper at ICLR 2023

0.2K 1K 2K 5K
Batch Size

95.0

95.2

95.4

95.6

95.8

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-10 dataset

SGD
SGD + GradientMix (Gaussian)
SGD + GradientMix (Rademacher)

(a) SGD with momentum

0.2K 1K 2K 5K
Batch Size

95.2

95.4

95.6

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-10 dataset

LARS
LARS + GradientMix (Gaussian)
LARS + GradientMix (Rademacher)

(b) LARS

0.2K 1K 2K 5K
Batch Size

94.8

95.0

95.2

95.4

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-10 dataset

Adam
Adam + GradientMix (Gaussian)
Adam + GradientMix (Rademacher)

(c) Adam

0.2K 1K 2K 5K
Batch Size

95.0

95.2

95.4

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-10 dataset

LAMB
LAMB + GradientMix (Gaussian)
LAMB + GradientMix (Rademacher)

(d) LAMB

Figure 1: Results on training ResNet-18 on the CIFAR-10 dataset with GradientMix.

0.2K 1K 2K 5K
Batch Size

77.5

78.0

78.5

79.0

79.5

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-100 dataset

SGD
SGD + GradientMix (Gaussian)
SGD + GradientMix (Rademacher)

(a) SGD with momentum

0.2K 1K 2K 5K
Batch Size

78.25

78.50

78.75

79.00

79.25

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-100 dataset

LARS
LARS + GradientMix (Gaussian)
LARS + GradientMix (Rademacher)

(b) LARS

0.2K 1K 2K 5K
Batch Size

76.5

77.0

77.5

78.0

78.5

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-100 dataset

Adam
Adam + GradientMix (Gaussian)
Adam + GradientMix (Rademacher)

(c) Adam

0.2K 1K 2K 5K
Batch Size

77.0

77.5

78.0

Pe
rfo

rm
an

ce

ResNet-18 on CIFAR-100 dataset

LAMB
LAMB + GradientMix (Gaussian)
LAMB + GradientMix (Rademacher)

(d) LAMB

Figure 2: Results on training ResNet-18 on the CIFAR-100 dataset with GradientMix.

For more exploration in large batch training, instead of the averaged gradients, our work is the first
in-depth study applying mixup to the local gradients using suitable distribution and we empirically
justify that injecting appropriate noise into the gradient can bridge the generalization gap with a large
batch as well in the next section.

7

Under review as a conference paper at ICLR 2023

0.6K 1K 2K 5K
Batch Size

68

69

70

Pe
rfo

rm
an

ce

Transformer on Multi30k dataset
Adam
Adam + GradientMix (Gaussian)
Adam + GradientMix (Rademacher)

(a) Adam

0.6K 1K 2K 5K
Batch Size

68.5

69.0

69.5

70.0

70.5

Pe
rfo

rm
an

ce

Transformer on Multi30k dataset
LAMB
LAMB + GradientMix (Gaussian)
LAMB + GradientMix (Rademacher)

(b) LAMB

Figure 3: Results on training Transformer on Multi30k dataset with GradientMix.

5 EXPERIMENTS

We consider two sets of experiments. The first set aims to purely see the effectiveness of Gradient-
Mix on relatively small-scale problems and the second set is to evaluate GradientMix in a large scale.
The details on experimental settings are provided at each section.

5.1 CIFAR CLASSIFICATION

We train ResNet-18 He et al. (2016) on the CIFAR datasets using two sets of optimizers, which is one
of benchmark tasks in large batch training. The first set compares SGD with momentum and LARS,
and the second set compares Adam and LAMB since LARS and LAMB are extensions of SGD and
Adam respectively. For large batch training, the polynomial LR scheduling with gradual warmup
Nado et al. (2021) is recommended, so we follow the linear LR scaling Goyal et al. (2017) with the
base LR ηbase = 0.1 for the batch size 200 for SGD and LARS. Similarly, we choose ηbase = 10−3

for the batch size 200 for Adam and LAMB. Throughout this experiment, we consider the total 200
epochs with 20 warmup epochs. In particular, the trust coefficient of LARS is fixed as 10−3. While
our main goal is how much GradientMix can improve the performance in a large batch regime, we
also include the results on the small batch size for better understanding.

Figure 1 illustrates the results for the CIFAR-10 dataset. GradientMix shows the consistent im-
provement in generalization for all optimizers considered acrosss all batch sizes except the smallest
batch size 0.2K. The interesting point in Figure 1 is that for all optimizers, the performance with
GradientMix tends to increase slightly and then decrease (see 0.2K ∼ 2K at x-axis) as the batch size
increases while the generalization of all baselines only gets worse as the batch size gets larger. At
large batch size such as 2K or 5K, which is our main focus, GradientMix show consistent superiority
to the baselines without overlapping error bars. This might be due to the fact that the small batch size
has already enough noise, in which GradientMix can interfere with model generalization.

The similar dynamics can be seen in Figure 2 for the CIFAR-100 dataset. Note that all the optimizers
with GradientMix achieve a great improvement over the baseline for the largest batch size 5K as
experiments for the CIFAR-10 dataset. Also, we can see the increase-then-decrease behavior in
Figure 2 (see 0.2K ∼ 2K at x-axis) for all optimizers considered as in the CIFAR-10 experiment.

5.2 TRANSFORMER ON MULTI30K

In order to evaluate GradientMix on various problems in deep learning, we consider language
modeling task. To this end, we train Transformer base model (Vaswani et al., 2017) on Multi30k
dataset (Elliott et al., 2016). Following the experimental settings in Lin et al. (2020), we employ
the linear LR scaling and gradual warmup scheme (Goyal et al., 2017) with inverse square root
scheduling (Vaswani et al., 2017). The warmup step is set to 4000 for the base batch size 64 and
linearly decayed by the batch size. It is known that the adaptive gradient methods work well for
attention models, so we compare the Adam and LAMB optimizers for this experiment.

Figure 3 demonstrate the comparison of validation accuracy. Similar to the results in Section 5.1,
GradientMix tends to be more effective as the batch size increases for both optimizers Adam and
LAMB. Importantly, GradientMix achieve great improvements especially at large batch size such as

8

Under review as a conference paper at ICLR 2023

Table 2: Top-1 accuracy with GradientMix using 32K batch size for training ResNet-50 on ImageNet.
Top-1 Accuracy (%) for 32K Batch Size

Optimization Algorithm

Fine-tuned hyperparameters Standard hyperparameters
with 64 epochs with 90 epochs

Noise Type Nesterov LARS Adam LAMB

No Noise (Baseline) 75.93 ± 0.03 76.15 ± 0.04 76.13 ± 0.09 76.35 ± 0.08

Gaussian (Ours) 76.17 ± 0.06 76.30 ± 0.05 76.33 ± 0.06 76.50 ± 0.08

Rademacher (Ours) 76.25 ± 0.04 76.36 ± 0.07 76.31 ± 0.10 76.47 ± 0.07

2K and 5K. Combined with the results in Section 5.1, we believe that GradientMix has the potential
to generalize better for other several tasks and optimizers in deep learning.

5.3 RESNET-50 ON IMAGENET WITH 32K BATCH SIZE

Training ResNet-50 on ImageNet has been considered as standard benchmark in large batch opti-
mization, so we evaluate our GradientMix on this task using various optimization algorithms. In
large batch training, several regularization techniques and hyperparameters should be considered
carefully in order to achieve the comparable performance of small batch training. Toward this, we
first introduce the experiment settings for each optimizer.

The recent study Nado et al. (2021) empirically shows that the traditional optimizers such as Nesterov
can achieve the competitive performance to the optimizer specifically designed for large batch training,
such as LARS or LAMB, with the same effort in the hyperparameter tuning. Inspired by this work, we
investigate whether GradientMix can further enhance the generalization even under highly fine-tuned
hyperparameters. Recommended in Nado et al. (2021), the weight decay should be applied only to
the network weight parameters except the bias and batch normalization parameters (You et al., 2017;
Goyal et al., 2017). One of the most essential tricks to improve the generalization (He et al., 2019b;
Nado et al., 2021) is to tune the initial scale parameter γ0 of the final batch normalization layer of
each residual block (Goyal et al., 2017). We use the polynomial LR scheduling (Nado et al., 2021)
with tuning each hyperparameter. We summarize the hyperparameter details in the Appendix.

For Adam and LAMB, unfortunately, there is no previous reference using highly fine-tuned hyper-
paramaters for ResNet-50 training, so we follow the experimental pipelines in (You et al., 2019). We
use the momentum parameters (β1, β2) = (0.9, 0.999) with ϵ = 10−6 for both Adam and LAMB
optimizers as in (You et al., 2019) and the polynomial LR scheduling with gradual warmup (Nado
et al., 2021) is employed. The number of warmup epochs twarmup is set to 20 among total 90 epochs.

Table 2 illustrates the Top-1 accuracy of each method for 32K batch size. For all baseline optimizers,
GradientMix could successfully achieve the state-of-the-art generalization even under highly fine-
tuned hyperparameters (see Nesterov and LARS) as well as under standard hyperparameter settings
(see Adam and LAMB). As seen in Table 2, the performance gain for GradientMix with Nesterov
and Adam is slightly larger than that for GradientMix with LARS and LAMB respectively. This
might be due to the fact that LARS and LAMB algorithms are already optimized designs to some
extent specifically for large batch training, but our results prove that GradientMix is indeed optimizer-
agnostic. We emphasize that our improvement (without overlapping confidence intervals) is NOT
marginal since the performance of baselines is already highly optimized for ResNet-50 architecture.
Also, our improvements are bigger than the ones achieved in recent studies related to regularization
in a large batch regime such as Yuan et al. (2020); Huo et al. (2021).

6 CONCLUSION

We proposed an optimizer-agnostic and effective regularization for large-batch training, GradientMix,
which is the mixup of local gradients with arbitrarily sampled noise. We also show that Gradient-
Mix could reduce the sharpness of the loss landscape. Finally, we empirically verify the effectiveness
of GradientMix on various datasets/models and achieve state-of-the-art performance on the bench-
mark task, training ResNet-50 on ImageNet dataset. As future work, we plan to investigate how the
various type of noise affects the performance for large-batch training both in theory and practice.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes, 91(8):
12, 1991.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-
type algorithms for non-convex optimization. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30K: Multilingual English-
German image descriptions. In Proceedings of the 5th Workshop on Vision and Language, pp.
70–74, 2016.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet
in 1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.02677.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local
minima. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
01d8bae291b1e4724443375634ccfa0e-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 558–567, 2019b.

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using new
complete layer-wise adaptive rate scaling. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI, pp. 2–9, 2021.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. Adascale sgd: A user-friendly
algorithm for distributed training. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5275–5285. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.
press/v119/kim20b.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

10

http://arxiv.org/abs/1706.02677
https://proceedings.neurips.cc/paper/2019/file/01d8bae291b1e4724443375634ccfa0e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/01d8bae291b1e4724443375634ccfa0e-Paper.pdf
http://proceedings.mlr.press/v119/kim20b.html
http://proceedings.mlr.press/v119/kim20b.html
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2023

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32:8572–8583, 2019.

Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch training
in deep learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 6094–6104. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/
lin20b.html.

Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, and Tuo Zhao. Noisy gradient descent converges to flat
minima for nonconvex matrix factorization. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pp. 1891–1899. PMLR, 13–15 Apr 2021. URL
http://proceedings.mlr.press/v130/liu21e.html.

Zachary Nado, Justin Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. CoRR,
abs/2102.06356, 2021. URL https://arxiv.org/abs/2102.06356.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic
gradient noise in deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 5827–5837. PMLR, 09–15 Jun 2019. URL
http://proceedings.mlr.press/v97/simsekli19a.html.

Samuel L Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. arXiv preprint arXiv:2006.15081, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 6438–6447. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/
verma19a.html.

Yeming Wen, Kevin Luk, Maxime Gazeau, Guodong Zhang, Harris Chan, and Jimmy Ba. Exploring
curvature noise in large-batch stochastic optimization. 2018.

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the
noisy gradient descent that generalizes as sgd. In International Conference on Machine Learning,
pp. 10367–10376. PMLR, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

11

http://proceedings.mlr.press/v119/lin20b.html
http://proceedings.mlr.press/v119/lin20b.html
http://proceedings.mlr.press/v130/liu21e.html
https://arxiv.org/abs/2102.06356
http://proceedings.mlr.press/v97/simsekli19a.html
http://proceedings.mlr.press/v97/verma19a.html
http://proceedings.mlr.press/v97/verma19a.html

Under review as a conference paper at ICLR 2023

Qiwei Yuan, Weizhe Hua, Yi Zhou, and Cunxi Yu. Contrastive weight regularization for large
minibatch sgd. arXiv preprint arXiv:2011.08968, 2020.

Jihun Yun, Aurelie Lozano, and Eunho Yang. Adablock: Sgd with practical block diagonal matrix
adaptation for deep learning. In International Conference on Artificial Intelligence and Statistics,
pp. 2574–2606. PMLR, 2022.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803,
2018.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 15383–15393. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
b05b57f6add810d3b7490866d74c0053-Paper.pdf.

Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, and Tuo Zhao. Toward understanding the
importance of noise in training neural networks. In International Conference on Machine Learning,
pp. 7594–7602, 2019.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 7654–7663. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/
zhu19e.html.

12

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
http://proceedings.mlr.press/v97/zhu19e.html
http://proceedings.mlr.press/v97/zhu19e.html

Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIALS

A HYPERPARAMETER DETAILS FOR NESTEROV AND LARS IN SECTION 5.3

As described in Section 5.3, we follow the same hyperparameter settings in Nado et al. (2021) for Nesterov and
LARS optimizers. First, we employ the polynomial learning rate scheduling designed for large-batch training:

ηt =

ηinit + (ηpeak − ηinit)
(

t
twarmup

)pwarmup
, t ≤ twarmup

ηfinal + (ηpeak − ηfinal)
(

T−t
T−twarmup

)pdecay
, t > twarmup

(15)

We train ResNet-50 on ImageNet dataset with the batch size B = 32768 (32K). We summarize the detailed
values for each hyperparameter introduced in Section 5.3 in the following table.

Table 3: The highly fine-tuned hyperparameter configuration for training ResNet-50 on ImageNet
dataset for Nesterov and LARS optimizers.

Nesterov LARS

Total steps (Corresponding to 64 epochs) 2512 2512
twarmup 706 706
pwarmup 2.0 1.0
pdecay 2.0 2.0
BatchNorm momentum 0.9 0.9
BatchNorm ϵ 10−5 10−5

ηpeak 7.05 29.0
ηfinal 6× 10−6 10−4

Optimizer momentum 0.97603 0.929
Weight decay 5.8× 10−5 10−4

Label smoothing 0.15 0.1
Initial scale parameter γ0 of the final BN layer of each residual block 0.4138 0.0
Trust coefficient (only for LARS) N/A 10−3

B PROOF OF THEOREM 1

Our analysis is based on the convergence proof of SGD + Nesterov momentum Lin et al. (2020). We first derive
the convergence for batch-wise GradientMix and then present the analysis for sample-wise GradientMix. Recall
that the iterate of SGD + Nesterov momentum with GradientMix is

θt+ 1
2
= θt + µvt, vt+1 = µvt −

η

B

K∑
k=1

π
(k)
t

B∑
b=1

∇fkb(θt+ 1
2
), θt+1 = θt + vt+1

where π
(k)
t means that the sampled probability of k-th device at time t and µ is the momentum parameter. For

simplicity, we define the gt as

gt =
1

B

K∑
k=1

π
(k)
t

B∑
b=1

∇fkb(θt)

Then, the momentum update would become

vt+1 = µvt − ηgt+ 1
2

We also define the quantities ζt and ζ̄ as

ζt =

K∑
k=1

(π
(k)
t)2, ζ̄ =

1

T

T−1∑
t=0

ζt

13

Under review as a conference paper at ICLR 2023

The main changes in our analysis is how to bound the term E
[
1
T

T−1∑
t=0

∥gt+ 1
2
∥2
]
. Toward this, we have

E
[∥∥gt+ 1

2

∥∥2] = E

[∥∥∥ 1

B

K∑
k=1

π
(k)
t

B∑
b=1

∇fkb(θt+ 1
2
)
∥∥∥2] (16)

= Var
(1

B

K∑
k=1

π
(k)
t

B∑
b=1

∇fkb(θt+ 1
2
)
)
+

∥∥∥∥∥E[1B
K∑

k=1

π
(k)
t

B∑
b=1

∇fkb(θt+ 1
2
)
]∥∥∥∥∥

2

(17)

=
ζt
B
σ2 +

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 (18)

Hence, we obtain

E
[1
T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2] ≤ ζ̄

B
σ2 +

1

T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 (19)

Following the proofs in Lin et al. (2020), we define an auxiliary sequence yt as

yt =

{
x 1

2
= x0 if t = 0

1
1−µ

θt+ 1
2
− µ

1−µ
θt− 1

2
+ ηµ

1−µ
gt− 1

2
if t ≥ 1

(20)

Lemma 1 (Lemma A.1 in Lin et al. (2020)). The sequence {yt} in equation 20 satisfies

yt+1 − yt = − η

1− η
gt+ 1

2

Lemma 2 (Lemma A.2 in Lin et al. (2020)). For a sequence {xt+ 1
2
} for t ≥ 0, the following holds

T−1∑
t=0

∥∥∥yt − θt+ 1
2

∥∥∥2 ≤ µ4η2

(1− µ)4

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2
Now, we derive the convergence bound. From smoothness condition, we have

E[f(yt+1)− f(yt)] ≤ E
[
⟨∇f(yt), yt+1 − yt⟩+

L

2
∥yt+1 − yt∥2

]
= E

[
− η

1− µ

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 − η

1− µ

〈
∇f(yt)−∇f(xt+ 1

2
),∇f(θt+ 1

2
)
〉
+

L

2

∥∥∥ η

1− µ
gt+ 1

2

∥∥∥2]
by Lemma 1. Further we have

− η

1− µ

〈
∇f(θt)−∇f(θt+ 1

2
,∇f(θt+ 1

2
)
〉
=

〈
−

√
1− µ√
Lu3/2

(
∇f(yt)−∇f(θt+ 1

2
)
)
,
η
√
Lu3/2

(1− µ)3/2
∇f(θt+ 1

2
)

〉

≤ 1− µ

2Lµ3

∥∥∥∇f(yt)−∇f(xt+ 1
2
)
∥∥∥2 + η2Lµ3

2(1− µ)3

∥∥∥∇f(θt+ 1
2
)
∥∥∥2

by the inequality ⟨x, y⟩ ≤ 1
2
(∥x∥2 + ∥y∥2). Then, we get

E[f(yt+1)− f(yt)]

≤ E
[
− η

1− µ

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 + 1− µ

2Lµ3

∥∥∥∇f(yt)−∇f(θt+ 1
2
)
∥∥∥2 + η2Lµ3

2(1− µ)3

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 + η2L

2(1− µ)2

∥∥∥gt+ 1
2

∥∥∥2]
≤ E

[(
− η

1− µ
+

η2Lµ3

2(1− µ)3

)∥∥∥∇f(θt+ 1
2
)
∥∥∥2 + (1− µ)L

2µ3

∥∥∥yt − θt+ 1
2

∥∥∥2 + η2L

2(1− µ)2

∥∥∥gt+ 1
2

∥∥∥2]
By telescoping over t = 0 ∼ T − 1, we obtain

1

T

T−1∑
t=0

E[f(yt+1)− f(yt)] =
1

T
E[f(yt)− f(y0)]

≤

(
− η

1− µ
+

Lη2µ3

2(1− µ)3

)
1

T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 + E

[
(1− µ)Lη2

2µ3

µ4

(1− µ)4
1

T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2]

+ E

[
η2L

2(1− µ)2
1

T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2]

14

Under review as a conference paper at ICLR 2023

Here, we apply our derivations equation 18 then have

E[f(yt)− f(y0)]

≤

(
− η

1− µ
+

Lη2µ3

2(1− µ)3
+

η2L

2(1− µ)2
+

Lµη2

2(1− µ)3

)
1

T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 + (η2L

2(1− µ)2
+

Lµη2

2(1− µ)3

) ζ̄σ2

B

By rearranging all the items, we have

1

T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2 ≤ 1

1− Lη(µ3+1)

2(1−µ)2

(
1

T η
1−µ

∆+
ηL

2(1− µ)2
ζ̄σ2

B

)

In order to get the final results, we need the following lemmas from Lin et al. (2020)

Lemma 3 (Lemma A.4 in Lin et al. (2020)). For every non-negative sequence {rt}t≥0 and any parameters
d ≥ 0, c ≥ 0, and T ≥ 0, there exists a constant η ≤ 1/d such that for any constant stepsizes ηt = η, it holds

ΨT :=
1

T + 1

T∑
t=0

(rt
ηt

− rt+1

ηt
+ cηt

)
≤ d∆

η(T + 1)
+ cη (21)

Then, using Ψ′
T := ∆

T η
1−µ

+ ηL
2(1−µ)2

ζ̄σ2

B
in Lemma 3, we can arrive at the following results by case study

where ∆B
Lσ2ζ̄T

≤ 1
L2 or > 1

L2 similar to Lin et al. (2020),

E
[1
T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2] = O

(L∆(µ3 + 1)

T (1− µ)
+

√
2L∆σ2ζ̄

BT (1− µ)

)
(22)

Now, if we replace the K = B0 and B = 1 for some batch size B0, we obtain the convergence of sample-wise
GradientMix. Going further, for batch size B0, the noise quantity ζt in equation 16 should be at least of order
1/B0, in other words

ζt =

B0∑
b=1

(π
(b)
t)2 ≥ 1/B0 = Ω(1/B0)

since ζt is smallest when all the noise satisfy π
(b)
t = 1/B0 (by Cauchy-Schwarz inequality). For clear analysis,

in order to remove the dependency on the batch size B0, we newly define the following quantity

γt = B0

B0∑
b=1

(π
(b)
t)2, γ̄ =

1

T

T−1∑
t=0

γt

Then, the final convergence bound for Nesterov with sample-wise GradientMix would be

E
[1
T

T−1∑
t=0

∥∥∥∇f(θt+ 1
2
)
∥∥∥2] = O

(L∆(µ3 + 1)

T (1− µ)
+

√
2L∆σ2γ̄

B0T (1− µ)

)
(23)

for the batch size B0 (in effect, replaces ζ̄ with γ̄).

B.1 CONVERGENCE ANALYSIS OF LARS WITH GradientMix

From this section, we analyze the convergence of LARS/LAMB with gradient mixup based upon the previous
analysis in You et al. (2019). Here, we make the conditions specific to LARS and LAMB as follows.

We assume that the loss function f(·) is Ll-smooth with respect to the paramter of the l-th layer θ(l) for l ∈ [h],
which means

∥∇lf(x, s)−∇lf(y, s)∥ ≤ Li∥x(l) − y(l)∥, ∀x, y ∈ Rd

where s represents a random datapoint from data distribution. We use L = (L1, · · · , Lh)
T. We also assume the

bounded variance of stochastic gradient as

E[∥∇lf(x, s)−∇lf(x)∥2] ≤ σ2
l , ∀x ∈ Rd

15

Under review as a conference paper at ICLR 2023

for all layer i ∈ [h]. Furthermore, as in You et al. (2019), we assume that

E[∥[∇f(x, s)]j − [∇f(x)]j∥2] ≤ σ̃2
i , ∀x ∈ Rd

for j ∈ [d]. Under this condition, we use the following notation for simplicity as

σ = (σ1, · · · , σh)
T, σ̃ = (σ̃1, · · · , σ̃d)

T

Lastly, we assume the bounded gradient condition as [∇f(x, s)]j ≤ G for all j ∈ [d] and x ∈ Rd.

Recall that the iterate of LARS You et al. (2019) is

θ
(l)
t+1 = θ

(l)
t − ηϕ(∥θ(l)t ∥) g

(l)
t

∥g(l)t ∥
(24)

for all layer l ∈ [L] and θ
(l)
t represents the parameter of l-th layer at time t. The scaling function ϕ(·) satisfies

αl ≤ ϕ(·) ≤ αu and in practice we use just a clipping function ϕ(z) = min{max{z, γl}, γu}. Here, the
stochastic gradient gt with gradient mixup is computed as

gt =

B∑
b=1

π
(b)
t ∇f(θt, sb) (25)

where sb denotes the b-th sample in a mini-batch of size B and {π(b)
t }Bb=1 is a unit simplex at time t. Note

that this is more general setting of gradient mixup and datapoint-wise gradient mixup can surely cover the case
of minibatch-wise gradient mixup. Here, we define the following quantities ζt and ζ̄ similarly as Nesterov
momentum

ζt =

B∑
b=1

(π
(b)
t)2, ζ̄ =

1

T

T∑
t=1

√
ζt

The main changes in our analysis is how to bound the term

E
[
∥g(l)t −∇if(θt)∥

]
(26)

where ∇if(θt) means the gradient of loss function computed at time t with respect to the parameter θ(l)t of l-th
layer. The above term can be easily bound under the bounded varaince condition as

E
[
∥g(l)t −∇if(θt)∥2

]
= E

[∥∥ B∑
b=1

π
(b)
t ∇if(θt, sb)−∇if(θt)

∥∥2] (27)

= E
[∥∥ B∑

b=1

π
(b)
t

(
∇if(θt, sb)−∇if(θt)

)∥∥2] (28)

= Var

(
B∑

b=1

π
(b)
t

(
∇if(θt, sb)−∇if(θt)

))
+
∥∥∥E[B∑

b=1

π
(b)
t

(
∇if(θt, sb)−∇if(θt)

)]∥∥∥2︸ ︷︷ ︸
0

(29)

= ζtσ
2
i (30)

Hence, we have

E
[
∥g(l)t −∇if(θt)∥

]
≤
√

ζtσi (31)

We replace the inequality (6) in the Appendix A in You et al. (2019) with our equation 31. Then, the following
holds

E[f(θt+1)] ≤ f(θt)− ηαl

h∑
l=1

∥∇lf(θt)∥+ 2ηαu

√
ζt∥σ∥1 +

η2α2
u

2
∥L∥1

By telescoping over t = 1 ∼ T , we have

E[f(θT+1)] ≤ f(θ1)− ηαl

T∑
t=1

h∑
l=1

E[∇lf(θt)∥] + 2ηTαuζ̄∥σ∥1 +
η2α2

uT

2
∥L∥1

Now, we arrive at the final convergence rate as

1

T

T∑
t=1

h∑
l=1

E[∥∇lf(θt)∥] ≤
∆

Tηαl
+

2αuζ̄∥σ∥1
αl

+
ηα2

u

2αl
∥L∥1

where ∆ = f(θ1)− f(θ∗) with the optimal point θ∗.

16

Under review as a conference paper at ICLR 2023

B.2 CONVERGENCE ANALYSIS OF LAMB WITH GradientMix

In this section, we provide the convergence analysis of LAMB, which has the following update rule

gt =

B∑
b=1

π
(b)
t ∇f(θt, sb)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

mt = mt/(1− βt
1)

vt = vt/(1− βt
2)

r
(l)
t =

m
(l)
t√

v
(l)
t + ϵ

θ
(l)
t+1 = θ

(l)
t − ηt

ϕ(∥θ(l)t ∥)
∥r(l)t + λθ

(l)
t ∥

(r
(l)
t + λθ

(l)
t)

As in You et al. (2019), we deal with the case of β1 = 0 and λ = 0, but β2 > 0. Then, the update vector would
be

r
(l)
t =

g
(l)
t√

v
(l)
t + ϵ

Similar to the convergence of LARS, the major changes in our analysis is in how to bound the following term
from inequality (7) in the Appendix You et al. (2019)

T1 ≤ −η

h∑
l=1

dl∑
j=1

√
1− β2

G2dl

(
ϕ(∥θ(l)t ∥)× [∇lf(θt)]j × g

(l)
t,j

)

− η

h∑
l=1

dl∑
j=1

(
ϕ(∥θ(l)t × [∇lf(θt)]j ×

r
(l)
t

∥r(l)t ∥
⊮(sign(∇lf(θt)]j) ̸= sign(r

(l)
t,j))

≤ −η

h∑
l=1

dl∑
j=1

√
1− β2

G2dl
E
[
ϕ(∥θt∥)×

(
[∇lf(θt)]j × g

(l)
t,j

)]

− η

h∑
l=1

dl∑
j=1

αu

∣∣∣[∇lf(θt)]j

∣∣∣P(sign([∇lf(θt)]j) ̸= sign(g
(l)
t,j))

Here, the mixed gradient has a different bound with the averaged gradient as

E[T1] ≤ −ηαl

√
L(1− β2)

G2d
∥∇f(θt)∥2 + ηαu

√
ζt

h∑
l=1

dl∑
j=1

σl,j

Therefore, we have

E[f(θt+1)] ≤ f(θt)− ηαl

√
L(1− β2)

G2d
∥∇f(θt)∥2 + ηαu

√
ζt∥σ̃∥1 +

η2α2
u∥L∥1
2

Telescoping over t = 1 ∼ T yieids

E[f(θt+1)] ≤ f(θ1)− ηαl

√
L(1− β2)

G2d

T∑
t=1

E[∥∇f(θt)∥2] + ηTαuζ̄∥σ̃∥1 +
η2α2

uT

2
∥L∥1

Finally, we have the following convergence guarantee of LAMB optimizer with gradient mixup as√
L(1− β2)

G2d

1

T

T∑
t=1

E[∥∇f(θt)∥2] ≤
∆

Tηαl
+

αuζ̄∥σ̃∥1
αl

+
ηα2

u

2αl
∥L∥1

17

	Introduction
	Method
	GradientMix: Mixing Gradients with Random Mixing Rate
	GradientMix can Reduce the Trace of Generalized Gauss-Newton Matrix

	Convergence Analysis
	Related Work
	Experiments
	CIFAR classification
	Transformer on Multi30k
	ResNet-50 on ImageNet with 32K Batch Size

	Conclusion
	Hyperparameter Details for Nesterov and LARS in Section 5.3
	Proof of Theorem 1
	Convergence Analysis of LARS with GradientMix
	Convergence Analysis of LAMB with GradientMix

