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Abstract

Enzyme-catalyzed protein cleavage is essential for many biological functions. Ac-
curate prediction of cleavage sites can facilitate various applications such as drug
development, enzyme design, and a deeper understanding of biological mecha-
nisms. However, most existing models are restricted to an individual enzyme, which
neglects shared knowledge of enzymes and fails to generalize to novel enzymes.
Thus, we introduce a unified protein cleavage site predictor named UniZyme, which
can generalize across diverse enzymes. To enhance the enzyme encoding for the
protein cleavage site prediction, UniZyme employs a novel biochemically-informed
model architecture along with active-site knowledge of proteolytic enzymes. Exten-
sive experiments demonstrate that UniZyme achieves high accuracy in predicting
cleavage sites across a range of proteolytic enzymes, including unseen enzymes.
The code is available in https://github.com/Ao-LiChen/UniZymel

1 Introduction

During enzyme-catalyzed protein hydrolysis, proteolytic enzymes cleave proteins at specific cleavage
sites. This process is illustrated in Fig. [T} and it is crucial for a variety of physiological processes,
including cell proliferation, immune response, and cell death [1}2]. Accurate prediction of enzyme-
catalyzed cleavage sites in the substrate proteins facilitates the identification of therapeutic targets and
guides drug design [3]]. For instance, abnormal protein hydrolysis is closely associated with cancer,
viral infections, and neurodegenerative diseases, and predicting the cleavage sites of abnormal proteins
under pathological conditions can reveal biomarkers or intervention targets [4,|5]. Additionally,
in the design of enzyme inhibitors or prodrugs, identifying key cleavage peptides, such as those
cleaved under the catalysis of HIV enzyme, helps enhance drug specificity and minimize off-target
effects [6}[7].

Mapping cleavage sites experimentally via pep- Substrate
tide assays or high-throughput mass spectrom- ! e
etry is arduous and costly [8]. Therefore, recent - ANy
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evaluate cleavage site predictions. HOVYQYGT, Figure 1: Enzyme-catalyzed protein hydrolysis.
these methods generally focus on an individual enzyme system, overlooking shared patterns and
failing to generalize to proteases without labeled data. This limitation impedes tasks like off-target
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assessment of therapeutic proteins in human body [[L1},[12]. Therefore, it is crucial to develop a unified
protein cleavage site predictor that can generalize across a diverse range of proteolytic enzymes.

To develop a unified protein cleavage site predictor for diverse proteolytic enzymes, the information
of enzyme should be extracted and incorporated for the prediction. However, due to substantial cost
of biological experiments, existing cleavage site databases only cover a small number of proteolytic
enzymes (Tab.[I)), which significantly challenges the learning of enzyme information encoder. Despite
the limited coverage of enzymes in existing cleavage site datasets, many proteolytic enzymes are
annotated with their active sites, which is the core functional region for catalyzing the protein
hydrolysis. Specifically, the unique physicochemical environment of these active sites enables
recognition of target substrates and lowers the activation energy required for cleaving specific peptide
bonds. Therefore, we propose to leverage redundant knowledge of enzyme active sites to enhance the
modeling of enzymes in enzyme-catalyzed protein cleavage sites.

However, it is non-trivial to achieve a unified cleavage site predictor enhanced with enzyme active-site
knowledge. Two major challenges remain to be resolved. First, the cleavage process is influenced
by various factors of enzymes such as 3D structures and environments of active sites. Hence,
how to design the architecture of enzyme encoder to effectively capture useful information for
enzyme-catalyzed cleavage site prediction? Second, the active-site regions of enzymes determine
the specificity and efficiency of enzymatic hydrolysis. How can we leverage this rich information
of enzyme active sites to improve cleavage site prediction? In an attempt to address the challenges,
we propose a novel framework named UniZyme. More specifically, a biochemically-informed
enzyme encoder is deployed along with the active site-aware pooling to produce high-quality enzyme
representations. We further augment the enzyme encoder by pretraining on a supplemented enzyme
set for active-site prediction. Furthermore, a joint training of enzyme active-site prediction and
substrate cleavage site prediction is applied in UniZyme. In summary, our main contributions are as
follows:

* We investigate a novel and crucial problem of building a unified protein cleavage site predictor that
generalizes across diverse proteolytic enzymes;

* We propose a novel framework UniZyme that effectively integrates the enzyme active-site knowl-
edge to enhance the cleavage site prediction in enzyme-protein interaction;

* Extensive experiments demonstrate the effectiveness of our UniZyme in predicting cleavage sites
of substrate proteins for both seen and unseen proteolytic enzymes.

2 Problem Formulation

In this section, we first introduce the preliminaries of enzyme-catalyzed protein hydrolysis. Then, we
present the problem definition of protein cleavage site prediction with enzyme active-site knowledge.

2.1 Preliminaries of Enzyme-Catalyzed Protein Hydrolysis

Cleavage Sites in Enzyme-Catalyzed Protein Hydrolysis. Protein hydrolysis is a biochemical
process where proteins are broken down into smaller fragments such as amino acids and peptides
under the catalysis of proteolytic enzymes. As illustrated in Fig. [T} during the protein hydrolysis,
proteolytic enzymes will firstly recognize specific amino acid sequences or structural motifs within
substrate proteins. Then, the enzymes catalyze the cleavage of peptide bonds at the cleavage site,
leading to the formation of smaller peptide fragments or individual amino acids. The positions of
cleavage sites are governed by various factors including substrate’s amino acid composition, spatial
conformation, and unique properties of the enzyme [13H15]].

Active Sites of Enzymes. The active sites in enzyme provide an environment that lowers the activation
energy required for peptide bond cleavage. As shown in Fig.[I] with the active sites, enzymes can
recognize and bind to target substrates, enabling the cleavage of specific peptide bonds within
substrate proteins [16]. Hence, active site information can benefit the modeling of enzyme-catalyzed
protein hydrolysis.

Current Framework of Cleavage Site Prediction. Recent studies have employed machine learning
models to predict cleavage sites [17H21]. However, these methods generally train an independent
model for each enzyme, which only predicts the cleavage sites of substrate proteins under the catalysis



of one specific enzyme. Specifically, let P° denote the substrate protein, this enzyme-specific cleavage
site predictor aims to learn the f : P* — ¢®*, where ¢®* € {0, 1}/7"! denotes the labels of cleavage
site with the enzyme P¢. However, the training of enzyme-specific model excludes the valuable
interaction knowledge from other enzyme—protein systems. In addition, the enzyme-specific model
cannot generalize to unseen enzymes, which limits its application on unseen enzymes and other
enzymes with limited annotations. Therefore, it is crucial to develop a unified cleavage site predictor
capable of identifying cleavage sites in substrate proteins across various enzymes.

Limited Enzyme Coverage in Cleav- Table 1: Statistics of Cleavage Sites Data in MEROPS.

age Site Database. Tab. |1| presents 7 ; -
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the most comprehensive cleavage site
database. Due to the high cost of experimental assays, MEROPS [22]] only includes 866 commonly
used proteolytic enzymes. This results in a striking enzyme—substrate ratio of 1:11.7. The limited
enzyme coverage poses a significant challenge for developing a unified cleavage site predictor that
generalizes across diverse enzyme—substrate systems. Despite the limited enzyme coverage in cleav-
age site databases, the lower cost of annotating enzyme active sites has enabled UniProt [23]] to
provide 10,749 high-quality proteolytic enzymes with labeled active sites across multiple organisms.
The rich information of active sites can be helpful in enzyme modeling to facilitate the cleavage site
prediction in protein hydrolysis.

2.2 Problem Definition

In protein hydrolysis, both enzyme P¢ and substrate 7P* are proteins composed of amino acid residues
that fold into 3D structures. We denote a protein of length N by P = (X, R), where X € RV*4
is the feature matrix of N residues, R € RV *3 denotes the 3D positions of residues. We denote

c®® € {0, 1}1P+I as the cleavage site label for the substrate protein P* under the catalysis of enzyme

Pe. The training data for cleavage site prediction can be represented as D, = {(P¢, P?, cf’s)}‘izcll.

In this work, we propose to enhance the cleavage site prediction with the active site information of
enzymes. Hence, we will also utilize a set of enzymes labeled with active sites a € {0, 1}'7)5‘ , which

is denoted as D, = {(P¢, az-)}ﬁi‘~

During the test phase, we will predict the cleavage site for each pair of test enzymes and substrates
(Pg, Pf). The active sites of test enzymes will not be available for inference. And the test enzyme
P¢ can be either seen ,i.e, Pf € D, or unseen, i.e, P§ ¢ D., which correspond to supervised setting
and zero-shot setting, respectively. For each test substrate protein P}, its cleavage site with the test
enzyme P¢ is not included in the training set D.. With the above notations and descriptions, the
formal definition of building a unified cleavage site predictor can be given by:

Problem 1. Given the dataset D, annotated for cleavage site prediction and the supplemented dataset
D,, containing enzymes active sites, we aim to obtain a unified cleavage site predictor:

f:(PeP?%) =%, €))

which can accurately predict cleavage sites of test proteins P; under the catalysis of test proteolytic
enzymes P/ . Note that test enzymes can be either seen or unseen during the training phase.

3 Methodology

In this section, we give the details of the proposed UniZyme. As the Fig. 2] shows, apart from the
substrate encoder, UniZyme deploys an enzyme encoder to enable the generalization of cleavage
site prediction across various enzymes. In addition, active site information in protein hydrolysis is
incorporated into enzyme encoder training to enhance cleavage site prediction. Two main challenges
remain to be addressed: (i) how to design the enzyme encoder to preserve critical information for
cleavage site prediction? (ii) how to leverage the rich information of enzyme active sites to improve
the cleavage site prediction? To tackle the above challenges, our UniZyme deploys a biochemically-
informed enzyme encoder which augments the graph transformer with enzyme energy frustration.
Furthermore, UniZyme employs active site-aware pooling to preserve the enzyme’s information
crucial for protein hydrolysis. To facilitate enzyme representation learning, UniZyme first pretrains
the enzyme encoder using active site prediction with the supplemented enzyme set. Then, a joint
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Figure 2: Architecture of biochemically-informed enzyme encoder and framework of UniZyme.

loss of active site prediction and cleavage site prediction is employed to optimize the UniZyme for
accurate cleavage site prediction. Next, we introduce each component in detail.

3.1 Biochemically-Informed Enzyme Encoder

Enzymes’ 3D structures, especially the local environments around their active sites, are crucial
for catalyzing protein hydrolysis. Although direct active-site annotations are often unavailable for
test data, recent studies indicate that local energetic frustration can identify functionally important
regions [24]. Building on these insights, we propose a biochemically-informed enzyme encoder that
integrates both the spatial positions of residues and their energetic frustration scores [25].

Encoding Energetic Frustration. Previous studies indicate that local energetic frustration, referring
to regions in a protein not optimized for minimal energy, is commonly observed around enzyme
active sites and can significantly influence catalysis [24]]. To quantify this phenomenon, a frustration
score F(1, 7) is computed for each residue pair (¢, j) within an enzyme P¢ following [24]:

E(i, ) — prana (4, j)
Orand (Zv ] )
where E(i, 7) is the actual interaction energy between residues (i, j) in the enzyme P°. piyand(Z, )
and oyand (4, j) represent the mean and standard deviation of interaction energies that derived from
randomized configurations (see Appendix [C| for details). A higher F (i, j) implies stronger local
energetic frustration, suggesting that the residue pair is more likely to belong to a functionally
important region. Therefore, we incorporate this frustration score to provide useful biochemical

information to the enzyme encoder.

; (@)

F(Z’]) =

Integrating Energy and 3D Position in Transformer. Following prior works [26], we encode
the 3D positions by computing pair-wise distance between residues: D (i, j) = ||r; — rj||2, where
r; € R3 is the Ca-atom coordinate of residue i. Both energetic frustration score and distance matrix
capture pairwise relationships akin to the spatial encoding in graph transformers. Therefore, we
locate those pair-wise signals to provide complementary information for the self-attention score
computation. Concretely, for an enzyme P¢ = (X, R), we process both F (i, j) and distance matrix
D(4, j) with a Gaussian Basis Kernel function followed by a MLP:

(I)‘isjljergy = MLP(¢energy(F(ia ])))7 (I)?,I;t = MLP((bdist (D(Za J)))v (3)

where @energy and @ais; denote the learnable Gaussian Basis Kernel function that can map energy
frustration score and distance score to a d-dimensional vector (See Appendix [C|for more details).
MLP is further deployed to transform these vectors to the space of attention scores. We then add
the resulting ®f) and ®;'5\®" as bias terms to the self-attention mechanism. Denote A} as the
(i, j)-element of the Query-Key product matrix in k-th attention layer, we have:
hf W) (bW )T :
E _ ( 7 Q ] K energy dist
Aij= ] t o+
H* = softmax(A*)H1Wy,,

where H¥ € RV denotes the updated representation matrix. And Wg, Wg, and Wy are
projection matrices for the query, key, and value transformations.

“



3.2 Enhancing Enzyme Representation Learning with Active Site Knowledge

To incorporate crucial active-site knowledge into enzyme representation learning, we use three
strategies: (i) an auxiliary active-site prediction task to strengthen the enzyme encoder, (ii) large-scale
pretraining for active-site prediction to capture general catalytic patterns, and (iii) an active site-aware
pooling mechanism that emphasizes catalysis-related residues. Next, we give more details.

Active Site Prediction. Active sites play a key role in catalyzing the protein cleavage. Hence,
active-site information can provide essential understandings of enzyme functions. As a result, we
deploy the active site prediction as the auxiliary task to benefit the enzyme encoder training by:

a; = sigmoid(h; - w,), 5

where @; € [0, 1] denotes the probability of the i-th residue being the active site, h; € R? is the
representation of i-th residues in the enzyme, and w, € R? denotes the learnable parameters for
active site prediction.

Pretraining with the Supplemented Enzyme Set D,. The number of enzymes annotated in cleavage
site database is limited, which poses a significant challenge for the effective training of enzyme
encoders [27]. Despite the limited enzyme coverage in cleavage site database, abundant enzymes are
annotated with active sites. Therefore, we select enzymes highly homologous to the target proteolytic
enzymes in biological function to expand the pretraining dataset. Formally, the objective function of
pretraining the enzyme encoder on the supplemented enzyme set D, can be written as:

. 1 )
Jmin L,(D,) = D] Z lgce(a, a), (6)
(Pe,a)eD,

where 6, denotes the parameters of enzyme encoder. & = [d1, ...a ] denotes the probability vector
of active site on the enzyme P¢. Igcy denotes the element-wise binary cross entropy loss. By
pretraining on a large corpus of enzyme sequences, we allow the model to capture broader structural
and functional patterns common across enzymes.

Active Site-Aware Pooling. To obtain enzyme representation from a sequence of residue represen-
tations, a pooling operation such as mean pooling is required. However, residues that are active
sites are more critical for enzymatic activity. Intuitively, these active sites should contribute more
in the aggregated enzyme representation [28]]. Therefore, we design an active site-aware pooling
mechanism, whose pooling weights are based on the predicted active site probabilities. Let a; € R
be the predicted probability that i-th residue is an active site in an [N-residue enzyme. The active
site-aware pooling can be written as:

h® = softmax([wy, ..., wy))H, w; = f(a;), @)

where H € RV *4 s residue representation matrix from by the enzyme encoder. f(-) is a learnable

function that will map each a; to the pooling weight w;, see in appendix [C] With the active site-aware
pooling, we would be able to encourages the model to focus on catalytically relevant segments of the
enzyme.

3.3 Cleavage Site Prediction

Substrate Protein Encoding. As annotations tying substrate residues to intrinsic energetic states are
unavailable, we omit the energetic frustration of the substrate protein. And we only input residue
feature matrix X* and distance matrix D? of the substrate P° are integrated in the transformer:
H* = Transformer(X®, D?), where H* € RI7"1* is the substrate representation. Further details
are provided in Appendix [C]

Cleavage Site Prediction. During protein hydrolysis, enzymes generally recognize local residue
sequences about 15-30 residues in length. To reflect this biological behavior, we predict whether a
subsequence of length [ in substrate P¢ will be cleaved by enzyme P¢. Formally, this process can be
written by:

¢ = MLP(CONCAT(H,, 1, h)) (®)

where H , ., is a contiguous slice taken directly from the substrate representation matrix H* and
h¢ is the enzyme representation obtained by Eq.(7). The length of the subsequence is set as 31 (15



residues on each side.). The optimization function of cleavage site prediction can be written as:

1 5 A€,8
Le(De) = 15 > lpee(c™’, &) ©)
¢l (pe,Ps ces)eD,

where € = [¢7°).. ., éf; || denotes the probability vector of cleavage site within the substrate 7
given the enzyme P¢. Ipcg is the element-wise binary cross entropy loss.

3.4 Final Objective Function

For each enzyme P¢ € D. in the cleavage site database, their active sites are also included in the D,,.
Consequently, we combine the cleavage site prediction loss and the active site prediction to jointly
train the whole framework by:

mein L.(D.) + AL (D), (10)

where 6 denotes all parameters in UniZyme including the enzyme encoder, substrate encoder, active
prediction module and cleavage site prediction module. DS C D, provides the active-site annotations
for the enzymes in D..

4 Experiments

In this section, we conduct experiments to answer the following research questions:

* RQ1: How does the UniZyme perform in supervised cleavage site prediction?
* RQ2: How well does UniZyme generalize to cleavage site prediction for zero-shot enzymes?

* RQ3: How do the design of biochemically-informed enzyme encoder and utilization of active-site
knowledge contribute to the performance of UniZyme?

4.1 Experimental Setup

Dataset. The cleavage site dataset D, is sourced from the MEROPS database, which provides
annotations for roughly 10k substrate proteins across 876 enzymes. With a standard dataset expansion
procedure commonly used in cleavage site prediction[10, 18, 20, [21], which propagates substrate-
site annotations across enzymes within the same family, we obtain 220k valid enzyme—substrate
pairs. The supplemented dataset D,, is constructed by combining enzyme active-site annotations
in MEROPS [22] and UniProt [23]]. Specifically, MEROPS provides active sites for the enzymes
already included in D.. UniProt provides hydrolase enzymes with the EC number of 3.4.*.* that are
highly homologous to the proteolytic enzymes in D,, resulting to 11,530 enzymes with active sites.

Evaluation. To demonstrate the Table 2: Splits of MEROPS for evaluation.
generalization ability of UniZyme,

we evaluate its performance on pro- Training  Supervised Test ~ Zero-Shot Test
tein cleavage site prediction for both Enzyme Families 677 69 23
seen enzymes (supervised) and un-  Substrate-Enzyme Pairs 197,613 20,360 5,345

seen enzymes (zero-shot). The
dataset split of the MEROPS for supervised and zero-shot setting are in Tab.[2] The dataset construc-
tion details can be found in Appendix [A]

* Supervised Setting: In this scenario, target enzymes are paired with novel substrates that were not
present in the training data. We restrict our evaluation to enzyme families with at least five unique
substrates, yielding 69 enzyme families and a total of 21k enzyme-substrate pairs. For each family,
we randomly split the data 70/10/20 into training, validation, and test sets.

» Zero-shot Setting: In the zero-shot setting, target enzymes are entirely held out during both training
and pretraining. We consider only families with at least five distinct enzymes, reserving 20% of
each family’s enzymes as a test set. In total, this yields 23 enzyme families (5.3k enzyme—substrate
pairs), with all test enzymes sharing under 60% sequence identity with any enzyme seen during
training or pretraining.

Baseline Methods. To evaluate our model, we compare with the three categories of baselines.
(i) Specialized models: CAT3 [9] and ScreenCap3 [[18] are two models specifically designed for



C14.003 enzyme family. (ii) Deep models for an individual enzyme: ProsperousPlus [10], Deep-
Cleave [20],and DeepDigest [29] are state-of-the-art deep learning methods focusing an individual
enzyme system. To compare with UniZyme across multiple enzyme families, multiple predictors
are trained for each baseline method, where each predictor is trained with data of an individual
enzyme. Thus, these baselines are limited to supervised setting where an enzyme is provided with
substantial experimental data. (iii) Models revising UniZyme with baseline enzyme encoders: Re-
search on cleavage site prediction for zero-shot enzymes remains limited. The closest works are
enzyme-substrate reaction predictors, namely ClipZyme [30] and ReactZyme [31]], which encode
both enzymes and substrates for reaction prediction. However, these models operate at the substrate
level and cannot directly predict specific cleavage sites. Therefore, to demonstrate the superiority of
the proposed enzyme encoder and enhancement strategies in Unizyme, we substitute the Unizyme’s
enzyme encoder with enzyme encoders from ClipZyme and ReactZyme. This yields two baselines for
comparison in both supervised and zero-shot settings. For ClipZyme, we utilize their EGNN enzyme
encoder pretrained for enzyme-substrate reaction prediction. See Appendix [B|for more details of
baselines.

Implementation Details. We utilized the esm2-t12-35M-UR50D model to generate 480-dimensional
residue features for both enzymes and substrates. The hyperparameter )\ is selected based on the
validation set under supervised setting. Hyperparameter analysis are in Sec Each experiment is
conducted with 5 runs with different random seeds. To ensure a fair evaluation, hyperparameters of
trainable baselines were selected by validation set. More details are in Appendix [C]

4.2 Supervised Cleavage Site Prediction

To answer RQ1, we compare our UniZyme

with various existing methods in supervised  Table 3: Performance comparisons on overall 69 en-

cleavage site prediction, ensuring that all  zyme families under supervised setting.
models are trained and evaluated on the

same data. As mentioned in Sec. [4.1] base- Average Rate of Average
lines designed for individual enzymes re- Model PR-AUC (%) Rank1(%)  Rank
quire training a separate predictor for each UniZyme 793 75.0 1.26
enzyme family. ClipZyme and ReactZyme Reac(Zyme 70.0 75 251
are baselines revising our UniZyme with  ClipZyme 74.7 17.5 1.91
their enzyme encoders, avoiding repeated  ProsperousPlus 7.2 0.0 4.65
training. The overall comparisons on all 69 ~ DeepCleave 6.5 0.0 4.61
enzymes in supervised setting are given in _DeepDigest 42 0.0 5.52

Tab. 3] and Fig. 3] Results on 8 represen-

tative enzymes are given in Tab.[d] Specifically, we can observe that: (i) Methods focusing on a
single enzyme generally show poor performance; whereas those trained on multiple enzymes such
as Our UniZyme and ReactZyme achieve significantly better results. This highlights the advantage
of developing a unified cleavage site predictor across diverse proteolytic enzymes. (ii) Compared
with ClipZyme which adopts an enzyme encoder pretrained with the enzyme-substrate reaction task,
the proposed UniZyme achieves much better performance. It implies the effectiveness of active-site
information in enhancing the enzyme encoder. (iii) Our UniZyme also consistently outperforms the
ReactZyme by a large margin. This is because of the deployment of biochemically-informed enzyme
encoder and the active-site knowledge.

Table 4: PR-AUC (%) on 8 out of 69 enzyme families under supervised setting. Note that ScreenCap3
and CAT3 are specialized models for the C14.003 enzyme family.

Model C01.034 C14.003  C14.005 M13.001 M24.026 S01.001 S01.224 S08.070
UniZyme 78.1+1.3 45.9+1.2 522409 60.1+1.1 87.24+0.8 82.1+1.2 62.4+1.1 85.0+1.3
ReactZyme 64.4+0.7 43.8+£0.8 47.6£0.9 48.0£0.7 703£1.4 69.6£1.2 27.0£09 66.0£0.8
ClipZyme 71.1£0.7 353+09 4324+1.0 37.1+1.3 73.1+0.8 73.840.9 41.7+£0.6 73.8+0.9
DeepDigest 3.2+0.5 0.5+1.1 24+1.1 16.7£1.3 1.4£04 21.1£0.9 1.2£1.0 22412
DeepCleave 4.8%+1.1 1.0£1.1 42409 19.0£1.0 7.1£12 269+14 5.0£0.5 18.3+0.6

ProsperousPlus ~ 4.6+1.3 26.6£2.1 159405 21.14+0.8 24408 163+1.0 434+09 43.6£1.0
CAT3 - 18.5+6.2 - - - - - _
ScreenCap3 - 29.2£16.0 - - - - — _
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Figure 3: Per-family PR-AUC (%) across 69 supervised enzymes (Part 1: Enzymes 1-35). Results
for the remaining 34 enzymes are provided in Appendix M (Fig. E[)

4.3 Cleavage Site Prediction for Zero-Shot Enzymes

To answer RQ2, we evaluate the performance of UniZyme on the zero-shot benchmarks, where
enzymes are unseen during the training/pretraining phase. We adopt Needleman—Wunsch algorithm
to ensure all zero-shot enzymes have under 60% sequence similarity with any enzyme used for
training and pretraining. Since enzyme-specific models cannot handle novel enzymes, we only
compare UniZyme to ReactZyme and ClipZyme, both of which are modified to predict cleavage sites
for novel enzymes. The summarized results are given in Tab.[3] [6]and Fig.[5} From the results, we
can observe that our UniZyme consistently outperform the baseline methods. In particular, UniZyme
exceeds ReactZyme and ClipZyme by more than 7% in PR-AUC across most enzyme families. This
improvement stems from the utilization of active-site knowledge in the enzyme modeling and the
biochemical-informed encoder, promoting the generalization ability of UniZyme to unseen enzymes.

To further demonstrate the generalization ability of our model on unseen enzymes, we applied it
to identify potential HIV-1 enzyme substrates and predict their cleavage sites as shown in Fig. ]
We present the model’s prediction on an unseen HIV-1 enzyme acting on a 147-residue substrate
(P62157) with four experimentally validated HIV-1 cleavage sites. As shown in Fig. ] UniZyme
can accurately predict the four annotated cleavage sites, achieving 100% accuracy. Additionally,
UniZyme successfully predicts the cleavage sites of a test case (Uniprot: P00698). This demonstrates
the ability to analyze cleavage sites for any potential protein of HIV-1 enzymes. This result provides
valuable insights for therapeutic intervention and the development of inhibitors targeting HIV-1
enzymes.

Table 5: PR-AUC (%) on 8 out of 23 zero-shot enzyme families.

Model A01.009  C01.060  C02.002 M10.001 M10.004 MI12.217 S01.010 S01.217
UniZyme 37.5+0.6 84.3+1.3 66.4+0.6 81.1+1.0 82.84+1.8 93.2+1.3 61.0+£0.8 65.0+1.2
ReactZyme 18.0+£0.3 62.7£0.8 49.7+1.2 76.0£1.2 71.0£2.8 75.0%£1.1 23.0£1.1 42.940.8
ClipZyme 25.2+40.6 592409 48.6£1.2 76.8+£0.6 56.54+3.5 84.4+09 18.9+0.9 41.3£0.6
{
Table 6: Performance comparisons on overall 23 - c!i"“t.“ ~ ‘0(‘;(_',»
enzyme families under zero-shot setting. ) @,{ Rl s \\\%\Qﬂ‘}
r"/ { \/) .!!!S )2
Model Average Rate of Average & ¢ J{\Z
PR-AUC (%) Rank1 (%)  Rank (a) Substrate P62157 (b) Substrate PO0698
UniZyme 1.1 78.3 1.30 (Accuracy = 1.0) (No Ground Truth)
ReactZyme 64.7 217 204 Figure 4: Predicted HIV-1 enzyme cleavage
ClipZyme 61.7 00 265 sites highlighted in red (threshold = 0.5).
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Figure 5: PR-AUC (%) on the zero-shot benchmark.

4.4 Ablation Studies

To answer RQ3, we conduct a series of ablation studies to understand the contributions of
biochemically-informed enzyme encoder and the active-site knowledge. To demonstrate the ef-
fectiveness of the biochemically-informed enzyme encoder, we remove energy frustration and 3D
structure, resulting in a variant named UniZyme\SE. To show the benefits brought by pretraining on
general enzymes with active site prediction, we trained a variant, UniZyme\P, which excludes the
enzyme pretraining phase. To further demonstrate the enhancement of active-site knowledge to the
model, we remove the active site prediction in the pretraining/training phase. Additionally, the active
site-aware pooling is replaced with average pooling, resulting in a variant named UniZyme\A. Fig. @
shows the PR-AUC scores across different enzyme families in both zero-shot and supervised settings.
More details can be found in the Tab. From these results, we observe:

* UniZyme consistently achieves better results than UniZyme\SE. This indicates that the incorpo-
ration of structural-energy features in the biochemically-informed enzyme encoder can enable
stronger generalization and performance in cleavage site prediction.

* UniZyme\P significantly performs worse than UniZyme on both supervised and zero-shot setting.
This verifies that pretraining on a supplemented enzyme set with active site prediction can produce
a more transferable enzyme encoder for cleavage site prediction.

* UniZyme outperforms UniZyme\A by a large margin. This demonstrates that the active-site
knowledge can enhance the enzyme-catalyzed cleavage site prediction.

4.5 Hyperparameter Analysis

In this subsection, we investigate how the hyperparameter A affects the UniZyme. A controls to
contribution of active site prediction loss to the training of UniZyme. To explore the hyperparameter
analysis, we vary A as {100, 10, 1, 0.1, 0.01} in the training phase of UniZyme. Due to the expensive
computational cost in training on the full dataset D., we conduct the hyperparameter analysis with 3%
of training data in various enzyme families. Performance on these enzymes are given in Fig. [/} We
can find that while A = 100 produces competitive ROC-AUC results, it leads to suboptimal PR-AUC.
Small values like 0.1 and 0.01 cause a noticeable drop in ROC AUC (e.g. C14.005). Among the
tested values, A = 10 demonstrates the most consistent performance, achieving strong PR-AUC (e.g.,
M10.004) while maintaining competitive ROC AUC across datasets such as C14.003 and A01.009.
Thus, we selected A = 10 as the optimal choice for final training.
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Figure 6: Ablation studies of UniZyme. Figure 7: Hyperparameter sensitivity analysis.

5 Related Works

Protein Representation Learning. Protein representation learning aims to effectively capture and
represent the structural and functional features of proteins for downstream tasks. Inspired by large
language models, recent years have seen the emergence of sequence-based pre-trained models such
as ESM [32] and ProtTrans [33]]. In terms of methods that utilize structural information, geometric
graph neural networks [34H38]| and transformers with structural constraints [26} 39, 40] have become
widely used architectures. These approaches show that structural pretraining can significantly benefit
downstream performance.

Beyond individual model designs, systematic benchmarks have begun to evaluate how different
pretraining paradigms transfer to real-world applications. In particular, Protap [41] establishes a
comprehensive benchmark that jointly compares backbone architectures, pretraining objectives, and
domain-specific models across both general and specialized protein tasks. It covers five represen-
tative applications—including enzyme-catalyzed cleavage site prediction and PROTAC-mediated
degradation—and provides unified data splits, evaluation protocols, and analysis of how structural
inductive biases interact with pretraining scale. Within this framework, UniZyme is integrated as the
representative enzyme—substrate model, demonstrating how incorporating biochemical priors such as
energy frustration and active-site cues can complement large-scale foundation encoders.

Cleavage Site Prediction. Early prediction of enzyme-catalyzed cleavage sites relied on substrate
sequence motifs, such as CAT3 [9] and Screen-Cap3 [[18]]. Subsequent works including Procleave [21]]
and ProsperousPlus [[10] began to integrate substrate structural features to better capture enzymatic
preferences. Deep learning approaches such as DeepCleave [20], DeepDigest [29]], and DeepNeu-
ropePred [17] further advanced the field by leveraging CNNs and protein language models. However,
these are enzyme-specific models, applicable only to individual targets and often ignoring active-site
information. Building on these developments and contextualized by the Protap benchmark, we
propose a unified cleavage-site predictor enhanced with explicit active-site knowledge.

6 Conclusion and Future work

In this paper, we study a novel problem of developing a unified protein cleavage site predictor for
diverse proteolytic enzymes. Specifically, we design a biochemically-informed enzyme encoder
and incorporate redundant enzyme active-site information. Our experimental results demonstrate
that UniZyme outperforms baselines by a large margin across various enzyme-substrate families,
particularly excelling in zero-shot scenarios. Ablation studies further demonstrate the effectiveness
of each proposed module in UniZyme. There are two directions that need further investigation. First,
while this study focuses on proteolytic enzymes, we will extend to other categories of enzymes
and substrates, and investigate whether enzyme-catalyzed reactions follow scaling law. Second, if
more hydrolysis process data becomes available, incorporating dynamic structural information may
improve prediction accuracy.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly enumerate the three main contributions of
UniZyme and these match the experimental results demonstrating its superior performance
and generalization.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We conduct a failure case analysis in Appendix [K]to analyze the limitation of
our work. It implies the future directions to improve the proposed UniZyme.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No formal theorems or proofs are presented in this empirical work.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Data curation procedures, training/test splits, model architectures, and hyper-
parameters are fully specified in the main text and Appendix, and code is made available.
Guidelines:
* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The UniZyme code repository URL is provided in the abstract, and all source
data (MEROPS, UniProt) are publicly accessible.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Dataset statistics, data splits, optimizer settings, batch size, pretraining protocol,
and evaluation metrics are described in Sections 4 and Appendix and[C]

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported metrics (ROC-AUC, PR-AUC) include mean + standard deviation
over five runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the exact GPU (NVIDIA A6000), the number of GPUs used
(8xA6000 for training, 1xA6000 for inference), per-task runtimes (hours for training,
seconds per inference), and aggregate compute cost in Appendix[I]
Guidelines:
» The answer NA means that the paper does not include experiments.
 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work involves no human subjects or other sensitive domains, and we have
followed all NeurIPS ethical guidelines, preserving anonymity and data integrity throughout.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Broader Impacts section [[] describes concrete benefits—faster drug
discovery, enzyme re-engineering, and pandemic preparedness—and notes the potential
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misuse of the model for creating harmful proteases, thereby covering both positive and
negative societal impacts.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: UniZyme does not release high-risk models or restricted data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We explicitly state in Appendix[A]the license terms, and cite all related sources.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The supplemented enzyme dataset is documented in Appendix |A| with detailed
curation steps, and the code/data release is described in abstract.
Guidelines:
» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human-subject or crowdsourced data is involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human-subject or crowdsourced data is involved.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large-language models were used in the core methodology or manuscript
preparation.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Algorithm 1 Training algorithm of UniZyme

Require: Supplemented enzyme set D,, Cleavage site prediction dataset D., hyperparameters A
Ensure: A unified cleavage site predictor fy

1: Initialize features of enzyme and substrate protein by ESM-2

2: Pretrain enzyme encoder on D,, with £, by Eq.(6)

3. for epoch=1to N do

4:  for each batch (P¢,P?) in D, do

5: Compute the distance matrix D¢, and energetic frustration matrix F'¢ from enzyme structure
by Eq.(@)
6: Encode the enzyme and substrate protein by Eq.()
7: Obtain the enzyme representation with active site-aware pooling by Eq.(7)
8: Predict active sites of enzymes by Eq.(5)
9: Predict cleavage sites of substrate proteins by Eq.(8)
10: Update 0 via V(L. + AL,)
11:  end for
12:  if validation loss increases for 3 epochs then
13: break
14:  endif
15: end for

A Details of Data Curation and Benchmark Construction

A.1 Data Curation and Preprocessing

For the cleavage dataset, we downloaded enzyme-substrate pairs from the MEROPS [22] database,
collected substrate sequences from the UniProt database, and retrieved enzyme sequences recorded
in MEROPS. Additionally, we compared the enzyme sequences between MEROPS and UniProt,
excluding those with discrepancies, as such inconsistencies often result from asynchronous updates.
To maintain controllable sequence lengths, we filtered out all enzyme and substrate sequences
exceeding 1,500 residues.

Regarding the supplemented enzyme set with active sets, we first searched in the UniProt [23]
database for enzymes with EC numbers starting with 3.4.*.* and filtered for reviewed data. Then, we
selected entries with annotated active sites as our pretraining dataset. In addition, proteolytic enzymes
in MEROPS are all annotated with active sites, and are combined as the supplemented enzyme set.

Protein structures were collected from the PDB [42]] and AlphaFoldDB [43]]. For proteins without
available structures in these databases, we generated their structures using OmegaFold [44]].

Additionally, all datasets are used in accordance with their respective licenses: MEROPS is distributed
under the GNU Lesser General Public License (LGPL), UniProt under Creative Commons Attribution
4.0 (CCBY 4.0), the Protein Data Bank under CCO, AlphaFold DB under CC BY 4.0, and OmegaFold
under the MIT License.

A.2 Data Expansion

The MEROPS database classifies enzymes into categories based on their substrate cleavage sites.
Enzymes belonging to the same MEROPS category typically share highly similar cleavage-site
characteristics[22]. Drawing on previous work, we assume that minor sequence differences among
enzymes of the same category can be disregarded. Consequently, the hydrolysis information from a
substrate—enzyme pair is extended to all enzymes in that category.

Therefore, we expanded our dataset by matching each substrate not only with the originally mapped
enzyme but also with other enzymes in the same MEROPS category. Through this procedure,
we obtained approximately 220K valid enzyme—substrate pairings, involving 677 unique enzymes.
Detailed distributions of enzyme and substrate pairs are provided in Tab.
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Table 7: Dataset statistics of training datasets.

Utilization Datasets  # Substrate-Enzyme Pairs Enzymes Substrates
Active site dataset UniProt NA 11,530 NA
Cleavage site dataset MEROPS 197,613 677 7,475

A.3 Construction of Supervised and Zero-shot Benchmarks

Supervised Setting. We selected MEROPS enzyme families containing at least five distinct substrates,
yielding 69 families and approximately 21K enzyme—substrate pairs. All pairs in each family were
randomly split 70/10/20 into training, validation and test sets. To ensure the test substrates were
sufficiently distinct from those in training, we collected all substrates per family and computed
pairwise sequence similarity using the Needleman—Wunsch algorithm (BLOSUMG62, gap opening
penalty=10, gap extension penalty=0.5). Substrates exhibiting less than 50% similarity to any other
were deemed independent, and 20% of independent substrates were sampled to form the final test set.
This procedure evaluates model generalization on more divergent substrates within each MEROPS
family.

Zero-shot Setting. Following the same selection criteria, we identified MEROPS families with at least
five enzymes, yielding 23 families and roughly 5.3K enzyme—substrate pairs. In each family, 20% of
the enzymes were randomly set aside as a zero-shot test set. To guarantee that these test enzymes
were truly unseen, we computed pairwise sequence identities against all training and pretraining
enzymes using the Needleman—Wunsch algorithm (BLOSUM®62, gap opening penalty = 10, gap
extension penalty = 0.5) and retained only those enzymes whose identity fell below a 60% threshold.
This procedure prevents any overlap between zero-shot test enzymes and the training/pretraining
pool, rigorously evaluating the model’s ability to generalize to novel enzymes.

B Details of Baselines

Below, we provide additional details on how we adapt, retrain, or utilize each baseline for comparison.
Unless otherwise specified, all default hyperparameters are used as in the original implementations of
these methods. For any required data, we convert our data format accordingly.

ProsperousPlus [10] and DeepDigest [29] all provide publicly available code, enabling us to retrain
their models within our supervised setting. We use the same training and test sets as those used for
our method, specifically for the supervised benchmark. We adopt the default training code from each
repository while ensuring that all other settings remain consistent.

ScreenCap3 [18]] and CAT3 [9], specialized for the C14.003 enzyme, do not provide publicly
available datasets or source code for retraining. Instead, they each offer a prediction platform: a
web server for ScreenCap3 and standalone software for CAT3. We use these platforms to generate
predictions on our test set. Since their training data are not publicly accessible, we can only report
their performance as is, with the caveat that neither model can be applied to other enzymes.

We also compare with two recent enzyme—substrate interaction models, ClipZyme [30] and Re-
actZyme [31], which were originally proposed for reaction rather than cleavage prediction. Re-
actZyme encodes enzymes with an ESM-2 plus MLP pipeline, but since its trained weights are
unavailable, we retrain it from scratch on our dataset. ClipZyme employs an E(n) Equivariant Graph
Neural Network (EGNN) to incorporate structural information into its enzyme encoder. Both models
use average-pooling to aggregate the extracted enzyme features and are trained without activation-site
loss. To highlight the effect of leveraging active-site knowledge, we keep the original pretrained
EGNN for ClipZyme as is and integrate it into our cleavage-site prediction framework, adding only a
linear projection layer to interface with the cleavage-site prediction module.

C Implementation Details

Framework and Hardware. We implemented our models in PyTorch and trained using the Adam
optimizer with a learning rate of 1 x 10~% and a batch size of 48. All experiments were conducted
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on eight NVIDIA A6000 GPUs(48G). We adopted an early stopping strategy with a patience of 3
epochs, monitoring the validation loss to prevent overfitting.

Substrate Representations. Similar to the enzyme pipeline, but without energetic frustration,
each residue is embedded by ESM-2 padded to 1500 length. We compute pairwise Ca-distances
D* (i, j) = ||r; — r;||2, then applying a reciprocal transform. Each distance entry is processed by a
Gaussian basis kernel and MLP, yielding a bias term <I>?fj5t added to the attention score:

(b~ 'Wo) (hf "W )"

k dist
Aj; = d + @77, (11)
thus incorporating structural information. The substrate representation H* € RIP*1%4 is obtained via
H?® = Transformer(X®, D?), (12)

with the same architecture as the enzyme encoder but omitting energy-related parameters.

Pooling Weight Function. In Active Site-Aware Pooling module, f(-) is a learnable mapping that
transforms each predicted active-site probability into its final pooling weight, in direct analogy to
how we use Gaussian kernels to map energy and distance into attention biases.

Concretely, we first pass the scalar probability a; through a Gaussian basis expansion:

¢act(di) = [¢act,1(&i)a ) ¢act,K(&i)] S RK, (13)

which produces a richer, multi-dimensional embedding. We then apply an MLP to collapse this
embedding to a single weight:

w; = f@5) = MLP($, (@) (14)

Energy Frustration Calculation. We computed residue-pair frustration using the Frustratometer
tool [45] with AWSEM (Associative Water-mediated Structure and Energy Model) potentials [46],
disabling electrostatic interactions (Kejectrostatics = 0) and enforcing a minimum sequence separation
of 12 residues between residue pairs. Specifically, for each pair of residues (7, j) in enzyme P¢,
the actual interaction energy E(4, j) was extracted from the AWSEM potential. To capture local
energetic fluctuations, we generated an ensemble of randomized configurations (where the sequence
or side-chain identities are shuffled while preserving the protein backbone), thereby obtaining a
distribution of interaction energies for each pair.

Let ftyand (i, 7) and orana (4, j) be the mean and standard deviation of these interaction energies over
the randomized ensemble. The frustration score F(3, j) is then computed as:

E(ia .7) — ,urand(ivj)

F(i,j) =
(27]) Urand(iaj)

15)

A higher F(i, 7) indicates that the local region around residues (4, j) is more frustrated (i.e., further
from minimal AWSEM-derived energy). Such regions often correspond to sites of functional
importance in enzymes.

To estimate how E(i,j) deviates from an energetically minimal arrangement, we generated an
ensemble of randomized “decoy” configurations for the same residue pair. These decoys preserve
global geometry (e.g. backbone coordinates) but shuffle aspects such as side-chain packing or
local environment, depending on the chosen protocol within the Frustratometer. Each decoy
thus provides a distinct pairwise interaction energy. By sampling multiple decoys, we obtain an
approximate distribution of energies F (i, j), from which we compute:

1 o .
Mrand(ivj) = ? Ek(l,]), (16)
k=1
. 1 s 2
Urand(z7]) = mZ<Ek‘(ZaJ)_Nmnd(17])) s a7
k=1

24



where K is the number of randomized decoys (typically on the order of a few hundred in the
Frustratometer).

Gaussian Basis Kernel Function. Following Transformer-M [26], we employ a set of learnable
Gaussian basis kernels to transform a scalar input (e.g., the distance D(z, j) or the frustration score
F(i, 7)) into a fixed-dimensional embedding. Concretely, suppose we have K Gaussian kernels
parameterized by {u*, 0¥} . For an input scalar z, the Gaussian basis kernel function ¢(z) is
defined as:

oa) = [exn(=5(5°). exp(-5()). oo e (—(57)] . a)

Each kernel center 1% and width ¥ is learnable, allowing the model to adaptively capture different
regions of the input space. We apply this basis expansion to both D(¢, j) and F(z, j), producing a
K-dimensional vector for each pair (4, j). An MLP then projects this kernel output into the space of
attention biases. We set the number of Gaussian basis functions to K = 10, each parameterized by
learnable centers ;% and widths o*. Notably, we maintain separate sets of Gaussian parameters for
the energy and structure channels, ensuring that the model can adaptively learn distinct representations
for each.

Training Algorithm. Each sample’s ESM-2 embeddings (padded to length 1500), along with distance
and energy frustration matrices, are fed into our model to predict both active-site and cleavage-site
residues. We use a weighted binary cross-entropy loss and optimize with Adam for up to 15 epochs,
applying early stopping (patience = 3) based on validation loss.

D Comparison of Active-Site Prediction Module

To comprehensively evaluate the active-site prediction module of UniZyme, we compared it with
two representative structure-based models that utilize enzyme structural and sequence information:
GraphEC [47] and NodeCoder [48]]. Both models were reimplemented using their official repos-
itories and retrained on the same large-scale active-site prediction dataset employed by UniZyme.
The dataset statistics are summarized in Table|8] The performance of different models is reported in
Table 9] UniZyme achieves consistently superior results compared to the baselines.

Table 8: Data statistics for the active-site prediction task.

Dataset Number of Enzymes Number of Active Sites

Training 9220 24891
Test 2349 6459

Table 9: Comparison of active-site prediction performance.

Model AUROC (%) AUPR (%) Precision (%) Recall (%) F1 (%)
UniZyme 89.5 35.1 65.3 45.6 53.7
GraphEC 80.3 28.0 52.1 38.7 44 4
NodeCoder 67.4 17.8 32.6 22.3 26.5
Random Guess 50.0 3.2 3.2 50.0 6.0

E Structural Source Sensitivity Analysis

To evaluate the robustness of UniZyme with respect to the source of structural data, we partitioned
the test set into four quadrants based on whether the enzyme and substrate structures were obtained
from experimental (natural) or predicted sources. Table[T0[reports the PR-AUC results under both
supervised and zero-shot settings.
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Table 10: PR-AUC (%) of UniZyme under different structural-source combinations.

Structure Source Zero-shot PR-AUC (%) Supervised PR-AUC (%)
Both Natural Structures (3%) 72.2 80.3
Natural Enzyme + Generated Substrate (7%) 71.9 77.9
Natural Substrate + Generated Enzyme (8%) 70.5 81.9
Both Generated Structures (82%) 69.4 78.3

F Statistical Significance Testing

To confirm that the performance improvements of UniZyme over baseline models are statistically
significant, we conducted two-sample t-tests on PR-AUC scores across enzyme families under both
supervised and zero-shot settings. Table[TT|summarizes the results.

Table 11: Two-sample t-test results comparing UniZyme with baseline models.

Setting Comparison t-value p-value

Supervised UniZyme vs ReactZyme 7.18 7.8e-10
Supervised  UniZyme vs ClipZyme 5.09 3.0e-06
Zero-shot ~ UniZyme vs ReactZyme 2.61 1.6e-02
Zero-shot UniZyme vs ClipZyme 4.27 3.1e-04

G Cross-Task Transferability: EC Number Classification

To assess whether the enzyme encoder of UniZyme captures generalizable biochemical signals, we
evaluated it on the EC number classification task for proteases (EC 3.4.*.*). The same dataset split
used in the cleavage-site prediction task was reused here. Table[I2] presents the results in terms of
AUROC.

Table 12: Performance of enzyme encoders on EC number classification.

Model AUROC (%)
UniZyme 94.1
ClipZyme 90.2
ReactZyme 82.3

H Interpretability and Mechanistic Consistency

We conducted interpretability analyses to understand how UniZyme utilizes active-site information
for cleavage-site prediction. Higher predicted active-site confidence consistently corresponds to
better PR-AUC, indicating that UniZyme effectively leverages active-site cues (Table[I3). Gradient-
based attribution analysis further shows that active-site residues contribute more strongly to cleavage
prediction than background residues (Table [I4), confirming that the model’s attention is aligned
with catalytic regions. Moreover, perturbation experiments demonstrate that masking top predicted
active-site residues causes a substantial PR-AUC drop, whereas perturbing random residues has
minimal effect (Table[T5), verifying that UniZyme’s predictions are causally linked to the identified
catalytic sites.

Mechanistic Basis of Enzyme Cleavage. During protein hydrolysis, enzyme active sites provide a
specific geometric and electrochemical environment that enables cleavage only at substrate residues
exhibiting optimal complementarity. Thus, active-site geometry and chemistry directly influence
cleavage-site specificity. Structural biology and mutational evidence strongly support this relationship:
a single residue change in the S1 pocket of canonical serine proteases (e.g., trypsin vs. chymotrypsin)
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can dramatically alter specificity by reshaping charge preference and side-chain accommodation [49}
50]. Loop variations near the active-site pocket can also reshape neighboring subsites and modulate
substrate scope [S1]. Furthermore, structural studies of Alzheimer’s y-secretase show that the
architecture of the binding cleft and distal exosites critically determine substrate recognition, where
mutations at the interface shift cleavage patterns [52]. Energetic and mutational scanning analyses of
viral proteases (e.g., HCV NS3/4A) also reveal that substrates optimally filling the active-site groove
undergo efficient catalysis, while suboptimal packing results in weak or absent cleavage [33]].

These mechanistic observations provide biological grounding for UniZyme’s interpretability analyses:
the model’s high sensitivity to predicted active-site residues mirrors the physicochemical principles
underlying real enzymatic catalysis, reinforcing that UniZyme captures not only statistical correlations
but also mechanistic causality.

Table 13: PR-AUC (%) across bins of predicted active-site confidence.
Active-Site Probability Range Zero-shot PR-AUC (%) Supervised PR-AUC (%)

[0.8, 1.0] 78.6 85.4
[0.6, 0.8) 73.8 80.3
[0.4,0.6) 63.1 73.9
[0.2,0.4) 57.7 61.6
[0,0.2) 52.1 56.2

Table 14: Average attribution magnitude for active-site and background residues.

Residue Ty Embed. Sens. Upstream Attr. Embed. Sens. Upstream Attr.
esidue Lype (Sup.) (Sup.) (Zero-shot) (Zero-shot)

Active-site residues 0.68 0.74 0.55 0.60

Background residues 0.23 0.10 0.19 0.08

Table 15: Effect of perturbing pooling weights on PR-AUC (%).

Perturbation Target Sup. Sup. A Zero Zero A
Orig. Post (Sup.) Orig. Post (Zero)

Predicted active-site residues (Top-5) 79.3 66.2 13.1 71.1 574 13.7

Random non-active-site residues 79.3 78.8 1.5 71.1 69.4 1.7

I Computational Effectiveness

Tab. [T6]reports wall-clock times measured on NVIDIA A6000 GPUs. Training was conducted on
8xA6000 GPUs; inference was profiled on a single A6000 GPU. As shown, UniZyme’s end-to-end
training cost is comparable to baselines, and its average per-pair inference latency remains within
practical bounds (around 1s overhead).

Table 16: Training and inference times.

Model Total Training Time (h) Inference per Pair (s)
Pretraining of UniZyme 12.5 —
UniZyme 30.9 52
ClipZyme 31.4 35
ReactZyme 30.3 4.4

27



J Ablation Studies

The Tab. [T7]reports the average PR-AUC across 69 supervised families and 23 zero-shot families.
Full UniZyme achieves the best results in both settings, and performance progressively declines when
the SE, A, or P modules are ablated.

Table 17: Ablation Studies on 69 supervised and 23 zero-shot enzyme families.

Model Supervised Zero-shot

UniZyme 79.3+1.2 71.1£2.3
UniZyme\SE  75.3£1.9 65.3+1.4
UniZyme\A 72.5+1.5 60.6+1.8
UniZyme\P 73.0£2.2 62.1+£2.7

K Failure Case Analysis (Limitation)

In our supervised experiments, the M10.003 family consistently lagged behind C14.003 and C14.005,
despite having comparable dataset sizes. To understand this, we computed the Shannon entropy of
the amino acid distribution at positions P1-P6 around the cleavage site (P3—P4) in Tab. Lower
entropy indicates more conserved residues, which simplifies pattern recognition.

Table 18: Shannon entropy at positions around the cleavage site (P3-P4).

Clan P1 P2 P3(cleavage site) P4 (cleavage site) P5 P6

C14.005 4.10 4.09 3.20 3.99 411 4.11
C14.003 4.11 4.01 3.40 3.96 4.05 4.11
M10.003 3.97 4.00 3.95 3.66 4.03  3.90

Both C14.003 and C14.005 exhibit markedly lower entropy at the cleavage-site residues (P3, P4),
indicating conserved amino acids that aid substrate recognition. By contrast, M10.003 shows
uniformly higher entropy, reflecting greater sequence diversity and fewer distinctive cleavage motifs.
Moreover, as a metalloprotease, M10.003’s activity depends on complex metal-ion coordination in its
active-site, further complicating its cleavage specificity.

These observations suggest that M10.003’s higher substrate diversity and more intricate catalytic
mechanism underlie its lower prediction accuracy. In future work, we plan to integrate metal-ion
binding data and more detailed active-site pocket features to better capture the unique determinants
of metalloprotease specificity.

L Broader Impacts

Accurately predicting protease-substrate cleavage sites across a wide enzymatic landscape is pivotal
for therapeutic molecule design, industrial biocatalysis, and systematic studies of disease-associated
proteolysis. By performing large-scale virtual mapping of these interactions, UniZyme enlarges
the set of candidate targets that experimentalists can pursue, thereby accelerating lead prioritization
in early-stage drug discovery, guiding the engineering of enzymes with enhanced specificity and
stability, and enabling rapid evaluation of emerging viral proteases to bolster pandemic preparedness.
Like any computational framework that substantially improves the efficiency of protease screening
and functional prediction, UniZyme could be misapplied—for instance, to create proteases that
undermine existing biologics or aid in the synthesis of harmful compounds.

M Additional Experiments and Visualizations

As shown in Fig. [§] we conducted zero-shot testing on all enzymes not included in the training data
to evaluate the model’s capability in predicting enzyme active sites.
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Figure 8: Model performance of active-site prediction
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Figure 9: Per-family PR-AUC (%) across 69 supervised enzymes(Part 2: Enzymes 36—69) corre-
sponding to Fig. 3]
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