Under review as submission to TMLR

Sparse Coding with Multi-layer Decoders using Variance
Regularization

Anonymous authors
Paper under double-blind review

Abstract

Sparse representations of images are useful in many computer vision applications. Sparse
coding with an [; penalty and a learned linear dictionary requires regularization of the dic-
tionary to prevent a collapse in the /3 norms of the codes. Typically, this regularization
entails bounding the Euclidean norms of the dictionary’s elements. In this work, we propose
a novel sparse coding protocol which prevents a collapse in the codes without the need to
regularize the decoder. Our method regularizes the codes directly so that each latent code
component has variance greater than a fixed threshold over a set of sparse representations
for a given set of inputs. Furthermore, we explore ways to effectively train sparse coding
systems with multi-layer decoders since they can model more complex relationships than
linear dictionaries. In our experiments with MNIST and natural image patches, we show
that decoders learned with our approach have interpretable features both in the linear and
multi-layer case. Moreover, we show that sparse autoencoders with multi-layer decoders
trained using our variance regularization method produce higher quality reconstructions
with sparser representations when compared to autoencoders with linear dictionaries. Ad-
ditionally, sparse representations obtained with our variance regularization approach are
useful in the downstream tasks of denoising and classification in the low-data regime.

1 Introduction

Finding representations of data which are useful for downstream applications is at the core of machine
learning and deep learning research (Bengio et al., [2013]). Self-supervised learning (SSL) is a branch of
representation learning which is entirely data driven and in which the representations are learned without
the need for external supervision such as semantic annotations. In SSL, learning can happen through
various pre-text tasks such as reconstructing the input with autoencoders (Vincent et al. 2008)), predicting
the correct order of frames in a video (Misra et al., |2016; Fernando et al., 2017)), or enforcing equivariant
representations across transformations of the same image (He et al., |2019; |Grill et all |2020; [Zbontar et al.|
2021; Bardes et al.l [2021)). The pre-text tasks should be designed to extract data representations useful in
other downstream tasks.

We focus on learning representations of images through sparse coding, a self-supervised learning paradigm
based on input reconstruction (Olshausen & Field} [1997)). A representation (also referred to as a code) in the
form of a feature vector z € R! is considered sparse if only a small number of its components are active for
a given data sample. Sparsity introduces the inductive bias that only a small number of factors are relevant
for a single data point and it is a desirable property for data representations as it can improve efficiency and
interpretability of the representations (Bengiol 2009; Bengio et al., [2013). Sparse representations of images
have also been shown to improve classification performance (Ranzato et al., [2007; Kavukcuoglu et al.; |2010;
Makhzani & Freyl 2013)) and are popular for denoising and inpainting applications (Elad & Aharon, {2006}
Mairal et al.| |2007)). They are also biologically motivated as the primary visual cortex uses sparse activations
of neurons to represent natural scenes (Olshausen & Field, [1997; [Yoshida & Ohkil 2020]).

In sparse coding, the goal is to find a latent sparse representation z € R! which can reconstruct an input
y € R? using a learned decoder D. Typically, the decoder is linear, namely D € R¥! and the sparse code

Under review as submission to TMLR

z selects a linear combination of a few of its columns to reconstruct the input. In practice, a sparse code z
is computed using an inference algorithm which minimizes z’s [; norm and simultaneously optimizes for a
good reconstruction of the input y using D’s columns. Learning of the decoder D typically happens in an
iterative EM-like fashion. Inference provides a set of sparse codes corresponding to some inputs (expectation
step). Given these codes, the decoder’s parameters are updated using gradient descent to minimize the error
between the original inputs and their reconstructions (maximization step). Sparse coding systems in which
the decoder is non-linear are hard to learn and often require layer-wise training. In this work, we explore
ways to effectively train sparse coding systems with non-linear decoders using end-to-end learning.

In order to successfully train a sparse coding system which uses a linear dictionary D, it is necessary to limit
the norms of the dictionary’s weights. Indeed, consider a reconstruction ¢ obtained from a dictionary D and
code z, namely § = Dz. The same reconstruction can be obtained from a re-scaled dictionary D’ = ¢D and
code 2’ = z/c for any non-zero multiple c. When ¢ > 1, the representation 2’ has a smaller /; norm than
z but produces the same reconstruction. In practice, if D’s weights are unbounded during training, they
become arbitrarily large, while the [; norms of the latent representations become arbitrarily small which
leads to a collapse in their [; norm. Typically, in order to restrict the dictionary D, its columns are re-scaled
to have a constant lo norm. However, it is not trivial to extend this normalization procedure to the case
when the decoder D is a multi-layer neural network and at the same time learn useful features in D.

Instead of ls-normalizing D’s columns, we propose to prevent collapse in the [; norm of the codes by applying
variance regularization to each latent code component, a strategy similar to the variance principle presented in
Bardes et al.| (2021). In particular, we add a regularization term to the energy minimized during inference for
computing a set of codes. This regularization term encourages the variance of each latent code component to
be greater than a fixed lower bound. This strategy ensures that the norms of the sparse codes do not collapse
and we find that it removes the need to directly restrict D’s parameters. Since this variance regularization
term is independent from D’s architecture, we can use it when the decoder is a deep neural network. In this
work, we experiment with fully connected sparse autoencoders in which the decoder has one hidden layer
and show that we can train such models successfully using our variance regularization strategy.

The main contributions of our work are:

o We introduce an effective way to train sparse autoencoders and prevent collapse in the [; norms of
the codes that they produce without the need to regularize the decoder’s weights but instead by
encouraging the latent code components to have variance above a fixed threshold.

o We show empirically that linear decoders trained with this variance regularization strategy are com-
parable to the ones trained using the standard ls-normalization approach in terms of the features
that they learn and the quality of the reconstructions they produce. Moreover, variance regulariza-
tion allows us to successfully extend sparse coding to the case of a non-linear fully-connected decoder
with one hidden layer.

e Additionally, our experiments show that sparse representations obtained from autoencoders with a
non-linear decoder trained using our proposed variance regularization strategy: 1) produce higher
quality reconstructions than ones obtained from autoencoders with a linear decoder, 2) are helpful
in the downstream task of classification in the low-data regime.

2 Method

A schematic view of our sparse autoencoder setup is presented in Figure[I] At a high level, given an input
y and a fixed decoder D, we perform inference with the FISTA algorithm (Beck & Teboulle, |2009)) to find
a sparse code z* which can best reconstruct y using D’s elements. The decoder’s weights are trained by
minimizing the mean squared error (MSE) between the input y and the reconstruction ¢ computed from z*.
The encoder £ is trained to predict FISTA’s output z*. More details on each of the components in Figure
[I] are presented in the following sections.

Under review as submission to TMLR

vise (= -

Figure 1: Our sparse autoencoder setup. The encoder £ is trained to predict the codes z* computed from
inference with FISTA. The decoder D learns to reconstruct inputs y from the sparse codes z*.

2.1 Background: Sparse Coding and Dictionary Learning

Inference Sparse coding algorithms with an [; sparsity penalty and a linear decoder D € R¥*! perform
inference to find a latent sparse representation z € R! of a given data sample y € R? which minimizes the
following energy function:

1
E(z,y,D) = 5lly — Dz[3 + Al |- (1)
The first term in is the reconstruction error for the sample y using code z and decoder D. The second
term is a regularization term which penalizes the [; norm of z. In essence, each code z selects a linear

combination of the decoder’s columns. The decoder can thus be thought of as a dictionary of building
blocks. Inference algorithms find a solution for the minimization problem in keeping D fixed, namely

z" = arg mzin E(z,y,D).

Learning of the Decoder The decoder’s parameters can be learned through gradient-based opti-
mization by minimizing the mean squared reconstruction error between elements in the training set

Y = {yi1,...,yn} C R? and their corresponding reconstructions from the sparse representations Z* =
{2},..., 25} C R obtained during inference, namely:
| X
. * . * (12
arg min Lp(D,Z2*,Y) = argmin — E lly; — D=7 ||5. (2)

i=1
2.2 Background: Inference with ISTA and FISTA

We provide an overview of the Iterative Shrinkage-Thresholding Algorithm (ISTA) and its faster version
FISTA which we adopt in our setup. ISTA is a proximal gradient method which performs inference to find
a sparse code z* which minimizes the energy in for a given input y and a fixed dictionary D. We can
re-write the inference minimization problem as:

2* = argmin B(z,9, D) = argmin f(2) + g(2). (3)

1
where f(z) = §||y — Dz||3 is the reconstruction term and g(z) = A||z||; is the /; penalty term. In ISTA,

the code z can be given any initial value and is typically set to the zero vector: 2 =0 e R AnISTA
iteration consists of two steps: a gradient step and a shrinkage step.

Gradient Step To compute code z®) from its previous iteration 251 where k € {1,..., K}, ISTA first
performs the gradient update by taking gradient step of size 1 with respect to the squared error between
the input and the reconstruction from z*~1

ISTA gradient step: (k) = Z(k=1) _ ﬁkvf(z(kfl)), (4)

The size of the gradient step 7y at iteration & can be determined with backtracking (Beck & Teboullel |2009)).

Under review as submission to TMLR

Shrinkage Step The shrinkage step is applied to the intermediate output from the gradient step in ISTA.
It uses the shrinkage function 7, which sets components of its input to 0 if their absolute value is less than
a or otherwise contracts them by «, namely [7,(z)]; = sign(z;)(Jz;| — a)+ for some threshold a > 0 where
j traverses the components of its input vector . The shrinkage step for ISTA is given by:

ISTA shrinkage step: PR TAn, (E(k)) ()

where A > 0 is a hyperparameter which determines the sparsity level. In the case when the codes are
restricted to be non-negative, the shrinkage function can be modified to set all negative components in its

output to 0: [To(2)]; = ([Ta(®)];)+

FISTA In our setup, we use FISTA (Beck & Teboulle, [2009) which accelerates the convergence of ISTA
by adding a momentum term in each of its iterations. Namely, 2= ip is replaced by:

) — H0-1) | tk—;i—l(z(k—l) _ (k-2))
k

2
for k > 2 where t;, = % and t; = 1. Thus, the FISTA gradient step becomes:

M =2® — V™). (6)

FISTA employs the same shrinkage step as ISTA.

2.3 Modified Inference with Variance Regularization on the Latent Code Components

In order to prevent collapse in the [; norm of the latent codes, we propose to ensure that the variance of
each latent code component stays above a pre-set threshold. To achieve this, we add a regularization term
to the energy in which encourages the variance of all latent component across a mini-batch of codes to

1
be greater than a pre-set threshold. In particular, we replace the function f(z) = 5”3/ - Dz|3 in with

a new function f (Z) defined over a set of codes Z € RX™ corresponding to a mini-batch of data samples
Y ={y1,...,yn} as:

n

F2)= - M- 023+ Y 8] (7 - (2,0 | ™

=1 Jj=1

The first sum in is over the reconstruction terms from each code Z.; € R!. The second sum in @
is over squared hinge terms involving the variance of each latent component Z;. € R™ across the batch
1 n
where Var(Z;.) = — (Z;i — pj)* and p; is the mean across the j-th latent component, namely
n—
i=1
= % >-" 1 Zji. The hinge terms are non-zero for any latent dimension whose variance is below the fixed
threshold of /7.

Modified Energy: Variance Regularization Using f (Z) from and setting §(Z Z g(Z.;), our

modified objective during inference is to minimize the energy:

IIyi—Dzz,i||§+zl:/3[(Var(Z)J +ZA||Z,Z (8)

j=1

l\DM—‘

E(Z,Y,D) = f(Z) Z

with respect to the codes Z for a mini-batch of samples Y and a fixed dictionary D. Note that the hinge terms
counteract with the Iy penalty terms in . The hinge terms act as regularization terms which encourage the
variance of each of the latent code components to remain above the threshold of v/7. This should prevent a
collapse in the /1 norm of the latent codes and thus should remove the need to normalize the weights of the
decoder.

Under review as submission to TMLR

Gradient Step The first step in our modified version of FISTA is to take a gradient step for each code
Z.; c R

= (k) _ -
Z.y = Z:(,]: D _ nkvz(k—l)f(z) 9)
0ot

The gradient of the sum of reconstruction terms in with respect to Z, ;, one of the latent components of
code Z. 4, for a linear decoder D is:

a n

1 2 T
aZ&t Zl iHyZ - DZ:,i||2 = Ds (DZ:7t — yt), (10)

where Dy denotes the s-th column of the dictionary DE| The gradient of the sum of hinge terms in @ with
respect to Zg; is:

9 l 9 2 T— VaI‘(Z&:) Z \ if Vi
=7 Zﬁ[(T—ﬁ/var(zjﬁ))J T Nan(zy,) Zee) D/ Var((11)
St j=1 0 otherwise.

Even though the hinge terms in are not smooth convex functionﬂ the fact that the gradient in
is a line implies that the hinge term behaves locally as a convex quadratic function. A visualization of
h(z) = [(1 - Vaur(:c))J2 for z € R? and the full derivation of are available in Appendix and
respectively.

Shrinkage Step Similarly to the regular FISTA protocol, the shrinkage step in our modified FISTA is
applied to the intermediate results from the gradient step in @

2.4 Encoder for Amortized Inference

We propose to train an encoder £ simultaneously with the decoder D to predict the sparse codes computed
through inference with FISTA. The first reason is to avoid using batch statistics for computing the codes
once the decoder is trained. Indeed, it should be possible to compute codes for different inputs independently
from each other. The second reason is to reduce the inference time. After training of the encoder and decoder
is done, the encoder can compute the sparse representations of inputs directly which removes the need to
perform inference with FISTA, i.e. the encoder enables amortized inference.

Learning of the Encoder The encoder is trained using mini-batch gradient descent to minimize the fol-
lowing mean-squared error between its predictions and the sparse codes Z* € R™X™ computed from inference
with FISTA for inputs Y = {y1,...,yn}:

. * : 1 . * |12
argmin Le(€,Z7,Y) = argmin — ; I1E(y:) — Z7113. (12)
Note that the codes Z* are treated as constants. Training the encoder this way is similar to target propa-
gation (Lee et al., [2015]).

Modified Energy: Encoder Regularization To ensure that the codes computed during inference with
FISTA do not deviate too much from the encoder’s predictions, we further modify the inference protocol by
adding a term which penalizes the distance between the encoder’s outputs and FISTA’s outputs:

+/32[(T—\/Var<). +’YZHZ &3 (13)

This regularization term encourages FISTA to find codes which can be learned by the encoder. In our setup,
the encoder’s predictions are treated as constants and are used as the initial value for codes in FISTA, namely
Z:(’?) = &£(y;). This can reduce the inference time by lowering the number of FISTA iterations needed for
convergence if the encoder provides a good initial values.

f(2) =3 3y~ D

i=1

1For simplicity, we do not use the momentum term notation introduced in
2The gradient for any neural network decoder D can be computed through automatic differentiation.
3 A requirement for the FISTA algorithm.

Under review as submission to TMLR

3 Experimental Setup

3.1 Encoder and Decoder Architectures

LISTA Encoder The encoder’s architecture is Algorithm 1 LISTA encoder £

inspired by the Learned ISTA (LISTA) architec- Input: Image y € R%, number of iterations L
ture (Gregor & LeCunl [2010). LISTA is designed Parameters: U € R¥!, § e R*! b e R
to mimic outputs from inference with ISTA and re- Output: sparse code zg € R!
sembles a recurrent neural network. Our encoder u=Uy+b
consists of two fully connected layers U € R*! and 2o = ReLU(u)
S € R a bias term b € R!, and ReL U activation for i=1to L do
functions. Algorithm [I]describes how the encoder’s z; = ReLU(u + Sz;_1)
outputs are computed. end for
zZe = ZJ,

Linear Decoder A linear decoder D is parameterized simply as a linear transformation W which maps
codes in R! to reconstructions in the input data dimension R¢, i.e. W € R?*!. No bias term is used in this
linear transformation.

Non-Linear Decoder In the case of a non-linear decoder D, we use a fully connected network with one
hidden layer of size m and input layer of size [(the dimension of the latent codes). We use ReLU as an
activation function in the hidden layer. For convenience, we refer to the layer which maps the input codes to
the hidden representation as W7 € R™*! and the one which maps the hidden representation to the output
(reconstructions) as Wy € R¥>™ There is a bias term b; € R™ following W7 and no bias term after Ws.

3.2 Evaluation

We compare autoencoders trained using our variance regularization method to autoencoders trained with
the traditional sparse coding approach in which the /3 norm of the decoder’s columns is fixed. We refer to
the traditional approach as standard dictionary learning (SDL) in the case the decoder is a linear dictionary
and as SDL-NL in the case it is non-linear - a natural extension of SDL to the case of non-linear decoders
is to fix the Il norms of the columns of both W3 and Ws5. We refer to our approach as variance-reqularized
dictionary learning (VDL) in the case when the decoder is linear and as VDL-NL when the decoder is
non-linear. The weights of the decoders in VDL and VDL-NL models are not restricted.

In order to compare the autoencoders, we train them with different levels of sparsity regularization \, evaluate
the quality of their reconstructions in terms of peak signal-to-noise ratio (PSNR), and visualize the features
that they learn. We evaluate models with a linear decoder on the downstream task of denoising. Additionally,
we measure the pre-trained models’ performance on the downstream task of MNIST classification in the low
data regime.

3.3 Data Processing

MNIST In the first set of our experiments, we use the MNIST dataset (LeCun & Cortes|, 2010) consisting
of 28 x 28 hand-written digits and do standard pre-processing by subtracting the global mean and dividing
by the global standard deviation. We split the training data randomly into 55000 training samples and 5000
validation samples. The test set consists of 10000 images.

Natural Image Patches For experiments with natural images, we use patches from ImageNet ILSVRC-
2012 (Deng et al., [2009). We first convert the ImageNet images to grayscale and then do standard pre-
processing by subtracting the global mean and dividing by the global standard deviation. We then apply
local contrast normalization to the images with a 13 x 13 Gaussian filter with standard deviation of 5
following |Jarrett et al.| (2009); Zeiler et al|(2011). We use 200000 randomly selected patches of size 28 x 28
for training, 20000 patches for validation, and 20000 patches for testing.

Under review as submission to TMLR

3.4 Inference and Training

We determine all hyperparameter values through grid search. Full training details can be found in Appendix

A2

Inference The codes Z are restricted to be non-negative as described in section 2.2} The dimension of the
latent codes in our MNIST experiments is [= 128 and it is [= 256 for experiments with ImageNet patches.
The batch size is set to 250 which we find sufficiently large for the regularization term on the variance of
each latent component in VDL in . We set the maximum number of FISTA iterations K to 200 which we
find sufficient for good reconstructions.

Autoencoders Training We train models for a maximum of 200 epochs in MNIST experiments and for
100 epochs in experiments with natural image patches. We apply early stopping and save the autoencoder
which outputs codes with the lowest average energy measured on the validation setﬁ In SDL and SDL-NL
experiments, we fix the [s norms of the columns in the decoders’ fully connected layers W, W7, and W5 to
be equal to 1. We add weight decay to the bias term by in both SDL-NL and VDL-NL models as well as to
the bias term b in the LISTA encoder to prevent their norms from inflating arbitrarily.

Implementation and Hardware Our PyTorch implementation is available on GitHub at [link removed
for anonymity]. We train our models on one NVIDIA RTX 8000 GPU card and all our experiments take
less than 24 hours to run.

4 Results and Analysis

4.1 Autoencoders with a Linear Decoder

Linear Decoders: Features Figures[2|shows the dictionary elements for two SDL and two VDL decoders
trained with different levels of sparsity regularization A. As evident from Figures [2a]and [2b| we confirm that,
in the case of standard dictionary learning on MNIST, the dictionary atoms look like orientations, strokes,
and parts of digits for lower values of the sparsity regularization A and they become looking like full digit
prototypes as A increases (Yu, 2012)). A similar transition from strokes to full digit prototypes is observed in
figures 2 and 2d] displaying the dictionary elements of models trained using variance regularization in the
latent code components.

Figure[3]shows dictionary elements for two SDL and two VDL models trained on ImageNet patches. Decoders
in both SDL and VDL models contain Gabor-like filters. We observe that models which are trained with a
lower sparsity regularization parameter A (Figure [3a] and contain more high frequency atoms than ones
trained with higher values of A (Figure [3bfand .

LISTA and Linear Decoders: Reconstruction Quality The dashed lines in Figure [da] represent
regret curves for encoders from SDL and VDL models (with a linear decoder). These regret curves show
the trade-off between the level of sparsity measured by the average percentage of non-active (zero) code
components and reconstruction quality measured by the average PSNR evaluated on the test set over 5
random seeds. As expected, higher sparsity levels result in worse reconstructions. Models trained with
our Vari%nce regularization approach produce better reconstructions than SDL models for higher levels of
sparsity.

LISTA and Linear Decoders: Denoising We evaluate the performance of the encoders trained to
predict sparse codes in SDL and VDL models on the downstream task of denoising. In this setup, we
corrupt the input images by adding Gaussian noise and proceed with computing their corresponding sparse
codes through amortized inference using the encoder. We then feed these codes to the decoder to obtain
reconstructions of the noisy inputs.

Figure [5|shows the reconstructions of original MNIST images and of MNIST images corrupted with Gaussian
noise with zero mean standard deviation o = 1 using encoders trained with the SDL and VDL dictionaries

4As a reminder, codes are computed using amortized inference with the encoder during validation.
5As a reference for reconstruction quality in terms of PSNR, the second row of images in Figure and contains
reconstructions of the images in the top row with PSNR of around 17.3 and 17.7, respectively.

Under review as submission to TMLR

HEAE AaEbR
HEHE EEHA

AREE HBBRAn
EEl0 B[HEER
NElE HBEEE EENE BERE
AEAs Elﬂl DAdE OERE

(a) SDL, A = 0.001) SDL, A = 0.005 (c) VDL, A = 0.005 (d) VDL, A = 0.02

Figure 2: Dictionary elements for linear dictionaries with latent dimension [= 128 and different levels of
sparsity regularization A. The SDL model in produces reconstructions with PSNR of 21.1 for codes with
average sparsity level of 63% on the test set. The VDL model in produces reconstructions with PSNR,
of 20.7 for codes with average sparsity level of 69%. The SDL model in produces reconstructions with
PSNR of 18.6 for codes with average sparsity level of 83%. The VDL model in produces reconstructions
with PSNR of 17.7 for codes with average sparsity level of 91.8%.

N=EV/N ENER NSEN
=lZH EEZN WEIN
SSHE NENE NSNS
=S N=lE NNi=

= 0.002 (b) SDL, A = 0.005 (¢) VDL, A = 0.005 (d) VDL, A =0.01

A

s‘!
‘!

Figure 3: Dictionary elements which resemble Gabor filters for SDL and VDL models with latent dimension
l = 256 trained on ImageNet patches with different levels of sparsity regularization A. The SDL models in
[3a] and BB produce reconstructions with average PSNR of 26.9 and 24.0 and average sparsity level in the
codes of 74.6% and 90.5% on the test set, respectively. The VDL models in Figures and produce
reconstructions with average PSNR of 27.3 and 25.3 and average sparsity level in the codes of 77.3% and
89.2% on the test set, respectively.

AF

from Figure 2b] and 2d] We observe that both SDL and VDL models are able to produce reconstructions
which are closer to samples from the manifold of training data than to the noisy inputs. This implies that
the sparse coding systems have learned to detect features useful for the data they are trained on and cannot
reconstruct random noise, as desired.

SDL and VDL models trained on ImageNet patches are also robust to the addition of Gaussian noise to their
inputs. This is evident in Figure [6] which contains reconstructions g and g, of images y and their noisy
version y, for an SDL model and a VDL model with similar average sparsity in the codes they produce.

Table [I] shows a summary of the reconstruction quality of images with varying levels of Gaussian noise
corruption for encoders from SDL and VDL models over 5 random seeds. Both the SDL and VDL encoders
are able to produce codes from corrupted inputs y, which, when passed through their corresponding decoders,
produce outputs 4, that are less noisy than the corrupted inputs. This observation is significant considering
the fact that the sparse autoencoders in our experiments are not, explicitly trained to perform denoising.

Ablation: no variance regularization In experiments without applying our variance regularization
strategy on the sparse representations or fixing the norms of the dictionary’s columns, we observe a collapse
in the /1 norms of the sparse codes. This indicates that VDL is an effective alternative strategy to SDL for
preventing collapse.

Under review as submission to TMLR

—&- MNIST VDL —&- ImageNet VDL

MNIST SDL-NL 321 N ImageNet SDL-NL
284 Ay MNIST SDL S0 ImageNet SDL
=238

301

—k— MNIST VDL-NL L\ —— ImageNet VDL-NL
D

< 22 o
= =z
] Y 284
201
26 1
18
244
16 - T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Average fraction of zero elements in codes Average fraction of zero elements in codes
(a) MNIST (b) ImageNet patches

Figure 4: Trade-off between sparsity measured by average percentage of inactive (zero) code components
and reconstruction quality measured by PSNR for encoders from SDL, SDL-NL, VDL, and VDL-NL models
trained on MNIST with code dimension [= 128 in or on ImageNet patches with code dimension [= 256
in and different levels of sparsity regularization \. Higher PSNR reflects better reconstruction quality.

y AU B EIEIEIAVAEIE2 ol /1213]#41514]718l9.
» EE y EE
- CIHEEEEAREE - BREEEEAEEER
ya—lﬂ....... ya—lﬂ...ﬂ.ﬂ.
Yo=15 ,g;‘p_"._“‘ : Yo=15 Haj o2
Yomi.s Eﬂ.... Yom15 E......ﬂ

(a) SDL, A = 0.005 (b) VDL, A = 0.02

Figure 5: Examples of denoising abilities of encoders from SDL and VDL models trained on MNIST which
produce codes with average sparsity of 89.7% and 91.8%, respectively. Top two rows: original inputs (top)
and their reconstructions (bottom); middle two rows: inputs with Gaussian noise with standard deviation
o =1 (top) and their reconstructions (bottom), bottom two rows: inputs with Gaussian noise with standard
deviation ¢ = 1.5 (top) and their reconstructions (bottom).

4.1.1 Autoencoders with a Non-linear Decoder

Non-linear Decoders: Features FEach column W.; € R? in a linear dictionary D (parameterized by
W) reflects what a single latent component encodes since W. ; = We where e € R! is a one-hot vector
with 1 in position ¢ and Os elsewhere. We use a similar strategy to visualize the features that non-linear
decoders learn. Namely, we provide codes with only one non-zero component as inputs to the non-linear
decoders and display the resulting “atoms’ F’:] While in the linear case each code component selects a single
dictionary column, in the case of non-linear decoders with one hidden layer, each code component e® selects
a linear combination of columns in W5. Two SDL-NL and two VDL-NL models trained on MNIST with
different levels of sparsity regularization A yield the atoms displayed in Figure [/l They contain strokes and
orientations for smaller values of A and fuller digit prototypes for larger values of A which are very similar
to the dictionary elements in Figure [2| for both the SDL-NL and VDL-NL models.

LISTA and Non-linear Decoders: Reconstruction Quality Figure |4 plots the trade-off between
average sparsity in the codes (computed by encoders) and reconstruction quality from these codes for models
with linear decoders (dashed lines) and non-linear decoders (solid lines). Figures [4a| and [4b|show that VDL-
NL models trained on both MNIST and ImageNet patches have better PSNR, performance than all the other

6 Additionally, we subtract the effect of the bias. In essence, we display Wnge(i) rather than Wa(W; e 4 b1).

Under review as submission to TMLR

yEEWNERACERE > ER
' EEWNENACNE 5 W
ESMEERNGUEE - ESREE RS

e ENMEERNL MR - BTSRRI

(a) SDL, A = 0.002 (b) VDL, A = 0.005

bl TP RN
o RISEL

Figure 6: Examples of denoising for encoders from SDL and VDL models trained on ImageNet patches which
produce codes with average sparsity of 74.6% and 77.3%, respectively. Top two rows: original inputs (top)
and their reconstructions (bottom); bottom two rows: inputs corrupted with Gaussian noise with standard
deviation o = 1 (top) and their reconstructions (bottom).

Table 1: The performance of SDL and VDL models trained on MNIST and ImageNet patches with different
levels of sparsity regularization A on the the task of denoising inputs corrupted with Gaussian noise with
standard deviation o = 1.0 or 0 = 1.5. We report the average sparsity of codes computed with these models
and the PSNR of: the reconstruction ¢ of the original (not corrupted) input vy, the corrupted input y,, and
the reconstruction g, of the corrupted input y,. Evaluated on the test set over 5 random seeds.

MNIST
MODEL A Lo (zg) PSNR @ o PSNR vy, Lo(zg) PSNR g,
SDL 0.005 89.7% +0.2% 17.3£0.028 1.0 10.2 87.3% £0.2% 16.9£0.053
VDL 0.02 91.8% +0.1% 17.7+0.023 1.0 10.2 88.1% +0.2% 15.44+0.175
SDL 0.005 89.7%+0.2% 17.3+£0.028 1.5 6.7 84.6% £ 0.5% 15.740.204
VDL 0.02 91.8% +0.1% 17.7+£0.023 1.5 6.7 84.5% £ 0.3% 12.2+0.275
IMAGENET PATCHES
SDL 0.002 74.6%+0.1% 26.9+0.007 1.0 20.0 72.7% +0.1% 25.6 +£0.011
VDL 0.005 77.3% +02% 27.3+£0.058 1.0 20.0 73.5% +0.2% 25.24+0.035

models for high levels of sparsity. This implies that models with non-linear decoders trained using variance
regularization on the codes can better utilize the additional representational capacity from the larger number
of layers and parameters in W7 and W5 compared to the other models when the sparsity level is high.

Non-Linear Decoders: Features As described in the case for MNIST in section we visualize the
features that non-linear decoders learn by displaying what each latent code component encodes. These
learned features are displayed in Figure [§] for SDL-NL and VDL-NL models trained with different levels of
sparsity regularization A. As in the case of linear decoders, we observe that both SDL-NL and VDL-NL
models learn Gabor filters.

Classification in the Low Data Regime To investigate whether self-supervised pre-training helps
with classification performance in the low data regime, we evaluate the linear separability of codes from
pre-trained LISTA encoders in SDL, SDL-NL, VDL, and VDL-NL autoencodersﬂ when few training samples
are available for supervised learning. To do this, we freeze the pre-trained encoders’ weights and train a
linear classification layer on top of their output layer with 1, 2, 5, 10, 20, 50, and 100 training samples per
class. For each number of training samples per class and each type of encoder (coming from SDL, VDL,
SDL-NL, or VDL-NL models), we select the encoder among the ones presented in Figure @which gives the
best validation accuracy.

We compare the accuracy of the linear classifiers trained on the features output by the frozen pre-trained
encoders to that of classifiers trained from scratch on the raw MNIST data. We consider a linear classifier
(referred to as “Linear on raw”) and a classifier consisting of a LISTA encoder followed by a linear layer

"The autoencoders are trained on the full MNIST dataset in an unsupervised way.

10

Under review as submission to TMLR

7
BEHE

(a) SDL-NL, A = 0.003 (b) SDL-NL, A = 0.01 (¢) VDL-NL, A = 0.003 (d) VDL-NL, A = 0.02

Figure 7: Visualizing reconstructions from SDL-NL and VDL-NL decoders trained on MNIST with input
codes in which only one component is active and the rest are zero. We observe that for both SDL-NL and
VDL-NL, each code component encodes stokes, orientations, parts of digits, and full digit prototypes very
similar to those in Figure[2] The SDL-NL models in [7a] and [7h] produce reconstructions with average PSNR
of 20.9 and 18.4 and average sparsity level in the codes of 69.2% and 85.6% on the test set, respectively.
The VDL-NL models in [7c| and [7d] produce reconstructions with average PSNR of 22.7 and 18.3 and average
sparsity level in the codes of 58.8% and 92.2% on the test set, respectively.

ERdE NEWE SRKES
- " — . —
ANl EREE NSAKS
== "

NEAS NElE -HME NS N

(a) SDL-NL, A = 0.003) SDL-NL, A = 0.01) VDL-NL, A = 0.003) VDL-NL, A = 0.01

i s I T
RR=EN
-

Figure 8: Visualizing reconstructions produced by SDL-NL and VDL-NL decoders trained on ImageNet
patches from input codes in which only one code component is active and the rest are zero. We observe
that for both SDL-NL and VDL-NL, code components encode Gabor-like filters. The SDL-NL and VDL-
NL models in and produce reconstructions with PSNR of 27.1 and 28.4 for codes with average
sparsity level of 69.8% and 67.6%, respectively. The SDL-NL and VDL-NL models in and produce
reconstructions with PSNR of 25.0 and 24.9 for codes with average sparsity level of 83.4% and 90.8%,
respectively.

(referred to as “LISTA on raw”). Figure [J] summarizes the classification performance on the test set. All
linear classifiers trained on top of the pre-trained LISTA encoders give better top 1 and top 3 classification
performance than classifiers trained on the raw MNIST data. Furthermore, VDL-NL models outperform
VDL, SDL, and SDL-NL models on classification with up to 10 samples per class. This implies that sparse
autoencoders which use a non-linear decoder and are trained using variance regularization on the latent
codes give better classification performance when few labeled training samples available.

Ablation: no variance regularization Similarly to the linear case, experiments in which W7 and W,
are unconstrained and the standard FISTA (without variance regularization applied to the codes) is used
result in a collapse of the I; norm of the latent codes. Our experiments imply that our proposed variance
regularization protocol prevents collapse in models which use fully-connected decoders with one hidden layer.

5 Related Work

Our work is related to the extensive literature on sparse coding and dictionary learning. [Mairal et al.| (2014)
provide a comprehensive overview of sparse modeling in computer vision, discuss its relation to the fields of

11

Under review as submission to TMLR

1.0 1.00
0.9 e 0.95
0.90 1
2 0.8+ >
g g 0.85
g 0.7 3
3 g o080
~ 06 M s 4~ VDL-NL
<3 o 0
° A- VDL o A- VDL
=051 SDL-NL = .70 SDL-NL
SDL sbL
0.4 1 —4— LISTA on raw 0.65 A —+— LISTA on raw
—+%- Linear on raw —+- Linear on raw
0.3+ : : 0.60 -+ : .
10° 10! 102 10° 10! 102
Number of training samples per class (log scale) Number of training samples per class (log scale)
(a) Top 1 accuracy. (b) Top 3 accuracy.

Figure 9: Linear separability of features from pre-trained SDL, SDL-NL, VDL, and VDL-NL encoders.
Models trained with variance regularization in the codes and a non-linear decoder (VDL-NL) outperform
other models in linear classification with up to 10 training samples per class. Test set performance is reported
over 5 random seeds.

statistics, information theory, and signal processing, as well as its applications in computer vision including
image denoising, inpainting, and super-resolution.

Sparsity Constraints Sparse representations can be obtained using many different objectives. The [y
penalty term in equationcan be replaced by other sparsity-inducing constraints including lo, I, (0 < p < 1),
ly, or I3 norms. In particular, the I; term is a convex relaxation of the non-differentiable /o constraint of
the form || z||o < k requiring z to have at most k active components. [Zhang et al.| (2015) provide a survey of
existing algorithms for sparse coding such as K-SVD which generalizes K-means clustering
[2006). [Makhzani & Frey| (2013)) propose an approach to train a sparse autoencoder with a linear encoder
and decoder in which only the top k activations in the hidden layer are kept and no other sparsifying penalty
is used.

Inference There are many variations of the ISTA inference algorithm which address the fact that it is
computationally expensive and are designed to speed it up, such as FISTA (Beck & Teboulle| 2009) which
is used in our setup (for details please refer to section . Gated LISTA (Wu et al., [2019) introduces a
novel gated mechanism for LISTA (Gregor & LeCun| [2010) which enhanses its performance. In|Zhou et al]
, it is shown that deep learning with LSTMs can be used to improve learning sparse codes in ISTA by
modeling the history of the iterative algorithm and acting like a momentum. Inspired by LISTA, we train
an encoder to predict the representations computed during inference using the usual and modified FISTA
protocols as explained in section [2.4

Multi-layer Sparse Coding There exist methods which greedily construct hierarchies of sparse repre-
sentations. |Zeiler et al.| (2010) use ISTA in a top-down convolutional multi-layer architecture to learn sparse
latent representations at each level in a greedy layer-wise fashion. Other convolutional models which produce
a hierarchy of sparse representations are convolutional DBNs and hierarchical convolutional
factor analysis (Chen et al., [2013)) which also use layer-wise training. Another greedy approach is proposed
by [Tariyal et al.| (2016) who train multiple levels of dictionaries, one layer at a time. In contrast, our work is
about finding sparse representations by utilizing multi-layer neural networks and training the whole system
end-to-end.

6 Conclusion

In this work, we revisit the traditional setup of sparse coding with [, sparsity penalty. We propose to apply
variance regularization to the sparse codes during inference with the goal of training non-linear decoders

12

Under review as submission to TMLR

without collapse in the I3 norm of the codes. We show that using our proposed method we can successfully
train sparse autoencoders with fully connected multi-layer decoders which have interpretable features, out-
perform models with linear decoders in terms of reconstruction quality for a given average level of sparsity in
the codes, and improve MNIST classification performance in the low data regime. Future research directions
include scaling up our method to natural images using deep convolutional decoders.

Broader Impact Statement

This work proposes a general-purpose machine learning algorithm for representation learning which is trained
using large amounts of unlabeled data. The representations learned by this algorithm reflect any biases
present in the training data. Therefore, practitioners should apply techniques for identifying and mitigating
the biases in the data when applicable. This notice is doubly important since the learned representations
can be incorporated in numerous real-world applications such as medical diagnosis, surveillance systems,
autonomous driving, and so on. These applications can have both positive and negative effect on society,
and warrant extensive testing before being deployed in order to prevent harm or malicious use.

References

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11):4311-4322, 2006.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for
self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183-202, 2009.

Yoshua Bengio. Learning deep architectures for ai. Foundations and trends in Machine Learning, 2(1):1-127,
2009.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEFE transactions on pattern analysis and machine intelligence, 35(8):1798-1828, 2013.

Bo Chen, Gungor Polatkan, Guillermo Sapiro, David Blei, David Dunson, and Lawrence Carin. Deep
learning with hierarchical convolutional factor analysis. IEEFE transactions on pattern analysis and machine
intelligence, 35(8):1887-1901, 2013.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image processing, 15(12):3736-3745, 2006.

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video representation
learning with odd-one-out networks. In Proceedings of the IEEFE conference on computer vision and pattern
recognition, pp. 3636-3645, 2017.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pp. 399-406, 2010.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal Piot, ko-
ray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new ap-
proach to self-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21271
21284. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
f3ada80d5c4ee70142b17b8192b2958e—-Paper. pdf.

13

https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf

Under review as submission to TMLR

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage
architecture for object recognition? In 2009 IEEFE 12th international conference on computer vision, pp.
2146-2153. IEEE, 2009.

Koray Kavukcuoglu, Pierre Sermanet, Y lan Boureau, Karol Gregor, Michael Mathieu, and Yann L.
Cun. Learning convolutional feature hierarchies for visual recognition. In J. D. Lafferty, C. K. L
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (eds.), Advances in Neural Information Pro-
cessing Systems 23, pp. 1090-1098. Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
4133-1earning-convolutional-feature-hierarchies-for-visual-recognition.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXi:1412.6980, 2014.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. URL http://yann.lecun.com/
exdb/mnist/, 2010.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation. In Joint
european conference on machine learning and knowledge discovery in databases, pp. 498-515. Springer,
2015.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th annual interna-
tional conference on machine learning, pp. 609-616, 2009.

Julien Mairal, Michael Elad, and Guillermo Sapiro. Sparse representation for color image restoration. IEEE
Transactions on image processing, 17(1):53-69, 2007.

Julien Mairal, Francis R. Bach, and Jean Ponce. Sparse modeling for image and vision processing. CoRR,
abs/1411.3230, 2014. URL http://arxiv.org/abs/1411.3230.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using
temporal order verification. In Furopean Conference on Computer Vision, pp. 527-544. Springer, 2016.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed
by v1? Vision research, 37(23):3311-3325, 1997.

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann L Cun. Efficient learning of sparse
representations with an energy-based model. In Advances in neural information processing systems, pp.

1137-1144, 2007.

Snigdha Tariyal, Angshul Majumdar, Richa Singh, and Mayank Vatsa. Deep dictionary learning. [IFEE
Access, 4:10096-10109, 2016.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and compos-
ing robust features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pp. 1096-1103, 2008.

Kailun Wu, Yiwen Guo, Ziang Li, and Changshui Zhang. Sparse coding with gated learned ista. In Inter-
national Conference on Learning Representations, 2019.

Takashi Yoshida and Kenichi Ohki. Natural images are reliably represented by sparse and variable popula-
tions of neurons in visual cortex. Nature communications, 11(1):1-19, 2020.

Kai Yu. Tutorial on deep learning: Sparse coding. C'VPR, 2012.

14

http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1411.3230

Under review as submission to TMLR

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning
via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. In 2010
IEEE Computer Society Conference on computer vision and pattern recognition, pp. 2528-2535. IEEE,
2010.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks for mid and high
level feature learning. In 2011 International Conference on Computer Vision, pp. 2018-2025. IEEE, 2011.

Zheng Zhang, Y. Xu, Jian Yang, Xuelong Li, and David Zhang. A survey of sparse representation: Algorithms
and applications. IEEFE Access, 3:490-530, 2015.

Joey Tianyi Zhou, K. Di, J. Du, Xi Peng, H. Yang, Sinno Jialin Pan, I. Tsang, Yong Liu, Z. Qin, and R. Goh.
Sc2net: Sparse Istms for sparse coding. In AAAI 2018.

A Appendix

A.1 Notation

Table [2] contains descriptions of the notation and symbols used in this work.

A.2 Training Details

All hyperparameter values are selected through grid search. For the constant step size 7, in FISTA, we
consider values in the range of 0.01 to 100. In VDL experiments, we consider values for the hinge regular-
ization coefficient 8 between le—1 and 100. In all our experiments, we use Adam (Kingma & Bal 2014) as
an optimizer for both the encoder £ and decoder D with a batch size of 250. We use L = 3 iterations in
the LISTA encoder (see Algorithm |1)). We run the FISTA algorithm for a maximum of 200 iterations. The
12 — 2V,
125Dl
index of the first iteration for which the convergence criterion holds. Table [3] contains the hyperparameter
values we used in all our experiments.

convergence criterion we set is: < le—3. FISTA’s output is z* = 2(*) where k* is the

A.3 Variance Regularization Term
Figure (10| visualizes the variance regularization term h(x) = [(1 — \/Var(alr:))Jr]2 for € R? in 3D.

A.3.1 Gradient Derivation

We compute the gradient of the hinge term in with respect to one latent code’s component Zj ;:

2| (r = fontz) | a0

1

As a reminder of our notation, / is the latent dimension, n is the batch size, Z € R™*™ stores the codes for
all elements in a batch, and Z;. € R" stores code values for the j-th latent component.

Note that:
1 n
Var(Z;.,.) = n_1 Z(Zj,i - Nj)Qv (15)
i=1
1 n
pi= > Zji (16)

Under review as submission to TMLR

Notation

Table 2: Descriptions of symbols and notation used.

Description

3 3

(=
iy

SDL
SDL-NL

VDL

VDL-NL

LISTA-inspired encoder.

Decoder: linear or fully-connected with one hidden layer.

Dimension of the decoder’s hidden layer.

Hyperparameter for the sparsity regularization.

Hyperparameter for the variance regularization of the latent codes.

Hyperparameter encouraging the FISTA codes to be close to the encoder’s predictions.
Dimension of the input data.

Input sample in R%.

Total number of training samples.

Mini-batch size.

Number of ISTA/FISTA iterations.

Step size for ISTA/FISTA gradient step.

Learning rate for the decoder.

Learning rate for the encoder.

Shrinkage function [7,()]; = sign(z;)(|z;| — «).

Non-negative shrinkage function [7o(x)]; = ([Ta(@)];)+-

Dimension of the latent code.

Latent code in R.

Mini-batch of latent codes in R™.

Parametrization in R¥! of a linear dictionary D.

Parametrization in R™*! of the bottom layer of a fully-connected decoder D with one
hidden layer.

Parametrization of a the top layer of a fully-connected decoder D with one hidden
layer in R¥*™.

Parametrization of the bias term in R™ following the bottom layer of a fully-connected
decoder D with one hidden layer.

Parametrization of the bias term in the LISTA encoder (see .

Standard Dictionary Learning with a linear decoder whose columns have a fixed I3 norm.

Standard Dictionary learning with a non-linear fully-connected decoder.

Each layer in the decoder has columns with a fixed I, norm.

Variance-regularized Dictionary Learning with a linear decoder in which regularization
is applied to the sparse codes encouraging the variance across the latent

components to be above a fixed threshold.

Variance-regularized Dictionary Learning (as above) with a non-linear decoder.

The gradient in is non-zero only for j = s and /Var(Z;.) < T. Thus,

8285’25 ;5[@ - va]r(zj,:))J2 = aZas,tﬁ(T - Var(Zs,:))2
— QB(T — Var(ZS,:)) azas t (T — 4/ Var(Z;,))
- —Qﬁ(T — Var(Zs,;)) 83 t Var(Zs,.)

=05 Var(Zs,.)

16

Under review as submission to TMLR

Variance Regularization Term in 3D

anjeA

Figure 10: Visualizing the variance regularization function h(x) = [(1 — \/Var(z)) +]2 for € R? in 3D.

Now, continuing with:

0
aZs,t

Var(Z;,.) =

0Zs ¢

-1

[n i 1 Z(Zs,i - ,UIS)Z} (21)
azis,t(ZS’t fis)? +; 5 Z&t(zs,z us)ﬂ (22)
Q(ZS,t us)@Z (Zs,t — ps) + ZQ(ZS i /LS)ag (Zsi — ,“S)} (23)

s, it s,t
1 9 1O 0 1 <
_(Zs,t ﬂs)aT&t (Zs,t - "LZ:l Zs,m) + #Zt(zs 2 Ms)aTs’t (Zs,z - E Tnzzl Zs,m)]
(24)
(Zs,t Us)(l - _> +Z(Zs,i _Ms)(_ %)} (25)
it

:(Zs,t - ﬂs) - %Z(Zs,i - ﬂs)j| (26)
r 1< 1
(Zs,t - Ms) - E Z Zs,i + En,uls:| (27)
B i=1
:(Zs,t — [1s) — ps + MS] (28)

(Zs,t - ,us)a (29)

17

Under review as submission to TMLR

and using the result in we conclude that:

! 2 (T— Var(Zs,:))

8Z¢§:5KT— \@ﬂzﬁ»+r:: ST N 7o) (Zoa—n) i Var(Z) <T (50

J=1 0 otherwise.

B Additional Visualizations

Figures and display 128 of the dictionary elements for the same SDL and VDL models as in Figures
and

]

ESCEEGEAY EHSANEEE SEppnaERA
HEEEAEEN BEpGEAEREN
ENdEAEEE B0 AN
HEEIEIII ENSESINE ANEEEAEE
EBEEEEEEGN GEEEREEN AaSERBES
RHEHAENELNE ElddAENE SHaEnEaR

¢ ElldEAEEEN ENENEaEs
DEMEAENE ENABAEnE
EfNEEENEE EnmEennN
EESENENE AESESNEn
AENENANE EEREEANE
HiGENESE ENENEREE
BEESENNEE GREEEnan
ENENENEE SNEAEANE
* dEEE GEEENENE BEE0EEER
EHIIIIII EFCDSEEAEE NanEEAaEE

(b) SDL, X = 0.005 (¢) VDL, A = 0.005 (d) VDL, A = 0.02

/ -~

ENENENSONEENSASN

DNENSSNNSEHEENNEN
IONIAEESENNSNENS
SENGEAEENNENESN
HEERENARNNESEEEE
INSESEDEENANEnE
NESENEENEEENGHEE
SEINRNENIPNEARES

—
[
Nao%

w2
=}
-
S
I
[en]
o
[an]
=

Figure 11: Dictionary elements for linear dictionaries with latent dimension [= 128 and different levels of
sparsity regularization A\. SDL stands for dictionary learning in which the /3 norm of the decoder’s columns
is fixed to 1. VDL stands for dictionary learning in which norms of the decoder’s columns are not explicitly
bounded but our proposed variance regularization on the latent codes is used. The SDL models in [2a] and
[2B] produce reconstructions with average PSNR. of 21.1 and 18.6 for codes with average sparsity level of 63%
and 83% on the test set, respectively. The VDL models in [2¢| and [2d| produce reconstructions with average
PSNR of 20.7 and 17.7 for codes with average sparsity level of 69% and 91.8% on the test set, respectively.

18

Under review as submission to TMLR

SNz ES.
PR TR
VT EAT
& i = Nz W /N
ASIEENZ N
W7 B S O I N
LT IEEE
AT IEEE
NSENEUEN
P= 7=l
NEZENSAD
7 ENER TS
SEZNSNAE
EESHRANES
SLANEVNS
SR

(a) SDL, A = 0.002

Figure 12: Dictionary elements which resemble Gabor filters for SDL and VDL models with latent dimension
I = 256 trained on ImageNet patches with different levels of sparsity regularization A. The SDL models in
and produce reconstructions with average PSNR of 26.9 and 24.0 and average sparsity level in the
codes of 74.6% and 90.5% on the test set, respectively. The VDL models in Figures [3d and [3d] produce
reconstructions with average PSNR of 27.3 and 25.3 and average sparsity level in the codes of 77.3% and

/]

= T 76 N
ANTES
AT
SO TATTAS
AE =AY
IS EIH ==
NIEREET
HZNZ IS
WASZAW=S
NTEE
NIZZ=RED
H=SENZLEN
E=SiSNSS
SRS
EZZSENNZ
HlE==EZAIN

(b) SDL, A = 0.005

89.2% on the test set, respectively.

Tl
Ni=240=0
) A AN -
R ITAAA A
EENNZEEN
= .
SENSNEFA
NNSEESHS

= -

SEAZEESN
HKiINEENEs

=
SEENSRNY
0 = S R
AVNESNES
NEPNEN=N
NS E=EEA

ey

(¢) VDL, A = 0.005

19

"NEENEEN
ZIEENEEE
T EEC T
SSEppZas
NEMZ=aZN=
MERENNE
THTTE
NAEZNEES
LZENEZEE

L ET
NIRESEER
EZRENEES
NAZEEERE
ENEZAENEN

- ——

(d) VDL, A = 0.01

Under review as submission to TMLR

dataset model ep A ~ B T D ne wd(by) wd(b) g
MNIST SDL 200 0 1 0 - le—3 3e—4 - 0 1
MNIST SDL 200 le—4 1 0 - le—3 3e—4 - 0 1
MNIST SDL 200 be—4 1 0 - le—3 3e—4 - 0 1
MNIST SDL 200 le—3 1 0 - le—3 3e—4 - 0 1
MNIST SDL 200 3e—3 1 0 - le—3 3e—4 - 0 1
MNIST SDL 200 be—3 1 0 - le—3 3e—4 - 0 1
MNIST VDL 200 0 5 10 05 3e—4 1le—4 - 0 0.5
MNIST VDL 200 le—3 5 10 0.5 3e—4 le—4 - 0 0.5
MNIST VDL 200 3e-3 5 10 05 3e—4 1le—4 - 0 0.5
MNIST VDL 200 be—3 5 10 0.5 3e—4 1le—4 - 0 0.5
MNIST VDL 200 le—2 5 10 05 3e—4 1le—4 - 0 0.5
MNIST VDL 200 2e—2 5 10 05 3e—4 1le—4 - 0 0.5
MNIST SDL-NL 200 0 1 0 - le—3 le—4 1le-3 0 1
MNIST SDL-NL 200 1le—3 1 0 - le—3 le—4 1le-3 0 1
MNIST SDL-NL 200 3e—3 1 0 - le—3 le—4 1le—3 0 1
MNIST SDL-NL 200 5e—3 1 0 - le—3 le—4 1le—3 0 1
MNIST SDL-NL 200 1le—2 1 0 - le—3 le—4 1le-3 0 1
MNIST SDL-NL 200 2e-2 1 0 - le—3 le—4 1le-3 0 1
MNIST VDL-NL 200 0 100 10 0.5 3e—4* le—4 1le—3 0 0.5
MNIST VDL-NL 200 1le—3 100 10 0.5 3e—4* 1le—4 1le—3 0 0.5
MNIST VDL-NL 200 3e—3 100 10 0.5 3e—4* 1le—4 1le—3 0 0.5
MNIST VDL-NL 200 5e—3 100 10 0.5 3e—4* le—4 1le—3 0 0.5
MNIST VDL-NL 200 1le—2 100 10 0.5 3e—4* 1le—4 1le—3 0 0.5
MNIST VDL-NL 200 2—2 100 10 0.5 3e—4* 1le—4 1le—3 0 0.5
ImageNet SDL 100 0 0 - le-3 1le—4 - le—2 0.5
ImageNet SDL 100 5e—4 0 - le-=3 1le—4 - le—2 0.5
ImageNet SDL 100 le—3 0 - le—-3 1le—4 - le—2 0.5
ImageNet SDL 100 2e—3 0 - le—3 1le—4 - le—=2 0.5
ImageNet SDL 100 3e—3 0 - le—3 1le—4 - le—=2 0.5
ImageNet SDL 100 5e—3 0 - le—3 1le—4 - le—2 0.5
ImageNet VDL 100 0 10 0.5 3e—4 1le—4 - le—2 0.5
ImageNet VDL 100 le—3 10 0.5 3e—4 1le—4 - le—=2 0.5
ImageNet VDL 100 3e—3 10 05 3e—4 1le—4 - le—=2 0.5
ImageNet VDL 100 5e—3 10 0.5 3e—4 le—4 - le—2 0.5
ImageNet VDL 100 le—2 10 0.5 3e—4 le—4 - le—2 0.5
ImageNet VDL 100 1.5e—2 10 0.5 3e—4 1le—4 - le—2 0.5
ImageNet SDL-NL 100 0 0 - le—3 1le—4 le—2 le—=2 0.5

ImageNet SDL-NL 100 1le—3
ImageNet SDL-NL 100 3e—3
ImageNet SDL-NL 100 5e—3
ImageNet SDL-NL 100 8e—3
ImageNet SDL-NL 100 1le—2
ImageNet VDL-NL 100 0

ImageNet VDL-NL 100 1le—3
ImageNet VDL-NL 100 2e—3
ImageNet VDL-NL 100 3e—3
ImageNet VDL-NL 100 5e—3
ImageNet VDL-NL 100 1le—2
ImageNet VDL-NL 100 2e—2

- le—3 1le—4 le—2 le—2 0.5
- le—3 1le—4 le—2 le—2 0.5
- le—3 1le—4 le—2 le—2 0.5
- le—3 1le—4 le—2 le—2 0.5
le—3 1le—4 le—2 le—2 0.5
10 0.5 b5e—5" le—4 le—1 le—2 0.5
10 0.5 5e—5" le—4 le—1 le—=2 0.5
10 0.5 5He—5" le—4 le—1 le—2 0.5
10 0.5 b5e—5" 1le—4 1le—1 le—=2 0.5
10 0.5 b5e—5" le—4 le—1 le—2 0.5
10 0.5 b5e—5" le—4 le—1 le—=2 0.5
10 0.5 5e—5" le—4 le—1 le—=2 0.5

o
1

Table 3: Training hyperparameters. SDL indicates models in which columns of the decoder’s layers have
a fixed norm of 1. VDL indicates models in which variance regularization is applied to the codes during
inference. (*) means that the learning rate for the decoder np is annealed by half every 30 epochs. wd stands
for weight decay.

20

	Introduction
	Method
	Background: Sparse Coding and Dictionary Learning
	Background: Inference with ISTA and FISTA
	Modified Inference with Variance Regularization on the Latent Code Components
	Encoder for Amortized Inference

	Experimental Setup
	Encoder and Decoder Architectures
	Evaluation
	Data Processing
	Inference and Training

	Results and Analysis
	Autoencoders with a Linear Decoder
	Autoencoders with a Non-linear Decoder

	Related Work
	Conclusion
	Appendix
	Notation
	Training Details
	Variance Regularization Term
	Gradient Derivation

	Additional Visualizations

