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ABSTRACT

Softmax with the cross entropy loss is the standard configuration for current neural
text classification models. The gold score for a target class is supposed to be 1, but
it is never reachable under the softmax schema. Such a problem makes the training
process continue forever and leads to overfitting. Moreover, the “target-approach-
1” training goal forces the model to continuously learn all samples, leading to a
waste of time in handling some samples which have already been classified cor-
rectly with high confidence, while the test goal simply requires the target class of
each sample to hold the maximum score. To solve the above weaknesses, we pro-
pose the Adaptive Sparse softmax (AS-Softmax) which designs a reasonable and
test-matching transformation on top of softmax. For more purposeful learning, we
discard the classes with far smaller scores compared with the actual class during
training. Then the model could focus on learning to distinguish the target class
from its strong opponents, which is also the great challenge in test. In addition,
since the training losses of easy samples will gradually drop to 0 in AS-Softmax,
we develop an adaptive gradient accumulation strategy based on the masked sam-
ple ratio to speed up training. We verify proposed AS-Softmax on a variety of
multi-class, multi-label and token classification tasks with class sizes ranging from
5 to 5000+. The results show that AS-Softmax consistently outperforms softmax
and its variants, and the loss of AS-Softmax is remarkably correlated with classi-
fication performance in validation. Furthermore, adaptive gradient accumulation
strategy can bring about 1.2× training speedup comparing with the standard soft-
max while maintaining classification effectiveness.

1 INTRODUCTION

Softmax is widely used as the last-layer activation function of a neural classification model. It nor-
malizes the output of a network to a probability distribution over predicted output classes. Softmax
is extremely appealing in both academics and industries as it is simple to evaluate and differentiate.
Many research efforts are devoted to refining softmax. On one hand, several works (Shim et al.,
2017; Liu et al., 2017) have explored accelerating the training process by outputting a subset of
classes to reduce computational complexity. On the other hand, improving training effectiveness
is also an important direction. For example, Liu et al. (2016) and Liang et al. (2017) enlarged the
margin of intra-class and inter-class in softmax, while Szegedy et al. (2016) used label smoothing to
prevent the neural networks from excessively trusting gold labels.

Despite the probability form, each output score of softmax is within the range of (0, 1), unlike
the sparse probability distribution in real classification tasks. Consequently, the weights of all the
classes have to be updated endlessly, which wastes a lot of time and leads to overfitting (Sun et al.,
2021). In addition, the training goal of softmax with the cross entropy loss is to make the target
score approach to 1, while in test we expect the target score could be superior to scores of other
classes. Thus there is an obvious gap between the two objectives. Take the following two prediction
cases as an example: It is a 5-class classification task and Class 1 is the gold label.

Case A: {0.4, 0.15, 0.15, 0.15, 0.15}

Case B: {0.49, 0.5, 0.004, 0.003, 0.003}
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We can find that in Case A, the score of Class 1 is far larger than all the other classes, leading a
successful prediction. By contrast, there is a strong negative class in Case B and its classification
result is wrong. Unfortunately, in the training period, since the target score in Case B is much
higher than that in Case A, the corresponding cross entropy loss would make the model biased
towards improving Case A, although Case B is a hard sample in practice. Our experiments show that
sometimes the correlation coefficient between the cross entropy loss of softmax and the classification
accuracy is even close to 0 in validation (refer to Table 4).

To address the above-mentioned deficiency, we propose the Adaptive Spare softmax (AS-Softmax)
which involves a reasonable and test-matching transformation on top of softmax. Specifically, when
computing the softmax activation function, we exclude the classes whose scores are smaller than
the actual class to a given margin. In this way, the model focuses on learning to distinguish the
target class from its strong opponents, matching the use in test. It is also noted that the loss of AS-
Softmax can drop to 0 as long as the score of the target class is much larger than all other classes. In
other words, with the progress of training, more and more easy samples will be dropped from back
propagation. Thus the learning process tends to find the useful hard training instances, which makes
learning more effective. In practice, it is not always the case that increasing the training sample
helps the final performance of the model. Yao et al. (2022) and Wang et al. (2017) claimed that
training the model with representative instances is more efficient. Easy samples can be discarded
by the cascade structure at early stages (Yang et al., 2019) for learning better classification models.
Moreover, the increasing removed samples also guide us in developing a novel adaptive gradient
accumulation strategy to make the training process faster and faster.

We test AS-Softmax on a variety of text classification tasks, including multi-class classification
Socher et al. (2013); Larson et al. (2019), multi-label classification Chalkidis et al. (2021); Kowsari
et al. (2017) and token classification Sang & De Meulder (2003); Tseng et al. (2015). All the bench-
marks are publicly available and the class sizes range from 5 to 5000+. Experiments show that
AS-Softmax consistently improves the performance of text classification by 1% to 2% and allevi-
ates overfitting to a large extent. In addition, AS-Softmax with the adaptive gradient accumulation
strategy can bring about 1.2× training speedup while maintaining the performance.

To conclude, AS-Softmax solves the endless training and train-test objective mismatching problems
of the original softmax function. Its advantages can be summarized as follows:

• With AS-Softmax, easy samples will be dropped from back propagation gradually , mod-
erating overfitting and making training more effective.

• The loss of AS-Softmax is highly correlated with the final classification performance.

• Its training can be accelerated via the proposed adaptive gradient accumulation strategy.

• AS-Softmax is fairly easy to implement. We have made it as an standard module in Py-
torch.1

2 RELATED WORK

Softmax loss function is widely used as an output activation function for modeling categorical prob-
ability distributions. There are a lot of variants of softmax proposed in the literature (De Brebisson
& Vincent, 2015; Martins & Astudillo, 2016; Yang et al., 2017; Kanai et al., 2018; Gimpel & Smith,
2010). We will briefly introduce them in terms of efficiency and effectiveness.

Enhancing Efficiency Training a model using the full softmax loss becomes prohibitively expen-
sive in the settings where a large number of classes are involved. One important kind of efficient
training is to reduce its output dimension to reduce computational complexity. For example, hierar-
chical softmax (Morin & Bengio, 2005) partitioned the classes into a tree based on class similarities.
Meanwhile, many works explored efficient subsets instead of all output classes. We define these
methods as sparse softmax family uniformly. Jean et al. (2014); Rawat et al. (2019) and Blanc &
Rendle (2018) preserves a small number of negative classes in training by importance sampling and
kernel based sampling, respectively. Martins & Astudillo (2016) suggested a new softmax variant

1Code will be released in the final version.
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which could generate sparse posterior distributions. Some studies also tried to use approximate es-
timation to simplify the calculation of softmax. Devlin et al. (2014) and Vaswani et al. (2013) used
self-normalization mechanism and noise contrastive estimation separately to simplified the complex-
ity of calculation. Spherical softmax (Vincent et al., 2014; De Brebisson & Vincent, 2015) adopted
a quadratic function instead of the original the exponential function, making its parameter update
independent of the output size while Shim et al. (2017) introduced the singular value decomposition
method to restrict the probability distribution.

Boosting Effectiveness Softmax usually lacks the accurate discrimination of similar output
classes. Thus, an intuitive idea is to enlarge the inter-class margin and compress the intra-class
distribution. Liang et al. (2017) designed a soft distant margin while Liu et al. (2016) incorporated
angular margin to obtain a more discriminative decision boundary. The features learned by softmax
loss have intrinsic angular distribution Liu et al. (2017). Follow-up studies (Deng et al., 2019; Choi
et al., 2020; Wang et al., 2018d; Ranjan et al., 2017; Liu et al., 2017; Wang et al., 2018c) made more
effort on the angular constraints and normalization. Additionally, variants in the sparse softmax
family like Chen et al. (2021) and Sun et al. (2021) are also in favor of improving the effectiveness
of models as they reduce the risk of overfitting. Besides, to prevent the network from becoming
over-confident in the current labels, Szegedy et al. (2016) introduced label smoothing while Huang
et al. (2021) proposed Noise-Aware-with-Filter to distinguish hard samples from noisy labels. More-
over, Lee et al. (2018) overlay binary masking variables over class output probabilities by dropout
to input-adaptively learned via variational inference.

3 METHODS

3.1 BACKGROUND OF SOFTMAX

Suppose the final output of the neural classifier is o ∈ Rn. Here n denotes the number of classes.
The prediction score of a class pi in the original softmax is computed as follows:

pi = softmax(oi) =
eoi∑n
j=1 e

oj
. (1)

Classifiers usually adopt cross entropy combined with softmax as their loss function. For multi-class
classification, there is only one actual target class t. Then the expression of the loss function and its
backward propagation are as follows:

L = − log(pt) (2)

= log(

n∑
j=1

eoj )− ot,

∇L =
∂L
∂oj

=

{
pj − 1, if j = t,

pj , otherwise.
(3)

The cross entropy loss is composed of exponential and logarithmic functions, which is convenient
for computation of the loss function and its back propagation. However, as mentioned in Section 1,
softmax is trapped in the endless training and train-test goal mismatching problems. In addition, the
smaller the cross entropy loss, the stricter the constraints between the target and non-target classes.
Sun et al. (2021) proved that in order to make sure the loss L can be reduced to log 2, the output
should satisfy the following inequality:

ot − omin ≥ log(n− 1), (4)

where ot, omin respectively means the target (maximal) logit and the minimal logit. When dealing
with the high-dimensional classification problems, log n− 1 is a relatively massive but unnecessary
margin, which increases the overfitting risk.

In order to mitigate disadvantages aforementioned, we propose an alternative variant of softmax
named Adaptive Sparse softmax (AS-Softmax).
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3.2 ADAPTIVE SPARSE SOFTMAX

The training goal of softmax is to make the score of the target class as large as possible. This
practice does not match the test objective to encourage the target probability greater than that of any
other category. Motivated by Sparse-softmax (Sun et al., 2021), we propose a new training objective
which encourages the probability of target class pt to exceed the probability of non-target class pi̸=t

by a specific margin δ:
pt − pi ̸=t ≥ δ, (5)

where δ ∈ [0, 1] is a hyper-parameter.

To achieve this goal, we discard the classes which have already satisfied Eq. 5 in training. Specifi-
cally, we adopt a binary factor zi:

zi =

{
0, if Eq. 5 is satisfied and i ̸= t,
1, otherwise.

(6)

Then the modified probability of a class p̃i is computed as follows:

p̃i = AS-Softmax(oi) =
zie

oi∑n
j=1 zje

oj
. (7)

It can be seen that AS-Softmax is extremely easy to implement. Given the output of softmax, AS-
Softmax only needs a simple linear screening step while the back propagation process remains the
same. With the import of zi, we find that the losses of more and more training samples will reduce
to zero, that is to say, these samples are masked, as shown in Figure 1. Therefore, the classification
model with AS-Softmax tends to discard easy samples and focus on the rest hard cases, making
learning more effective.

In the mathematical forms, AS-Softmax is close to Sparse-Softmax which preserves the fixed top k
negative classes to speed up training. However, the loss of Sparse-Softmax is still always larger than
0 and it does not contrast the representations of positive and negative classes.

We also examine a more direct training criterion expressed as:
log(pt)− log(pi̸=t) = ot − oi ̸=t ≥ δ′. (8)

Nevertheless, o can take any value, namely no upper bound of δ′, which makes it hard to find the
optimal value. More comparisons of the above two strategies are provided in Appendix A.1.

3.2.1 ALGORITHM DISCUSSION

We can prove that our training object enables the output o to obey the following condition:
ot − omin ≥ log (nδ + 1). (9)

Proof. From our criterion in Eq. 5, we can get:

pt − pmin =
eot∑n
j=1 e

oj
− eomin∑n

j=1 e
oj

≥ δ. (10)

This formula can be further converted into:

eot − eomin ≥ δ

n∑
j=1

eoj ≥ nδeomin . (11)

Namely:
eot ≥ (nδ + 1)eomin . (12)

With a log transformation, we finally conclude that:
ot − omin ≥ log (nδ + 1). (13)

Recall the requirement of softmax in Eq. 4, the criterion of AS-Softmax is much easier to meet, as δ
is quite small in practice.
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3.2.2 EXTENSION TO MULTI-LABEL CLASSIFICATION

Softmax is typically used in multi-class classification and token classification tasks. However, Su
(2020) demonstrated that softmax could also be applied to multi-label classification tasks with the
following loss function:

L = log(1 +
∑

i∈Ωneg

eoi) + log(1 +
∑

t∈Ωpos

e−ot), (14)

where Ωpos stands for the set of target classes while Ωneg denotes the set of non-target classes.
The training objective of this method is to raise scores of target classes to exceed zero and decrease
scores of non-target classes to be lower than zero. Thus in test, the classes with the scores larger than
0 can be regarded as the prediction output. Compared with the sigmoid based method, this method
can mitigate the sparse problem when the number of entire output classes is greatly larger than the
number of target classes.

Likewise, we extend AS-Softmax to multi-label classification, aiming to encourage probabilities of
entire target classes to exceed probabilities of non-target classes by a specific margin δ. To formulate,
our additional goal is:

pmin
t − pi ≥ δ, (15)

pt − pmax
i ≥ δ, (16)

where pmin
t represents the smallest probability of all target classes and pmax

i means the largest
probability of all non-target classes. To achieve this goal, we define the following binary factors zi
and zt for multi-label classification tasks:

zi =

{
0, if Eq. 15 is satisfied,
1, otherwise,

, zt =

{
0, if Eq. 16 is satisfied,
1, otherwise.

(17)

Consequently, the final loss function combined with AS-Softmax can be obtained as follows:

L = log(1 +
∑

i∈Ωneg

zie
oi) + log(1 +

∑
t∈Ωpos

zte
−ot). (18)

Note, if pmin
t − pmax

i ≥ δ is satisfied, the whole loss will reduce to 0, namely the sample masked.

3.3 ADAPTIVE GRADIENT ACCUMULATION STRATEGY

Figure 1: Variation of masked samples ratio on Clinc oos.

In theory, the model with the training objective of AS-Softmax will gradually remove easy samples
during training. As shown in Figure 1, experimental result shows taht the effective sample size in a
batch of AS-Softmax is much smaller than that of softmax. Such few effective samples in a batch
would waste computing resources such as the GPU memory. In addition, the hyper-parameters of the
training optimizer such as the learning rate do not well match the training process in softmax. There-
fore, we accumulate the training steps of AS-Softmax to make the effective sample size approach
that of softmax. Specifically, we propose an adaptive gradient accumulation method according to
the masked samples ratio:

stepsaccum = λ ∗ Nall

Nall −Nmasked
, (19)
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where λ is a hyper-parameter controlling the accelerate magnitude and Nall/Nmasked denotes the
number of all/masked samples. λ is necessary as stepsaccum is a prediction of the successive
batches.

In addition, we attach the following restrictions to the accelerate strategy to guarantee its effective-
ness: i). making sure stepsaccum is increasing monotonically; ii). ensuring the difference between
two adjacent stepsaccum does not exceed 1; and iii). setting an upper limitation to stepaccum. For
convenience, we call the acceleration algorithm of AS-Softmax as AS-Speed.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

To evaluate our approach extensively, we conduct experiments on 6 different text classification
datasets, including SST5 (Socher et al., 2013), Clinc oos (Larson et al., 2019), Conll2003 (Sang
& De Meulder, 2003), SIGHAN2015 (Tseng et al., 2015), Eurlex (Chalkidis et al., 2019) and WOS-
46985 (Kowsari et al., 2017). These datasets belong to multi-class classification, token classification
and multi-label classification tasks respectively. We separately adopt following evaluation metrics:
accuracy, f1, macro/micro-f1 to measure multi-class classification, token classification and multi-
label classification tasks. The basic information of the datasets and evaluation metrics is listed in
Table 1. See Appendix A.2 for more details.

Dataset Task # Train/Dev/Test # classes Model Metrics

SST5 multi-class classification 8544/1101/2210 5 BERT accuracy
Clinc oos 15250/3100/5500 151 BERT accuracy

Conll2003 token classification 14042/3251/3454 9 BERT f1
SIGHAN2015 277786/1100/1100 5201 Roberta f1

Eurlex multi-label classification 55000/5000/5000 127 BERT macro/micro-f1
WOS-46985 30070/7518/9397 141 BERT macro/micro-f1

Table 1: Statistics of experimental datasets.

4.2 BASELINES

We implement 7 baselines including Softmax and its six variants. We first compare our method with
the temperature-based softmax (T-Softmax) which has hyper-parameter. Then, for sparse based
algorithms, we choose Sparse-Softmax (Sun et al., 2021), Sparsemax (Martins & Astudillo, 2016)
and Entmax (Peters et al., 2019) as our comparison methods. From the perspective of the reachable
training objective, we introduce Label-Smoothing (Szegedy et al., 2016) method for comparison.
In addition, δ plays the role of margin in AS-Softmax. Thus we compare AS-Softmax with the
additive margin softmax (AM-Softmax (Wang et al., 2018c)). Most shared hyper-parameters refers
to examples2, while the specific hyper-parameters of each model are tuned on the validation set.
Details of these models and their hyper-parameter settings are shown in Appendix A.3.

4.3 SETTINGS

Most experiments are conducted based on huggingface’s pytorch implementation of transform-
ers.The base pretrained models (Devlin et al., 2018; Liu et al., 2019) are initialized by BERT-base-
cased and Roberta-wwm-ext respectively. We utilize AdamW (Loshchilov & Hutter, 2017) as the
optimizer. Due to the little change of AS-Softmax to the original softmax code, it can be reproduced
easily. Our experiments are mainly carried out on RTX A5000 with a memory size of 24G except
that the experiment related to SIGHAN2015 is conducted on V100 with 32G memory. For more
specific parameter settings of the tasks we used, please refer to the Appendix A.4.

2https://github.com/huggingface/transformers/tree/main/examples
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SST5 Clinc oos Conll2003 SIGHAN2015 Eurlex WOS-46985
accuracy accuracy f1 f1 macro-f1 micro-f1 macro-f1 micro-f1

Softmax 51.90 88.60 90.56 70.80 46.87 68.73 80.40 86.00
T-Softmax 53.12 88.65 90.63 70.80 46.87 68.73 80.76 86.36
Sparse-Softmax 52.99 89.02 90.93 71.40 47.77 68.99 80.94 86.65
Sparsemax 51.49 88.55 90.57 71.49 - - - -
Entmax 51.90 88.33 90.62 72.81 - - - -
Label-Smoothing 52.85 88.64 90.64 68.10 - - - -
AM-Softmax 52.17 89.05 90.66 68.57 - - - -

AS-Softmax 53.12 89.07 91.03 72.81 48.30 68.99 80.94 86.39
AS-Speed 52.53 88.78 90.58 71.40 48.14 68.70 81.07 86.71

Table 2: Comparison of experimental results on various text datasets with different baselines (“-”
means not available since their papers or codes do not provide the corresponding method for multi-
label classification tasks).

SST5 Clinc oos Conll2003 SIGHAN2015 Eurlex WOS-46985

Softmax 288 533 625 10905 5944 5644
Sparse-Softmax -7% +2% -1% -2% -1% -1%
Sparsemax -2% 0 0 +8% - -
Entmax 0 0 -2% +10% - -
Label-Smoothing 0 +1% -3% -4% - -
AM-Softmax 0 +1% 0 -3% - -

AS-Softmax -1% -1% -1% -2% -1% -2%
AS-Speed -22% -15% -21% -7% -13% -5%

Table 3: Training time of different methods (in seconds). The training time of T-Softmax is not
listed because it is the same as that of Softmax in theory.

4.4 MAIN RESULTS

The performance and training time on experimental tasks are presented separately in Table 2 and
Table 3. Overall, the proposed AS-Softmax and AS-Speed have achieved improvements in terms of
classification performance and efficiency in almost all the tasks.

From Table 2, we can observe that AS-Softmax consistently outperforms other methods. For multi-
class classification tasks and token classification tasks, we find that AS-Softmax could bring more
performance enhancement in the case of difficult tasks than simple tasks. It is worth noting that the
f1 score of AS-Softmax on SIGHAN2015 is about 2 points higher than that of softmax. In terms
of multi-label classification tasks, there is a slight difference between the training objective of AS-
Softmax and the test goal. In testing, we will choose the classes with scores greater than 0 as the
prediction results. However, in training period, AS-Softmax only encourages the probabilities of
non-target classes to be lower than the minimum probabilities of target classes by a specific margin
δ. Despite the impact of this gap, the results of AS-Softmax also surpass softmax results on such
datasets. More details will be analyzed in following sections.

Table 3 shows that all compared algorithms except AS-Speed perform fairly in terms of the training
time. Notably, when it comes to high-dimensional output classes (i.e. SIGHAN2015), it may cost
more time for those methods which requires O(nlogn) computation complexity, such as Entmax
and Sparsemax. Compared with softmax, AS-Speed could increase the training speed by about
1.2× on the premise of maintaining the classification accuracy. To some extent, the acceleration
effect depends on the number of classification categories. AS-Speed has achieved greater speed
improvement on SST5 and Conll2003 which have no more than 10 output classes. Meanwhile, AS-
Softmax also has more than 1.1× acceleration performance over softmax although there are 150+
output classes such as Clinc oos. For SIGHAN2015 and WOS-46985, AS-Speed has no significant
effect. One important reason is that there are too many output classes and the proportion of masked
samples is unstable, leading to the maximum accumulated steps can only be 2.

In additional, we conduct experiment on some classification tasks of GLUE benchmark Wang et al.
(2018a). The result are presented in Appendix A.6.
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4.5 RESULT ANALYSIS

Impact of δ The δ value can significantly affect the accuracy of the classifier. If δ is too large,
AS-Softmax would not mask such easy samples, making the model to overlearn a lot of useless
information. In contrast, AS-Softmax would cast away some potential useful knowledge when δ is
rather small, which could result in insufficient learning. In our experiments, we attempt different
values of δ ranging from 0.05 to 0.5 and choose the final value which achieves the highest classifi-
cation performance on the development set. According to such experiments, we suggest setting δ to
a moderate value 0.3. Then we investigate the influence of δ in the case of relative easy and hard
tasks. As Figure 2 shown, the predictions on SST5 represents a difficult situation while the result
on Conll2003 denotes a simple case. It can be seen that the model performs best on SST5 when the
value of δ is 0.2 (relative smaller). By contrast, a slightly larger δ is more helpful to its classification
effect on Conll2003. In conclusion, we believe that it could be better to set δ to a relative larger
value for simple tasks and set δ to a smaller value for difficult tasks.

Figure 2: Accuracy/F1 metrics on SST5 and Conll2003 with different δ.

SST5 Clinc oos Conll2003 SIGHAN2015 Eurlex WOS-46985

Softmax 0.038 -0.943 -0.975 -0.947 -0.337 -0.902
Sparse-Softmax 0.088 -0.914 -0.981 -0.907 -0.114 -0.901
Sparsemax 0.050 -0.976 -0.968 -0.681 - -
Entmax 0.080 -0.986 -0.983 -0.617 - -
Label-Smoothing -0.087 -0.952 -0.998 -0.989 - -
AM-Softmax 0.057 -0.915 -0.974 -0.982 - -

AS-Softmax -0.952 -0.949 -0.996 -0.986 -0.909 -0.904

Table 4: Results of Pearson correlation coefficient between loss and accuracy.

Correlation between Loss and Classification Performance To verify that our training objective
can alleviate the train-test goal mismatching problem, we introduce the Pearson correlation coeffi-
cient which measures the relationship between the loss and the classification ability in validation.
The correlation coefficient is close to - 1 or 0 indicating the loss is linear or has no significant corre-
lation with the classification performance. If the correlation coefficient is close to 1, it demonstrates
that the learning direction of the model is obviously opposite. In theory, the final classification per-
formance is inversely correlated with the loss. Table 4 illustrates that the correlation between loss
of all methods and their classification performance is linear on datasets with high identical accuracy
such as Conll2003 and SIGHAN2015. However, when it comes to hard datasets (i.e. SST5 and
Eurlex), the correlation coefficients of compared baselines are not good enough and some corre-
lations could be even the opposite. By comparison, the loss of AS-Softmax and its classification
performance is highly relevant across whole experimental datasets, which verified the design of
AS-Softmax training objective.

To intensively explore the correlation between the loss and classification performance, we record
the loss and accuracy on development set of SST5. The left/right subfigure of Figure 3 represents its
classification performance and normalized loss, respectively. It can be seen that other models tend to
overfit as their accuracy is still fluctuating while the loss has turned to increase, after 1000+ training
steps. By contrast, the loss of AS-Softmax does not increase significantly at the end of training
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process, which also reveals that it could moderate the overfitting problem. To verify the discarded
samples are easy samples we expected, we do more experiment. See details in Appendix A.5.

Figure 3: Comparison of development performance on SST5.

Probability Margin of Positive and Negative Classes The AS-Softmax training goal is calcu-
lated according to target probability pt and non-target probability pi ̸=t. To check this objective, we
design a metric pmargin = pt − pmax

neg , where pmax
neg indicates the largest probability in non-target

classes. pmargin is greater or less than 0 denoting that the classification result is correct or wrong.
Then we draw the distribution diagram of pmargin on SST5 in Figure 4, where δ in AS-Softmax
is set to 0.3. Generally speaking, Softmax result is widely distributed while the distribution of AS-
Softmax result is very concentrated. On one hand, when pmargin is less than 0, AS-Softmax pushes
pmargin close to 0. It indicates that even if the true label is not identified correctly, its top k candi-
dates in the prediction result still have some reference value. By comparison, there are many strong
negative classes in the softmax result, which makes the result completely unavailable. On the other
hand, when pmargin is greater than 0, the overall distribution of pmargin is squeezed to be lower
than or close to δ. It suggests that AS-Softmax could prevent the model from being optimized to-
wards overlearning easy samples and the model could pay more attention to those hard samples. To
conclude, the probability margin distribution is in accordance with the proposed training objective
which encourages the target class to exceed other non-target classes by a specific margin δ.

Figure 4: Distribution diagram of pmargin on the SST5 test set with δ = 0.3. We add a dotted line
to stand for pmargin = 0, which splits the wrongly (left) and correctly (right) predicted cases.

5 CONCLUSION

In this paper, we propose a simple yet effective softmax variant, namely adaptive sparse softmax
(AS-Softmax), which discards easy training samples at the aim of a more reasonable and test-
matching learning objective. We further develop an adaptive gradient accumulation strategy based
on the masked sample ratio to accelerate the training process of AS-Softmax. Experimental results
on 6 text classification datasets show that AS-Softmax consistently surpasses the original softmax
and its variants. We believe our work can be extended in many aspects. On the one hand, instead of
the current fixed value of δ, we plan to investigate an improvement strategy which decides δ adap-
tively. On the other hand, we are curious about the performance of AS-Softmax on the generation
tasks and other input modals such as images or audio.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Guy Blanc and Steffen Rendle. Adaptive sampled softmax with kernel based sampling. In Interna-
tional Conference on Machine Learning, pp. 590–599. PMLR, 2018.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos. Large-scale
multi-label text classification on eu legislation. arXiv preprint arXiv:1906.02192, 2019.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Mar-
tin Katz, and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language understanding
in english. arXiv preprint arXiv:2110.00976, 2021.

Phil Chen, Mikhal Itkina, Ransalu Senanayake, and Mykel J Kochenderfer. Evidential softmax
for sparse multimodal distributions in deep generative models. Advances in Neural Information
Processing Systems, 34:11565–11576, 2021.

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua Jiang, Feng Wang, Taifeng Wang, Wei Chu, and
Yuan Qi. Spellgcn: Incorporating phonological and visual similarities into language models for
chinese spelling check. arXiv preprint arXiv:2004.14166, 2020.

Hongjun Choi, Anirudh Som, and Pavan Turaga. Amc-loss: Angular margin contrastive loss for
improved explainability in image classification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 838–839, 2020.

Alexandre De Brebisson and Pascal Vincent. An exploration of softmax alternatives belonging to
the spherical loss family. arXiv preprint arXiv:1511.05042, 2015.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4690–4699, 2019.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine translation. In
proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1370–1380, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Kevin Gimpel and Noah A Smith. Softmax-margin crfs: Training log-linear models with cost func-
tions. In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 733–736, 2010.

Xiusheng Huang, Yubo Chen, Shun Wu, Jun Zhao, Yuantao Xie, and Weijian Sun. Named entity
recognition via noise aware training mechanism with data filter. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, pp. 4791–4803, 2021.
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A APPENDIX

A.1 AS-VARIANT

AS-Softmax is to mask the weak negative class features after obtaining the probabilities of classes.
One feature of AS-Softmax is δ ∈ [0, 1]. It is convenient to find the optimal δ value of AS-Softmax.
We also examine a simple training criterion. That is, apply δ′ to the final output o of the neural
classifier. Similar to the principle of AS-Softmax, δ′ is a margin used to open the gap between the
scores of target categories and that of other categories. Nevertheless, o can take any value, namely
no upper bound of δ′, which makes it hard to find the optimal value. We call the above method
AS-variant. We carry out the experiment of AS-variant on SST5.

In the Figure 5, the gray dotted line represents the prediction results of original softmax while the
experimental results of AS-Softmax are indicated by the red dotted line. The blue one represents
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Figure 5: Accuracy of AS-variant with different δ′ on SST5 test set.

that the results of AS-variant change with δ′. We take the value of δ′ from 0 to 7. As can be seen
from this figure, when δ′ is greater than 6, AS-variant is equivalent to softmax. It can be seen that
the prediction results fluctuate up and down around the baseline. Therefore, we can not determine
where to obtain the optimal δ′ under this algorithm as easily as AS-Softmax. Moreover, the results
are not as good as AS-Softmax.

A.2 DATASETS AND METRICS

In this section, we describe the experimental datasets and metrics in details.

SST5. This dataset (Socher et al., 2013) is a sentence level classification dataset for sentiment
analysis. It contains 5 output classes (from very negative to very positive). It is made up of 8544
train, 1101 validation, 2200 test samples. We adopts pretrained language model BERT initialized
with bert-base-cased parameters. The evaluation metric for this dataset is accuracy.

Clinc oos. This dataset (Larson et al., 2019) is for intent classification, comprising of 151 classes
over 10 domains. Its train, validation, test dataset contains 15250, 3100, 5500 instances. We use
BERT as our backbone. Accuracy is also used as evaluation metrics.

Conll2003. This dataset (Sang & De Meulder, 2003) is for named entity recognition (NER) task.
It consists of four types of name entities: persons, locations, organizations and others. There are
nine categories in its output. The sizes of train, validation, test dataset are 14042, 3251, 3454,
respectively. We use f1 score to measure this dataset.

SIGHAN2015. This dataset (Tseng et al., 2015) is designed for the Chinese Spelling Check (CSC)
task. Following previous works (Li et al., 2021; Cheng et al., 2020), we formula CSC as a token
classification task whose candidates are tokens in vocab. The training dataset with the size of 277786
is comprising of the automatic generated dataset (Wang et al., 2018b) and all SIGHAN training sets
(Wu et al., 2013; Yu et al., 2014; Tseng et al., 2015). The test set is the SIGHAN2015 test (Tseng
et al., 2015) with a size of 1100. Considering the tokens we focus are Chinese characters, we
cut the original vocab according to the training data. Finally there are 5201 characters left. We
follow previous works (Cheng et al., 2020; Li et al., 2021) and choose the metric of sentence level
correction-f1 which could more strictly represent the classifier competence.

Eurlex. This dataset (Chalkidis et al., 2021) is for legal multi-label classification task. All EU laws
are annotated by the EU Publications Office with multiple concepts from the eurovoc dictionary,
a multilingual dictionary maintained by the Publications Office. Given a document, the task is to
predict its EuroVoc labels (concepts). It contains 55000, 5000, 5000 instances for training, validation
and test. There are 127 labels in this dataset, and each sample has multiple labels. We use BERT as
our base model and macro-f1/micro-f1 to evaluate the classifier performance.

WOS-46985. We choose WOS-46985 (Kowsari et al., 2017) as the dataset of multi-label classifica-
tion task. Obviously, the total size of this dataset is 46985. Following Wang et al. (2022), we split
the dataset into training set, validation set and test set according to 6.4:1.6:2 split the dataset into
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training set and test set. The dataset consists of three types of labels: target label, parent label and
child label. We combined the parent label with the child label as the output classes following Wang
et al. (2022). Finally, the number of output classes in this dataset is 141. Notably, there are two
corresponding labels for each sample and we only select the largest two classes as the result in test.
We also use BERT as our backbone and macro-f1/micro-f1 as the evaluation metrics.

A.3 BASELINES

The comparison algorithms used in our experiment are described in details here.

T-Softmax. T-Softmax is a simple variant of introducing the temperature parameter τ into Soft-
max. Divide the model output by τ . The larger τ is, the smoother the result is. The smaller the
corresponding τ is, the sharper the probability distribution is. The prediction score of a class pi in
T-Softmax is computed as follows:

pi = T-Softmax(oi) =
e

oi
τ∑n

j=1 e
oj
τ

. (20)

Label-Smoothing. The authors of Label-Smoothing (Szegedy et al., 2016) argue that these non-
target classes need to be given a probability greater than zero so that the model can fully learn
all classes’ features. Considering that the dataset is not completely correct, the original softmax
loss function is even less applicable. Label-Smoothing has a parameter ϵ. In the softmax loss
function, the calculated weight of non-target classes is 0. However, in the label smoothing algorithm,
assuming that a dataset has n labels, the weight of a non-target class is ϵ

n−1 . The weight of the target
class is 1− ϵ. ϵ is a hyper-parameter of label smoothing.

Sparse-Softmax. Sparse-Softmax (Sun et al., 2021) means that softmax results are sparse. Sparse
is effective because it avoids overlearning of the model. This algorithm only preserves the features
of the top k classes, and the remaining features are directly assigned to 0 for mask. Obviously, k is
a hyper-parameter.

AM-Softmax Inspired by algorithms such as large-margin, additive margin softmax (AM-Softmax)
(Wang et al., 2018c) aims to minimize the intra-class variation. And the loss function and back
propagation process of large-margin softmax are too complicated due to the introduction of angle.
AM-Softmax not only simplifies the calculation process, but also speeds up the training speed. Its
loss function is as follows:

L = − log
es·(oi−m)

es·(oi−m) +
∑n

j=1,j ̸=i e
s·oj

. (21)

It has two parameters, s and margin m. m is used to increase the margin between categories. s
has the effect of acceleration. When s or m is too large, NAN may occur in the value of the loss
function. Therefore, s and m vary greatly with different datasets. This is a process that needs to be
adjusted slowly.

Sparsemax. Sparsemax (Martins & Astudillo, 2016) returns sparse posterior distributions by as-
signing zero probability to its output variables with small scores.

Entmax. Entmax algorithm (Peters et al., 2019) tends to produce sparse probability distributions,
yielding a function family continuously interpolating between softmax and Sparsemax. There are
two algorithms including a method based on sorting and a bisection-based method. We do a compar-
ative experiment with the 1.5-entmax proposed by author (Peters et al., 2019). It is based on sorting
when α is equal to 1.5 and more accurate and less costly.

A.4 EXPERIMENTAL DETAILS

In our experiment, we additionally adopt special warm-up strategy on Clinc oos and Conll2003. At
the beginning of training period, AS-Softmax may discard some potential useful samples due to the
poor classifier competence. Therefore, we keep δ equal to 1 in the first r percent of training steps.
For AS-Speed algorithm, there are two more hyper-parameters: λ and s. λ is a hyper-parameter
which controls the accelerate magnitude while s denotes maximum accumulated steps. In addition,
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we implement Entmax, Sparsemax and AM-Softmax according to the source code34. We record the
general and specific hyper-parameters respectively in Table 5 and Table 6.

SST5 Clinc oos Conll2003 SIGHAN2015 Eurlex WOS-46985

epoch 7 10 20 15 20 10
batch size 16 32 32 128 16 12
learning rate 2e-5 2e-5 2e-5 5e-5 3e-5 3e-5

Table 5: Information of universal hyper-parameters.

SST5 Clinc oos Conll2003 SIGHAN2015 Eurlex WOS-46985

T-Softmax (τ ) 5 0.5 0.5 0.5 1 0.5
Sparse-Softmax (k) 4 10 5 20 50 100
Entmax (α) 1.5 1.5 1.5 1.5 - -
Label-Smoothing (ϵ) 0.30 0.20 0.10 0.10 - -
AM-Softmax (s/m) 10/0.30 8/0.35 5/0.30 1/0.10 - -

AS-Softmax (δ/r) 0.30/0.00 0.30/0.15 0.35/0.25 0.30/0.00 0.05/0.00 0.35/0.00
AS-Speed (λ/s) 1.5/4 0.5/5 0.5/5 0.5/2 0.5/2 1.0/2

Table 6: Parameter setting of algorithm. s after AM-Softmax means scale. s after AS-Speed means
max accumulation steps.

A.5 SAMPLE ANALYSIS

To verify the “easy” samples are not selected by chances, we construct the datasets with hard samples
left at the end of the AS-Softmax training period on SST5 (approximately 11% of all) and the same
number of random selected samples. Then, we train the classifier with softmax and the result is
shown in the Table 7. The performance illustrates that these hard samples are more difficult than the
random selected samples for the model to learn.

SST5
Random samples 45.52
Hard samples 38.64

Table 7: Result of standard softmax method on random sample dataset and hard sample dataset.

A.6 RESULTS ON GLUE DATASET

We further evaluate our proposed AS-Softmax on the classification tasks of GLUE benchmark
(Wang et al., 2018a), including MNLI, MRPC, QNLI, QQP, RTE, SST-2 and CoLA. The shared
hyper-parameters are set following Liu et al. (2019) while the margin δ in AS-Softmax is adjusted
in [0.05, 0.35] for searching. Table 8 presents the experimental result. It can be seen that the result
of AS-Softmax surpasses that of Softmax, which verifies its effectiveness.

MNLI:3 MRPC:2 QNLI:3 QQP:2 RTE:3 SST-2:2 CoLA:2 Avg

Softmax 84.18 89.41 90.49 91.00 68.23 92.54 62.44 82.61
AS-Softmax 84.19 90.72 91.12 90.95 69.31 93.23 64.55 83.44

Table 8: Result of GLUE benchmark (better results are in bold), with the number of output class
attached behind the task name.

3https://github.com/deep-spin/entmax
4https://github.com/happynear/AMSoftmax
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