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Abstract

Fairness has become a crucial aspect in the de-
velopment of trustworthy machine learning al-
gorithms. Current fairness metrics to measure
the violation of demographic parity have the fol-
lowing drawbacks: (i) the average difference of
model predictions on two groups cannot reflect
their distribution disparity, and (ii) the overall cal-
culation along all possible predictions conceals
the extreme local disparity at or around certain
predictions. In this work, we propose a novel
fairness metric called Maximal Cumulative ratio
Disparity along varying Predictions’ neighbor-
hood (MCDP), for measuring the maximal local
disparity of the fairness-aware classifiers. To ac-
curately and efficiently calculate the MCDP, we
develop a provably exact and an approximate cal-
culation algorithm that greatly reduces the com-
putational complexity with low estimation error.
We further propose a bi-level optimization algo-
rithm using a differentiable approximation of the
MCDP for improving the algorithmic fairness.
Extensive experiments on both tabular and image
datasets validate that our fair training algorithm
can achieve superior fairness-accuracy trade-offs.

1. Introduction
Nowadays, machine learning algorithms have been widely-
used in high-stake applications such as loan management
(Mukerjee et al., 2002), job-hiring (Faliagka et al., 2012),
and recidivism prediction (Berk et al., 2021). Nonetheless,
these algorithms are prone to exhibit discrimination against
particular groups, leading to unfair decision-making results
(Tolan et al., 2019; Raghavan et al., 2020; Mehrabi et al.,
2021). To address this issue, growing attentions have been
paid to developing comprehensive fairness criterions (Ja-
cobs & Wallach, 2021; Han et al., 2023a) and effective fair
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learning algorithms (Wan et al., 2023; Han et al., 2024).

Existing group fairness notions require algorithms to treat
different groups equally, and the degree of fairness vio-
lation is usually measured via the dissimilarity of model
predictions. For example, Demographic Parity (DP) re-
quires model predictions to be independent of sensitive at-
tributes (Dwork et al., 2012; Kamishima et al., 2012; Jiang
et al., 2020). To measure the violation of DP, most of exist-
ing works adopt ∆DP metric, which calculates the differ-
ence in average predictions between the two demographic
groups (Zemel et al., 2013; Chuang & Mroueh, 2021; Li
et al., 2023b). However, since having the same values in
average predictions between the two groups cannot ensure
that the distributions are also the same, we argue that the
widely used ∆DP may fail to detect the violation of demo-
graphic parity. Figure 1a illustrates a toy example where the
red and green curves represent the Cumulative Distribution
Function (CDF) for the male and female groups, respec-
tively. Despite the small ∆DP, it is clear that the prediction
distribution is not independent of gender as a sensitive at-
tribute, with males more likely to be assigned extremely
small and large predictive probabilities, while females are
more concentrated in the middle-sized probabilities. To
show the limitation of ∆DP, we further calculate the Area
Between CDF Curves (ABCC) to measure the total varia-
tion between CDFs (Han et al., 2023a), which demonstrates
significantly greater differences between groups.

Moreover, as most of the existing metrics measure the over-
all disparity along all possible predictions, they fail to cap-
ture the local disparity at or around certain predictions. As
a matter of fact, different metric values do not imply the rel-
ative magnitude of extreme local disparities. For example,
although both ∆DP and ABCC values of predictions in
Figure 1b is better than those in Figure 1c, its CDF disparity
along predictions is less uniform, resulting in much more
serious maximal disparity (0.2399 > 0.1362). Generally,
a pre-defined threshold is used to make a binary decision
based on model predictions, where varying thresholds lead
to changing proportions of positive decisions of different
groups (Chen & Wu, 2020). If the decision threshold takes
the value where the maximal CDF disparity is achieved, the
group unfairness would be seriously exacerbated (e.g., the
difference of group positive proportion in Figure 1b will be
up to nearly 24%). Therefore, it’s important to capture and
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(a) Small ∆DP, but large ABCC
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(b) Large maximal local disparity
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(c) Small maximal local disparity
Figure 1. The empirical distribution functions of model predictions over male and female groups. (a) shows a toy example, while (b) and
(c) are the testing results of FairMixup (Chuang & Mroueh, 2021) and our proposed algorithm on the Adult dataset, respectively.

measure the extreme local disparity, which is yet prone to be
“averaged” by overall variation of previous fairness metrics.

To address the limitations of previous fairness metrics, we
propose a novel fairness metric called Maximal Cumulative
ratio Disparity along varying Predictions’ ϵ-neighborhood,
denoted as MCDP(ϵ), whose core idea is calculating the
maximal local disparity of the CDFs of two demographic
groups. Considering that vast of predictions falling in
a small prediction interval may result in sharp distribu-
tion changes, we firstly replace the exact CDF disparity
at each prediction as the minimal disparity within its ϵ-
neighborhood. In this way, the group disparity along vary-
ing predictions becomes smoother, thus the metric value
becomes more robust to sharp distributions. We also theo-
retically prove several properties of the proposed MCDP(ϵ)
metric, including but not limited to its monotonicity w.r.t. ϵ,
and its relationship with previous fairness metrics.

Furthermore, given the model predictions for real instances
in two demographic groups, we adopt empirical distribu-
tion function as the estimated CDF, and further propose two
algorithms which exactly and approximately calculate the
empirical metric value, respectively. Specifically, the ap-
proximation algorithm can greatly reduce the computational
complexity with low value error. To train a fair classifier
in view of maximal local disparity, we firstly adopt a dif-
ferentiable approximation of CDF disparity based on tem-
perature sigmoid function (Han & Moraga, 1995), and then
minimize the maximal estimated CDF disparity using the
bi-level optimization approach (Ji et al., 2021). In this way,
the distribution disparity becomes more uniform (Figure 1c),
further approaching demographic parity.

The contributions of this paper are summarized as follows:

•We propose a novel fairness metric called MCDP(ϵ) to
measure the maximal local disparity of a classifier, and
derive several theoretical properties about the metric.
• To empirically estimate MCDP(ϵ) with finite instances,
we propose an exact and an approximate calculation algo-
rithm, where the approximate algorithm greatly reduces
computational complexity with low estimation error.
•We further develop a bi-level optimization algorithm using

differentiable approximation of MCDP(0) to train a fair
classifier which minimizes the maximal local disparity.
• Experiments on tabular and image datasets (Adult, Bank
and CelebA) demonstrate that our learning algorithm can
effectively achieve better fairness-accuracy trade-offs.

2. Preliminaries
2.1. Demographic Parity and Measurements

Without loss of generality, we consider the binary clas-
sification task where each instance consists of an input
x ∈ X ⊂ Rd, a class label y ∈ Y = {0, 1} and a group
label s ∈ {0, 1}, which is defined by sensitive attributes
such as gender, age or race. We focus on demographic
parity which requires the model’s predictive probabilities
ŷ = f(x) to be independent of the group label s, where
f : X → [0, 1] is a classifier with model parameter θ. To
measure the model’s fairness violation, the following metric
calculates the average prediction difference of two groups

∆DP(f) = |Ex∼P0f(x)− Ex∼P1f(x)| ,

where Pa = P(x|s = a), a ∈ {0, 1} denotes the distribu-
tions of instances in two groups. In addition, given a finite
dataset D = {xi, yi, si}Ni=1 with N samples and model pre-
dictions {ŷi}Ni=1 with ŷi = f(xi), the empirical estimation
of ∆DP(f) can be obtained as

∆D̂P(f,D) =

∣∣∣∣∣ 1

|S0|
∑
i∈S0

ŷi −
1

|S1|
∑
i∈S1

ŷi

∣∣∣∣∣ ,
where Sa = {i : si = a}, a ∈ {0, 1} is the index set of
instances in two groups. Apart from the widely-used ∆DP

(∆D̂P) metric1 which measures unfairness in expectation-
level, recent work (Han et al., 2023a) proposes a distribution-
level metric called ABCC as follows

ABCC(f) =

∫ 1

0

|F0(ŷ)− F1(ŷ)|dŷ,

1To improve the notation briefness, we omit the arguments f
and D, e.g., ∆DP,∆D̂P is short for ∆DP(f),∆D̂P(f,D).
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where F0(ŷ) and F1(ŷ) (ŷ ∈ [0, 1]) are the CDFs of model
predictions of instances from P0 and P1

Fa(ŷ) = P(f(x) ≤ ŷ), x ∼ Pa, a ∈ {0, 1}.

Similar to ∆D̂P, the estimated ABCC value using {ŷi}Ni=1

can be computed as follows

ÂBCC(f,D) =
∫ 1

0

∣∣∣F̂0(ŷ)− F̂1(ŷ)
∣∣∣dŷ,

where F̂0(ŷ) and F̂1(ŷ) are the empirical distribution func-
tions of model predictions of instances in two groups

F̂a(D; ŷ) =
1

|Sa|
∑
i∈Sa

I(ŷi ≤ ŷ), a ∈ {0, 1}, (1)

and I(·) denotes the indicator function.

2.2. Discussions about Previous Metrics

Drawbacks of ∆DP. Although ∆DP has become the de
facto fairness criterion in previous literatures, it is insuffi-
cient to measure the violation of demographic parity. The
reason is that ∆DP = 0 does not indicate identical distribu-
tions of group prediction, thus the independency of predic-
tions and group labels cannot be guaranteed. As shown in
Figure 1a, the distribution gap between the two groups is
evident despite ∆DP is very close to 0.

Drawbacks of ABCC. Unlike ∆DP, ABCC = 0 is a nec-
essary and sufficient condition for establishing demogarphic
parity. However, as ABCC value cannot reflect the local
distribution disparity, it fails to accurately measure the de-
gree of unfairness in cases where extreme local disparity is
emphasized. For example, although the maximal disparity
in Figure 1c (0.1362) is much smaller than that of Figure
1b (0.2399), its ABCC value is misleadingly larger (i.e.,
0.0724 > 0.0659).

Summary. Previous expectation-level and distribution-level
metrics tend to average the extreme but important local dis-
parity through overall calculation, thus their values cannot
accurately measure the fairness violation in certain cases.
This enlighten us to develop new fairness metrics to capture
the maximal local disparity of classifiers.

3. The Proposed Metric
In this section, we propose a novel fairness metric called
MCDP(ϵ) to measure the maximal local disparity of clas-
sifiers, and provide theoretical properties, estimation algo-
rithms and an optimization framework about the metric. All
the proofs of the theorems can be referred in Appendix A.

MCDP(ε)ε
0.11800
0.08410.01
0.05490.05
0.01320.1

Figure 2. Predictions of FairMixup on the Bank dataset. The neigh-
borhood hyper-parameter ϵ decides the manner of calculating local
disparity, leading to different MCDP(ϵ) values.

3.1. MCDP(ϵ) Metric

Denote the absolute difference of the two groups’ CDFs of
model predictions as ∆F (ŷ) = |F0(ŷ)− F1(ŷ)|. To cap-
ture the worst case that a classifier violates demographic par-
ity, an intuitive idea is to calculate the Maximal Cumulative
ratio Disparity along varying Predictions using

MCDP(f) = max
ŷ∈[0,1]

∆F (ŷ). (2)

As MCDP only focuses on the maximal disparity, it serves
as a more rigorous fairness measurement compared with pre-
vious metrics. However, it is susceptible to extremely sharp
distributions within certain intervals. As an example shown
in Figure 2, the MCDP value is large (0.1180) due to a large
number of instances with predictions around 0.02, which
may misleadingly reflect the unfairness. To address this
issue, we introduce a local measurement ϵ ≥ 0 to smooth
∆F (ŷ). For a specific prediction point y0, we take the mini-
mal disparity within its ϵ-neighborhood [y0 − ϵ, y0 + ϵ] as
the maximal local disparity instead of the exact disparity
∆F (y0). In this way, we slightly modify Eq. (2) to com-
pute the Maximal Cumulative ratio Disparity along varying
Predictions’ ϵ-neighborhood as

MCDP(f ; ϵ) = max
y0∈[0,1]

min
ŷ:|ŷ−y0|≤ϵ

∆F (ŷ). (3)

MCDP(ϵ) can also be interpreted as the maximum of the
minimal CDF disparity of any prediction intervals with
length 2ϵ (or ≥ ϵ if endpoints 0 or 1 is included). In par-
ticular, as the zero length interval degenerates to a point,
MCDP(0) degenerates to MCDP in Eq. (2).

3.2. Theoretical Analysis of MCDP(ϵ)

We derive several properties of MCDP(ϵ) metric as below:

Theorem 3.1 (Properties of MCDP(ϵ)). The proposed
MCDP(ϵ) metric has the following desired properties: ①
MCDP(ϵ) has a range of [0, 1]. ② MCDP(0) = 0 holds if
and only if demographic parity is established. ③ MCDP(0)
is invariant to any monotone and invertible transformation
T : [0, 1] → [0, 1]. ④ MCDP(ϵ) is a monotonically de-
creasing function w.r.t. ϵ. ⑤ Assume ∆F (ŷ) is continuous
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Algorithm 1 Exact Calculation of M̂CDP(ϵ)

Input: Dataset D = {xi, yi, si}Ni=1, model predictions
{ŷi}Ni=1, local measurement ϵ ≥ 0.

1: Calculate ∆F̂ (ŷ) using {ŷi, si}Ni=1 by Eq. (1);
2: Set ŷ0 = 0, ŷN+1 = 1;
3: if ϵ = 0 then
4: M̃CDP(ϵ) = maxi ∆F̂ (ŷi), i ∈ [0, N ];
5: else
6: M̃CDP(ϵ) = mini:ŷi≤ϵ ∆F̂ (ŷi);
7: I = {i ∈ [0, N + 1] : ŷi ≤ 1− ϵ};
8: for i ∈ I do
9: J = {j ∈ [0, N + 1] : ŷj ∈ [ŷi, ŷi + 2ϵ]};

10: M = minj ∆F̂ (ŷj), j ∈ J ;

11: M̃CDP(ϵ) = max{M̃CDP(ϵ),M};
12: end for
13: end if
Output: M̃CDP(ϵ).

on [0, 1] with Lipschitz constant L (Goldstein, 1977), then

ABCC ≤

{
MCDP(ϵ) + ϵL

2 , if L ≤ 2,

MCDP(ϵ) + 2ϵ
(
1− 1

L

)
, if L > 2.

Remarks. Properties ② and ③ show that MCDP(0) sat-
isfies the sufficiency and fidelity criteria for fairness mea-
surement (Han et al., 2023a). A visualized interpretation of
property ④ can be referred in Figure 2, where wider inter-
vals (i.e., larger 2ϵ values) lead to smaller MCDP(ϵ) values.
Property ⑤ provides an upper bound of the ABCC metric
with given MCDP(ϵ) values, which also suggests that the
distribution-level disparity can be controlled by minimizing
the maximal local disparity.

3.3. Estimating the MCDP(ϵ) Metric

In real-world settings where algorithmic fairness is evalu-
ated on finite data samples, we adopt the empirical distribu-
tion function as the estimated CDF. Formally, the empirical
MCDP(ϵ) metric estimated over D can be written as

M̂CDP(f,D; ϵ) = max
y0∈[0,1]

min
ŷ:|ŷ−y0|≤ϵ

∆F̂ (ŷ), (4)

where ∆F̂ (ŷ) = |F̂0(ŷ)−F̂1(ŷ)|. By the Glivenko-Cantelli
theorem (Tucker, 1959), the estimated metric value above
converges to the true metric value in Eq. (3) almost surely
with increasing sample size N (see Appendix B for formal
proofs), which demonstrates that M̂CDP(ϵ) serves as a
preferable estimation of MCDP(ϵ).

However, it is intractable to traverse all possible y0 values
in [0, 1] and ŷ values in y0’s ϵ-neighborhood, which poses
a challenge to compute the metric in Eq. (4). Nevertheless,

Algorithm 2 Approximate Calculation of M̂CDP(ϵ)

Input: Dataset D = {xi, yi, si}Ni=1, model predictions
{ŷi}Ni=1, local measurement ϵ > 0, sampling frequency
K ∈ N+.

1: Calculate ∆F̂ (ŷ) using {ŷi, si}Ni=1 by Eq. (1);
2: Set the step-size δ = ϵ

K ;

3: M̃CDP(ϵ) = minj ∆F̂ (jδ), j ∈ {0, · · · ,K};
4: for j = 1, · · · , ⌈ 1δ ⌉ − 2K do
5: M = mink ∆F̂ (kδ), k ∈ {j, · · · , j + 2K − 1};
6: M̃CDP(ϵ) = max{M̃CDP(ϵ),M};
7: end for

Output: M̃CDP(ϵ;K).

thanks to the step-like pattern’s property of the empirical
distribution function, we can traverse finite y0 and ŷ values.
Based on different traversing strategies, we develop two al-
gorithms which calculates the exact and approximate value
of M̂CDP(ϵ), respectively. The exact algorithm only tra-
verses predictions of instances inD (lines 7-10 in Algorithm
1). In contrast, the approximate algorithm firstly samples
prediction points that are equally spaced by ϵ

K on [0, 1],
where K ∈ N+ is a pre-defined hyper-parameter to control
the sampling frequency. Afterwards, it traverses consecutive
2K sampled points to estimate the maximal local disparity
(lines 4-5 in Algorithm 2). Notably, the two algorithms have
the following properties:

Theorem 3.2 (Exactness). The M̃CDP(ϵ) value returned
by Algorithm 1 equals to the true value in Eq. (4), i.e., it
calculates M̂CDP(ϵ) exactly.

Theorem 3.3 (Over-estimation). The M̃CDP(ϵ) value re-
turned by Algorithm 2 never underestimates the true metric
value, i.e., M̃CDP(ϵ) ≥ M̂CDP(ϵ).

Theorem 3.4 (Monotonicity w.r.t. sampling frequency).
Denote M̃CDP(ϵ;K) as the M̂CDP(ϵ) value returned by
Algorithm 2 with sampling frequency K. For any p > q ≥
0, p, q ∈ N, we have M̃CDP(ϵ; 2p) ≤ M̃CDP(ϵ; 2q).

Computational Complexity. The calculation process of
Algorithms 1 and 2 are mainly based on specific traverse
strategies on y0 and ŷ in Eq. (4). As the exact algorithm
needs to traverse instances in D twice (lines 7-9 in Algo-
rithm 1), its computational complexity is O(N2). As to
the approximate algorithm, the complexity of traversing
sampled prediction points (line 4 in Algorithm 2) is O(Kϵ ),
and the complexity of finding the minimal CDF disparity in
each consecutive 2K points isO(K). Therefore, the overall
computational complexity is O(K

2

ϵ ). More detailed analy-
sis can be referred in Appendix C. In practice, as K can be
set with very small values (i.e., K ≪ N ), the computational
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Algorithm 3 DiffMCDP: Bi-Level Optimization Algorithm

Input: Training data D = {xi, yi, si}Ni=1, classifier f pa-
rameterized by θ, regularization strength λ, temperature
τ , epoch number E, batch size B, learning rate η.

1: Randomly initialize θ ← θ0;
2: for e = 0, · · · , E − 1 do
3: Draw a mini-batch De = {x′

i, y
′
i, s

′
i}Bi=1 from D;

4: // The following calculations are based on De

5: ŷ′i = f(x′
i), i = 1, · · · , B;

6: ŷ∗ = argmaxŷ∈[0,1] ∆F̃τ (ŷ);
7: L = 1

B

∑B
i=1 ℓ(θ; ŷ

′
i, y

′
i) + λ∆F̃τ (ŷ

∗);
8: θe+1 = θe − η∇θL;
9: end for

Output: A fair classifier f parameterized by θE .

complexity of the approximate algorithm is greatly reduced
compared to the exact algorithm.

More Discussions about K. As discussed before, increas-
ing K values would boost the computational complexity of
Algorithm 2. On the flip side, according to Theorems 3.3
and 3.4, the estimation error would keep decreasing as K
increases, indicating a trade-off between efficiency and ac-
curacy. In practice, both estimation accuracy and efficiency
can achieve promising results with varying K values.

3.4. DiffMCDP: Bi-Level Optimization Algorithm

Based on previous analysis, it is essential to train a fair
classifier which minimizes the maximal local disparity to
approach demographic parity. According to property ⑤
in Theorem 3.1, we can minimize MCDP(0) as an upper
bound of MCDP(ϵ) for any ϵ > 0. A natural idea is to
impose the M̂CDP(0) metric as a regularization term on
the classification loss. However, as the empirical distribution
functions are not differentiable w.r.t. model parameter θ,
directly regularizing M̂CDP(0) is implausible. To address
this issue, we firstly estimate ∆F̂ (ŷ) in a differentiable way

∆F̃τ (ŷ) =

∣∣∣∣∣ 1

|S0|
∑
i∈S0

στ (ŷ − ŷi)−
1

|S1|
∑
i∈S1

στ (ŷ − ŷi)

∣∣∣∣∣ ,
where στ (x) =

1
1+exp(−τx) is a variant of sigmoid function

with temperature τ > 0 as a hyper-parameter (Han & Mor-
aga, 1995). Notably, when the temperature tends to infinity,
we have ∆F̃τ (ŷ) converges to the ∆F̂ (ŷ) as follows.

Theorem 3.5. ∆F̃τ (ŷ)
a.e.−→ ∆F̂ (ŷ) as τ →∞.

With the differentiable estimation above, the fairness-
regularized objective function can be written as

min
θ

(
1

|D|

N∑
i=1

ℓ(θ; ŷi, yi) + λ · max
ŷ∈[0,1]

∆F̃τ (ŷ)

)
, (5)

where ℓ(θ; ŷi, yi) denotes the classification loss for xi, and
λ > 0 controls the trade-off between accuracy and fair-
ness. To solve Eq. (5), we adopt the bi-level optimization
approach – firstly find the prediction which achieves the
maximal CDF disparity as ŷ∗ = argmaxŷ∈[0,1] ∆F̃τ (ŷ),
and then find the optimal model parameter by θ∗ =
argminθ

1
|D|
∑N

i=1 ℓ(θ; ŷi, yi) + λ∆F̃τ (ŷ
∗). We provide

the detailed learning algorithm in Algorithm 3.

4. Experiments
Datasets and Backbone Models. In our experiments,
we adopt two tabular datasets and one image dataset for
evaluation: ① Adult (Kohavi, 1996) is a popular UCI dataset
which contains personal information of over 40K individuals
from US 1994 census data. The task is to predict whether a
person’s annual income is over $50K or not, and we treat
gender as the sensitive attribute. ② Bank (Moro et al., 2014)
dataset is collected from a Portuguese banking institution’s
marketing campaigns, and its goal is to predict whether
a client will make a deposit subscription or not. We take
age as the sensitive attribute (whether the age is over 25
or not). ③ CelebA (Liu et al., 2015) dataset contains over
20K face images of celebrities, where each image has 40
human-labeled binary face attributes. We use gender as the
sensitive attribute, and choose attractive face and wavy hair
as target attributes to create two meta-datasets, denoted as
CelebA-A and CelebA-W respectively. For tabular datasets,
we adopt a two-layer multi-layer perceptron as the backbone
model. For CelebA-A and CelebA-W, we use ResNet-18
(He et al., 2016) initialized with pretrained weights.

Baselines and Evaluation Protocols. We compare our pro-
posed method (denoted as DiffMCDP) with the following
baselines: ① ERM trains the model with the vanilla clas-
sification loss without fairness objectives. ② AdvDebias
(Zhang et al., 2018) minimizes the adversary’s ability of
inferring sensitive attributes from model representations. ③
DiffDP imposes the ∆DP metric as a regularization term on
the empirical risk. ④ FairMixup (Chuang & Mroueh, 2021)
regularizes models on interpolated distributions between
two groups. ⑤ DRAlign (Li et al., 2023b) uses gradient-
guided parity alignment to encourage gradient-weighted
consistency of neurons across groups. ⑥ DiffABCC reg-
ularizes the ABCC metric on the empirical risk. We use
average precision (AP) to evaluate the classification accu-
racy, and use ∆DP, ABCC, and MCDP(ϵ) to measure the
algorithmic fairness. More implementation details can be
referred in Appendix D.

4.1. Performance Comparison

Figure 3 shows the trade-off relationships between AP and
MCDP(0) of baselines and our proposed method. We
can observe that DiffMCDP consistently outperforms other
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Figure 3. Trade-offs between AP and MCDP(0) of baselines and the proposed method. Each marker represents the average testing result
of 5 runs with a specific fairness-accuracy trade-off coefficient. The curves closer to the upper-left corners indicate better performances.
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Figure 4. Comparison of MCDP(ϵ) results with varying ϵ. The
metric values are calculated by the exact algorithm (Algorithm 1).

baselines in terms of fairness-accuracy trade-offs across all
datasets, which suggests that our proposed fair training al-
gorithm can effectively reduce maximal local disparity to
improve fairness. In addition, traditional fair training algo-
rithms can achieve desired trade-offs between accuracy and
our proposed fairness metric. For example, the MCDP(0)
values of both DiffDP and DiffABCC decrease with increas-
ing regularization strengths, which demonstrates that solely
optimizing expectation-level or distribution-level metrics
do contribute to minimizing the maximal local disparity.
Nevertheless, they obtain inferior performance compared to
DiffMCDP which directly regularizes MCDP(0), indicat-
ing their limitation in approaching demographic parity.

To explore the performance of our method under differ-
ent fairness measurements, we report the values of ∆DP,
ABCC and MCDP(0) metrics in Tables 1 and 2 (the trade-
off curves can be referred in Appendix E.1). While DiffM-
CDP achieves the optimal MCDP(0) results across various
datasets, it also obtains comparable even superior ∆DP
or ABCC values compared to other baselines. For ex-
ample, DiffMCDP achieves the lowest ABCC values in
tabular datasets, and its ∆DP values are optimal in two
image datasets. These results illustrate that optimizing the
maximal local disparity is also beneficial to improve both
expectation-level and distribution-level fairness metrics.

Lastly, we plot the changes of MCDP(ϵ) as varying local
measurements ϵ in Figure 4 (the results of image datasets
are deferred in Appendix E.2). From the figure, we can
observe that DiffMCDP still consistently outperforms other
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Figure 5. Varying K and ϵ in M̂CDP(ϵ) calculation algorithms.

baselines in terms of different variants of the metric. This
validates the effectiveness of regularizing the upper bound of
MCDP(ϵ) by MCDP(0) in the training objective, demon-
strating that our proposed framework is applicable to various
scenarios with varying ϵ values. Additionally, it is notewor-
thy that the relative performance of other baselines changes
with increasing ϵ values (e.g., there exists many intersec-
tion lines between 0.05 and 0.1 in Adult). This indicates
that the relative fairness performance of various algorithms
may change based on different manners of calculating local
disparity, thus it’s essential to select varying ϵ values in
MCDP(ϵ) for more comprehensive evaluation.

4.2. Exact and Approximate Calculation

To explore the estimation accuracy and efficiency of the
approximate algorithm on real-world data, we run both the
exact and approximate algorithms with varying K and ϵ

values to compute M̂CDP(ϵ) of the testing results in Figure
3. Then we calculate the relative error by (Va − Ve)/Ve,
where Ve and Va are the estimated M̂CDP(ϵ) metric value
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Table 1. The performance w.r.t. different fairness metrics of baselines and our proposed DiffMCDP algorithm on tabular datasets.
Following previous work (Jung et al., 2023), we select the fairest model which achieves at least 95% of the vanilla model’s accuracy (i.e.,
AP of ERM) on validation set, and report the average and standard deviation of metric values of 5 independent runs with different seeds
on testing set. The optimal and sub-optimal results are highlighted with bold and underline, respectively.

Adult Bank

AP ↑ ∆DP ↓ ABCC ↓ MCDP(0) ↓ AP ↑ ∆DP ↓ ABCC ↓ MCDP(0) ↓
ERM 76.77±0.54 19.67±0.94 18.89±0.29 36.62±0.53 61.02±1.12 9.85±1.28 9.83±0.98 25.36±1.81

AdvDebias 76.52±0.62 12.73±1.81 12.95±1.35 29.28±2.26 60.54±1.02 1.95±2.76 3.95±0.97 17.52±4.12
DiffDP 75.02±0.28 7.77±1.20 8.97±0.73 22.37±1.11 58.36±1.67 1.03±0.23 2.13±0.20 14.01±1.34
FairMixup 74.52±0.40 3.87±1.20 7.34±0.62 24.87±1.53 59.45±1.94 1.28±0.44 2.95±0.91 13.22±2.91
DRAlign 74.98±0.28 7.64±1.22 8.86±0.75 22.08±1.19 58.19±1.54 1.15±0.41 1.98±0.23 13.58±1.26
DiffABCC 74.19±0.24 5.90±1.28 7.83±0.74 21.18±1.23 58.06±1.60 0.99±0.44 2.23±0.19 14.67±1.35

DiffMCDP 73.90±0.29 6.63±0.85 6.09±0.59 11.53±1.12 59.98±1.80 2.13±0.72 1.83±0.28 11.02±1.00

Table 2. Performance comparison on the CelebA-A and CelebA-W datasets. All details are the same as Table 1.

CelebA-A CelebA-W

AP ↑ ∆DP ↓ ABCC ↓ MCDP(0) ↓ AP ↑ ∆DP ↓ ABCC ↓ MCDP(0) ↓
ERM 84.62±0.38 54.32±0.77 37.20±0.69 54.85±0.92 77.16±0.68 34.02±2.24 28.94±1.36 48.96±2.16

AdvDebias 84.04±0.51 46.90±1.89 30.72±2.05 47.45±1.83 77.19±0.47 31.14±1.44 25.27±2.48 43.11±5.20
DiffDP 82.52±0.42 36.03±1.77 21.33±1.40 36.40±1.61 75.04±1.60 23.01±0.95 16.99±1.29 29.17±3.00
FairMixup 80.70±1.03 34.64±3.23 14.15±1.63 35.52±2.67 75.45±0.72 26.49±4.48 17.96±1.04 39.61±3.01
DRAlign 80.45±1.05 26.36±2.48 15.25±1.71 27.38±2.46 74.86±1.49 22.20±1.54 16.95±1.11 29.16±2.76
DiffABCC 80.71±0.86 28.05±1.83 15.70±1.67 28.94±1.89 73.38±1.69 19.93±1.85 13.67±0.88 23.77±3.44

DiffMCDP 80.32±0.67 21.10±1.94 16.03±1.61 23.10±1.66 74.14±1.26 19.58±1.91 15.35±1.26 20.29±1.78

returned by the exact and approximate algorithms, respec-
tively. Moreover, we measure the efficiency improvement by
Te/Ta, where Te and Ta represents the time of a single run
of the exact and approximate algorithms.

We plot the results across different settings in Figure 5 (re-
sults on more datasets are deferred in Appendix E.3), where
we have the following observations. ① With increasing K
values, the relative error decreases as Theorems 3.3 and 3.4
suggests. Meanwhile, the calculation time also increases,
which is consistent with the positive correlation between
computational complexity and sampling frequency. It is
noteworthy that selecting moderate K values can achieve
promising performance. For example, when K = 32, the
average estimation error and efficiency improvement are
0.03% − 3% and over 1000 times, respectively. ② As ϵ
increases, the calculation efficiency improvement over the
exact algorithm keeps increasing, which can be explained by
the inverse correlation between computational complexity
and ϵ. Meantime, the relative error also increases, and a po-
tential reason is that estimating the minimal CDF value with
2K sampled prediction points within a larger interval tends
to be more inaccurate. ③ The efficiency improvements are
more obvious in CelebA-A dataset compared with Adult
dataset, which is attributed to that the number of instances in
CelebA-A is larger than Adult, and the computational com-
plexity of the exact algorithm is quadratically proportional
to the sample size. This indicates that the efficiency supe-
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Figure 6. Trade-offs with varying temperature τ .

riority of approximation algorithm becomes more evident
when adopted to predictions on more instances.

4.3. In-Depth Analysis

Effect of Temperature τ . The temperature τ in Algorithm
3 is crucial to approximate the true maximal CDF disparity.
On the one hand, as shown in Theorem 3.5, the estimation
error vanishes when the temperature τ grows. On the other
hand, in practice, a large τ value may arise the gradient
vanishing problem (Roodschild et al., 2020), which limits
the learning capacity and optimization convergence. To
verify this point, we tune τ in {5, 10, 20, 50} and plot the
fairness-accuracy trade-off curves as shown in Figure 6 (the
results of image datasets are deferred in Appendix E.4).
We find that very small or large temperatures (τ = 5, 50)
may lead to dissatisfactory results, thus it’s better to adopt
moderate temperatures (τ = 10, 20) to effectively trade-off
the estimation accuracy and the gradient magnitude.
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Figure 7. Visualizations of empirical distribution functions.

Visualizations of Model Predictions. Figure 7 visualizes
the empirical distribution functions of model predictions for
two age groups in Bank dataset, where the training methods
include ERM, DiffDP and DiffMCDP. As ERM optimizes
the vanilla classification loss without fairness objectives, its
prediction distribution gap is the most evident. Taking a step
further, DiffDP regularizes the ∆D̂P metric on empirical
risk, thus the average prediction gap is much smaller than
ERM. Nevertheless, it leaves a lot to be desired in terms
of reducing the maximal local disparity. By contrast, our
proposed DiffMCDP method is much more effective in
narrowing the maximal gap between prediction distributions,
i.e., the MCDP(0) value of DiffMCDP declined by 47.98%
compared to DiffDP, which is also beneficial for minimizing
the difference of average predictions.

5. Related Work
Fairness Notions and Metrics. While machine learning
algorithms are widely-used in high-stake applications with
broad social impacts, algorithmic fairness has been a crucial
requirement in accessing and regulating the models (Yeung,
2018; Chen et al., 2019). Generally, algorithmic fairness
notions can be categorized into group fairness (Feldman
et al., 2015; Shui et al., 2022; Sun et al., 2023; Jin et al.,
2024), individual fairness (Dwork et al., 2012; Biega et al.,
2018; Li et al., 2023a; Wicker et al., 2023) and counter-
factual fairness (Kusner et al., 2017; Chiappa, 2019; Wu
et al., 2019; Ma et al., 2022; Han et al., 2023b; Rosenblatt &
Witter, 2023). Group fairness requires the model to treat dif-
ferent groups specified by certain sensitive attributes equally
without discrimination. For example, demographic parity
(Zemel et al., 2013; Jiang et al., 2020; Fukuchi & Sakuma,
2023) defines fairness as the independence of model predic-
tions and sensitive attributes, while equalized odds (Hardt
et al., 2016) requires the prediction and group membership
to be independent conditioned on the target label.

To measure the degree of fairness violation, various fairness
metrics have been adopted for model evaluation (Garg et al.,
2020; Franklin et al., 2022; Han et al., 2024). Specifically, to
measure the violation of demographic parity, ∆DP (Zemel
et al., 2013) calculates the difference of average model pre-
dictions of instances in two demographic groups; p-Rule
(Zafar et al., 2017b) computes the ratio between probabili-

ties of two groups assigned the positive decision outcome;
SDD/SPDD (Jiang et al., 2020) averages the binary group
prediction’s disparity over 100 uniformly-spaced thresh-
olds; and ABCC (Han et al., 2023a) measures the differ-
ence between the prediction distribution for different groups.
In this work, we point out that these expectation-level or
distribution-level metrics may fail to measure unfairness in
certain cases, since the extreme but important local disparity
is prone to be averaged by overall variation.

Fair Machine Learning Algorithms. To alleviate unfair-
ness of machine learning systems, various fairness-aware
algorithms have been proposed, which can be generally di-
vided into three categories: pre-processing methods (Kami-
ran & Calders, 2012; Calmon et al., 2017; Zhang et al.,
2018; Biswas & Rajan, 2021) attempt to adjust the train-
ing data distribution to remove the underlying data bias;
in-processing methods (Kamishima et al., 2012; Zafar et al.,
2017a;b; Chuang & Mroueh, 2021; Roh et al., 2021) aim to
reduce model’s intrinsic discrimination during the training
stage; and post-processing (Hardt et al., 2016; Pleiss et al.,
2017; Noriega-Campero et al., 2019; Chen et al., 2024; Yin
et al., 2024) methods perform calibration on model pre-
dictions after the training. Among these three categories,
in-processing methods fundamentally improve the fairness
of both model outputs and representations, which can also
lead to the highest utility (Barocas et al., 2023; Wan et al.,
2023). Recently, there is also a line of works focusing on
how to achieve algorithmic fairness in special cases, for
instance, fairness under distributional shift (Chai & Wang,
2022; Jiang et al., 2023; Roh et al., 2023) or with missing
attribute values (Zhao et al., 2022; Feng et al., 2023; Zhu
et al., 2023). Nevertheless, it is unknown that whether these
algorithms can improve fairness in terms of reducing maxi-
mal local disparity or not, and this work re-evaluates some
of the methods on benchmark datasets.

6. Conclusions and Future Work
In this work, we reveal that previous expectation-level fair-
ness metrics (∆DP) cannot accurately measure the violation
of demographic parity. Meanwhile, the overall variation of
distribution-level metrics (ABCC) may conceal the extreme
but important local disparity. Upon this understanding, we
propose a novel metric called MCDP(ϵ), which calculates
the maximal local disparity (defined by the minimal CDF
disparity of a prediction’s ϵ-neighborhood) of two demo-
graphic groups. Accordingly, we propose two algorithms to
estimate MCDP(ϵ) with finite samples, where the approxi-
mate algorithm greatly reduces the computational complex-
ity with high accuracy compared to the exact one. Further-
more, we develop a fair model learning framework which
regularizes a differentiable estimation of MCDP(0). Exten-
sive experiments are conducted on both tabular and image
datasets demonstrate the effectiveness of our proposal.
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In the future, we plan to extend the MCDP(ϵ) metric to mea-
sure the unfairness in terms of other fairness notions, such as
equalized odds (Hardt et al., 2016) and demographic parity
over multiple or continuous attributes (Jiang et al., 2022;
Grari et al., 2024). Moreover, designing more effective fair
learning algorithms to control the maximal local disparity is
also a interesting and promising research direction.
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Appendix

A. Proofs
A.1. Proofs of Theorem 3.1

Theorem 3.1 (Properties of MCDP(ϵ)). The proposed MCDP(ϵ) metric has the following desired properties: ① MCDP(ϵ)
has a range of [0, 1]. ② MCDP(0) = 0 holds if and only if demographic parity is established. ③ MCDP(0) is invariant to
any monotone and invertible transformation T : [0, 1]→ [0, 1] on ŷ. ④ MCDP(ϵ) is a monotonically decreasing function
w.r.t. ϵ. ⑤ Assume ∆F (ŷ) is continuous on [0, 1] with Lipschitz constant L (Goldstein, 1977), then

ABCC ≤

{
MCDP(ϵ) + ϵL

2 , if L ≤ 2,

MCDP(ϵ) + 2ϵ
(
1− 1

L

)
, if L > 2.

Proof. ① If demographic parity is established, i.e., ∀ŷ ∈ [0, 1], F0(ŷ) = F1(ŷ), then MCDP(ϵ) = 0. In addition, let
F0(ŷ) = I(ŷ = 1) and F1(ŷ) = 1, we have MCDP(ϵ) = 1. This proves that MCDP(ϵ) ∈ [0, 1].

② According to Eq. (3), MCDP(0) can be written as

MCDP(0) = max
ŷ∈[0,1]

∆F (ŷ) = max
ŷ∈[0,1]

|F0(ŷ)− F1(ŷ)| .

Thus the following holds
MCDP(0) = 0 ⇐⇒ ∀ŷ ∈ [0, 1], F0(ŷ) = F1(ŷ),

which indicates that MCDP(0) = 0 and demographic parity are equivalent.

③ Denote the prediction which achieves the largest MCDP(0) value as ŷ∗ = argmaxŷ∈[0,1] ∆F (ŷ). Moreover, denote the
CDFs for the transformed predictions in two groups as FT

0 (ŷ) and FT
1 (ŷ). As T is a monotone and invertible transformation

on [0, 1], for any ŷ′ ∈ [0, 1], there exists ŷ = T−1(ŷ′), such that FT
a (ŷ′) = Fa(ŷ), a ∈ {0, 1}. Thus we have∣∣FT

0 (ŷ′)− FT
1 (ŷ′)

∣∣ = |F0(ŷ)− F1(ŷ)| ≤ |F0(ŷ
∗)− F1(ŷ

∗)| = MCDP(0), ∀ŷ′ ∈ [0, 1],

and the equal sign holds if and only if ŷ′ = T (ŷ∗). This indicates that MCDP(0) is invariant to T .

④ For any y0 ∈ [0, 1] and 0 ≤ ϵa < ϵb ≤ 1, we have

{ŷ : |ŷ − y0| ≤ ϵb} ⊂ {ŷ : |ŷ − y0| ≤ ϵa} =⇒ max
y0∈[0,1]

min
|ŷ−y0|≤ϵb

∆F (ŷ) ≥ max
y0∈[0,1]

min
|ŷ−y0|≤ϵa

∆F (ŷ),

which yields that MCDP(ϵa) ≤ MCDP(ϵb).

⑤ To complete the proof of Property ⑤, we firstly present and prove the following two lemmas:

Lemma A.1. If ∆F (ŷ) is continuous on [0, 1] with Lipschitz constant L ≤ 2, then MCDP(ϵ) = 0⇒ ABCC ≤ ϵL
2 .

Lemma A.2. If ∆F (ŷ) is continuous on [0, 1] with Lipschitz constant L > 2, then MCDP(ϵ) = 0⇒ ABCC ≤ 2ϵ(L−1)
L .

To complete the proof of Lemma A.1, we first give some useful lemmas (which is based on MCDP(ϵ) = 0) below.

Lemma A.3. Let ỹ1 = min{ŷ ∈ [0, 1] : ∆F (ŷ) = 0}, then ỹ1 ≤ ϵ and
∫ ỹ1

0
∆F (ŷ)dŷ ≤ ϵLỹ1

2 .

Proof. Firstly, we note that the following holds

min
ŷ≤ϵ

∆F (ŷ) ≤ max
y0∈[0,1]

min
|ŷ−y0|≤ϵ

∆F (ŷ) = MCDP(ϵ) = 0 =⇒ min
ŷ≤ϵ

∆F (ŷ) = 0.

Thus ỹ1 ≤ argminŷ≤ϵ ∆F (ŷ) = 0 ≤ ϵ. Furthermore, for any ŷ ∈ [0, ỹ1], by Lipschitz continuity, we have∣∣∣∣∆F (ŷ)−∆F (ỹ1)

ŷ − ỹ1

∣∣∣∣ ≤ L =⇒ ∆F (ŷ) ≤ L(ỹ1 − ŷ), (6)
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which yields that ∫ ỹ1

0

∆F (ŷ)dŷ ≤
∫ ỹ1

0

L(ỹ1 − ŷ)dŷ =
Lỹ21
2
≤ ϵLỹ1

2
.

Lemma A.4. For any 0 ≤ a < b ≤ 1 such that ∆F (a) = ∆F (b) = 0,
∫ b

a
∆F (ŷ)dŷ ≤ (b−a)2L

4 .

Proof. For any ŷ ∈ [a, b], similar to the derivation in Eq. (6), we have

∆F (ŷ) ≤ min{(ŷ − a)L, (b− ŷ)L} =

{
(ŷ − a)L, if ŷ ≤ a+b

2 ,

(b− ŷ)L, if ŷ ≥ a+b
2 .

Thus we have ∫ b

a

∆F (ŷ)dŷ ≤
∫ a+b

2

a

(ŷ − a)Ldŷ +

∫ b

a+b
2

(b− ŷ)Ldŷ =
(b− a)2L

4
.

This completes the proof of Lemma A.4.

Lemma A.5. For any ŷ ∈ (ỹ1, 1) such that ∆F (ŷ) = 0 (where ỹ1 is defined as Lemma A.3 stated), there exists ŷl, ŷr such
that max{0, ŷ − 2ϵ} ≤ ŷl ≤ ŷ ≤ ŷr ≤ min{ŷ + 2ϵ, 1} and ∆F (ŷl) = ∆F (ŷr) = 0.

Proof. Assume to the contrary that there exists y0 ∈ (ỹ1, 1), such that ∆F (y0) = 0 and one of the following satisfies. (i)
If minŷ∈[y0−2ϵ,y0) ∆F (ŷ) > 0, let ỹl = max{ŷ < y0 : ∆F (ŷ) = 0} and yl =

ỹl+y0

2 , we have ỹl ∈ [ỹ1, y0 − 2ϵ) and
[yl − ϵ, yl + ϵ] ⊂ (ỹl, y0). Thus the MCDP(ϵ) value should satisfy that

MCDP(ϵ) = max
y0∈[0,1]

min
|ŷ−y0|≤ϵ

∆F (ŷ) ≥ min
|ŷ−yl|≤ϵ

∆F (ŷ) ≥ min
ŷ∈(ỹl,y0)

∆F (ŷ) > 0. (7)

(ii) If minŷ∈(y0,y0+2ϵ] ∆F (ŷ) > 0, let ỹr = min{ŷ > y0 : ∆F (ŷ) = 0} and yr = y0+ỹr

2 . Similar to (i), we have

MCDP(ϵ) ≥ min
|ŷ−yr|≤ϵ

∆F (ŷ) ≥ min
ŷ∈(y0,ỹr)

∆F (ŷ) > 0. (8)

The fact that at least one of Eq. (7) and Eq. (8) holds derives that MCDP(ϵ) > 0, which contradicts with MCDP(ϵ) = 0.
Therefore, the original assumption must be false, which completes the proof of Lemma A.5.

Proof of Lemma A.1. According to Lemma A.5, we can construct a sequence of predictions 0 ≤ ỹ1 < · · · < ỹM < ỹM+1 =
1, such that ỹ1 = min{ŷ ∈ [0, 1] : ∆F (ŷ) = 0} and for any i = 1, · · · ,M , ∆F (ỹi) = 0 and ỹi+1 − ỹi ≤ 2ϵ. By Lemmas
A.3, A.4 and A.5, the value of ABCC should satisfy that

ABCC =

∫ 1

0

∆F (ŷ)dŷ =

∫ ỹ1

0

∆F (ŷ)dŷ +

M∑
i=1

∫ ỹi+1

ỹi

∆F (ŷ)dŷ

≤ ϵLỹ1
2

+

M∑
i=1

(ỹi+1 − ỹi)
2L

4
≤ ϵLỹ1

2
+

M∑
i=1

(ỹi+1 − ỹi) · 2ϵL
4

=
ϵL

2
(ỹ1 + ỹM+1 − ỹ1) =

ϵL

2
.

(9)

This completes the proof of Lemma A.1.

To complete the proof of Lemma A.2, we first give the following lemmas (which is based on MCDP(ϵ) = 0 and L > 2).

Lemma A.6 (Monotonicity of CDFs). For any 0 ≤ a < b ≤ 1, F0(a) < F0(b) and F1(a) < F1(b).

Lemma A.7. Let ỹ1 = min{ŷ ∈ [0, 1] : ∆F (ŷ) = 0}, then the following holds: (i) h = maxŷ∈[0,ỹ1] ∆F (ŷ) ≤ F0(ỹ1),
and (ii)

∫ ỹ1

0
∆F (ŷ)dŷ ≤

(
ỹ1 − h

2L

)
h.
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Proof. Let ŷ∗ = argmaxŷ∈[0,ỹ1] ∆F (ŷ). By Lemma A.6 and F0(ỹ1) = F1(ỹ1), we have

h = ∆F (ŷ∗) ≤ max{F0(ŷ
∗)− F1(ŷ

∗), F1(ŷ
∗)− F0(ŷ

∗)} ≤ max{F0(ỹ1)− F1(0), F1(ỹ1)− F0(0)} ≤ F0(ỹ1).

Moreover, by Lipschitz continuity, h should also satisfy that h = ∆F (ŷ∗) ≤ L(ỹ1 − ŷ∗) ≤ Lỹ1. Denote ỹr = ỹ1 − h
L ≥ 0.

Combining Eq. (6) and h ≥ ∆F (ŷ),∀ŷ ∈ [0, ỹ1], we can control the bound of
∫ ỹ1

0
∆F (ŷ)dŷ as follows∫ ỹ1

0

∆F (ŷ)dŷ =

∫ ỹr

0

∆F (ŷ)dŷ +

∫ ỹ1

ỹr

∆F (ŷ)dŷ ≤
∫ ỹr

0

hdŷ +

∫ ỹ1

ỹr

L(ỹ1 − ŷ)dŷ = ỹ1h−
h2

2L
.

This completes the proof of Lemma A.7.

Lemma A.8. For any 0 ≤ a < b ≤ 1 such that ∆F (a) = ∆F (b) = 0, the following holds: (i) h = maxŷ∈[a,b] ∆F (ŷ) ≤
F0(b)− F0(a), and (ii)

∫ b

a
∆F (ŷ)dŷ ≤

(
b− a− h

L

)
h.

Proof. Denote ŷ∗ = argmaxŷ∈[a,b] ∆F (ŷ). Combining Lemma A.6 and ∆F (a) = ∆F (b) = 0, we have F0(a) =
F1(a) ≤ min{F0(ŷ

∗), F1(ŷ
∗)} and F0(b) = F1(b) ≥ max{F0(ŷ

∗), F1(ŷ
∗)}. Thus the following holds

h = ∆F (ŷ∗) = max{F0(ŷ
∗), F1(ŷ

∗)} −min{F0(ŷ
∗), F1(ŷ

∗)} ≤ F0(b)− F0(a).

Furthermore, according to Lipschitz continuity, for any ŷ ∈ [a, b], we have

∆F (ŷ) ≤ min{(ŷ − a)L, (b− ŷ)L} ≤ (b− a)L

2
, (10)

which also implies that h ≤ (b−a)L
2 . Let ỹl = a+ h

L and ỹr = b− h
L , we have a ≤ ỹl ≤ ỹr ≤ b. Combining Eq. (10) and

h ≥ ∆F (ŷ),∀ŷ ∈ [a, b], we obtain an upper bound of
∫ b

a
∆F (ŷ)dŷ as follows

∫ b

a

∆F (ŷ)dŷ =

∫ ỹl

a

∆F (ŷ)dŷ +

∫ ỹr

ỹl

∆F (ŷ)dŷ +

∫ b

ỹr

∆F (ŷ)dŷ

≤
∫ ỹl

a

(ŷ − a)Ldŷ +

∫ ỹr

ỹl

hdŷ +

∫ b

ỹr

(b− ŷ)Ldŷ

=

(
b− a− h

L

)
h.

This completes the proof of Lemma A.8.

Proof of Lemma A.2. According to Lemma A.5, for any ∆F (ŷ) = |F0(ŷ) − F1(ŷ)|, we can construct a sequence of
predictions 0 = ỹ0 ≤ ỹ1 < · · · < ỹM < ỹM+1 = 1, such that (i) ỹ1 = min{ŷ ∈ [0, 1] : ∆F (ŷ) = 0} ≤ ϵ, and (ii)
for any i = 1, · · · ,M , ∆F (ỹi) = 0 and ỹi+1 − ỹi ≤ 2ϵ. Denote δi and hi (i = 0, · · · ,M ) as δi = ỹi+1 − ỹi and
hi = maxŷ∈[ỹi,ỹi+1] ∆F (ŷ), respectively. By Lemmas A.7 and A.8, the following holds

0 ≤ h0 ≤ δ0L, 0 ≤ hi ≤
δiL

2
, for any i = 1, · · · ,M,

M∑
i=0

hi ≤ F0(ỹ1) +

M∑
i=1

(F0(ỹi+1)− F0(ỹi)) = F0(ỹi+1) = 1,

∫ ỹ1

0

∆F (ŷ)dŷ ≤
(
δ0 −

h0

2L

)
h0,

∫ ỹi+1

ỹi

∆F (ŷ)dŷ ≤
(
δi −

hi

L

)
hi, for any i = 1, · · · ,M.

(11)

Combining (i)
∑M

i=0 δi = ỹM+1 − ỹ0 = 1, (ii) δ0 ∈ [0, ϵ], (iii) δi ∈ (0, 2ϵ], ∀i = 1, · · · ,M , (iv) ABCC =
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i=0

∫ ỹi+1

ỹi
∆F (ŷ)dŷ, and Eq. (11), for a given M , we can construct the following optimization problem

max
δi,hi

(
δ0 −

h0

2L

)
h0 +

M∑
i=1

(
δi −

hi

L

)
hi,

s.t. 0 ≤ δ0 ≤ ϵ, 0 ≤ h0 ≤ δ0L,

0 ≤ δi ≤ 2ϵ, 0 ≤ hi ≤
δiL

2
, ∀i = 1, · · · ,M,

M∑
i=0

δi = 1,

M∑
i=0

hi ≤ 1.

(12)

As discussed before, for any ∆F (ŷ), we can construct a feasible solution of the optimization problem in Eq. (12); moreover,
the ABCC value should less than or equal to the corresponding objective value. Therefore, the optimal objective value of
Eq. (12) should be an upper bound of ABCC. To solve the problem, we firstly consider the following problem

min
δi,hi

(
h0

2L
− δ0

)
h0 +

M∑
i=1

(
hi

L
− δi

)
hi,

s.t.
M∑
i=1

δi = 1,

M∑
i=1

hi ≤ 1.

(13)

Note that the problem in Eq. (13) is a convex relaxation of the original problem in Eq. (12), thus the (negative of) optimal
value of Eq. (13) is upper bound on the optimal value of Eq. (12) and ABCC (Boyd & Vandenberghe, 2004). The Lagrange
function of the above optimization problem is

L(δi, hi;α, β) =

(
h0

2L
− δ0

)
h0 +

M∑
i=1

(
hi

L
− δi

)
hi + α

(
M∑
i=1

δi − 1

)
+ β

(
M∑
i=1

hi − 1

)
,

where β ≥ 0, α are the Lagrange multipliers. By requiring the derivatives of L(δi, hi;α, β) w.r.t. δi, hi to be zero, we have

δ0 = h0 = 0, δi = hi =
1

M
, i = 1, · · · ,M. (14)

It’s easy to validate that Eq. (14) also satisfies all constraints in Eq. (12) (as L > 2), indicating that Eq. (14) is the optimal
solution of the problem in Eq. (12). Note that 1 =

∑M
i=0 δi ≤M · 2ϵ holds, thus M ≥ 1

2ϵ . Therefore, we can compute an
upper bound of ABCC as below

ABCC ≤ 0 +

M∑
i=1

(
1

M
− 1

ML

)
1

M
=

1

M

(
1− 1

L

)
≤ 2ϵ

(
1− 1

L

)
.

This completes the proof of Lemma A.2. Note that the whole proof process does not require L ≤ 2, i.e., Lemmas A.3-A.8
applies to all L values (including L > 2).

At last, we restate Property ⑤ as the following theorem, and complete its proof accordingly.
Theorem A.9 (An upper bound of ABCC). Assume ∆F (ŷ) is continuous on [0, 1] with Lipschitz constant L, then

ABCC ≤

{
MCDP(ϵ) + ϵL

2 , if L ≤ 2,

MCDP(ϵ) + 2ϵ
(
1− 1

L

)
, if L > 2.

Proof. For any ∆F (ŷ) = |F0(ŷ)− F1(ŷ)| such that MCDP(ϵ) = M > 0, construct F̃0(ŷ), F̃1(ŷ) as follows

F̃0(ŷ) =

{
max{F0(ŷ)−M,F1(ŷ)}, if F0(ŷ) ≥ F1(ŷ)

min{F0(ŷ) +M,F1(ŷ)}, if F0(ŷ) < F1(ŷ)
, F̃1(ŷ) = F1(ŷ), (15)

and denote ∆F̃ (ŷ) = |F̃0(ŷ)− F̃1(ŷ)|. We show that F̃0(ŷ), F̃1(ŷ), and ∆F̃ (ŷ) have the following properties.
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Lemma A.10. The value of F̃0(ŷ) satisfies that (i) F̃0(0) ≥ 0, (ii) F̃0(1) = 1, (iii) for any 0 ≤ a < b ≤ 1, F̃0(a) ≤ F̃0(b),
and (iv) |F̃0(ŷ)− F0(ŷ)| ≤M .

Proof. (i)(ii) By Eq. (15), the following holds

F̃0(0) =

{
max{F0(0)−M,F1(0)} ≥ F1(0) ≥ 0, if F0(ŷ) ≥ F1(ŷ)

min{F0(0) +M,F1(0)} ≥ min{M, 0} ≥ 0, if F0(ŷ) < F1(ŷ)
, F̃0(1) = F̃1(1) = 1.

(iii) By the monotonicity of CDF, for any 0 ≤ a < b ≤ 1, we have F̃0(b) ≥ F1(b) ≥ F1(a) ≥ F̃0(a).

(iv) By Eq. (15), |F̃0(ŷ)− F0(ŷ)| ≤M satisfies that

|F̃0(ŷ)− F0(ŷ)| =

{
|max{−M,F1(ŷ)− F0(ŷ)}| = |min{M,F0(ŷ)− F1(ŷ)}| ≤M, if F0(ŷ) ≥ F1(ŷ)

|min{M,F1(ŷ)− F0(ŷ)}| ≤M, if F0(ŷ) < F1(ŷ).

This completes the proof of Lemma A.10.

Lemma A.11. The value of ∆F̃ (ŷ) can be computed by ∆F̃ (ŷ) = max{0,∆F (ŷ)−M}.

Proof. By Eq. (15), we have

∆F̃ (ŷ) = |F̃0(ŷ)− F1(ŷ)| =

{
|max{F0(ŷ)− F1(ŷ)−M, 0}| = |max{∆F (ŷ)−M, 0}|, if F0(ŷ) ≥ F1(ŷ)

|min{F0(ŷ)− F1(ŷ) +M, 0}| = |min{M −∆F (ŷ), 0}|, if F0(ŷ) < F1(ŷ)

=

{
|∆F (ŷ)−M |, if ∆F (ŷ) ≥M

0, if ∆F (ŷ) < M
.

which yields that ∆F̃ (ŷ) = max{0,∆F (ŷ)−M}.

Lemma A.12. ∆F̃ (ŷ) and ∆F (ŷ) exhibit the same monotonic behavior.

Proof. One the one hand, for any a, b ∈ [0, 1] such that ∆F (a) ≤ ∆F (b), by Lemma A.11, we have

∆F̃ (a)−∆F̃ (b) = max{0,∆F (a)−M} −max{0,∆F (b)−M}

=


0, if M ≥ ∆F (b)

M −∆F (b) < 0, if ∆F (a) < M < ∆F (b)

∆F (a)−∆F (b) ≤ 0, if M ≤ ∆F (a)

,
(16)

which yields that ∆F̃ (a) ≤ ∆F̃ (b). On the other hand, for any a, b ∈ [0, 1] such that ∆F (a) ≥ ∆F (b), ∆F̃ (a) ≥ ∆F̃ (b)
can be proved in a similar manner. This yields that ∆F̃ (ŷ) and ∆F (ŷ) have the identical monotonic trend.

Lemma A.13. For any a, b ∈ [0, 1], |∆F̃ (a)−∆F̃ (b)| ≤ |∆F (a)−∆F (b)|.

Proof. If ∆F (a) ≤ ∆F (b), by Eq. (16), we have

|∆F̃ (a)−∆F̃ (b)| =


0 ≤ ∆F (b)−∆F (a), if M ≥ ∆F (b)

∆F (b)−M < ∆F (b)−∆F (a), if ∆F (a) < M < ∆F (b)

∆F (b)−∆F (a), if M ≤ ∆F (a)

,

which yields that |∆F̃ (a)−∆F̃ (b)| ≤ |∆F (a)−∆F (b)|. When ∆F (a) ≥ ∆F (b), |∆F̃ (a)−∆F̃ (b)| ≤ |∆F (a)−∆F (b)|
can be proved in a similar way. This completes the proof of Lemma A.13.
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Next we continue the proof of Theorem A.9. By (i),(ii) and (iii) in Lemma A.10, F̃0(ŷ) and F̃1(ŷ) in Eq. (15) are valid
CDFs. Moreover, by Lemma A.13 and Lipschitz continuity of ∆F (ŷ), the following holds∣∣∣∣∣∆F̃ (a)−∆F̃ (b)

a− b

∣∣∣∣∣ ≤
∣∣∣∣∆F (a)−∆F (b)

a− b

∣∣∣∣ ≤ L, for any a, b ∈ [0, 1],

which demonstrates that ∆F̃ (ŷ) is also continuous on [0, 1] with Lipschitz constant L. Furthermore, as Lemma A.12
illustrates that the monotonicity of F̃0(ŷ) and F̃1(ŷ) is consistent, the following holds

argmin
|ŷ−y0|≤ϵ

∆F (ŷ) = argmin
|ŷ−y0|≤ϵ

∆F̃ (ŷ), for any y0 ∈ [0, 1],

=⇒ argmax
y0∈[0,1]

∆F

(
argmin
|ŷ−y0|≤ϵ

∆F (ŷ)

)
= argmax

y0∈[0,1]

∆F̃

(
argmin
|ŷ−y0|≤ϵ

∆F̃ (ŷ)

)
,

=⇒ max
y0∈[0,1]

min
|ŷ−y0|≤ϵ

∆F̃ (ŷ) = ∆F̃ (ŷ∗)
(∗)
= max{0,∆F (ŷ∗)−M} = 0,

where ŷ∗ ∈ [0, 1] satisfies that ∆F (ŷ∗) = M , and equality (*) holds due to Lemma A.11. To conclude, F̃0(ŷ) and F̃1(ŷ)
in Eq. (15) satisfies all conditions of Lemmas A.1 and A.2. Denote A and Ã as the ABCC values based on ∆F (ŷ) and
∆F̃ (ŷ), respectively. By (iv) in Lemma A.10 and ||a− b| − |c− d|| ≤ |a− c|+ |b− d|, we have

A− Ã =

∫ 1

0

|F0(ŷ)− F1(ŷ)|dŷ −
∫ 1

0

∣∣∣F̃0(ŷ)− F̃1(ŷ)
∣∣∣dŷ

≤
∫ 1

0

∣∣∣F0(ŷ)− F̃0(ŷ)
∣∣∣dŷ + ∫ 1

0

∣∣∣F1(ŷ)− F̃1(ŷ)
∣∣∣dŷ

≤
∫ 1

0

Mdŷ + 0 = M.

By Lemmas A.1 and A.2, we have

A ≤ Ã+M ≤

{
M + ϵL

2 , if L ≤ 2,

M + 2ϵ
(
1− 1

L

)
, if L > 2.

This completes the proof of Theorem A.9.

A.2. Proofs of Theorems 3.2, 3.3 and 3.4

To complete the proofs of theorems about Algorithms 1 and 2, we start with giving some important lemmas and corollaries.

Lemma A.14 (Subset min-max property (Rosen, 2007)). For any two finite ordered sets A,B, if A ⊆ B, then minA ≥
minB and maxA ≤ maxB.

Lemma A.15. The range of ∆F̂ (ŷ) = |F̂0(ŷ)− F̂1(ŷ)| over the interval [y1, y2] ⊆ [0, 1] is a finite set{
∆F̂ (ŷ) : ŷ ∈ [y1, y2]

}
=
{
∆F̂ (ŷi) : ŷi ∈ [ŷl, ŷr]

}
, l, r ∈ [0, N + 1],

where ŷ0 = 0, ŷN+1 = 1, ŷl = max
i
{ŷi : ŷi ≤ y1}, ŷr = max

i
{ŷi : ŷi ≤ y2}, i ∈ [0, N + 1].

Proof. In the following, for the simplicity of exposition, the default value domain of subscript indices i, j in model
predictions ŷi, ŷj is {0, 1, · · · , N + 1}, unless we point out different value domains in equations.

According to Eq. (1), for any ŷ ∈ [y1, y2], there exists an instance’s prediction ŷj = maxi{ŷi : ŷi ≤ ŷ} such that
F̂a(ŷ) = F̂a(ŷj), a ∈ {0, 1}, which implies that ∆F̂ (ŷ) = ∆F̂ (ŷj). As ŷ ≥ y1 holds, {ŷi : ŷi ≤ y1} should be a subset of
{ŷi : ŷi ≤ ŷ}. According to Lemma A.14, we have ŷj ≥ ŷl. Similarly, we can prove that ŷj ≤ ŷr. Therefore,

{∆F̂ (ŷ) : ŷ ∈ [y1, y2]} ⊆ {∆F̂ (ŷi) : ŷi ∈ [ŷl, ŷr]}. (17)
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Meanwhile, for any ŷi ∈ [ŷl, ŷr], we have F̂a(ŷi) = F̂a(y
′), a ∈ {0, 1} and ∆F̂ (ŷi) = ∆F̂ (y′), where y′ = max{y1, ŷi} ∈

[y1, y2]. Thus the following holds

{∆F̂ (ŷ) : ŷ ∈ [y1, y2]} ⊇ {∆F̂ (ŷi) : ŷi ∈ [ŷl, ŷr]}. (18)

Combining Eq. (17) and Eq. (18) completes the proof of Lemma A.15.

According to Lemma A.14 and Lemma A.15, we have the following corollary:

Corollary A.16 (An over-estimation of the minimal value of ∆F̂ (ŷ)). The minimal value of ∆F̂ (ŷ) over the interval
[y1, y2] ⊆ [0, 1], y2 ≥ y1 + δ can be over-estimated by the minimal value of{

∆F̂ (kδ) : k =
⌈y1
δ

⌉
,
⌈y1
δ

+ 1
⌉
, · · · ,

⌊y2
δ

⌋}
,

where δ ∈ (0, 1) is the step-size hyper-parameter.

Theorem 3.2 (Exactness). The M̃CDP(ϵ) value returned by Algorithm 1 equals to the M̂CDP(ϵ) value in Eq. (4), i.e.,
Algorithm 1 calculates M̂CDP(ϵ) exactly without error.

Proof. According to Lemma A.15, when ϵ = 0, we have

{∆F̂ (ŷ) : ŷ ∈ [0, 1]} = {∆F̂ (ŷi) : ŷi ∈ [0, 1]} = {∆F̂ (ŷi)},

⇒ M̂CDP(0) = max
ŷ∈[0,1]

∆F̂ (ŷ) = max
i

∆F̂ (ŷi) = M̃CDP(0).
(19)

When ϵ > 0, for any y0 ∈ [0, ϵ), as [0, ϵ] ⊆ [0, y0 + ϵ] ⊂ [0, 2ϵ], by Lemma A.14 and A.15, we have

max
y0∈[0,ϵ)

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) = min
ŷ≤ϵ

∆F̂ (ŷ) = min
i:ŷi≤ϵ

∆F̂ (ŷi), (20)

where mini:ŷi≤ϵ ∆F̂ (ŷi) equals to the initial M̃CDP(ϵ) value in line 6 of Algorithm 1. For any y0 ∈ [ϵ, 1], let ŷ0l =
maxi{ŷi : ŷi ≤ y0 − ϵ} and ŷ0r = maxi{ŷi : ŷi ≤ y0 + ϵ}. By Lemmas A.15 and A.14, we have

{∆F̂ (ŷ) : |ŷ − y0| ≤ ϵ} = {∆F̂ (ŷi) : ŷi ∈ [ŷ0l, ŷ0r]} ⊇ {∆F̂ (ŷi) : ŷi ∈ [ŷ0l, ŷ0l + 2ϵ]},
⇒ min

i:ŷi∈[ŷ0l,ŷ0l+2ϵ]
∆F̂ (ŷi) ≥ min

|ŷ−y0|≤ϵ
∆F̂ (ŷ),

⇒ max
i:ŷi≤1−ϵ

min
j:ŷj∈[ŷi,ŷi+2ϵ]

∆F̂ (ŷj) ≥ max
y0∈[ϵ,1]

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ).

(21)

where the last step uses the fact that {ŷ0l : y0 ∈ [ϵ, 1]} = {ŷi : ŷi ≤ 1− ϵ}.

On the other hand, for any i such that ŷi ≤ 1− ϵ, by Lemma A.15, there exists y′i = ŷi + ϵ (thus y′i ∈ [ϵ, 1]) such that

{∆F̂ (ŷ) : |ŷ − y′i| ≤ ϵ} = {∆F̂ (ŷ) : ŷ ∈ [y′i − ϵ,min(1, y′i + ϵ)]} = {∆F̂ (ŷj) : ŷj ∈ [y′i − ϵ,min(1, y′i + ϵ)]}
= {∆F̂ (ŷj) : ŷj ∈ [ŷi, ŷi + 2ϵ]}.

(22)

Note that for any i such that ŷi ≤ 1− ϵ, the following also holds{
min

|ŷ−y′
i|≤ϵ

∆F̂ (ŷ) : ŷi ≤ 1− ϵ

}
⊆
{

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) : y0 ∈ [ϵ, 1]

}
. (23)

By Lemma A.14, Eq. (22) and Eq. (23), we have

max
i:ŷi≤1−ϵ

min
ŷj∈[ŷi,ŷi+2ϵ]

∆F̂ (ŷj) = max
i:ŷi≤1−ϵ

min
|ŷ−y′

i|≤ϵ
∆F̂ (ŷ) ≤ max

y0∈[ϵ,1]
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ). (24)
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Taking a step further, combining Eq. (21) and Eq. (24), yields that

max
i:ŷi≤1−ϵ

min
ŷj∈[ŷi,ŷi+2ϵ]

∆F̂ (ŷj) = max
y0∈[ϵ,1]

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ). (25)

At last, according to Eq. (20) and Eq. (25), we can derive the relationship between M̂CDP(ϵ) (Eq. (4)) and M̃CDP(ϵ)
(Algorithm 1) as follows

M̂CDP(ϵ) = max
y0∈[0,1]

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) = max

{
max

y0∈[0,ϵ)
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ), max

y0∈[ϵ,1]
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ)

}
= max

{
min
i:ŷi≤ϵ

∆F̂ (ŷi), max
i:ŷi≤1−ϵ

min
ŷj∈[ŷi,ŷi+2ϵ]

∆F̂ (ŷj)

}
= M̃CDP(ϵ), ϵ > 0.

(26)

Combining Eq. (19) and Eq. (26) completes the proof of Theorem 3.2.

Theorem 3.3 (Over-estimation). The M̃CDP(ϵ) value returned by the approximate algorithm satisfies that M̃CDP(ϵ) ≥
M̂CDP(ϵ), i.e., Algorithm 2 never underestimates M̂CDP(ϵ).

Proof. For any y0 ∈ [0, ϵ], ϵ > 0, according to Eq. (20) and Corollary A.16, we have

max
y0∈[0,ϵ)

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) = min
ŷ≤ϵ

∆F̂ (ŷ) ≤ min
j∈{0,··· ,K}

∆F̂ (jδ), (27)

where minj ∆F̂ (jδ), j ∈ {0, · · · ,K} is the initial value of M̃CDP(ϵ) in Algorithm 2 (line 3).

For any y0 ∈ (ϵ, 1− ϵ), by Corollary A.16 and Corollary A.14, we have

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) ≤ min
k∈{l,··· ,r}

∆F̂ (kδ) ≤ min
k∈{l,··· ,l+2K−1}

∆F̂ (kδ),

where l =

⌈
y0 − ϵ

δ

⌉
=
⌈y0
δ

⌉
−K, r =

⌊
y0 + ϵ

δ

⌋
=
⌊y0
δ

⌋
+K ≥ l + 2K − 1.

(28)

Note that {
⌈
y0

δ

⌉
−K : y0 ∈ (ϵ, 1− ϵ)} = {1, · · · ,

⌈
1
δ

⌉
− 2K}. Taking a step further, Eq. (28) derives that

max
y0∈(ϵ,1−ϵ)

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) ≤ max
l∈{1,··· ,⌈ 1

δ ⌉−2K}
min

k∈{l,··· ,l+2K−1}
∆F̂ (kδ). (29)

For any y0 ∈ [1− ϵ, 1], min|ŷ−y0|≤ϵ ∆F̂ (ŷ) = ∆F̂ (1) = 0 holds, which yields that

max
y0∈[1−ϵ,1]

min
|ŷ−y0|≤ϵ

∆F̂ (ŷ) = ∆F̂ (1) = 0. (30)

Combining Eq. (27), Eq. (29) and Eq. (30), the M̃CDP(ϵ) value returned by Algorithm 2 satisfies that

M̃CDP(ϵ) = max

{
min

j∈{0,··· ,K}
∆F̂ (jδ), max

l∈{1,··· ,⌈ 1
δ ⌉−2K}

min
k∈{l,··· ,l+2K−1}

∆F̂ (kδ)

}

≥ max

{
max

y0∈[0,ϵ)
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ), max

y0∈(ϵ,1−ϵ)
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ), max

y0∈[1−ϵ,1]
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ)

}
= max

y0∈[0,1]
min

|ŷ−y0|≤ϵ
∆F̂ (ŷ) = M̂CDP(ϵ), ϵ > 0.

This completes the proof of Theorem 3.3.
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Theorem 3.4 (Monotonicity w.r.t. sampling frequency K). Denote M̃CDP(ϵ;K) as the M̂CDP(ϵ) value returned by
Algorithm 2 with sampling frequency K. For any p > q ≥ 0, p, q ∈ N, we have M̃CDP(ϵ; 2p) ≤ M̃CDP(ϵ; 2q).

Proof. Let Kp = 2p, Kq = 2q, δp = ϵ
Kp

, δq = ϵ
Kq

, and

Y(j)
K = {j · ϵ

K
, · · · , (j + 2K − 1) · ϵ

K
}, for all j = 1, · · · ,

⌈
K

ϵ

⌉
− 2K, K ∈ N+.

Before giving the proof, we first introduce two lemmas which will be used later.

Lemma A.17. (Graham et al., 1989) If m ∈ N+, n ∈ Z, then the equation below can be used to convert ceilings to floors⌈ n
m

⌉
=

⌊
n+m− 1

m

⌋
=

⌊
n− 1

m

⌋
+ 1.

Lemma A.18. For any jp = 1, · · · ,
⌈

1
δp

⌉
− 2Kp, there exists jq ∈ {1, · · · ,

⌈
1
δq

⌉
− 2Kq}, such that Y(jq)

Kq
⊆ Y(jp)

Kp
.

Proof. Let jq = ⌈jp · 2q−p⌉ ≥
⌈
1 · 2−1

⌉
= 1. By lemma A.17, we have

jq =
⌊
(jp − 1) · 2q−p

⌋
≤
⌊
(⌈ 1
δp
⌉ − 2Kp − 1) · 2q−p

⌋
=

⌊
(⌈ 1
δp
⌉ − 1) · 2q−p

⌋
− 2Kq

≤
⌊
1

δp
· 2q−p

⌋
− 2Kq =

⌊
1

δq

⌋
− 2Kq ≤

⌈
1

δq

⌉
− 2Kq,

which suggests that jq ∈ {1, · · · ,
⌈

1
δq

⌉
− 2Kq}. For any yq = (jq + lq) · δq ∈ Y

(jq)
Kq

, lq = 0, · · · , 2Kq − 1, we denote yp

as yp = (jp + lp) · δp, where lp = (jq + lq) · 2p−q − jp ∈ Z. On the one hand, we have lp ≥ 0 since the following holds

(jq + lq) · 2p−q

jp
≥ (jp · 2q−p + 0) · 2p−q

jp
= 1.

On the other hand, according to Lemma A.17, we have jq = ⌊(jp − 1) · 2q−p⌋ ≤ (jp − 1) · 2q−p. Note that

lp − (2Kp − 1) =
(
(jq + lq) · 2p−q − jp

)
− (2Kp − 1)

≤
(
(jp − 1) · 2q−p + 1 + 2Kq − 1

)
· 2p−q − jp − 2Kp + 1

= jp − 1 + 2 · 2q · 2p−q − jp − 2 · 2p + 1 = 0.

Thus lp ∈ {0, · · · , 2Kp − 1}. Moreover, note that

yq − yp = (jq + lq) ·
ϵ

2q
−
(
jp + (jq + lq) · 2p−q − jp

)
· ϵ

2p
= 0,

in other words, yp = yq and yp ∈ Y
(jp)
Kp

. This yields that Y(jq)
Kq
⊆ Y(jp)

Kp
.

Proof of Theorem 3.4. Rewrite M̃CDP(ϵ;K) as the following form:

M̃CDP(K; ϵ) = max{ min
j∈{0,··· ,K}

∆F̂ (j · ϵ

K
)︸ ︷︷ ︸

M1(K)

, max
l∈{1,··· ,⌈K

ϵ ⌉−2K}
min

k∈{l,··· ,l+2K−1}
∆F̂ (k · ϵ

K
)︸ ︷︷ ︸

M2(K)

}

= max (M1(K),M2(K)) .

(31)

To prove the theorem, we show that for any p > q ≥ 0, p, q ∈ N, M1(Kp) ≤M1(Kq) and M2(Kp) ≤M2(Kq) holds.
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① Proof of M1(Kp) ≤ M1(Kq): For any jq = 0, · · · ,Kq, there exists jp = jq · 2p−q ∈ [0,Kp], jp ∈ N, such that
jqδq = jpδp. By Lemma A.14, we have

{∆F̂ (jδq)}
Kq

j=0 ⊆ {∆F̂ (jδp)}
Kp

j=0 ⇒ M1(Kq) ≥M1(Kp). (32)

② Proof of M2(Kp) ≤ M2(Kq): According to Lemma A.18, for any jp = 1, · · · ,
⌈

1
δp

⌉
− 2Kp, there exists j

(p)
q =

⌈jp · 2q−p⌉ ∈ {1, · · · ,
⌈

1
δq

⌉
− 2Kq}, such that Y(jq)

Kq
⊆ Y(jp)

Kp
. By Lemma A.14, we have

min
k∈{j(jp)

q ,··· ,j(jp)
q +2Kq−1}

∆F̂ (kϵq) ≥ min
k∈{jp,··· ,jp+2Kp−1}

∆F̂ (kϵp).

Note that
{
j
(jp)
q : jp ∈

{
1, · · · ,

⌈
1
δp

⌉
− 2Kp

}}
⊆
{
1, · · · ,

⌈
1
δq

⌉
− 2Kq

}
. Using Lemma A.14 again, we have

max
jq∈{1,··· ,

⌈
1
δq

⌉
−2Kq}

min
k∈{jq,··· ,jq+2Kq−1}

∆F̂ (kϵq) ≥ max
jp∈{1,··· ,

⌈
1
δp

⌉
−2Kp}

min
k∈{jp,··· ,jp+2Kp−1}

∆F̂ (kϵp),

⇒ M2(Kq) ≥M2(Kp).

(33)

Combining Eq. (31), Eq. (32), and Eq. (33), we obtain that

M̃CDP(ϵ;Kp) = max{M1(Kp),M2(Kp)} ≤ max{M1(Kq),M2(Kq)} ≤ M̃CDP(ϵ;Kq).

This completes the proof of Theorem 3.4.

A.3. Proofs of Theorem 3.5

Theorem 3.5. ∆F̃τ (ŷ)
a.e.−→ ∆F̂ (ŷ) as τ →∞, and in particular, limτ→∞ ∆F̃τ (ŷ) = ∆F̂ (ŷ), ∀ŷ /∈ {ŷi}Ni=1.

Proof. Note that for any i = 1, · · · , N , we have

lim
τ→∞

στ (ŷ − ŷi) =
1

1 + exp(−τ(ŷ − ŷi))
=


1, if ŷi < ŷ,
1
2 , if ŷi = ŷ,

0, if ŷi > ŷ.

Thus for any ŷ /∈ {ŷi}Ni=1, the following holds

lim
τ→∞

∑
i∈Sa

στ (ŷ − ŷi) =
∑
i∈Sa

lim
τ→∞

στ (ŷ − ŷi) =
∑
i∈Sa

I(ŷi ≤ ŷ), a ∈ {0, 1}. (34)

Then we have

lim
τ→∞

∆F̃τ (ŷ) =

∣∣∣∣∣ 1

|S0|
∑
i∈S0

I(ŷi ≤ ŷ)− 1

|S1|
∑
i∈S1

I(ŷi ≤ ŷ)

∣∣∣∣∣ = |F̂0(ŷ)− F̂1(ŷ)| = ∆F̂ (ŷ), ∀ŷ /∈ {ŷi}Ni=1. (35)

Note that {ŷi}Ni=1 has measure zero, which further yields that ∆F̃τ (ŷ)
a.e.−→ ∆F̂ (ŷ).

B. Estimation Error Analysis of M̂CDP(ϵ) Metric

To conduct analysis of estimation error of the M̂CDP(ϵ) metric, we start with giving two lemmas that will be used in proofs.

Lemma B.1. For real numbers a, b, c, d ∈ R, ||a− b| − |c− d|| ≤ |a− c|+ |b− d| holds.

Lemma B.2. For a, b, c, d ∈ R where a ≤ b and c ≤ d, max{|a− c|, |b− d|} ≤ max{|b− c|, |a− d|} holds.
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Proof. If b ≤ d, then we have |b − d| = d − b ≤ d − a ≤ max{|b − c|, |a − d|}. Likewise, d ≤ b derives that
|d− b| = b− d ≤ b− c ≤ max{|b− c|, |a− d|}. Thus the Lemma B.2 gets proved.

Next we provide the statement of the Glivenko–Cantelli theorem as below:

Theorem B.3 (Glivenko-Cantelli). (Tucker, 1959) Let X1, · · · , Xn be i.i.d. random variables in R with common cumulative

distribution function F (x) = P(X1 ≤ x). Let F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x) be the empirical distribution function. Then

P
{
sup
x∈R
|F (x)− F̂n(x)| > δ

}
≤ 8(n+ 1)e−

nδ2

32 . (36)

In particular, by the Borel-Cantelli Lemma (Chung & Erdös, 1952), F̂n(x)
a.s.−→ F (x), n→∞, i.e.,

lim
n→∞

sup
x∈R
|F (x)− F̂n(x)| = 0.

By Theorem B.3, we have the following corollaries in the binary classification task’s setting of this work:

Corollary B.4. Suppose the instances {xi}Ni=1 in D are i.i.d., then

F̂a,na
(ŷ)

a.s.−→ Fa(ŷ), na →∞, a = 0, 1,

where na denotes the number of instances with group label a in D (i.e., na = |Sa|), and F̂a,na
(ŷ) is the empirical

distribution function of predictions of group a when estimated by Na samples.

Corollary B.5. Denote ∆F̂n0,n1(ŷ) = |F̂0,n0(ŷ)− F̂1,n1(ŷ)|, then we have

∆F̂n0,n1
(ŷ)

a.s.−→ ∆F (ŷ), n0 →∞, n1 →∞. (37)

Proof. According to Lemma B.4, for any δ > 0 and a ∈ {0, 1}, there exists Na(δ) > 0, such that

max
ŷ∈[0,1]

|F̂a,na
(ŷ)− Fa(ŷ)| ≤ δ, for any na > Na(ϵ). (38)

Let n0 > N0(
δ
2 ) and n1 > N1(

δ
2 ), we have

max
ŷ∈[0,1]

|∆F̂n0,n1
(ŷ)−∆F (ŷ)|

= max
ŷ∈[0,1]

∣∣∣|F̂0,n0(ŷ)− F̂1,n1(ŷ)| − |F0(ŷ)− F1(ŷ)|
∣∣∣

(a)
≤ max

ŷ∈[0,1]

(
|F̂0,n0

(ŷ)− F̂0(ŷ)|+ |F̂1,n1
(ŷ)− F̂1(ŷ)|

)
≤ max

ŷ∈[0,1]
|F̂0,n0(ŷ)− F̂0(ŷ)|+ max

ŷ∈[0,1]
|F̂1,n1(ŷ)− F̂1(ŷ)|

(b)
≤ δ

2
+

δ

2
= δ,

(39)

where inequality (a) holds due to Lemma B.1, and inequality (b) holds due to Eq. (38). By Eq. (39), we have

lim
n0→∞
n1→∞

sup
ŷ∈[0,1]

∣∣∣∆F̂n0,n1
(ŷ)−∆F (ŷ)

∣∣∣ = 0,

which yields that ∆F̂n0,n1
(ŷ)

a.s.−→ ∆F (ŷ).

For notation clarity, let M(ϵ) = MCDP(ϵ) and M̂n0,n1
(ϵ) = M̂CDP(ϵ) = max

y0∈[0,1]
min

|ŷ−y0|≤ϵ
∆F̂n0,n1

(ŷ). We have the

following theorem about the estimation error convergence rate of the empirical and true metrics:
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Theorem B.6 (Convergence of M̂CDP(ϵ)). As the sample size n0 and n1 of two demographic groups increase, the value of
M̂CDP(ϵ) metric converges with probability one to the true metric value MCDP(ϵ), i.e.,

M̂n0,n1(ϵ)
a.s.−→M(ϵ), n0 →∞, n1 →∞. (40)

Additionally, the estimation error satisfies

Erremp = ED

[
|M̂n0,n1

(ϵ)−M(ϵ)|2
]
= O

(
lnn

n

)
, n = min{n0, n1}. (41)

Proof. Let y∗ = argmaxy∗∈[0,1] ∆F (ŷ) and ŷ∗ = argmaxy∗∈[0,1] ∆F̂n0,n1(ŷ), then both ① ∆F (ŷ∗) ≤ ∆F (y∗) and ②

∆F̂n0,n1
(y∗) ≤ ∆F̂n0,n1

(ŷ∗) hold. By Lemma B.2 and Eq. (39), given δ > 0, for any n0 > N0(δ), n1 > N1(δ), we have

|M(0)− M̂n0,n1(0)| = |∆F (y∗)−∆F̂n0,n1(ŷ
∗)|

≤ max
{
|∆F (y∗)−∆F̂n0,n1

(y∗)|, |∆F (ŷ∗)−∆F̂n0,n1
(ŷ∗)|

}
≤ max

ŷ∈[0,1]
|∆F (ŷ)−∆F̂n0,n1

(ŷ)| ≤ δ.

(42)

As to the cases when ϵ > 0, we denote G(y0), y
∗
0 , Ĝn0,n1(y0), ŷ

∗
0 as follows

G(y0) = min
|ŷ−y0|≤ϵ

∆F (ŷ), y∗0 = argmax
y0∈[0,1]

G(y0),

Ĝn0,n1(y0) = min
|ŷ−y0|≤ϵ

∆F̂n0,n1(ŷ), ŷ∗0 = argmax
y0∈[0,1]

Ĝn0,n1(y0).

Thus we have G(ŷ∗0) ≤ G(y∗0) and Ĝn0,n1(y
∗
0) ≤ Ĝn0,n1(ŷ

∗
0). Moreover, for any y′0 ∈ [0, 1], there exists ŷ′, ŷ′′ ∈

[y′0 − ϵ, y′0 + ϵ] ∩ [0, 1], such that G(y′0) = ∆F (ŷ′) ≤ ∆F (ŷ′′) and Ĝ(y′0) = ∆F̂n0,n1
(ŷ′′) ≤ ∆F̂n0,n1

(ŷ′). By Lemma
B.2 and Eq. (39), given δ > 0 and ϵ > 0, for any n0 > N0(δ), n1 > N1(δ), we have

|M(ϵ)− M̂n0,n1
(ϵ)| = |G(y∗0)− Ĝn0,n1

(ŷ∗0)|

≤ max
{
|G(y∗0)− Ĝn0,n1(y

∗
0)|, |G(ŷ∗0)− Ĝn0,n1(ŷ

∗
0)|
}

≤ max
y0∈[0,1]

|G(y0)− Ĝn0,n1(y0)|
(c)
= |∆F (ŷ′)−∆F̂n0,n1(ŷ

′′)|

≤ max
{
|∆F (ŷ′′)−∆F̂n0,n1

(ŷ′′)|, |∆F (ŷ′)−∆F̂n0,n1
(ŷ′)|

}
≤ max

ŷ∈[0,1]
|∆F (ŷ)−∆F̂n0,n1

(ŷ)| ≤ δ,

(43)

Equality (c) holds by taking y′0 = argmax
y0∈[0,1]

|G(y0)− Ĝn0,n1
(y0)|. Combining Eq. (42) and Eq. (43) yields that M̂n0,n1(ϵ)

converges to M(ϵ) almost surely (i.e., Eq. (40) holds). Furthermore, let Eq. (36) equal to 1, we have δ = O
(√

lnn
n

)
.

Combining Eq. (42), Eq. (43) and Eq. (39), for any ϵ ≥ 0, the estimation error should satisfy that

Erremp = ED

[
|M̂n0,n1(ϵ)−M(ϵ)|2

]
≤
(

max
ŷ∈[0,1]

|∆F (ŷ)−∆F̂n0,n1(ŷ)|
)2

≤
(

max
ŷ∈[0,1]

|F̂0,n0(ŷ)− F̂0(ŷ)|+ max
ŷ∈[0,1]

|F̂1,n1(ŷ)− F̂1(ŷ)|
)2

=

(
O

(√
lnn0

n0

)
+O

(√
lnn1

n1

))2

= O
(
lnn

n

)
, n = min{n0, n1}.

Thus Eq. (41) gets proved. This completes the proof of Theorem B.6.
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C. Detailed Analysis about the Computational Complexity

In Section 3.3, we conduct a rough computational complexity analysis of the exact and approximate M̂CDP(ϵ) calculation
algorithms, where we only focus on the traverse strategies of y0 and ŷ in Eq. (4). Here we provide a more thorough
computational complexity analysis of both algorithms.

Exact Calculation Analysis. In Algorithm 1, the calculation process can be divided into the following steps.

(1) Calculating ∆F̂ (ŷ) (line 1). As ∆F̂ (ŷ) = |F̂0(ŷ) − F̂1(ŷ)|, this step is equivalent to calculating the empirical
distribution function F̂a(ŷ) using the predictions {ŷi}i∈Sa in two groups (a = 0, 1). Due to its step-like pattern’s
property, the empirical distribution function is implemented by constructing a sorted array of sample values with the
corresponding cumulative ratio in practice (e.g., the Statsmodels library (Seabold & Perktold, 2010) in Python), and
then perform binary-search on the array given a specific value. In line 1, the complexity of initializing the sorted array
structure is O(|S0| log |S0|) +O(|S1| log |S1|) = O(N logN).

(2) Initializing the M̃CDP(ϵ) (lines 2-6). When ϵ = 0, the algorithm returns the maximal ∆F̂ (ŷ) value on predictions of
data samples, and its computational complexity is O(N). In cases where ϵ > 0, the M̃CDP(ϵ) value is initialized with
the minimal ∆F̂ (ŷ) prediction smaller than or equal to ϵ, whose complexity is also O(N).

(3) Traversing y0 and ŷ when ϵ > 0 (lines 7-12). For each prediction ŷi ≤ 1− ϵ, the algorithm finds the minimal ∆F̂ (ŷ)
value of predictions in the 2ϵ interval with left endpoint ŷi, and finally keeps the maximum of the selected minimums.
As the above process involves a double traversal of predictions in D, its complexity is O(N2).

In summary, the overall computational complexity when ϵ = 0 is O(N logN) +O(N) = O(N logN). When ϵ > 0, the
total complexity is O(N logN) +O(N) +O(N2) = O(N2), most of which is made up by the traverse process.

Approximate Calculation Analysis. Similar to the exact calculation, Algorithm 2 firstly calculates ∆F̂ (ŷ) using the
predictions of data samples in two groups (line 1), whose computational complexity is O(N logN). Next, the algorithm
samples equally-spaced prediction points by step-size δ = ϵ

K on [0, 1], where the total number of samples is O( 1δ ).
Afterwards, it firstly initializes M̃CDP(ϵ) with the minimal ∆F̂ (ŷ) value of the first K + 1 sampled points (line 3), and
then updates it with the maximum of the minimal ∆F̂ (ŷ) value of all consecutive 2K sampled points (lines 4-7). The
computational complexity of initialization and traverse update are O(K) and O(Kδ ), respectively. To conclude, the total
complexity of Algorithm 2 isO(N logN)+O( 1δ )+O(K)+O(Kδ ) = max{O(N logN),O(K

2

ϵ )}. Specifically, when the
sampling frequency K is set with small values such that K ≪ N , the calculation of ∆F̂ (ŷ) will make up more complexity
than traversing sampled predictions, and its total complexity will be much smaller than that of exact algorithm.

D. Additional Experimental Settings
Implementation Details. To make our work standardized and extensible, the implementations are based on a latest open-
sourced fairness benchmark, FFB (Han et al., 2024). We conduct experiments with a 96-core Intel CPU (Intel(R) Xeon(R)
Platinum 8268 @ 2.90GHz * 2) and a Nvidia-2080Ti GPU (11 GB memory). For tabular datasets Adult (Kohavi, 1996) and
Bank (Moro et al., 2014), we use a two-layer MLP (Bishop, 1995) with 256 hidden neurons and ReLU activation function
(Nair & Hinton, 2010) as the classifier; for the image dataset CelebA (Liu et al., 2015) (which derives two meta-datasets
CelebA-A and CelebA-W), we adopt Resnet-18 (He et al., 2016) with as the backbone model, and initialize it with pretrained
weights. The batch size for tabular and image datasets are set as 1024 and 128, respectively, and the total training step is set
as 150. We use the Adam optimizer with initial learning rate 0.001, which is decayed by the piecewise strategy (i.e., StepLR
scheduler in Pytorch (Paszke et al., 2019)) during training. We use average precision (AP) to evaluate classification accuracy,
and adopt different metrics (∆DP, ABCC, MCDP(ϵ)) to measure algorithmic fairness. For ∆DP, we follow Creager
et al. (2019); Dai & Wang (2021); Chen et al. (2024) to compute the difference of positive prediction proportion of two
groups. The code implementation of this paper is available at https://github.com/mitao-cat/icml24_mcdp.

Hyper-Parameters of Baselines. As fairness-accuracy trade-off is a widely-exist phenomenon in various applications
(Wick et al., 2019; Dutta et al., 2020), the hyper-parameters of different fairness algorithms should be carefully selected
to ensure reliable comparisons. Generally, all hyper-parameters can be divided into two categories based on whether they
directly control the fairness and accuracy (trade-off HPs) or not (other HPs). For each compared method, we firstly perform
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Table 3. Hyper-parameter settings for different methods and datasets.

Method Other HP Selected 5 Trade-off HP Values on Each Dataset

AdvDebias N/A Adult: [0.2, 0.4, 0.6, 0.8, 1.0]; Bank: [0.3, 0.6, 0.9, 1.2, 1.5];
CelebA-A, CelebA-W: [0.5, 1.0, 1.5, 2.0, 2.5]

DiffDP N/A All datasets: [0.1, 0.2, 0.3, 0.4, 0.5]

FairMixup N/A Adult: [0.1, 0.2, 0.3, 0.4, 0.5]; Bank: [0.3, 0.4, 0.5, 0.6, 0.7]
CelebA-A: [0.5, 1, 2, 3, 4]; CelebA-W: [0.5, 1.0, 1.5, 2.0, 2.5]

DRAlign Alignment strength β All datasets: [0.1, 0.2, 0.3, 0.4, 0.5]

DiffABCC Temperature τ All datasets: [0.1, 0.2, 0.3, 0.4, 0.5]

DiffMCDP Temperature τ All datasets: [0.1, 0.15, 0.2, 0.25, 0.3]

grid search on a wide value range for both trade-off HPs and other HPs, and then select the optimal other HP value that
achieves the best trade-off performance on each dataset. Afterwards, we select 5 trade-off HP values that can well reflect the
fairness-accuracy trade-off trend for each algorithm on the validation set. We additionally require that (i) both fairness and
accuracy metrics of different algorithms are within a similar value range, and (ii) the classification accuracy should not drop
too sharply. When using a single value for model evaluation, following previous work (Jung et al., 2023), we select the
optimal trade-off HP value which achieves at least 95% of the vanilla model’s accuracy (i.e., AP of ERM) on validation set.
We summarize the detailed hyper-parameters in Table 3.

E. Supplementary Experimental Results
E.1. Fairness-Accuracy Trade-offs

In Section 4.1, we show the trade-offs between AP and MCDP(0) metrics of baselines and our proposed method. To
further investigate their performances, we also plot the fairness-accuracy trade-off curves when adopting ∆DP and ABCC
as fairness metrics in Figures 8 and 9, respectively. We can observe that DiffMCDP can achieve comparable or even better
trade-off performances compared with other baselines, and in particular, DiffDP achieves the optimal results in terms of both
∆DP and ABCC fairness metrics on Bank dataset. This indicates that optimizing the maximal disparity is also beneficial to
minimize the overall disparity, which is consistent with the results in Table 1.
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Figure 8. Trade-offs between AP and ∆DP of baselines and the proposed method.
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Figure 9. Trade-offs between AP and ABCC of baselines and the proposed method.
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E.2. Varying Local Measurements ϵ

In Figure 4 of Section 4.1, we report the different MCDP(ϵ) results of each algorithm, in which the relative performance of
some baselines changes with increasing ϵ values. To further explore the effect of varying neighborhood hyper-parameter,
we plot the fairness-accuracy trade-off curves with ϵ in {0.01, 0.05, 0.1}. Figures 10 and 11 show the results of Adult
and Bank datasets, respectively, from which we observe that DiffMCDP always outperforms other baselines in terms of
different MCDP(ϵ) metrics. Moreover, the trade-off patterns of some baselines may change with ϵ values, which brings
about changing relative performances evaluated by MCDP(ϵ). This further reminds practitioners to select varying ϵ values
for more comprehensive evaluation of different fair algorithms.
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Figure 10. Trade-offs between AP and MCDP(ϵ) with varying neighborhood hyper-parameter ϵ on Adult dataset.
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Figure 11. Trade-offs between AP and MCDP(ϵ) with varying ϵ values on Bank dataset.

Additionally, we plot the MCDP(ϵ) results with varying ϵ values on CelebA dataset in Figure 12, which shows that our
proposed DiffMCDP algorithm can consistently achieve lower maximal local disparity than other baselines. Additionally,
compared to the results of the tabular data in Figure 4, the differences in the magnitude of MCDP(ϵ) values under varying ϵ
are much lower in Figure 12, and the relative performance of all methods does not change. We postulate that the CDFs
of predictions of two groups on tabular datasets are sharper than those of image datasets, thus the value of neighborhood
hyper-parameter ϵ is more prone to affect the value of maximal local disparity.
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Figure 12. Comparison of MCDP(ϵ) results with varying ϵ on image datasets.
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E.3. M̂CDP(ϵ) Calculation Algorithms

Continuing from Section 4.2, we show the effect of sampling frequency K and local measurement ϵ on the estimation
accuracy and calculation efficiency of M̂CDP(ϵ) calculation algorithms. The performance comparison on Bank and
CelebA-W datasets are reported in Figures 13 and 14, respectively. As the exact M̂CDP(0.1) values of a small fraction
of cases in Bank are very close to zero (< 0.001), which results in extreme relative errors, we report the absolute error
Va − Ve in Figure 13 instead. Similar to the observations from Figure 5, the approximate algorithm can greatly improve the
calculation efficiency with low error.
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Figure 13. Varying K and ϵ in M̂CDP(ϵ) calculation algorithms on the Bank dataset.
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Figure 14. Varying K and ϵ in M̂CDP(ϵ) calculation algorithms on the CelebA-W dataset.

To further illustrate the importance of improving computational efficiency, we report the running time of Algorithm 1 Te in
Table 4. We can observe that the exact calculation algorithm exhibits prolonged execution time in a single run. In research
and industry scenarios which involves frequent model evaluations, the total evaluation time for multiple experiments would
be unaffordable if the exact algorithm is employed. Nevertheless, the runtime can be shortened to hundreds or thousands of
times using the approximate calculation algorithm (i.e., Ta ≪ Te), which successfully resolves the efficiency issue.

Table 4. The single-run execution time Te of the exact calculation algorithm.

Dataset Adult Bank CelebA-A CelebA-W
Time (s) 3.529±0.122 2.900±0.006 7.748±0.248 7.745±0.169

E.4. Varying Temperature τ

Continuing from Section 4.3, we show the effect of varying temperature τ on the performance of DiffMCDP algorithm on
CelebA dataset in Figure 15. Similarly, very large or small temperatures (τ = 5, 50) causes sub-optimal results, whereas
moderate temperatures (τ = 10, 20) more effectively trade-off the accuracy and fairness.
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Figure 15. Trade-offs of DiffMCDP with varying temperature τ on image datasets.
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F. Implementation of M̂CDP(ϵ) Calculation Algorithms

In this section, we provide the implementations of the exact and approximate calculation of M̂CDP(ϵ) metric in Algorithms
4 and 5, respectively, which shows that our proposed metric can be employed in fairness evaluation of various scenarios.

Algorithm 4 Implementation of the Exact Calculation of M̂CDP(ϵ) in Algorithm 1

1 from statsmodels.distributions.empirical_distribution import ECDF
2
3 def MCDP_exact(y_pred, s, epsilon):
4 # y_pred: continuous model predictions in [0,1]
5 # s: binary sensitive attribute in {0,1}
6 # epsilon: neighborhood hyper-parameter
7
8 y_pred, s = y_pred.ravel(), s.ravel()
9 y_pre_1, y_pre_0 = y_pred[s==1], y_pred[s==0]

10 # calculate the empirical distribution functions (line 1)
11 ecdf0, ecdf1 = ECDF(y_pre_0), ECDF(y_pre_1)
12
13 y_pred = np.r_[0,y_pred,1] # line 2
14 if epsilon == 0:
15 # return the maximal deltaF value of predictions (line 4)
16 mcdp = np.max(np.abs(ecdf0(y_pred)-ecdf1(y_pred)))
17 else:
18 y_pred = np.sort(y_pred) # for indice slicing operations
19 # initialize the mcdp value (line 6)
20 init_ypred = y_pred[y_pred <= epsilon]
21 mcdp = np.min(np.abs(ecdf0(init_ypred) - ecdf1(init_ypred)))
22
23 # traverse all predictions on instances in D (lines 7-9)
24 I = y_pred[y_pred <= 1-epsilon].reshape((-1,1)) # line 7
25 # select predictions in 2eps intervals with left endpoints in I (lines 8-9)
26 J = np.where(I<=y_pred,1,0) * np.where(I+2*epsilon>=y_pred,1,0)
27 J = J.reshape(-1) * np.tile(np.arange(len(y_pred))+1,len(I))
28 J = J.reshape((len(I),len(y_pred)))
29
30 # calculate the minimal deltaF values of each 2eps intervals (line 10)
31 delta_ecdf = np.r_[1.1, np.abs(ecdf0(y_pred) - ecdf1(y_pred))]
32 delta_ecdf = delta_ecdf[J] # (len(I),len(y_pred))
33 min_delta_ecdf = np.min(delta_ecdf,axis=1)
34 # keep the maximum of minimal deltaF values (line 11)
35 mcdp = np.max(mcdp, np.max(min_delta_ecdf))*100
36
37 return mcdp
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Algorithm 5 Implementation of the Approximate Calculation of M̂CDP(ϵ) in Algorithm 2

1 from statsmodels.distributions.empirical_distribution import ECDF
2
3 def MCDP_approximate(y_pred, s, epsilon, K):
4 # y_pred: continuous model predictions in [0,1]
5 # s: binary sensitive attribute in {0,1}
6 # epsilon: neighborhood hyper-parameter
7 # K: sampling frequency
8
9 assert epsilon>0

10 y_pred, s = y_pred.ravel(), s.ravel()
11 y_pre_1, y_pre_0 = y_pred[s==1], y_pred[s==0]
12
13 # calculate the empirical distribution functions (line 1)
14 ecdf0, ecdf1 = ECDF(y_pre_0), ECDF(y_pre_1)
15 delta = epsilon / K # set the step-size (line 2)
16 samples = np.arange(0,1,delta) # sampling prediction points
17
18 # initialize the mcdp value (line 3)
19 mcdp = np.min(np.abs(ecdf0(samples[:K+1])-ecdf1(samples[:K+1])))
20 # pre-compute the deltaF values for sampled points
21 delta_ecdf = np.abs(ecdf0(samples) - ecdf1(samples))
22
23 # traverse all consecutive 2K sampled points (lines 4-5)
24 indices = np.arange(1,np.ceil(1/delta)-2*K+1).astype(int) # line 4
25 indices = indices + np.arange(2*K).reshape((-1,1)) # line 5
26 # keep the maximum of the minimal deltaF value (line 6)
27 mcdp = np.max(mcdp, np.max(np.min(delta_ecdf[indices],axis=0)))
28
29 return mcdp
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