Under review as a conference paper at ICLR 2026

SAFE REINFORCEMENT LEARNING WITH ADRC LA-
GRANGIAN METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe reinforcement learning (Safe RL) seeks to maximize rewards while satisfying
safety constraints, typically addressed through Lagrangian-based methods. How-
ever, existing approaches, including PID and classical Lagrangian methods, suffer
from oscillations and frequent safety violations due to parameter sensitivity and
inherent phase lag. To address these limitations, we propose ADRC-Lagrangian
methods that leverage Active Disturbance Rejection Control (ADRC) for enhanced
robustness and reduced oscillations. Our unified framework encompasses classical
and PID Lagrangian methods as special cases while significantly improving safety
performance. Extensive experiments demonstrate that our approach reduces safety
violations by up to 74%, constraint violation magnitudes by 89%, and average costs
by 67%, establishing superior effectiveness for Safe RL in complex environments.

1 INTRODUCTION

Reinforcement Learning (RL) aims to maximize rewards as agents interact with environments, finding
applications in fields such as robotics (Sun et al., 2023} [Luo et al.| 2024} |Li et al., 2024)) and the
post-training of Large Language Models (LLMs) (Bai et al., 2022} |Lee et al.,[2023; Rafailov et al.,
2023). However, in real-world scenarios like autonomous driving (Muhammad et al.}[2020)), safety
requirements are often of paramount importance. It is essential not only to maximize rewards but also
to ensure compliance with safety constraints. To address this challenge, Safe RL (Garcia & Ferndndez,
2015) has emerged as a paradigm dedicated to reliable and robust policy learning in complex and
dynamic environments. Safe RL is typically formulated as a Constrained Markov Decision Process
(CMDP). Among the various approaches for solving CMDPs, Lagrangian methods play a pivotal role
by transforming constrained optimization problems into unconstrained ones through the introduction
of a dual variable, the Lagrange multiplier. This transformation enables the adaptation of any RL
algorithm into a Safe RL framework (Achiam et al.,[2017; |Chow et al.,[2018b;2019)), leading to the
development of numerous novel Safe RL algorithms (Liu et al., {2024} |Chen et al.| [2024)).

Classical Lagrangian updates can be interpreted as pure integral controllers on the constraint violation
signal. While simple, this mechanism reacts slowly to the rapid distributional shifts caused by policy
updates and the stochasticity of cost estimates, leading to lag, overshoot, and persistent oscillations in
safety performance. Attempts to mitigate these issues with PID-based extensions (Stooke et al.| [2020)
reduce oscillations by adding proportional and derivative terms, but their behavior remains fragile:
performance is highly sensitive to the chosen gains and rarely transfers robustly across tasks (Panda)
2012; Astrom & Higglund, 1995). These limitations point to a deeper challenge—existing methods
lack a way to explicitly counteract the drifting disturbances that underlie oscillatory training.

To overcome this challenge, we turn to the broader toolbox of adaptive control, whose central goal
is to maintain stability and performance under unknown and time-varying dynamics. Among the
many adaptive strategies, Active Disturbance Rejection Control (ADRC) (Han, [1998; Zhong et al.,
2020a) is particularly well suited to the Safe RL setting. Unlike classical adaptive methods that often
require a parametric model or extensive gain tuning, ADRC treats all uncertainty—including model
error, noise, and nonstationarity—as a lumped disturbance, and employs a lightweight observer to
estimate and cancel it online. This observer-based design makes ADRC both model-free and robust
to changing dynamics, while its reliance only on observable signals (such as cost returns) makes it a
natural match for reinforcement learning. In contrast, alternatives such as MRAC or Lyapunov-based

Under review as a conference paper at ICLR 2026

adaptive schemes typically assume access to richer state information or stronger structural knowledge,
which is impractical in high-dimensional RL environments.

Building on this idea, we introduce ADRC Lagrangian methods, which augment the classical
dual update with an observer that estimates and cancels the disturbance acting on the constraint
return. By combining this observer with a smooth reference trajectory for the cost threshold,
our update suppresses transient overshoot while directly compensating for nonstationarity and
noise. The resulting method is simple to implement, model-free, and optimizer-agnostic, yet it
fundamentally changes the dynamics of constraint regulation: we derive a theoretical lower bound
on the observer gain that provides safe defaults across diverse environments, we show that classical
and PID Lagrangian updates emerge as strict special cases of our formulation, and we establish
through frequency-domain analysis that our approach achieves smaller disturbance-estimation error
and reduced phase lag. Empirically, these properties translate into substantial improvements in safety
throughout training: on OmniSafe benchmarks our method reduces violation rates by up to 74%,
lowers violation magnitudes by 89%, and decreases average costs by 67%, all while maintaining
competitive reward performance. These results demonstrate that bringing the ADRC perspective into
Safe RL yields both principled theoretical guarantees and significant empirical gains.

In conclusion, our main contributions are:

* We are the first to introduce ADRC into Safe RL, dynamically adjusting the Lagrange
multiplier to improve constraint satisfaction and training stability.

* We theoretically establish that both PID and classical Lagrangian methods are special
cases of our ADRC Lagrangian methods. Moreover, through frequency-domain analysis,
we demonstrate that our method significantly reduces phase lag compared to traditional
approaches, leading to faster and more stable constraint satisfaction.

» Comprehensive experiments validate the effectiveness of our method, showing significant
improvements in reducing oscillations during training across diverse benchmarks.

2 RELATED WORK

Safe RL Safe reinforcement learning (RL) aims to find optimal policies that maximize rewards
while satisfying safety constraints (Garcia & Fernandez, 2015; |Achiam et al., 2017} |Wachi & Sui,
2020; |Yang et al., [2020). Common approaches include safe exploration techniques to ensure safety
during training (Sui et al., 2015 |Wang et al.|[2023) and the primal-dual framework, which employs
Lagrangian multipliers to address constrained optimization (Ray et al.|[2019; Ding et al., 2020} |Chow
et al.,|2018b; [2019). Recent advances have improved the tuning of these multipliers through gradient-
based methods (Lillicrap et al., 2019; [Tessler et al.| 2018}, |Zhang et al., [2020), PID-based updates
(Stooke et al., 2020), adaptive primal-dual methods (Chen et al., 2024), and variational inference
approaches (Liu et al.} 2022 Huang et al., 2022)), enhancing algorithm stability and performance (Yao
et al.,|2024). On-policy algorithms can be broadly categorized into Lagrangian methods, such as PDO
(Chow et al.l|2018b)), and convex optimization methods like CPO (Achiam et al2017) and CVPO
(Liu et al.| 2022)). Recent developments, including APPO (Dai et al., [2023) and CUP (Yang et al.,
2022), specifically address oscillatory behaviors and improve constraint feasibility. Furthermore,
accurate estimation of objective and constraint functions is crucial, as it significantly influences the
efficiency and reliability of policy updates (Altman, [2021). Additionally, methods targeting training
stability, such as policy inertia learning (Chen et al., 2021) and soft-switching gradient manipulation
(Gu et al.| 2024)), have effectively reduced oscillations, highlighting their importance for Safe RL.

Control Theory Control theory includes traditional controllers such as Proportional-Integral-
Derivative (PID) controllers (Astrém & Higglund, 2006; |Ang et al.| [2005), which, despite their
widespread use, are sensitive to parameter variations and external disturbances (Panda, |2012; Astrom
& Hagglund, [1995). To overcome these limitations, Model Reference Adaptive Control (MRAC),
which is a milestone of adaptive control, has been developed, enabling dynamic parameter adjustment
to maintain performance under system uncertainties (Nguyen & Nguyen, |2018; |Parks, |{1966). By
incorporating the MIT rule (Mareels et al., [1987), MRAC-PID controllers leverage backpropagation-
inspired methods (Rumelhart et al.| [1986)) to adapt PID parameters in real time, addressing control
gain sensitivity (Singh & Kumar, 2015} [Kungwalrut et al., 201 1)). Furthermore,|Zhang & Guo, (2019)

Under review as a conference paper at ICLR 2026

it has been demonstrated that PID parameters could be selected within a specific manifold to ensure
global system stabilization with exponential error convergence. In parallel, Active Disturbance
Rejection Control (ADRC) has emerged as a robust alternative for managing uncertainties and
disturbances. First introduced by [Han| (1998), ADRC has been further developed to enhance its
applicability and theoretical underpinnings (Han, 2009). Recent advancements include applications
in nonlinear systems (Guo & Zhao| |2017) and rigorous stability analysis using Lyapunov functions
(Zhong et al.l 2020b), solidifying ADRC as an effective and versatile control strategy.

3 PRELIMINARIES

Safe Reinforcement Learning A Markov Decision Process (MDP) M (Putermanl [2014) is defined
by the tuple (S, A, R, P, u,v), where S and A denote state and action spaces, R is the reward
function, P(s" | s, a) is the state transition probability, 1 is the initial state distribution, and v € (0, 1)
is the discount factor. A parameterized stationary policy 7g(a | s) specifies action probabilities given
state s. The goal of reinforcement learning (RL) is to maximize the expected return:

§:¢mﬂl. (0
t=0

Safe RL is typically formulated as a constrained MDP (CMDP) (Altman, |1999)), which extends MDPs
with constraints defined by cost functions ¢; : S X A — R and thresholds d;. The cost return under

policy 7y is:
(o)
§:¢Maﬂ4-)
t=0

J(m9) = Esnp

Jci (71'9) = E?Tg

Safe RL aims to find an optimal policy:
" = argmax J(mg) s.t. Jg, (m) < d;,Vi. 3)
T

Lagrangian Methods In constrained optimization problems such as those in Safe RL, the goal
is to maximize the objective function while satisfying constraints. A common approach is to apply
the Lagrangian method. Specifically, for a CMDP with a single cost constraint, denote d as the cost
threshold, and A > 0 as the Lagrangian multiplier, we define the Lagrangian function as:

L(0,\) = J(mg) — M Je(m9) — d), “

The optimal solution aims to maximize the Lagrangian with respect to § while minimizing it with
respect to the multiplier A. To achieve this, we apply a gradient-based approach to update X iteratively.
Specifically, we define the constraint violation as g(my) := J.(mp) — d. Denote o > 0 as the learning
rate controlling the update step size; we perform gradient ascent on A with respect to L:

A = ag(m), &)
Thus, optimizing A reduces to a standard gradient ascent problem:
‘ 0L, A
A= a% = ag(m), (6)
Discretizing over time, the Lagrangian multiplier is updated iteratively by:
At = A1+ ag(me,),)
or equivalently, by summing constraint violations over time:
t—1 t
At = Ao + aZg(WgT) ~ a/ g(mg,)dr. (8)
=0 0

This shows that classical Lagrangian methods implement a pure Integral (I) controller on the constraint
violation signal g(mg). With this view, to reduce oscillations during training, PID Lagrangian methods
(Stooke et al., 2020) generalize the integral control by adding proportional (P) and derivative (D)
terms into the dynamics of \:

A = ag(mg) + Bg(me) + vi(me), ©

Under review as a conference paper at ICLR 2026

where «, 3, and ~y are positive coefficients controlling the strength of the I, P, and D terms respectively.

Similarly, integrating this equation over time, the resulting PID update law for the multiplier is:

t
At = (Kpg(ﬂet) +Ki/ 9(7T97)d7+Kd9'(770t)> , (10)
0 +

where K, K;, K4 are proportional, integral, and derivative gains that need to be tuned carefully.

Active Disturbance Rejection Control Compared with PID controller, Active Disturbance Re-
jection Control (ADRC) (Hanl |1998; [Zhong et al., [2020a) provides a more adaptive and resilient
alternative. Unlike traditional PID control, ADRC explicitly estimates and compensates for unknown
disturbances through an observer-based framework, reducing reliance on precise model knowledge
and hyperparameter sensitivity. The core component of ADRC is the Extended State Observer (ESO),
which is designed to simultaneously estimate both the internal system states and the total disturbance
affecting the system dynamics. By accurately reconstructing the disturbance in real time, the control
input can proactively reject its influence, significantly enhancing system stability and performance.
In practical Safe RL scenarios, where exact system dynamics are unknown and only observable
quantities like costs are available, a reduced-order ESO design is commonly employed. In addition to
disturbance estimation, to achieve smoother system behavior and better transient performance, the
control strategy can also incorporate a designed reference trajectory that guides the evolution of the
system states toward the desired setpoints.

4 METHOD

4.1 CLOSED-LOOP SYSTEM REPRESENTATION OF SAFE RL

Lagrangian-based Safe RL can be viewed as a feedback system: the policy affects the cumulative
cost, which drives the Lagrange multiplier that in turn influences the policy update. We capture this
interaction in a simple closed-loop form,

Ty = Jm

T1 = T2,

. 11
&o = f(x1,x2,t) + u(t), (11
u(t) =)\t,

where z is the cumulative cost, z its derivative, f(-) aggregates all unknown and time-varying
effects, and u(t) is the control input given by the multiplier \;. This formulation highlights the
root cause of oscillations in existing methods: the dynamics drift as the policy changes, while the
multiplier behaves like an integral controller that lags behind disturbances.

Our goal is to replace this fragile mechanism with an observer-augmented update inspired by ADRC.
By explicitly estimating the total disturbance from cost signals and compensating it in real time,
while guiding constraint satisfaction through a smooth reference trajectory, our method achieves
faster and more stable regulation than classical or PID-based approaches. The designs of the observer
and reference signal are presented next.

4.2 ARRANGING A TRANSIENT PROCESS

In Safe RL, the dual update implicitly drives the cumulative cost 2 toward the safety threshold d. To
formalize this objective, we introduce a reference signal y* (¢), which represents the target trajectory
that z; should ideally follow. Since the ultimate goal is constraint satisfaction, the natural choice of
reference is a constant at the threshold:

y*(t) =d. (12)
However, tracking this signal directly can be problematic in practice. At the beginning of training,
policies are usually far from safe, so the gap x1(0) — d is large. Forcing the multiplier to eliminate this
gap immediately leads to abrupt updates, which amplify estimator noise and policy nonstationarity
into overshoot and repeated violations. Empirically, this appears as sharp cost spikes in early training
and oscillatory swings of \;, even when the constraint is ultimately feasible.

Under review as a conference paper at ICLR 2026

To prevent these instabilities, we need to arrange a transient process that gradually shrinks the
effective budget from the current cost level toward d with critically damped dynamics. In the Safe RL
context, this corresponds to a smooth budget schedule: early training permits a controlled violation
margin that decays over time, enabling exploration while guiding the system toward feasibility.

Concretely, we filter y*(¢) through a second-order system:

it =—2c,7 —c2(r—d), 7(0) = z1(0), #(0) = z2(0), (13)
where ¢, > 0 controls the tightening speed. The resulting reference trajectory is
r(t) =d+ (21(0) = d)e™"" + (22(0) + ¢ (21(0) — d) Jte™*", (14)

which starts from the current cost level and slope, then converges smoothly and non-oscillatorily to d.
This shaped reference avoids abrupt enforcement in early training, stabilizes the multiplier dynamics,
and reduces phase lag in constraint regulation.

A detailed derivation is provided in Appendix [A]

4.3 EXTENDED STATE OBSERVATION FOR MULTIPLIER UPDATES

Training in Safe RL is inherently noisy and nonstationary: the measured cost fluctuates due to
stochastic transitions, estimation error, and abrupt policy changes. If the multiplier reacts to these
raw signals directly, it amplifies noise and tends to oscillate. What is missing is an online estimate of
the unmodeled dynamics—the effective disturbance f(z1, z2,t) in Eqn.[I1}—so that the update can
distinguish genuine constraint trends from transient fluctuations.

To this end, we borrow the idea of an extended state observer (ESO) from adaptive control, but use
it in the simplest reduced-order form Zhong et al.|(2020a) suitable for RL. The ESO maintains an
auxiliary state £ that is updated alongside observed costs:

§ =~ ~ s — ot s
f = 6 + wox 2,

where f serves as a running estimate of the disturbance and w, > 0 is a gain controlling how

aggressively it adapts. Intuitively, f behaves like a bias-correction term that smooths the effect of

noise and policy shifts before they reach the multiplier.

With this estimate, the control input u(t) (i.e., the multiplier update) is designed to track the transient
reference r(t) using proportional, derivative, and disturbance feedback:

u(t) = kap(x1 — 1) + kga(wa —) + f — - (16)
Substituting (T3)) into (T6)), and identifying u(¢) with A, we obtain the ADRC-based update law:
ot
At = (kap + wokaq) (1 —) + (kaa + wo)(z2 — 1) + wokap/ (x1(7) = r(r))dr —7#. (A7)
0

Proposition 4.1. Classical PID Lagrangian methods are a special case of (I7). Under a specific
mapping between (K, Kq, K;) and (kap, kaa,wo), the ADRC update reduces exactly to the PID rule

in Eqn.[I0}

Thus ADRC can be seen as a strict generalization of PID Lagrangian: in addition to P, I, and D
terms, it continuously estimates the disturbance and compensates for it in real time. This additional
degree of adaptivity reduces phase lag and improves robustness to noise and nonstationarity, as
analyzed in Sec. .4}

4.4 THE LOWER BOUND OF OPTIMAL PARAMETERS

A central challenge in Safe RL is parameter sensitivity: the same multiplier update rule can behave
well in one environment but oscillate or diverge in another. This is particularly acute for PID-based
Lagrangian methods, whose stability depends heavily on hand-tuned gains. To make ADRC practical
in Safe RL, we aim for a principled condition that guarantees stability and bounded estimation error
across environments, thereby removing the need for brittle manual tuning.

Under review as a conference paper at ICLR 2026

We characterize the uncertainty in the closed-loop dynamics of Eqn. [IT|by bounding how disturbances
can depend on the current state and vary over time. Following Zhong et al.| (2020a), we consider

Oh
83?1

< L, |£2] < Lo, o) i ®)] < Lo, (18)

f(z1,m2,t) = h(z1,22) +w(?),

where L1 and Lo bound the sensitivity of disturbances to the cost 1 and its rate x5, while L3 bounds
the magnitude and variation of exogenous fluctuations such as noise or nonstationarity. This setting
captures both state-dependent effects and purely time-dependent variations.

Within this class, the admissible observer gains w, are constrained by a characteristic polynomial
manifold
Q:{w€R|now4+n1w3+n2w2+n3w+n4:O}, (19)

where the coefficients n; depend on (kqp, keq) and the constants (L1, Lo, Ls). We define

G max{w |w € Q}, fQ#0,
° o, otherwise.

The final lower bound ensuring stability and bounded estimation error is therefore

£
o‘)O

— max {@o, 0, Likap p, kad}. (20)

kaa

Intuitively, this bound ensures that the ESO adapts quickly enough to track disturbances while
remaining stable. In practice, this means practitioners only need to set w, > w}, removing the
trial-and-error search that plagues PID tuning.

Beyond stability, we also analyze how fast and accurately ADRC reacts compared to classical integral
updates. Let e(t) = z1(t) — r(¢) be the tracking error, f; = k; fot e(7) dr the disturbance estimate
from integral control, and f the ADRC estimate. Their estimation errors are

ef, (1) = fr — f(x1, 29, 1), er(t) = f — flzr,22,1).

Denote the Laplace transforms of e, ey, ey,, f1, and f by E(s), Ef(s), Ef,(s), F1(s), and F(s)
respectively, and let F'(s) be the transform of the disturbance f. Then G, (s) and G, (s) are the
transfer functions from F'(s) to E;(s) and Ey,(s).

We establish the following result:

Theorem 4.2. Suppose w, > wi. Then, for any frequency w, ADRC Lagrangian achieves uniformly
lower disturbance estimation error than integral control:

|Ge, (i)
|Gey, (iw)]

w2

Moreover, if w, > max { k”,‘z—d , wh }, ADRC Lagrangian also exhibits smaller phase lag:

arg(Ge, (iw)) < arg(Ge,, (iw)).

In words, the frequency-domain guarantees imply concrete benefits in Safe RL training. A smaller
disturbance estimation error means the multiplier update is less sensitive to transient noise and
policy-induced fluctuations, avoiding spurious reactions to single-batch variability. A smaller phase
lag means constraint violations are corrected earlier, rather than several updates later, reducing the
amplitude and duration of overshoot. Together, these properties yield training dynamics with fewer
repeated safety violations, smoother multiplier trajectories, and faster convergence to the feasible
region. Detailed derivations are provided in Appendix

4.5 ADRC LAGRANGIAN METHODS IN SAFE RL

We now describe how ADRC Lagrangian methods are applied in Safe RL training. The central idea
is to replace the hand-tuned, noise-sensitive dual update with an observer-augmented rule that adapts
automatically to the evolving learning dynamics.

Under review as a conference paper at ICLR 2026

—— ADRC(Ours) — PID — lag === Cost Limit

150

Cost
Cost
Cost

150
]
2 100
o
50
¥ N

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

15 15 2.0

10 g - 10 = 15
05 N: (g 0s bl s i
1.0 |
0.0 H
Q
o

Reward
Reward
Reward

0.0
-05
~10 0.0

-15
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

(a) RacecarPush (b) RacecarGoal (c) CarCircle (d) CarButton

Figure 1: The training curves of PPO with various Lagrangian methods (denoted as CPPOLag,
CPPOPID, CPPOADRC) across different tasks, showing episodic returns and costs over five ran-
dom seeds. Solid lines represent mean values, while shaded areas denote variance. CPPOADRC
demonstrates a shorter lag phase and lower costs compared to baselines, while achieving competitive
rewards. Additional results are provided in Appendix [FI}

In practice, the Lagrangian multiplier A serves as a penalty knob: when the observed cumulative cost
approaches the safety threshold, A should increase to discourage unsafe behavior; when costs fall
well below the threshold, A can relax to allow more exploration. ADRC realizes this adaptivity by
updating A according to Eqn.|17| where the observer f continuously estimates the effect of unmodeled
disturbances and compensates for them in real time. This makes multiplier updates less myopic and
more responsive than classical dual ascent or PID rules.

A key question is how to choose the observer gain w,. As shown in Sec.[.4] w, must exceed a lower
bound w that depends on environment sensitivities (L1, Lo). Since these quantities are unknown
beforehand, we approximate them online using finite differences of observed costs:

~ F(t+1) — #1(t)
Ly Nm?X xl(t+1) xl(t)’ @1
o may | ELEED) — (1)
2T 1) —2a ()|

where x; is the cumulative cost and x5 its derivative. These estimates allow us to adaptively compute
w, via Eqns.[I9and[20] ensuring stability without manual tuning even as the training dynamics evolve,
overcoming the parameter sensitivity and environment-specific retuning that plague PID-based and
classical Lagrangian methods.

Finally, large values of A may destabilize policy learning by forcing aggressive gradient steps.
Following the previous method (Stooke et al., 2020), we adopt a rescaled optimization objective:

1
J — e ,
T (o) (m6))
which tempers the effect of A while preserving constraint enforcement. This adjustment yields
smoother policy updates and makes ADRC Lagrangian straightforward to integrate into standard
Safe RL algorithms. The full training procedure is summarized in Algorithm T}

0*(\) = arg max

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the performance of our ADRC La-
grangian method. Specifically, we aim to answer the following questions: (1) Does it reduce training
oscillations, having smaller phase-lag of the response, thereby minimizing constraint violations
compared to baseline methods? (2) How robust is the method when facing different parameters that
we set? (3) Can the ADRC Lagrangian method be applied universally to any Lagrangian-based safe

Under review as a conference paper at ICLR 2026

RL algorithm? (4) How does the ADRC-based Lagrangian method perform upon convergence? (5)
How does our method compare against existing state-of-the-art Safe RL approaches?

We will address Questions 1 and 3 in Section [5.2] Question 2 in Section [5.3] Question 4 in Ap-
pendix [F-9]and Question 5 in Section[5.3.3]and Appendix [F4]

5.1 EXPERIMENTAL SETUPS

Environments We use the OmniSafe (Ji et al., [2024) to do the experiments, which provides a
comprehensive and reliable benchmark for safe RL algorithms. We conduct our experiments using
four safe RL algorithms with various combinations of agents and tasks. For more detail about the
environment, please refer to Appendix [E.2}

Algorithms and Baseline We utilize two categories of algorithms that have been implemented
in Omnisafe: on-policy methods (PPO, TRPO) and off-policy methods (DDPG, TD3). We use the
classical Lagrangian method and the PID Lagrangian method as baselines.

5.2 PERFORMANCE EVALUATION

Figure[I]illustrates the learning curves of PPO algorithms using various Lagrangian methods across
different tasks. Our ADRC methods demonstrate superior constraint satisfaction and a shorter
response lag while maintain competitive reward compared to the baseline. To better compare
performance with the baseline, Table E]presents the violation rates, violation magnitude, and average
cost during the training phase.

To illustrate the universal applicability of our ADRC Lagrangian methods to any Lagrangian-based
safe RL algorithm, we conducted additional experiments on various algorithms in the RacecarGoal
and CarPush environments. The learning curves for the RacecarGoal tasks are presented in Figure [4]
and the performance metrics are summarized in Table[I} Further experimental results, including
detailed analyses, are provided in Appendix

Table 1: The proportion of constraint violations during training, the average violation magnitude, and
the average cost for various algorithms. Our ADRC method consistently outperforms others.

Algorithm CarPush RacecarGoal

Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost
CPPOLag 68.45+ 1898 21.48+16.81 43.38+18.71 80.87+19.17 31.18+18.99 54.24+21.01
CPPOPID 62.36 = 10.66 12.40 +£3.08 33.74+388 72.30+24.96 27.11+15.58 49.02+18.75
CPPOADRC 42.23+15.34 11.68+7.99 29.16+10.19 47.08 +21.58 12.31+9.34 30.12 +12.74
DDPGLag 65.52 +4.60 12.53 £0.72 35.03 £0.53 71.44 £9.47 18.47 +4.13 40.76 £ 5.00
DDPGPID 5243 +£0.12 7.25+0.93 28.35+0.44 72.05 +4.09 17.93 +2.81 40.29 +£2.99
DDPGADRC 47.36 +1.90 2.88 +0.57 21.55+0.29 68.41 +5.77 17.81+£1.34 39.41+2.14
TD3Lag 80.94 £5.87 20.68 £3.94 43.43+4.23 7526 +2.13 1993 +140 4257+1.59
TD3PID 70.47 +£10.44 17.00 + 1.29 38.90 +£2.83 73.31 £6.06 19.19+2.72 41.57+3.22
TD3ADRC 40.62 + 8.51 2.85+0.31 20.65 + 2.46 71.24 + 3.00 17.55+£3.57 39.71 £3.94
TRPOLag 54.86 +6.74 10.46 +£4.56 3097 +£4.69 64.31+2337 22.89+18.69 43.67+21.56
TRPOPID 4479 +2.84 7.34+1.31 25.84+0.88 49.33 +15.00 11.70 £ 7.07 30.94 +£8.81

TRPOADRC 29.11 £3.70 344 +£1.21 20.48 £ 0.99 34.03 + 8.06 6.16 £+ 2.37 22.02 + 3.61

5.3 PARAMETER SENSITIVITY ANALYSIS

To demonstrate whether our ADRC Lagrangian methods are robust to different value of parameters,
we test the parameter c,. in Section[5.3.1] we test the control gain kg, and kg in Section[5.3.2]

5.3.1 TUNING PARAMETER c,

We selected five different values for ¢, and conducted the experiments using TRPO under the
RacecarGoal benchmarks. As shown in Table [2] the results show that all selected values of the
parameter ¢, outperform the baseline, demonstrating robustness to parameter variations. More
experimental results can be found at Appendix [F.5.3]

8

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison under RacecarGoal for TRPO and PPO with different ¢, values.

Method TRPO (RacecarGoal) \ PPO (RacecarGoal)
Vio. Rate (%) Magnitude Avg. Cost \ Vio. Rate (%) Magnitude Avg. Cost

Lag 87.33 37.36 61.53 84.35 30.16 53.38
PID 44.60 7.04 26.15 79.25 23.88 46.44
¢ = 0.05 33.98 5.25 20.83 34.38 3.90 22.45
¢ =0.1 29.05 3.44 18.95 33.08 5.78 21.22
cr =0.15 31.25 5.34 21.16 52.88 10.69 31.37
cr =0.2 40.65 6.10 23.67 48.95 8.77 26.91
cr =0.25 38.50 6.71 23.40 62.83 13.37 33.99

5.3.2 TUNING PARAMETERS k), AND kqq

We investigate the impact of the tuning parameters k,,;, and k.4 under the RacecarGoal environment.
For k,,,, experiments were conducted using PPO; for k4, we used TRPO. In both cases, we evaluated
three orders of magnitude: 1, 0.1, and 0.01. As shown in Table El, the results demonstrate that all
tested values of k., and kg significantly outperform existing methods, including the PID method,
the Lagrangian method, and the Classical Lagrangian method. For additional experimental details,

please refer to Appendices[F.5.1]and [F5.2]

Table 3: Sensitivity analysis of tuning parameters k), and k.4 under RacecarGoal environment.
kqp Setting Vio. Rate (%) Mag. Avg. Cost | k,q Setting Vio. Rate (%) Mag. Avg. Cost

kap =1 69.98 18.62 39.87 kaa =1 28.55 6.17 20.23
kap = 0.1 33.08 5.78 21.22 kaa = 0.1 38.25 9.12 23.92
kap = 0.01 20.43 2.50 15.42 kaa = 0.01 39.08 5.75 23.33
PID 79.25 23.88 46.44 | PID 44.60 7.04 26.15
Lag 84.35 30.16 53.38 Lag 87.33 3736 61.53

5.3.3 COMPARISON WITH STATE-OF-THE-ART SAFE RL ALGORITHMS

To demonstrate the broader applicability and effectiveness of our ADRC-Lagrangian framework
beyond traditional Lagrangian methods, we conduct comprehensive comparisons with state-of-
the-art safe RL algorithms. Our evaluation includes both Lagrangian-based methods (RCPO and
PDO) Tessler et al.[(2018);|Chow et al.|(2018a)) and non-Lagrangian approaches such as CUP|Yang
et al.|(2022) and IPO [Liu et al.|(2019). This comparison validates our method’s superiority across
different safe RL paradigms and confirms that the benefits stem from ADRC’s adaptive control
principles rather than merely being artifacts of the Lagrangian framework.

As detailed in Appendix [F:4] ADRC variants consistently improve training stability by reducing
violation rates, violation magnitudes, and average costs, while maintaining or even enhancing final
task performance.

6 CONCLUSION

In this paper, we introduce an effective method to optimize the Lagrangian multiplier update process
in safe RL, reducing oscillation during training. First, we define the safe RL learning process as a
closed-loop system. Next, we introduce ADRC, a robust and innovative controller that estimates
and compensates for overall disturbances. We consider the current cost as the control objective and
design a second-order closed-loop system to regulate this cost, ensuring compliance with the safety
constraint. Additionally, we employed a reduced-order ESO (Zhong et al.,[2020a)) to estimate the
unknown nonlinear function affecting agent costs, revealing that prior approaches, including PID
Lagrangian and classic Lagrangian methods, in form, are special cases of our approach. Theoretical
proofs and experimental results demonstrate the effectiveness and superiority of our method over
existing approaches. While our method is validated extensively in simulated environments, applying
it to real-world robotics or safety-critical systems remains an important direction for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22-31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.
Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and technology.
IEEE transactions on control systems technology, 13(4):559-576, 2005.

Karl J Astrsm and Tore Higglund. Pid control. IEEE Control Systems Magazine, 1066, 2006.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Chen Chen, Hongyao Tang, Jianye Hao, Wulong Liu, and Zhaopeng Meng. Addressing action
oscillations through learning policy inertia. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7020-7027, 2021.

Weiqgin Chen, James Onyejizu, Long Vu, Lan Hoang, Dharmashankar Subramanian, Koushik Kar,
Sandipan Mishra, and Santiago Paternain. Adaptive primal-dual method for safe reinforcement
learning, 2024. URL https://arxiv.org/abs/2402.00355|

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. Journal of Machine Learning Research, 18
(167):1-51, 2018a.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing systems,
31,2018b.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control, 2019. URL
https://arxiv.org/abs/1901.10031l

Juntao Dai, Jiaming Ji, Long Yang, Qian Zheng, and Gang Pan. Augmented proximal policy
optimization for safe reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 7288-7295, 2023.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. Advances in Neural Information
Processing Systems, 33:8378-8390, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

Javier Garcia and Fernando Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015.

Shangding Gu, Bilgehan Sel, Yuhao Ding, Lu Wang, Qingwei Lin, Ming Jin, and Alois Knoll.
Balance reward and safety optimization for safe reinforcement learning: A perspective of gradient
manipulation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
21099-21106, 2024.

Bao-Zhu Guo and Zhi-Liang Zhao. Active disturbance rejection control for nonlinear systems: An
introduction. John Wiley & Sons, 2017.

Jingqing Han. Auto disturbance rejection control and its applications. Control and Decision, 13(1),
1998.

Jingqing Han. From pid to active disturbance rejection control. IEEE transactions on Industrial
Electronics, 56(3):900-906, 2009.

10

https://arxiv.org/abs/2402.00355
https://arxiv.org/abs/1901.10031
https://arxiv.org/abs/1802.09477

Under review as a conference paper at ICLR 2026

Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J] Mankowitz, Michael
Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, et al. A constrained
multi-objective reinforcement learning framework. In Conference on Robot Learning, pp. 883-893.
PMLR, 2022.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. Journal of Machine Learning Research, 25(285):1-6, 2024. URL
http://jmlr.org/papers/v25/23-0681.htmll

Pranai Kungwalrut, Maitree Thumma, Vittaya Tipsuwanporn, Arjin Numsomran, and Pisit Boon-
srimuang. Design mrac pid control for fan and plate process. In SICE Annual Conference 2011,
pp. 2944-2948. IEEE, 2011.

P. Langley. Crafting papers on machine learning. In Pat Langley (ed.), Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pp. 1207-1216, Stanford, CA, 2000.
Morgan Kaufmann.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. Rlaif: Scaling
reinforcement learning from human feedback with ai feedback, 2023.

Zichong Li, Filip Bjelonic, Victor Klemm, and Marco Hutter. Marladona - towards cooperative
team play using multi-agent reinforcement learning, 2024. URL https://arxiv.org/abs/
2409.20326.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.
URL https://arxiv.org/abs/1509.02971.

Jiaqi Liu, Peng Hang, Xiaocong Zhao, Jiangiang Wang, and Jian Sun. Ddm-lag : A diffusion-based
decision-making model for autonomous vehicles with lagrangian safety enhancement, 2024. URL
https://arxiv.org/abs/2401.03629.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints,
2019. URLhttps://arxiv.org/abs/1910.09615.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
variational policy optimization for safe reinforcement learning. In International Conference on
Machine Learning, pp. 13644—13668. PMLR, 2022.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and dexterous robotic manipulation
via human-in-the-loop reinforcement learning, 2024. URL https://arxiv.org/abs/2410.
21845,

Iven MY Mareels, Brian DO Anderson, Robert R Bitmead, Marc Bodson, and Shankar S Sastry.
Revisiting the mit rule for adaptive control. In Adaptive Systems in Control and Signal Processing
1986, pp. 161-166. Elsevier, 1987.

Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C de Albuquerque.
Deep learning for safe autonomous driving: Current challenges and future directions. IEEE
Transactions on Intelligent Transportation Systems, 22(7):4316-4336, 2020.

Nhan T Nguyen and Nhan T Nguyen. Model-reference adaptive control. Springer, 2018.

Rames C Panda. Introduction to PID controllers: theory, tuning and application to frontier areas.
BoD-Books on Demand, 2012.

Patric Parks. Liapunov redesign of model reference adaptive control systems. /[EEE Transactions on
Automatic Control, 11(3):362-367, 1966.

Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

11

http://jmlr.org/papers/v25/23-0681.html
https://arxiv.org/abs/2409.20326
https://arxiv.org/abs/2409.20326
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2401.03629
https://arxiv.org/abs/1910.09615
https://arxiv.org/abs/2410.21845
https://arxiv.org/abs/2410.21845

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889—1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Baljinder Singh and Vijay Kumar. A real time application of model reference adaptive pid controller
for magnetic levitation system. In 2015 IEEE Power, Communication and Information Technology
Conference (PCITC), pp. 583-588. IEEE, 2015.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods, 2020.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with
gaussian processes. In International conference on machine learning, pp. 997-1005. PMLR, 2015.

Yaping Sun, Hao Chen, Xiaodong Xu, Ping Zhang, and Shuguang Cui. Zero-shot multi-level feature
transmission policy powered by semantic knowledge base, 2023. URL https://arxiv.org/
abs/2305.126109.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization, 2018.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision processes.
In International Conference on Machine Learning, pp. 9797-9806. PMLR, 2020.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593-36604. PMLR, 2023.

Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
Gang Pan. Constrained update projection approach to safe policy optimization. arXiv preprint
arXiv:2209.07089, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Jinke Zhang and Lei Guo. Theory and design of pid controller for nonlinear uncertain systems. /EEE
Control Systems Letters, 3(3):643-648, 2019.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338-15349, 2020.

Sheng Zhong, Yi Huang, and Lei Guo. A parameter formula connecting pid and adrc. Science China
Information Sciences, 63(9), July 2020a. ISSN 1869-1919. doi: 10.1007/s11432-019-2712-7.
URLhttp://dx.doi.org/10.1007/s11432-019-2712-7.

Sheng Zhong, Yi Huang, and Lei Guo. A parameter formula connecting pid and adrc. Science China
Information Sciences, 63(9), July 2020b. ISSN 1869-1919. doi: 10.1007/s11432-019-2712-7.
URLhttp://dx.doi.org/10.1007/s11432-019-2712-7.

K.J. Astrom and T. Hiagglund. PID Controllers: Theory, Design and Tuning. Instrument Society of
America, Research Triangle Park, 1995.

12

https://arxiv.org/abs/2305.12619
https://arxiv.org/abs/2305.12619
http://dx.doi.org/10.1007/s11432-019-2712-7
http://dx.doi.org/10.1007/s11432-019-2712-7

Under review as a conference paper at ICLR 2026

A PROCESS OF SOLVING ODE

We consider the ODE:
i = —2c,7 —ci(r—d), 7(0)=x1(0), 7(0)=a2(0), (22)
which can be rewritten in the standard form:
P+ 2¢,7 + c2r = c2d. (23)
First, we solve the associated homogeneous equation:
P+ 2¢,7 + c2r = 0. (24)

Assuming a solution of the form 7, (t) = e and substituting into Eqn. [24] we obtain the characteristic
equation:

A4 2c, A+ 2 =0. (25)
Solving for A yields:
A= —c,. (26)
Thus, the general solution for the homogeneous equation is:
rh(t) = (A+ Bt)e™ ", (27)

where A and B are constants that determined by the initial value.

For the nonhomogeneous equation Eqn. we assume a particular solution r,,(¢) = C. Substituting
into Eqn. 23] gives:

C=d. (28)
The general solution to Eqn. 23] is:
r(t) = (A+ Bt)e ' +d. (29)
To determine A and B, we use the initial conditions. From r(0) = z1(0):
A+d=xz,(00 = A=ux(0)—d. (30)
The derivative 7(t) is:
#(t) = (B — ¢.(A + Bt)) e . (31)
Substitute ¢ = 0 into Eqn. [31|and use 7(0) = z2(0):
B — ¢, A =15(0). = B=25(0) 4+ ¢-(21(0) — d). (32)
Substitute A and B into Eqn.[29]to obtain the final solution:
r(t) =d+ (21(0) — d)e " + (22(0) + ¢ (21(0) — d)) te ", (33)
B SIMPLIFY THE ESO
We consider the control law:
U= kap(21 — 1) + kaalze —7) + f =7, kap >0, kea >0, (34)

where £, and k.4 are tuning parameters, and the term f compensates for disturbances.

Substitute Eqn. 34]into the Eqn. [T5}

é = —wy€ — ngg — W, (k:ap(xl — 1)+ kea(za —7) + f — r) . (35)

Simplify Eqn.[33}
f = —we& — ngz + wokap(z1 — 1) + Wokaa(ze — 7) + wof — Wy (36)

Given f =& 4 w,T2, we have £ = f— WoT2 andf = f— wWeTo. Substitute this into Eqn.

[— wots = —wo(f — WoTg) — wgacg + wokap(x1 — 1) + Wokqa(xe — 7) + wof —wo. (37)

13

Under review as a conference paper at ICLR 2026

Simplify further:)
f = Wokap(T1 —) + Wokad(T2 — 1) — Wof + wWoda. (38)

Integrating Eqn. [38] we have:
t
[=wokaa(x1 — 1) + wolxo —7) + wokap/ (z1(7) — r(7))dT. (39)
0
Substitute Eqn. 39 back into Eqn.

u = (kap + wokaa)(@1 — 1) + (kaa + wo) (22 — 7) + wok;ap/o (x1(1) = r(7))dr —7#. (40)

C THEORETICAL DETAILS

C.1 CONVERGENCE AND ERROR BOUNDS

For completeness, we provide the detailed stability conditions and error analysis that were summarized
in Sec.d.4] Recall the disturbance class

= {f ‘ f xl,xg,t) = h(z1,22) +w(t),

<L 41
(%1] \ . (41)

w(t) < Ls, [i(t)] < Ls, Jim w(t) = k},

where L1, Ly bound state-dependent sensitivity, and L3 bounds the magnitude and rate of purely
time-dependent fluctuations.

Stability manifold and lower bound. To guarantee convergence, the observer gain w, must lie in
a feasible region determined by the characteristic polynomial

Q= {w eR ‘ now?* + n1w?® + now? 4+ naw + ny = 0}, (42)
where the coefficients n; depend on (kqp, keq) and the constants Ly, Lo, Ls. Let

5 = max{w |w € Q}, ifQ#£0,
° o, otherwise.

The admissible observer gains are then those satisfying

Wo > W’ = max {@o, 0, Lher 1y, } . (43)

Suppose f € F and w, > w}. Then:

* (Convergence) For any initial condition and any cost limit d € R, the system converges:

flggo z1(t) =d, tliglo x2(t) = 0.

* (Bounded estimation error) Let e(t) = r(t) — x1(t) be the tracking error and e;(t) =
f — f(z1, 2, t) the disturbance estimation error. Then there exist constants 71, 72 such that

|E(t) + kaaé(t) + kape(t)] = lep(t)| < me @' + 22, ¢ >0.

The first result shows that as long as the observer gain exceeds the lower bound w}, the cumulative
cost x1 converges to the constraint threshold d without oscillation. The second result shows that
the estimation error is always bounded, decays over time, and can be reduced by choosing larger
w,. Together, these properties justify our claim in the main text that ADRC Lagrangian guarantees
convergence and robustness without fragile manual tuning. The detailed proofs follow directly
from |[Zhong et al.| (2020a)) and related ADRC analyses.

14

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THEOREM[4.2]

Proof. From Theorems demonstrated by Zhong et al.| (2020a), we know that both f and f are

bounded. The error dynamics are given by:

é= €d,
éq = 7]<3ap6 — kqqeq + ef.

Taking the second derivative of e, we have:
€= —kape — kgqea + ef,
or equivalently:

ef =€+ kaa€ + k‘ape.
Applying the Laplace transform to Eqn. 6] we obtain:

1
E(s)= ——F——F .
)= i B)

And we know that, the dynamics of ey are given by:
éf = —Wo€f — f
Taking the Laplace transform of Eqn. 48] we have:

Ef(s) = G, (s)F(s), Ge,(s)=—

S+ wy

Similarly, applying the Laplace transform to the integral form of e, we obtain:

52 + kgs + ky

Ef(s)= — "2 7%
fI(S) 82 +kads+kap

Ey(s),

and the transfer function for E, (s) can be expressed as:

%+ kgs® + ks
EfI <5> = GefI (S)F(S)’ GefI (S) = 2 -

The ratio of the squared magnitudes of G, (iw) and G.,, (iw) is given by:

|Gef (iw)‘z _ (kap — w2)2 + kgdWQ
|G, (iw)[? (kp — w?)? + kw2

< 1.

As t — 0o, we have:
lim ef(t) = lim SEf(s) = Fap
t—oo ey, (t) 5—0 SEfI (8) kap + wokada .

This completes the first part of this theorem.

Now, consider the phase angle of a transfer function G (iw), defined as:

arg(G(iw)) = tan™"! <m> .

For G, (iw) and G/, (iw), we have:
G, (iw)) = tan~* [=
arg(Ge, (iw)) = tan <w0>’
and

a1g(G., (iw)) = tan~! (’“‘*’) .

kap — w?

15

(8 4 wo) (8% + kadas + kap)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(&Y

(52)

(53)

(54)

(55)

(56)

Under review as a conference paper at ICLR 2026

— w2 .
For any w, if we choose w, > max { kap—w W } it follows that:

Kad
w koaw
—_— < —. 57
Wo kap —w? 57
Thus, we conclude:
kq
tan™! <w> < tan~! <dw2> , (58)
Wo kop —w
or equivalently:
arg(Ge, (iw)) < arg(Ge,, (iw)). (59)
This completes the second part of this theorem.
O

D IMPLEMENTATION DETAIL

This section outlines the details of the proposed method through the pseudo-code presented in
Algorithm [T} The algorithm describes the procedure for adjusting the Lagrange multipliers using
ADRC during training, ensuring robust performance and adaptability to varying conditions.

Algorithm 1 ADRC-Controlled Lagrange Multiplier

Require: Choosed parameters kqp, kqq > 0
1: Integral: I < 0

2: Previous Cost: Jc prev <= 0

3: repeat at each iteration ¢

KP — kap + wokad

K[< wokap

10 Kp wo+ kap

11:)\(*(KPA+K[[+KD877":)+
12: Jc,prev — Jo

13: return \

4: Receive current cost Jc, reference cost r, its time derivative 7, 7* and the optimal gain w,.
5: A+ Joc—r1r

6: 0 «— (JC — JC,prev - T)+

8:

9:

D.1 HYPER-PARAMETERS

For the on-policy algorithms TRPO and PPO, we adopt the default parameters provided by Omnisafe
(Jiet al.l[2024), as detailed in Table[d These parameters are consistently applied across all tasks.

E EXPERIMENTAL DETAILS

E.1 BASELINE

To comprehensively evaluate the effectiveness of our proposed ADRC method, we compare it against
four well-established reinforcement learning algorithms. These include two off-policy algorithms,
TD3 and DDPG, as well as two on-policy algorithms, PPO and TRPO. These algorithms were chosen
due to their widespread adoption and proven performance across various RL tasks, providing a robust
foundation for benchmarking.

E.2 TASKS SPECIFICATION
To demonstrate the effectiveness and generalizability of our proposed methods, we conduct com-

prehensive experiments across diverse environments. We select three distinct agents, namely Car,
Racecar, and Ant, each governed by different physical dynamics.

16

Under review as a conference paper at ICLR 2026

Table 4: Parameter Comparison: ADRC, PID, and Lag Methods

Parameter ADRC PID Lag
kp(kap) 0.1 0.1 -

4 - 0.01 0.035
ka(kaa) 0.01 0.01 -
Delay 10 10 -
EMA «a (Proportional Term) 0.95 0.95 -
EMA « (Derivative Term) 0.95 0.95 -
Sum Normalization True True -
Derivative Normalization False False -
Cost Limit 25.0 25.0 25.0
Max Penalty Coefficient 100.0 100.0 -
Initial Lagrangian Multiplier 0.001 0.001 0.001
Hidden Layer Sizes (Actor) [64, 64] [64, 64] [64, 64]
Activation Function (Actor) tanh tanh tanh
Hidden Layer Sizes (Critic) [64, 64] [64, 64] [64, 64]
Activation Function (Critic) tanh tanh tanh
Critic Learning Rate 0.0003 0.0003 0.0003
Linear Learning Rate Decay True True True
Clip Ratio 0.2 0.2 0.2
Target KL 0.02 0.02 0.02
Use Max Gradient Norm True True True
Max Gradient Norm 40.0 40.0 40.0

> N

(a) Racecar (b) Ant (c) Car

Figure 2: Illustration of the three distinct agents used in our experiments. Car: A simple wheeled
agent with low degrees of freedom. Racecar: A dynamic and agile wheeled agent with higher motion
complexity. Ant: A multi-legged bionic agent with high degrees of freedom and non-linear dynamics.
These agents represent diverse physical characteristics, allowing us to comprehensively evaluate the
performance of our method under various physical dynamics.

17

Under review as a conference paper at ICLR 2026

As illustrated in Figure 2] the three agents represent diverse physical characteristics, enabling us to
evaluate the performance of our method comprehensively across varying physical dynamics.

We consider four tasks in our experiments, as shown in Figure [3}

Goal Task The robot must navigate to a specified goal region while avoiding hazards.

Button Task The robot must press the correct button while avoiding hazards and gremlins,
and must not press any wrong buttons.

Push Task The robot must push a box to the goal region while avoiding hazards. A pillar is
present but does not penalize collisions.

¢ Circle Task The robot moves around a circular track, without additional objects or hazards.
This is mainly for testing circular navigation behavior.

Goal Env. Button Env Push Env Circle Env.

4

e i N

Figure 3: Four different tasks used in our experiments. (a) Goal Task: The agent must reach the goal
area (blue sphere) without entering dangerous zones (red circles). (b) Button Task: The agent must
press the correct button (green) and avoid pressing wrong ones (yellow, purple, etc.) or colliding
with gremlins. (c) Push Task: The agent must push the box to the goal location (green circle) while
avoiding hazards (red). (d) Circle Env: The agent moves around a simple circular track.

E.3 EVALUATION METRICS

To comprehensively assess the performance of the proposed reinforcement learning algorithms, we
employ several evaluation metrics. These metrics evaluate both the agent’s ability to minimize costs
and its adherence to safety constraints.

Reward and Cost The primary performance metrics are the reward and cost, which respectively
measure the benefits and penalties accumulated by the agent over the course of an episode. For an
episode consisting of T' time steps:

¢ The return reward, R, is defined as:

R:Zrt,

t=1

where r; is the reward received at time step ¢. This metric reflects the agent’s ability to
achieve its objective efficiently.

¢ The return cost, C, is calculated as:

T
C= E Ct,
t=1

where c; is the cost incurred at time step ¢. This metric assesses the penalties associated
with the agent’s actions, capturing its safety and resource efficiency.

18

Under review as a conference paper at ICLR 2026

Violation Rate (Vio. Rate) The Violation Rate quantifies the proportion of episodes during training
in which the agent breaches predefined safety constraints. It is expressed as:

N, violations
7

Vio Rate =
total_episodes
where Nyjolations 1 the number of episodes in which the agent’s cumulative cost C' exceeds the
allowable threshold, and Noal_episodes 1S the total number of training episodes. A lower violation rate
indicates better safety performance.

Constraint Violation Magnitude(Magnitude) The Violation Magnitude measures the severity
of constraint violations in episodes where breaches occur. It is calculated as the average amount by
which the return cost exceeds the allowable threshold across all violating episodes:

1 Nviola!ions
Violation Magnitude = ——

violations ,7
=1

max (0, C; — d),

where C} is the return cost of the i-th violating episode and d is the cost threshold that we set. Smaller
magnitudes indicate less severe constraint violations.

Average Cost(Avg. Cost) To evaluate the overall performance during training, we calculate the
Average Cost across all episodes:

Niotal_episodes

1
C’L'v

Average Cost = ——
N, total_episodes

i=1
where Cj is the return cost of the i-th episode.

By analyzing these metrics, we can comprehensively assess the effectiveness of each algorithm in
achieving a balance between reward maximization and safety constraint adherence.

F MORE EXPERIMENTAL RESULTS

F.1 TABLES AND FIGURES REFERENCED IN THE MAIN TEXT

Table 5: Constraint violation rate (Vio.), violation magnitude (Mag.), and average cost (Cost) during
PPO training with various Lagrangian methods.

Task Method Vio. (%) Mag. Cost
Lag 89.77 4 19.38 59.77 & 39.05 84.05 + 40.18
CarButton PID 85.09 £ 16.67 45.27 + 46.80 68.95 £+ 47.94
ADRC 50.16 + 17.08 14.80 + 3.96 34.20 + 5.75
Lag 46.74 £ 20.16 15.85 4+ 17.40 33.54 4+ 20.09
CarCircle PID 52.78 £ 17.62 12.29 £ 8.14 31.24 £+ 10.31
ADRC 21.35 4+ 13.09 7.74 + 6.46 18.85 £ 9.30
Lag 80.87 £+ 19.17 31.18 £ 18.99 54.24 4+ 21.01
RacecarGoal PID 72.30 4= 24.96 27.11 £ 15.58 49.02 & 18.75
ADRC 47.08 £ 21.58 12.31 4+ 9.34 30.12 £ 12.74
Lag 5791 £ 22.12 1545 £ 12.92 35.54 £+ 15.56
RacecarPush PID 70.84 £+ 23.97 28.16 + 16.84 49.67 £+ 19.96
ADRC 47.28 + 17.05 12.50 + 7.05 29.35 + 11.03

As shown in Table [5] the ADRC methods significantly reduce violation rate, a smaller violation

magnitude, indicating reduced oscillations and a shorter phase-lag in response. The calculation of

metrics are detailed in Appendix

19

Under review as a conference paper at ICLR 2026

—— ADRC(Ours) — PID — lag === Cost Limit

TRPO DDPG TD3 CPPO

Cost

o 1000 2000 3000 4000 o 1000 2000 3000 4000 o 1000 2000 3000 4000 [1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

1.0
08 10 10 4
05 05
06
05 0.0

Reward

o 1000 2000 3000 4000 0 1000 2000 3000 4000 o 1000 2000 3000 4000 [1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 4: Training curves of Racecargoal task.

Figure E| shows training curves for different constraint-handling methods (ADRC, PID, and Clas-
sical Lagrangian) across four RL algorithms (TRPO, DDPG, TD3, and PPO) in the RacecarGoal
environment. Results show that ADRC consistently maintains cost below the limit while achieving
competitive or superior rewards compared to other methods across different RL backbones.

F.2 MAIN RESULTS

To ensure clarity and readability, we present the training curves for each environment separately,
avoiding the complexity of overlaying multiple curves on a single plot. This approach allows for a
more intuitive comparison of performance across different settings. For a comprehensive evaluation
of our method’s effectiveness, we conducted experiments across three agents—Ant, Racecar, and
Car—and four reinforcement learning tasks: Goal, Circle, Button, and Push. This setup resulted in a
total of 12 experimental groups. For each group, we ran experiments with 5 different random seeds
to account for variability and ensure statistical robustness. Furthermore, we benchmarked our method
against four widely used reinforcement learning algorithms: TRPO, PPO, DDPG, and TD3, covering
both on-policy and off-policy approaches. This rigorous experimental design provides a thorough
validation of our method’s adaptability and performance across diverse scenarios.

F.2.1 ANT ENVIRONMENTS

Figures [5]to Figure 8] present the training curves for the Ant environment across four tasks: Button,
Circle, Goal, and Push. Each plot illustrates the episodic returns and costs averaged over five random
seeds, with solid lines representing the mean and shaded areas denoting the variance.

To provide a more thorough and quantitative evaluation of our method, we report the results of
experiments conducted on four challenging environments, AntButton, AntCircle, AntPush and
AntGoal in Table[6] and Table[7] The metrics compared include violation rate (%), magnitude of
violations, and average cost. Across all experiments, our ADRC method consistently outperforms
baseline approaches (PID and Lagrange) in achieving lower violation rates and magnitudes, while
maintaining competitive or reduced average costs. These results, validated across four RL algorithms
(TRPO, PPO, DDPG, TD3), demonstrate the effectiveness and robustness of ADRC in handling
constraint-aware reinforcement learning tasks.

F.2.2 CAR ENVIRONMENTS

Figures 9] to Figure[I2] present the training curves for the Car environment across four tasks: Button,
Circle, Goal, and Push. Each plot illustrates the episodic returns and costs averaged over five random
seeds, with solid lines representing the mean and shaded areas denoting the variance.

To provide a more thorough and quantitative evaluation of our method, we report the results of
experiments conducted on four challenging environments, AntButton, AntCircle, AntPush and
AntGoal in Table[8] and Table[9] The metrics compared include violation rate (%), magnitude of

20

Under review as a conference paper at ICLR 2026

~— ADRC(Ours) — PID — lag === Cost Limit
TRPO DDPG TD3 CPPO
25 40 50 25
20 30 20 20

) 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 [1000 2000 3000 4000
Environment Steps(x 1e3) Environment Steps(x 1e3) Environment Steps(x 1e3) Environment Steps(x 1e3)

1.50 1.0
1.25
1.00

06
075
0.50 04
0.25 e 0.2
0.00 0.0
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 5: The training curves of AntButton with various Lagrangian methods across different
algorithms.

—— ADRC(Ours) —— PID —— lag === Cost Limit
TRPO DDPG TD3 CPPO
40 2 100
20 30
30 80
3 15
g 20 f * 2
o { 10 a0
10 { [VA 5 ﬂ Q i m 20 10
o T
) 0 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

-0.25
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 6: The training curves of AntCircle with various Lagrangian methods across different algo-
rithms.

Table 6: Comparison of violation rate, magnitude, and average cost on AntButton and AntCircle.

Algorithm AntButton AntCircle

Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost
CPPOLag 0.22 £0.03 +0.83 6.09 +3.94 13.98 +3.11 6.59+1.89 17.30+3.00
CPPOPID 0.30 £0.28 0.01 £0.01 695+2.11 10.82 +3.77 0.62+036 12.95+0.92
CPPOADRC 0.01 = 0.01 0.00 =0.00 2.69 +0.72 0.00 = 0.00 0.00 £0.00 3.23+2.24
DDPGLag 572 +£4.67 030+£024 735+£297 0.07 £0.15 0.00 +0.00 1.93 £ 0.68
DDPGPID 6.22+7.10 0.47+£0.65 7.92+3.86 0.04 £0.07 0.00 = 0.00 1.59 £0.50
DDPGADRC 1.93 £1.15 0.12+0.10 4.87 +0.64 0.15+0.27 0.00+0.00 2.15+0.41
TD3Lag 3.31+5.67 0.32+0.64 622+496 31.26 £ 2.86 1.76 £0.22 15.02+0.99
TD3PID 2.24 £5.01 0.11£025 3.14+£422 2132+11.16 3.61+2.06 13.74+4.75
TD3ADRC 0.00 = 0.00 0.00 £0.00 0.86 = 0.41 0.02 = 0.02 0.00 £0.00 2.49 +2.61
TRPOLag 0.01 £0.02 0.00+0.00 4.40+1.48 20.80 +3.52 1.64 £0.37 16.58 +£2.01
TRPOPID 0.01 £0.02 0.00+0.00 4.29+1.35 1773 +£2.21 1.06 £0.20 16.14 +1.31

TRPOADRC 0.00 £ 0.00 0.00 £0.00 4.15+0.58 0.14 £ 0.28 0.00£0.01 5.74+1.93

21

Under review as a conference paper at ICLR 2026

—— ADRC(Ours) — PID — lag === Cost Limit

CPPO

o 1000 2000 3000
Environment Steps(x1e3)

4000 0 1000 2000 3000

Environment Steps(x1e3)

4000 0 1000 2000 3000

Environment Steps(x1e3)

4000 0 1000 2000 3000

Environment Steps(x1e3)

4000

1.50
1.25
1.00
0.75

0.50
0.25
0.00

-0.25
4000 0

0 1000 2000 3000
Environment Steps(x1e3)

4000 0

1000
Environment Steps(x1e3)

2000 3000

1000
Environment Steps(x1e3)

2000 3000 4000 0 1000 2000 3000

Environment Steps(x1e3)

4000

Figure 7: The training curves of AntGoal with various Lagrangian methods across different algo-
rithms.

—— ADRC(Ours) — PID — lag === Cost Limit

TD3 CPPO

0 1000

2000 3000 4000

Environment Steps(x1e3)

o 1000
Environment Steps(x1e3)

2000 3000 4000

0 ——tiit it

0 1000 2000

3000 4000 0

Environment Steps(x1e3)

0 1000 2000

3000 4000 0

Environment Steps(x1e3)

1000 2000 3000
Environment Steps(x1e3)

1000 2000 3000
Environment Steps(x1e3)

4000

4000

st

0 1000

2000 3000 4000

Environment Steps(x1e3)

o 1000
Environment Steps(x1e3)

2000 3000 4000

Figure 8: The training curves of AntPush with various Lagrangian methods across different algo-

rithms.

Table 7: Comparison of violation rate, magnitude, and average cost on AntGoal and AntPush.

Algorithm AntGoal AntPush

Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost
CPPOLag 0.41 £0.66 0.05+0.01 4.68+1.05 0.48 £0.48 3.65+393 0.61+£0.55
CPPOPID 0.31 £0.46 0.03+0.06 4.63+0.96 0.36 £ 0.54 0.02+0.03 1.70+0.96
CPPOADRC 0.00 = 0.00 0.00 £0.00 3.43+047 0.09 +0.13 0.00 £0.01 1.25+0.37
DDPGLag 3.09 +1.37 0.32+£020 5.34+1.18 0.03 £0.04 0.00+£0.00 1.05+047
DDPGPID 1.42+£0.58 0.19+£0.07 3.03%1.01 0.17 £0.24 0.02+0.02 0.82+0.51
DDPGADRC 1.19 £1.27 0.15+0.15 1.88%1.19 0.67 £1.19 0.11+020 1.50+0.80
TD3Lag 20.21 +4.27 1.94 +0.64 13.46+1.39 0.00 = 0.00 0.00+0.00 0.12 +0.07
TD3PID 1874 +12.17 2.00+1.75 11.81+%5.51 0.00 +0.00 0.00£0.00 0.16+0.14
TD3ADRC 1.54 £ 1.50 0.20+0.22 2.04+1.34 0.00 +0.00 0.00+0.00 0.18+0.16
TRPOLag 0.25+0.50 0.02+0.04 4.10%£0.89 0.00 = 0.00 0.00£0.00 0.73+0.26
TRPOPID 0.15+0.30 0.01£0.02 4.13+£094 0.00 £0.00 0.00£0.00 0.73+£0.26
TRPOADRC 0.00 = 0.00 0.00 £0.00 2.70 = 0.69 0.00 = 0.00 0.00£0.00 0.34 £0.15

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

~—— ADRC(Ours) —— PID —— Lag === Cost Limit
TRPO DDPG TD3 CPPO
150
125
+, 100
B
S
50
25
o
4 1000 2000 3000 4000 o 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)
125 N N N
1.00 08 ’J
1| (o oe—
p 07 06 .
©
= 050 0.4 0 —
T
< 025
02
0.00 -1 S B
0.0 SR gl
-0.25 o
4 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 9: The training curves of CarButton with various Lagrangian methods across different
algorithms.

~—— ADRC(Ours) —— PID —— lag === Cost Limit

TD3

o 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 10: The training curves of CarCircle with various Lagrangian methods across different
algorithms.

23

Under review as a conference paper at ICLR 2026

violations, and average cost. Across all experiments, our ADRC method consistently outperforms
baseline approaches (PID and Lagrange) in achieving lower average cost and violation magnitudes,
while maintaining competitive.

Table 8: Comparison of violation rate, magnitude, and average cost on CarButton and CarCircle.

Algorithm CarButton CarCircle
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

CPPOLag 89.77+19.38 59.77+£39.05 84.05+40.18 46.73+20.16 15.85+17.40 33.54 +20.09
CPPOPID 85.09+16.67 4527+46.80 68.95+47.94 52.77+17.62 1229 £8.14 31.24 +£10.31
CPPOADRC 50.16 £ 17.08 14.80 + 3.96 34.20 £5.75 21.35+£13.09 7.74 £ 6.46 18.85 £ 9.30
DDPGLag 99.93 £0.11 58.18 £12.27 83.17 +12.27 51.85+0.74 13.55 £2.86 3349 +245
DDPGPID 98.87 £ 2.05 64.10 £ 6.43 89.05 £ 6.51 39.77 £4.31 13.56 £ 1.49 30.89 + 1.44
DDPGADRC 99.49 + 0.08 58.62 +7.25 83.60 + 7.25 51.50+5.10 773 £1.79 23.82 +£1.33
TD3Lag 99.97 £ 0.04 62.20 £ 10.10 87.20+ 10.11 53.00 £ 1.06 17.18 £ 1.25 38.06 + 1.57
TD3PID 99.03 £ 1.00 59.44+£11.92 8440+11.95 39.20 £ 1.56 12.52 £ 1.64 30.87 £ 1.18
TD3ADRC 99.04 £ 0.73 50.84 +£9.18 75.80 £9.21 48.41 £+ 6.50 7.49 +1.54 24.26 +1.28
TRPOLag 74.24 + 11.05 21.90 +7.38 44.84 + 8.09 40.04 £ 1.30 6.45+1.28 25.52+0.51
TRPOPID 69.04 + 17.53 14.60 + 4.66 37.11 £6.10 40.67 £3.51 6.58 +1.15 2424 + 1.44

TRPOADRC 53.28 +15.44 8.53+4.33 29.57 £ 6.18 17.71 £ 2.92 1.92 + 0.64 16.22 £ 1.75

~—— ADRC(Ours) — PID — lag === Cost Limit
TRPO DDPG TD3 CPPO

Cost

o 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)
2.0 12 12
15 1oLk 1.0

1.0 b /
0.8 o8 05 o ans
0.5 06
0.0 06 0.0
-05 0.4 ¥ =05
0.2 Lo |

Reward

-1.0
0.2 00
-15 -15

o 1000 2000 3000 4000 o 1000 2000 3000 4000 o 1000 2000 3000 4000 o 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 11: The training curves of CarGoal with various Lagrangian methods across different algo-
rithms.

—— ADRC(Ours) — PID — lag === Cost Limit

TRPO DDPG TD3 CPPO

o 1000 2000 3000 4000 o 1000 2000 3000 4000 o 1000 2000 3000 4000 [1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

1.0 . =
0.5 ?\ % ;3 ;

Reward

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 12: The training curves of CarPush with various Lagrangian methods across different algo-
rithms

24

Under review as a conference paper at ICLR 2026

Table 9: Comparison of violation rate, magnitude, and average cost on CarGoal and CarPush.

Algorithm CarGoal CarPush
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

CPPOLag 65.20 £22.57 1854+ 1141 40.05+14.00 68.45+18.98 2148+16.81 43.38+18.71
CPPOPID 62.04 +18.18 12.95+7.45 3441+£9.04 62.36 +10.66 12.40 + 3.08 33.74 + 3.88
CPPOADRC 34.97 +13.88 4.72 +2.14 2199 £5.32 42.23+15.34 11.68 +7.99 29.16 = 10.19
DDPGLag 5243 +0.12 7.25+0.93 28.35+0.44 48.81 + 1.62 8.20+1.38 27.37+1.19
DDPGPID 65.52 +4.60 12.53£0.72 35.03+£0.53 48.81 = 1.62 820+ 1.38 27.37+1.19
DDPGADRC 47.36 +1.90 2.88 +0.57 21.55 £ 0.29 42.43 +£9.36 7.07 £ 1.69 25.70 + 2.85
TD3Lag 70.47 £ 10.44 17.00 + 1.29 38.90 +2.83 46.97 £2.20 6.27 +1.53 25.51 £1.36
TD3PID 80.94 + 5.87 20.68 +3.94 43.43 £4.23 49.83 +£0.77 7.65+1.15 26.66 = 1.14
TD3ADRC 40.62 = 8.51 2.85+0.31 20.65 £ 2.46 39.92 + 1.66 5.15+0.82 23.64 +0.93
TRPOLag 54.86 + 6.74 10.46 £ 4.56 30.97 £4.69 48.24 £ 6.24 8.51 £2.35 27.58 £3.16
TRPOPID 44,79 +2.84 7.34+1.31 25.84 +0.88 40.05 + 1.69 6.66 + 1.82 23.92+1.74

TRPOADRC 29.12 +3.70 344121 20.48 + 0.99 34.75 + 8.43 6.32 £ 2.13 22.40 +2.34

F.2.3 RACECAR ENVIRONMENTS

Figures [T3]to Figure[I6]present the training curves for the Ant environment across four tasks: Button,
Circle, Goal, and Push. Each plot illustrates the episodic returns and costs averaged over five random
seeds, with solid lines representing the mean and shaded areas denoting the variance.

~—— ADRC(Ours) — PID — lag === Cost Limit

TRPO DDPG TD3 CPPO

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

125
1.00 10 1o 2

075 08 08

1
050 06 06
0.25 0.4 0.4 0

0.00 \ 0.2

Reward

-0.25 ¥ 0.0 -1
-0.50

o 1000 2000 3000 4000 o 1000 2000 3000 4000 0 1000 2000 3000 4000 o 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 13: The training curves of RacecarButton with various Lagrangian methods across different
algorithms.

To provide a more thorough and quantitative evaluation of our method, we report the results of
experiments conducted on four challenging environments, AntButton, AntCircle, AntPush and
AntGoal in Table[I0]and Table[IT] The metrics compared include violation rate (%), magnitude of
violations, and average cost. Across all experiments, our ADRC method consistently outperforms
baseline approaches (PID and Lagrange) in achieving lower violation rates and magnitudes, while
maintaining competitive or reduced average costs.

F.3 VELocCITY CONTROL RESULTS

To further evaluate our method’s performance in dynamic and velocity-sensitive environments,
we conducted experiments on the Safety Velocity Control tasks, including SafetySwimmer and
SafetyHopper. These tasks pose additional challenges by requiring agents to manage both positional
constraints and velocity profiles.

The following tables present the violation rates, violation magnitudes, average costs, and average re-
wards achieved by different methods. Across all settings, our ADRC Lagrangian method consistently

25

Under review as a conference paper at ICLR 2026

Cost

0 1000
Environment Steps(x1e3)

Reward
5

0 1000

—— ADRC(Ours)

DDPG

2000 3000 4000

o M
0.0 4

2000 3000 4000

Environment Steps(x1e3)

150 |

100

0 1000 2000

— PD — lag

TD3

3000 4000

Environment Steps(x1e3)

o 1000
Environment Steps(x1e3)

2000

3000 4000

=== Cost Limit
Il
0 1000 2000 3000
Environment Steps(x1e3)
o 1000 2000 3000

Environment Steps(x1e3)

1000
Environment Steps(x1e3)

2000 3000 4000

05 !&ﬂ&:@ gg“; |
0.0 Y

CPPO
200
150
100
50
0
4000 0
15
1.0
-05
4000 0

1000

2000 3000 4000

Environment Steps(x1e3)

Figure 14: The training curves of RacecarCircle with various Lagrangian methods across different

algorithms.

Table 10: Comparison of violation rate, magnitude, and average cost on RacecarButton and Racecar-

Circle.
Algorithm RacecarButton RacecarCircle
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost
CPPOLag 97.38 £2.85 65.75+£1698 90.53+17.10 58.32+31.47 30.72+37.777 50.41+41.68
CPPOPID 97.37+424 7844+4336 103.21+43.64 56.82+31.13 21.77+25.28 40.95+29.63
CPPOADRC 81.18 £20.97 35.76 £29.48 59.11+31.27 39.94+38.28 21.78+31.79 35.72 +39.00
DDPGLag 75.88 £4.41 15.77 £3.10 39.47 +£3.34 50.52 £0.25 7.87+£0.74 25.03 £0.67
DDPGPID 88.26 +2.48 20.12+£2.35 44.62 £2.47 46.17 £ 1.40 7.94 £1.09 27.09 £ 0.56
DDPGADRC 85.18 +6.77 18.49 +2.43 42.87 +£2.74 50.92 £2.27 5.00 £ 0.79 24.51+0.33
TD3Lag 72.49 £ 2.60 16.31 £2.92 39.65 +3.12 49.42 £ 0.19 8.22+0.52 24.95+0.52
TD3PID 85.99 +7.60 21.46 £4.96 45.75£5.43 48.72 £ 1.24 8.57+1.07 27.76 £ 1.30
TD3ADRC 84.48 +4.33 18.37 +2.74 42.65 +2.93 42.08 +1.39 4.56 +0.79 24.21 +0.82
TRPOLag 87.31 +4.65 33.07 +7.84 57.34 £7.59 51.39+ 1047 16.10+10.65 3448+11.14
TRPOPID 87.04 +3.69 32.94 +3.94 56.86 + 3.65 37.99 +3.47 7.92+£2.78 2345+ 1.84
TRPOADRC 80.06 + 4.19 21.38 £ 5.00 45.00 +5.21 23.64 +3.83 3.54+0.43 17.30 + 1.32
—— ADRC(Ours) — PID — lag === Cost Limit
TRPO D3 CPPO

Cost

0 1000

2000 3000 4000

Environment Steps(x1e3)

Reward

[1000
Environment Steps(x1e3)

2000 3000 4000

0 1000 2000

3000 4000

Environment Steps(x1e3)

0 1000 2000

3000 4000

Environment Steps(x1e3)

0 1000 2000 3000
Environment Steps(x1e3)

0 1000
Environment Steps(x1e3)

2000 3000

4000 0

1000

2000 3000 4000

Environment Steps(x1e3)

4000 0

1000

2000 3000 4000

Environment Steps(x1e3)

Figure 15: The training curves of RacecarGoal with various Lagrangian methods across different

algorithms.

26

Under review as a conference paper at ICLR 2026

—— ADRC(Ours) —— PID —— Lag === Cost Limit

TRPO DDPG TD3 CPPO

Cost

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)
15 125
1.00 10 15
o 1 0.75 0.8 1.0 e P o= el
T os 050 06 05
g 025 04
T 00 0.0
4 0.00 0.2
-05
-05 ~025 0.0
-10
10 -0.50 =02
-15
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3) Environment Steps(x1e3)

Figure 16: The training curves of RacecarPush with various Lagrangian methods across different
algorithms.

Table 11: Comparison of violation rate, magnitude, and average cost on RacecarGoal and Racecar-
Push.

Algorithm RacecarGoal RacecarPush
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

CPPOLag 80.87 £19.17 31.18+18.99 54.24+21.01 5791+22.12 1545+12.92 35.54+15.56
CPPOPID 72.30+24.96 27.11£15.58 49.02+18.75 70.84+23.97 28.16+16.84 49.67 +£19.96
CPPOADRC 47.08 + 21.59 12.31+9.34 30.12+12.74 47.28 +17.05 1250 +7.05 29.35 +11.03
DDPGLag 71.44 £9.47 1847 +4.13 40.76 £5.00 39.58 +2.98 5.00 +0.49 22.52 £0.58
DDPGPID 72.05 +4.09 17.93 £2.81 40.29 +2.99 39.31 +1.84 6.89 +0.81 23.46 £ 0.98
DDPGADRC 68.41 +5.77 17.81 + 1.34 39.41 +2.14 38.08 + 3.96 5.10 + 0.98 21.99 +£1.13
TD3Lag 75.26 £2.13 19.93 + 1.40 42.57 +1.59 36.76 £ 1.53 5.25+0.92 21.64 +£0.97
TD3PID 73.31 £ 6.06 19.19£2.72 41.57£3.22 38.87 £ 1.99 6.76 + 1.65 23.32+245
TD3ADRC 71.24 £+ 3.00 17.55 £3.57 39.71 £ 3.94 36.21 +£3.11 4.25 +1.50 20.70 £ 1.49
TRPOLag 6431 +£2337 2289+18.69 43.67+21.56 51.18+11.61 12.82 £3.76 31.19£5.63
TRPOPID 49.33 £ 15.00 11.70 £ 7.07 30.94 + 8.81 40.06 £ 1.74 7.98 £1.92 24.46 £ 1.55

TRPOADRC 34.03 + 8.06 6.16 £ 2.37 22,02 +£3.61 26.06 = 11.09 5.41 £ 2.66 18.28 + 5.41

27

Under review as a conference paper at ICLR 2026

demonstrates superior safety performance with competitive or improved final rewards compared to
baseline PID Lagrangian methods.

Table 12: Performance comparison on SafetySwimmer environment.
Algorithm Violate Rate (%) Magnitude Avg Cost Avg Reward

CPPOPID 28.33 1.84 23.64 32.54
CPPOADRC 6.95 1.56 18.34 29.07
TRPOPID 3543 1.78 22.48 27.73
TRPOADRC 11.30 2.44 20.82 35.66

Table 13: Performance comparison on SafetyHopper environment.
Algorithm Violate Rate (%) Magnitude Avg Cost Avg Reward

CPPOPID 40.33 5.32 23.92 1365.60
CPPOADRC 17.40 1.84 17.35 1155.59
TRPOPID 39.33 7.52 24.41 1448.46
TRPOADRC 0.93 0.06 12.02 1080.80

These results validate that the ADRC-based methods significantly improve safety metrics (lower
violation rate and cost) while maintaining comparable or strong reward performance in dynamic ve-
locity control tasks. This further demonstrates the effectiveness and robustness of ADRC Lagrangian
formulations under more complex and realistic settings.

F.4 COMPARISON WITH STATE-OF-THE-ART SAFE RL ALGORITHMS

To demonstrate the broader applicability and effectiveness of our ADRC-Lagrangian framework
beyond traditional Lagrangian methods, we conduct comprehensive comparisons with state-of-
the-art safe RL algorithms. Our evaluation includes both Lagrangian-based methods (RCPO and
PDO) Tessler et al.[(2018)); Chow et al.|(2018a) and non-Lagrangian approaches such as CUP [Yang
et al.| (2022) and IPO [Liu et al.|(2019). This comparison validates our method’s superiority across
different safe RL paradigms and confirms that the benefits stem from ADRC’s adaptive control
principles rather than merely being artifacts of the Lagrangian framework.

We evaluate all methods on two challenging continuous control environments: HalfCheetah-Velocity
and Hopper-Velocity from the Safety-Gymnasium benchmark. Each algorithm is trained with
identical hyperparameters and evaluated using three random seeds. We report both training metrics
(averaged over the entire training process) and final policy evaluation results to provide comprehensive
performance assessment.

Table 14: Training performance on HalfCheetah-Velocity. Best results in bold, runner-up in underline.
Algorithm Vio. Rate (%) Magnitude Avg. Cost Avg. Reward

CUP 22.63+7.21 4.48+4.58 16.25+5.08 1532.23+255.05
IPO 29.17+1.63 0.81+0.02 19.60+0.08 1460.56+210.91
PDO 31.95+£5.09 9.68+2.84 22.16x1.47 1690.62+421.72
RCPO 18.26+9.69 4.75+3.71 15.77£7.03 1497.99+410.94

RCPO-ADRC 0.00+0.00 0.00+0.00 8.40+2.40 1329.62+293.58
TRPO-ADRC 1.19+0.25 0.09+0.10 10.89+0.34 1743.09+295.33
CPPO-ADRC 8.53+12.06 0.55+0.78 15.36+2.05 1504.17+198.53

Tables [I4] and [I5] show that our ADRC variants markedly enhance training-time stability: compared
with existing safe RL methods, ADRC achieves consistently lower violation rates, smaller violation
magnitudes, and reduced average costs. For example, on HalfCheetah, RCPO-ADRC eliminates
violations entirely (0.00+0.00% vs. 18.26£9.69% for RCPO) and attains the lowest training cost
(8.40+2.40); on Hopper, RCPO-ADRC sharply suppresses violations (2.57£2.19%) with the smallest

28

Under review as a conference paper at ICLR 2026

Table 15: Training performance on Hopper-Velocity. Best results in bold, runner-up in underline.

Algorithm Vio. Rate (%) Magnitude Avg. Cost Avg. Reward

CUP 37.11£3.59 5.47£0.59 21.73£1.03 1085.14+£204.86
IPO 51.99+8.89 1.68+0.18 24.70+0.84 1082.95+103.43
PDO 27.56+9.25 8.42+3.48 20.00£7.01 1098.22+178.78
RCPO 37.57+7.00 5.45+0.93 23.24+2.72 1247.724292.68
RCPO-ADRC 2.57+2.19 0.06+0.05 14.23+2.74 1186.87+£70.94
TRPO-ADRC 7.76+9.59 0.33+0.40 15.13+3.04 1167.62+90.74
CPPO-ADRC 11.01+5.65 0.92+0.67 15.43+1.40 1083.94+68.49

Table 16: Evaluation performance on HalfCheetah-Velocity. Best results in bold, runner-up in
underline.

Table 17: Evaluation performance on Hopper-Velocity. Best results in bold, runner-up in underline.

Algorithm Reward Cost Length

CUP 2175.61+491.09 28.57+21.15 1000.00+0.00
1PO 1819.75£292.45 16.10£12.99 1000.00£0.00
PDO 2468.78+581.21 5.77+7.32 1000.00+0.00
RCPO 2296.82+665.64 15.00+8.81 1000.00£0.00
RCPO-ADRC 1642.22+211.39 10.23+3.51 1000.00£0.00
TRPO-ADRC 2394.09+419.84 14.63£15.65 1000.00+0.00
CPPO-ADRC 2098.71+464.92 13.87+£11.43 1000.00+0.00

Algorithm Reward Cost Length

CUP 1326.84£386.22 26.90+10.59 854.40+165.37
IPO 1216.01+129.12 27.57#4.95 797.33+118.41
PDO 1177.19£135.02 18.03+25.50 797.57+167.85
RCPO 1554.56+223.49 37.53+24.35 979.30+29.27
RCPO-ADRC 1248.94+220.47 9.27+5.18 818.10+128.67
TRPO-ADRC 1470.61+152.19 10.67+3.76 1000.00+0.00
CPPO-ADRC 1322.83%£157.06 10.43+7.12 910.20+127.00

29

Under review as a conference paper at ICLR 2026

magnitudes (0.06+0.05) and cost (14.23+2.74). Crucially, this improved safety does not come
at the expense of learning quality: ADRC maintains competitive training rewards—and can be
better—e.g., TRPO-ADRC attains the highest training reward on HalfCheetah (1743.09+295.33)
with only 1.1940.25% violations, indicating stable and efficient optimization.

Tables[16|and [T7]further examine convergence-time performance (evaluation). Even without explicitly
measuring constraints at evaluation, ADRC remains competitive—or superior—on task metrics: on
HalfCheetah, TRPO-ADRC reaches runner-up reward (2394.09+419.84), close to the best; on
Hopper, RCPO-ADRC achieves the lowest evaluation cost (9.27+5.18) and TRPO-ADRC sustains
the maximum horizon (1000.00+0.00) with strong reward (1470.61£152.19). Together, these results
confirm that ADRC improves training stability and safety while preserving (and in cases improving)
final task performance and convergence behavior, offering a plug-and-play safety enhancement over
existing safe RL baselines.

F.5 PARAMETER SENSITIVITY ANALYSIS

F.5.1 TUNING PARAMETER kg,

To assess the effect of the control gain k,, on the performance of ADRC-based Lagrangian methods,
we conducted a series of ablation experiments. Specifically, we evaluated three distinct values of
kad (0.01,0.1, 1) and compared them with existing approaches, including PID-based and classical
Lagrangian methods. These experiments were carried out in two challenging environments, CarPush
and RacecarGoal, using two reinforcement learning algorithms, PPO and TRPO. The results highlight
ADRC’s ability to dynamically adjust the control gain, demonstrating superior adaptability and
improved performance with carefully selected parameter settings.

Table 18: The proportion of constraint violations during training (Vio. Rate), the average magnitude
of violations (Magnitude), and the average cost (Avg. Cost) for TRPO and PPO algorithms across
CarPush and RacecarGoal environments with various k,,, values, PID, and Lag methods. Bold values
indicate better performance compared to PID.

Algorithm Method CarPush RacecarGoal

Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

kap =1 36.38 4.51 21.99 32.73 5.78 22.27

kap = 0.1 33.08 5.78 21.22 29.05 3.44 18.95

TRPO kqap = 0.01 20.43 2.50 15.42 23.83 4.29 19.36

PID 38.40 4.84 21.96 44.60 7.04 26.15

Lag 39.88 5.38 23.31 87.33 37.36 61.53

kap =1 86.08 24.38 48.31 69.98 18.62 39.87

kap = 0.1 16.25 4.05 13.46 29.05 3.4 18.95

CPPO kap = 0.01 42.83 5.75 23.56 23.83 4.29 19.36

PID 67.28 12.80 34.67 79.25 23.88 46.44

Lag 46.43 6.67 25.90 84.35 30.16 53.38

As shown in Table El, we report the Violation Rate (Vio. Rate), the Magnitude of constraint
violations, and the Average Cost (Avg. Cost) for both the CarPush and RacecarGoal environments
using the TRPO and PPO algorithms. The results demonstrate the superior performance of our ADRC
approach with varying k,, values compared to baseline methods (PID and Lag). Specifically:

¢ For the CarPush environment:

— Under TRPO, the configuration k,, = 0.01 achieves the lowest violation rate (20.43%)
and magnitude (2.50), alongside a significantly reduced average cost (15.42), outper-
forming both PID and Lag.

— For CPPO, k,; = 0.1 shows remarkable results, with a violation rate of 16.25%, the
smallest magnitude (4.05), and the lowest average cost (13.46). This highlights the
adaptability of ADRC at this gain level.

¢ For the RacecarGoal environment:

- With TRPO, k,;, = 0.01 again demonstrates the best performance, achieving a viola-
tion rate of 23.83%, a moderate magnitude (4.29), and a reduced average cost (19.36).
This represents a clear improvement over both PID and Lag methods.

30

Under review as a conference paper at ICLR 2026

— Similarly, under CPPO, k,, = 0.1 achieves the best performance with a violation rate
of 29.05%, the smallest magnitude (3.44), and the lowest average cost (18.95). These
results further emphasize ADRC’s effectiveness.

* For both environments, the baseline PID and Lag methods generally exhibit higher vio-
lation rates, magnitudes, and costs. Lag in particular performs poorly, especially in the
RacecarGoal environment, where it yields the highest violation rates and costs.

These results confirm that our ADRC method, with its dynamic control gain adjustments, consistently
outperforms traditional methods, particularly when k., = 0.01 or k,, = 0.1, demonstrating its
robustness and adaptability across diverse environments and algorithms.

— PD — lag kap=1 —— kap=0.1 —— kap=0.01 - Cost Limit

Cost

[1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 [1000 2000 3000 4000
0 05
0
0 N 0.0
B -1
“1 -05
° -4 -2
g 10
v 2 3
o< -6
-15 ’
-3 -4
-8
-2.0
4 -5

[1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 [1000 2000 3000 4000
Environment Steps (x1e3) Environment Steps (x1e3) Environment Steps (x1e3) Environment Steps (x1e3)

CPPO - RacecarGoal TRPO - RacecarGoal CPPO - CarPush TRPO - CarPush

Figure 17: The training curve for TRPO and CPPO algorithms across CarPush and RacecarGoal
environments with various £, values, PID, and Lag methods.

Figure [19| provides the training curves for reward and cost across the evaluated k), values, PID,
and Lag methods. These curves illustrate the consistent performance improvements of our method
throughout the training process. Our approach not only converges more effectively but also demon-
strates a more favorable trade-off between reward maximization and cost minimization.

F.5.2 TUNING PARAMETER k,q4

To assess the effect of the control gain k.4 on the performance of ADRC-based Lagrangian methods,
we conducted a series of ablation experiments. Specifically, we evaluated three distinct values of
kad (0.01,0.1, 1) and compared them with existing approaches, including PID-based and classical
Lagrangian methods. These experiments were carried out in two challenging environments, CarPush
and RacecarGoal, using two reinforcement learning algorithms, CPPO and TRPO. The results
highlight ADRC’s ability to dynamically adjust the control gain, demonstrating superior adaptability
and improved performance with carefully selected parameter settings. To evaluate the impact of
the tuning parameter k,q on ADRC Lagrangian methods’ performance, we conducted ablation
experiments by selecting three different values of k,q = 0.01,0.1,1 and comparing them against
existing methods, including PID Lagrangian methods and classical Lagrangian methods. The
experiments were performed across two environments which are CarPush and RacecarGoal and adopt
two algorithms which are CPPO and TRPO.

As shown in Table E[, we report the Violation Rate (Vio. Rate), the Magnitude of constraint
violations, and the Average Cost (Avg. Cost) for both the CarPush and RacecarGoal environments
using the TRPO and CPPO algorithms. The results highlight the superior performance of our ADRC
approach with varying k.4 values compared to the baseline methods (PID and Lag). Specifically:

31

Under review as a conference paper at ICLR 2026

Table 19: The proportion of constraint violations during training (Vio. Rate), the average magnitude
of violations (Magnitude), and the average cost (Avg. Cost) for TRPO and CPPO algorithms across
CarPush and RacecarGoal environments with various k4 values, PID, and Lag methods. Bold values
indicate better performance compared to PID.

Algorithm Method CarPush RacecarGoal
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

kaga =1 38.23 6.16 23.11 28.55 6.17 20.23

kqa = 0.1 36.68 6.29 21.99 38.25 9.12 23.92

TRPO kaa = 0.01 30.20 3.86 20.36 39.08 5.75 23.33
PID 38.40 4.84 21.96 44.60 7.04 26.15

Lag 39.88 5.38 23.31 87.33 37.36 61.53

kaga =1 16.20 1.78 16.60 48.68 9.12 27.80

kga = 0.1 15.08 5.06 1545 48.55 8.59 27.80

CPPO kaa = 0.01 16.25 4.05 13.46 33.08 5.75 23.33
PID 67.28 12.80 34.67 79.25 23.88 46.44

Lag 46.43 6.67 25.90 84.35 30.16 53.38

¢ For the CarPush environment:

— Under TRPO, k.4 = 0.01 achieves the lowest violation rate (30.20%) and the smallest
magnitude (3.86), alongside a reduced average cost (20.36). This indicates better
constraint satisfaction and efficiency compared to PID and Lag.

— For CPPO, k,; = 0.1 yields the best performance with the lowest violation rate
(15.08%), a moderate magnitude (5.06), and the smallest average cost (15.45). These
results highlight ADRC’s adaptability at this parameter setting.

¢ For the RacecarGoal environment:

— With TRPO, k,; = 1 shows excellent performance, achieving the lowest violation rate
(28.55%) and average cost (20.23), alongside a relatively small magnitude (6.17).

— Under CPPO, k,q; = 0.01 demonstrates the best results, with a low violation rate
(33.08%), a reduced magnitude (5.75), and the smallest average cost (23.33). This
showcases ADRC'’s ability to manage constraints effectively in this challenging envi-
ronment.

* Across both environments, the baseline methods (PID and Lag) consistently exhibit higher
violation rates, larger magnitudes, and higher costs. Lag performs particularly poorly, with
significantly higher metrics, especially in the RacecarGoal environment, where it records
the highest violation rate (87.33%) and average cost (61.53).

F.5.3 TUNING PARAMETER c,

To evaluate the impact of the tuning parameter c,, on ADRC Lagrangian methods’ performance, we
conducted ablation experiments by selecting five different values of ¢, = 0.05,0.1,0.15,0.2,0.25
and comparing them against existing methods, including PID Lagrangian methods and classical
Lagrangian methods. The experiments were performed across two environments which are CarPush
and RacecarGoal and adopt two algorithms which are CPPO and TRPO.

As shown in Table we report the Violation Rate (Vio. Rate), the Magnitude of constraint
violations, and the Average Cost (Avg. Cost). The results demonstrate that our method consistently
outperforms the baseline methods (PID Lagrangian methods and classical Lagrangian methods)
across a majority of the ¢, values. Specifically:

* For the CarPush environment, our method achieves lower violation rates and magnitudes in
most cases, while maintaining competitive average costs.

* Similarly, in the RacecarGoal environment, our approach demonstrates significant improve-
ments, particularly with ¢, = 0.1 and ¢, = 0.2, where it achieves the lowest violation rates
and magnitudes.

Figure[I9|provides the training curves for reward and cost across the evaluated ¢, values, PID, and Lag
methods. These curves illustrate the consistent performance improvements of our method throughout

32

Under review as a conference paper at ICLR 2026

Cost

—— PID

— lag — kad=1 — kad=0.1

—— kad=0.01 Cost Limit

0

1000 2000 3000

4000

-10.0

-12.5

-15.0

-17.5

-20.0

0
0

1000 2000 3000 4000

2000 3000 4000

0
0 1000

2000 3000 4000

0

1000 2000 3000
Environment Steps (x1e3)

CPPO - RacecarGoal

4000

0

1000 2000 3000
Environment Steps (x1e3)

4000

TRPO - RacecarGoal

0 1000 2000 3000
Environment Steps (x1e3)

4000

CPPO - CarPush

[1000 2000 3000
Environment Steps (x1e3)

4000

TRPO - CarPush

Figure 18: The training curve for TRPO and CPPO algorithms across CarPush and RacecarGoal
environments with various kg values, PID, and Lag methods.

Table 20: The proportion of constraint violations during training (Vio. Rate), the average magnitude
of violations (Magnitude), and the average cost (Avg. Cost) for TRPO and CPPO algorithms across
CarPush and RacecarGoal environments with various ¢, values, PID, and Lag methods. Bold values
indicate the better performance compared to PID.

Algorithm Method CarPush RacecarGoal
Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

Lag 43.83 7.99 26.19 87.33 37.36 61.53

PID 38.40 4.84 21.96 44.60 7.04 26.15

cr = 0.05 46.25 6.35 24.79 33.98 5.25 20.83

TRPO ¢, =0.1 30.20 3.86 20.36 29.05 3.44 18.95
c. = 0.15 34.83 10.92 27.00 31.25 5.34 21.16

c. =0.2 28.60 7.32 20.72 40.65 6.10 23.67

c. = 0.25 34.13 6.26 22.46 38.50 6.71 23.40

Lag 46.43 6.67 25.90 84.35 30.16 53.38

PID 67.28 12.80 34.67 79.25 23.88 46.44

¢ = 0.05 44.73 5.95 24.80 34.38 3.90 2245

CPPO c. =0.1 16.25 4.05 13.46 33.08 5.78 21.22
c. = 0.15 56.70 10.22 30.40 52.88 10.69 31.37

c. = 0.2 12.30 231 13.45 48.95 8.77 26.91

c. = 0.25 34.00 6.12 22.09 62.83 13.37 33.99

33

Under review as a conference paper at ICLR 2026

the training process. Our approach not only converges more effectively but also demonstrates a more
favorable trade-off between reward maximization and cost minimization.

Overall, the results highlight the robustness of our method, as it achieves superior performance in the
majority of scenarios. This indicates that the choice of ¢, significantly influences the balance between
reward and cost, and our approach consistently outperforms existing methods under comparable
conditions.

cr=0.25 =02 — cr=0.1 =005 —— cr=015 —— PID — lag - Cost Limit
100
60 80
80
501
60
60 40
=
]
o
© 30 40
40
20
20
20
B XL PN
0 0
[1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 [1000 2000 3000 4000
1
0 0 05
0 R 0.0 X
2 I\
-2
-05
-1 -4
° - -
2 4 1.0
3
g2 -6 -15
-6
-2.0
-3 -8
-8
-25
-10
-4
~10 -3.0
[1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Environment Steps (x1e3) Environment Steps (x1e3) Environment Steps (x1e3) Environment Steps (x1e3)
CPPO - RacecarGoal TRPO - RacecarGoal CPPO - CarPush TRPO - CarPush

Figure 19: The training curve for TRPO and CPPO algorithms across CarPush and RacecarGoal
environments with various ¢, values, PID, and Lag methods.

F.6 NOISE SENSITIVITY ANALYSIS

Table 21: Training noise sensitivity on Swimmer-Velocity.
Method /o Vio. Rate (%) Magnitude Avg. Cost Avg. Reward

PID 3543 1.77 22.47 27.73
c=0 11.30 2.44 20.82 35.66
o=2 10.93 2.55 21.93 2241
c=5 5.93 1.62 8.04 16.18
o=10 23.95 3.55 19.93 12.41

Table 22: Evaluation noise sensitivity on Swimmer-Velocity.
Method /o Avg. Cost Vio. Rate (%) Magnitude Avg. Reward

PID 23.05 39.79 6.23 32.19
oc=0 18.40 12.07 11.35 39.55
oc=2 18.00 27.60 14.52 19.72
o=35 4.16 4.57 9.18 17.23
oc=10 18.20 28.72 15.06 20.51

Tables 2TH22] report the sensitivity of our TRPO-based ADRC approach to injected noise in the
SWIMMER-Velocity environment. The results demonstrate that TRPO-ADRC is robust to distur-
bances: compared with PID-type controllers, TRPO-ADRC achieves consistently lower violation
rates, smaller violation magnitudes, and reduced average costs, while maintaining stable reward
learning. For example, during training, TRPO-ADRC reduces the violation rate from 35.43% (PID)

34

Under review as a conference paper at ICLR 2026

to 11.30% under 0=0, and further to only 5.93% under =5, with the average cost dropping from
22.47 to 8.04.

Importantly, these safety and stability benefits do not compromise convergence performance. At eval-
uation, TRPO-ADRC achieves competitive or even higher rewards while retaining robustness. Under
0=0, TRPO-ADRC attains higher reward than TRPO-PID (39.55 vs. 32.19) while simultaneously
lowering both cost and violation rate. Even when the disturbance level increases (0=>5, 10), TRPO-
ADRC sustains reasonable rewards with substantially reduced safety violations compared to PID.
These findings confirm that TRPO-ADRC improves training stability and safety without hindering
convergence, demonstrating strong robustness to noise in the SWIMMER-Velocity environment.

F.7 ABLATION STUDY

To evaluate the contribution of key components in the ADRC-Lagrangian framework, we conducted
an ablation study by systematically modifying specific features of the proposed method. Specifically,
we examined the impact of replacing the transient process r(t) with a static reference signal and
fixing the dynamically adjusted compensation gain w, to a constant value. These modifications
simplify the framework to a configuration resembling a PID-based Lagrangian method, enabling a
fair comparison of their relative contributions.

In the first ablation, the transient process r(t) is replaced with a fixed reference signal r(t) = d, as
used in traditional PID Lagrangian methods. While r(¢) is designed in the full ADRC framework to
provide a smooth transition toward the cost threshold denoted as d, setting r(¢) = d eliminates this
smoothing effect. This simplification forces the system to directly track the constant reference signal,
potentially causing abrupt updates to the policy parameters and destabilizing training. The updating
law is transformed into:

¢
M = kop(z1 — d) + kgazo + Wokap [(z1(7) — d)dT. (60)
0

For the second ablation, we fixed the compensation gain w, to ensure its parameters match those of
the PID baseline. Specifically, we solved the following equations to determine fixed values for w,,
kap, and kqq:
kap + wokad = kpa
wo + kad = kda (61)
wok‘ap = k’l

The solutions to these equations yield parameter values that maintain equivalence with the PID
updating law while removing the adaptivity of w,. With these parameters, the updating law for the
Lagrangian multiplier A; reduces to:

M= kp(x1 — 1) + kg(xe —7) + ki/o (z1(7) = r(7))dT — 7. (62)

The ablation experiments evaluate the importance of the dynamic transient process 7 (¢) and the
adaptive compensation gain w, in the ADRC-Lagrangian framework. Specifically, we tested two
simplified configurations: "delete_r(t)," where the transient process r(t) is replaced with a static
reference signal () = d, and "delete_w,," where the dynamic adjustment of w, is replaced with fixed
parameter values derived from PID-based methods. These modifications isolate the contributions of
each component while retaining equivalent control parameters. The experiments were conducted in
the CarButton and RacecarGoal environments using TRPO and CPPO as base algorithms, with the
results summarized in Table

Replacing r(t) with a static reference signal ("delete_r(t)") resulted in higher violation rates and
magnitudes compared to the full ADRC framework but still outperformed the PID baseline. For
instance, in the RacecarGoal environment with CPPO, the violation rate decreased from 79.25%
(PID) to 54.08% ("delete_r(t)"), but ADRC achieved a further reduction to 33.08%. Similarly,
fixing w, ("delete_w0") impaired the system’s adaptability to environmental changes, leading to
increased average costs. In the same environment, the average cost dropped from 46.44 (PID) to
36.38 ("delete_w0") but was substantially lower with ADRC at 21.22. These results demonstrate that

35

Under review as a conference paper at ICLR 2026

Table 23: The proportion of constraint violations during training (Vio. Rate), the average magnitude
of violations (Magnitude), and the average cost (Avg. Cost) for TRPO and CPPO algorithms
across CarButton and RacecarGoal environments with various methods. Bold values indicate better
performance compared to PID.

Algorithm Method CarButton RacecarGoal

Vio. Rate (%) Magnitude Avg. Cost Vio. Rate (%) Magnitude Avg. Cost

Lag 55.90 17.65 39.28 87.33 37.36 61.53

PID 85.15 18.12 42.13 44.60 7.04 26.15

TRPO delete_w, 71.85 9.42 32.56 40.53 7.29 26.14

delete_r(t) 74.95 16.36 40.23 31.65 6.15 22.26

ADRC 26.35 6.14 23.42 29.05 344 18.95

Lag 99.88 98.34 123.31 84.35 30.16 53.38

PID 99.88 57.95 82.92 79.25 23.88 46.44

CPPO delete_w, 99.90 51.61 76.58 65.40 13.99 36.38

delete_r(t) 92.53 33.78 58.20 54.08 15.23 34.66

ADRC 93.68 33.97 58.74 33.08 5.78 21.22

Cost

— lLag

~—— ADRC

—— delete_r(t)

Cost Limit

1000 2000 3000

4000 0

1000 2000 3000

4000

0 1000

2000 3000

4000

1000 2000

3000

4000

0

Environment Steps (x1e3)

1000 2000 3000

CPPO - RacecarGoal

4000 0

Environment Steps (x1e3)

1000 2000 3000

TRPO - RacecarGoal

4000

0 1000

2000 3000

Environment Steps (x1e3)

CPPO - CarButton

4000

0

1000 2000

3000

4000

Environment Steps (x1e3)

TRPO - CarButton

Figure 20: The training curve for TRPO and CPPO algorithms across CarButton and RacecarGoal
environments with ablation study.

36

Under review as a conference paper at ICLR 2026

while both components are essential for optimal performance, even the simplified versions outperform
PID, highlighting the robustness of the ADRC-Lagrangian framework.

Figure 20] provides the training curves for reward and cost across the ablation study. These curves
illustrate the consistent performance improvements of our method throughout the training process.
Our approach not only converges more effectively but also demonstrates a more favorable trade-off
between reward maximization and cost minimization.

F.7.1 ADDITIONAL ABLATION ON CPPO

To evaluate the effectiveness of our proposed dynamic parameter adjustment and transient process,
we conducted ablation studies, with results summarized in Table In this table, “Delete r(t)” refers
to the removal of the dynamic adjustment component (t), while “Delete w,,” refers to the exclusion
of the transient weight w, from the algorithm. The results show that removing either component
results in a clear performance degradation in terms of violation rate, violation magnitude, and average
cost. However, even with these removals, the performance of our approach remains superior to the
baseline PID method, demonstrating the robustness of our framework. Additionally, the complete
ADRC method achieves the best results across all metrics, further highlighting the significance of
combining both r(¢) and w, in achieving optimal performance. For further details and results, please

refer to Appendix

Table 24: Ablation study of CPPO algorithm under RacecarGoal.
Method Vio. Rate(%) Magnitude Avg. Cost

Delete r(t) 65.40 13.99 36.38
Delete w, 54.08 15.23 34.66
ADRC 33.08 5.78 21.22
PID 79.25 23.88 46.44
Lag 84.35 30.16 53.38

F.8 CASE STUDY

To gain a deeper understanding of how our ADRC Lagrangian methods outperform the baseline,
we conduct a case study adopting the TRPO algorithm in the CarCircle-1 environment. In this
environment, agents are tasked with navigating around a fixed-radius circle. The agents’ goal is
to maintain a smooth circular trajectory while staying within the designated circular boundary and
avoiding collisions with obstacles.

The reward structure in the CarCircle-1 environment is designed to encourage agents to follow the
circle boundary as closely as possible while maintaining a smooth motion. High rewards are achieved
when the agent’s trajectory aligns with the circle’s radius, and its velocity vector aligns tangentially
to the circular path. The reward for the agent is calculated using the following formula:

—u-y+v-x

Reward = —
ewar 1—|—|’[“—R|

- reward_factor, (63)
where z, y represent the agent’s position, u, v represent the agent’s velocity, 7 is the distance from the
agent to the circle center (r = \/x2 + y2), R is the fixed radius of the circle, and reward_factor is a
scaling constant. This formula incentivizes agents to maintain a smooth and stable trajectory around
the circle.

To increase the complexity of the environment, CarCircle-1 introduces two vertical walls positioned
symmetrically near the circle’s boundary. These walls present an additional challenge, as agents must
avoid crossing into the wall regions while navigating the circle. Costs are incurred when the agent
violates safety constraints, such as exceeding the circle’s radius or crossing the boundaries defined by
the walls. The cost is computed using the following conditions:

Tar 21 42
Cost — 1 if |z > wall_threshold or \/2? + y? > R, (64)
0 otherwise,

37

Under review as a conference paper at ICLR 2026

where wall_threshold is the horizontal boundary defined by the walls, and R is the circle’s radius.

In this study, we adopt the default settings in OmniSafe (Ji et al., [2024), with R = 1.5,
wall_threshold = 1.125, and reward_factor = 0.1. The study is conducted using the TRPO al-
gorithm, with hyperparameters detailed in Appendix[D.T] The models are trained over 4,000 episodes,
with each episode consisting of 1,000 steps. After training, the final checkpoint is used for evaluation.
During evaluation, we simulate a single episode of 5,000 steps, where rewards are calculated using
Eqn. [63] and costs are determined by Eqn. [64] We collected the position ant the corrsponding reward
and the cost of the agents and the results of this case study are presented in Figure

(a) TRPOADRC Reward Density (b) TRPOPID Reward Density (c) TRPOLag Reward Density

0.06

0.04

Reward Intensity

°
2

0.00

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(d) TRPOADRC Cost Density (e) TRPOPID Cost Density (f) TRPOLag Cost Density

Valid Positions
2 2 2 « Violation Positions

Figure 21: Reward density and cost analysis for TRPO algorithm adapting three Lagrangian methods
under CarCircle environment.

In Figure [21] the color of the points represents the reward, with deeper colors indicating higher
rewards. The first row visualizes the reward density at each position during the episode, while the
second row illustrates the cost associated with each position. Blue points indicate safe positions,
whereas red points represent unsafe ones. The results show that the classical Lagrangian method
achieves the highest reward, but the trajectory deviates from a perfect circle, forming an ellipse
instead. Agents trained with this method learn to avoid the walls but fail to recognize the importance
of staying within the circle. To maximize rewards and bypass the walls, these agents move outside
the circle, resulting in a total of 496 safety violations. In contrast, agents trained with the PID
Lagrangian method demonstrate better safety awareness, recognizing that moving outside the circle is
unsafe. However, to achieve higher rewards, they still cross the walls frequently, leading to 320 safety
violations. Finally, agents trained with our ADRC method maintain a strict adherence to staying
within the circle and exhibit only 132 safety violations, establishing a superior safety performance.

The improved results achieved by the ADRC method can be attributed to its ability to reduce phase lag
and minimize oscillations, thereby enhancing the stability of training. These properties enable ADRC
to maintain better control over the agent’s behavior, ensuring stricter adherence to safety constraints
while still optimizing for rewards. The stability and precision offered by ADRC during training allow
the agent to effectively balance the trade-off between maximizing rewards and minimizing safety
violations, demonstrating the advantages of our proposed method in challenging environments.

38

Under review as a conference paper at ICLR 2026

F.9 FINAL POLICY PERFORMANCE

To assess the final performance of the trained policies rather than intermediate training behavior, we
conducted experiments on the Swimmer and Hopper environments from the Velocity tasks suite. The
results compare ADRC-based and PID-based methods under CPPO and TRPO frameworks.

Table 25: Performance on Swimmer environment.
Algorithm Avg Reward Avg Cost Violate Rate (%)

CPPOPID 33.10 22.44 28.02
CPPOADRC 29.39 16.77 14.16
TRPOPID 28.72 21.34 37.85
TRPOADRC 36.32 19.03 12.16

Table 26: Performance on Hopper environment.
Algorithm Avg Reward Avg Cost Violate Rate (%)

CPPOPID 1466.47 48.20 30.00
CPPOADRC 1520.18 8.20 24.63
TRPOPID 1038.47 18.70 29.76
TRPOADRC 1384.11 12.90 10.98

These results demonstrate that the ADRC-based method achieves lower constraint violation rates and
costs, while maintaining or improving the overall reward compared to PID-based baselines.

F.10 SENSITIVITY ANALYSIS OF PID LAGRANGIAN METHODS

We also empirically validated the sensitivity of PID Lagrangian methods to the control gain tuning,
particularly for the derivative term k4. Experiments were conducted in the CarPush and CarButton
environments using CPPO algorithms with varying k, values.

Table 27: Sensitivity analysis of PID Lagrangian methods by varying the derivative gain kg on
CarPush and CarButton environments (using CPPO).

Environment kq Value Violate Rate (%) Violate Magnitude Avg Cost Avg Reward
1 50.55 19.17 35.28 -1.37
0.1 66.00 24.87 46.81 -2.26
CarPush (CPPO) 0.01 67.28 12.80 34.67 0.15
0.001 99.80 96.50 12145 -0.02
1 99.88 89.36 114.33 0.21
CarButton (CPPO) 0.1 99.80 43.32 68.29 -1.89
0.01 99.88 64.74 89.72 -0.69

These results clearly illustrate that PID Lagrangian methods are highly sensitive to the choice of the kg4
value. Suboptimal tuning can lead to substantial degradation in both safety and overall performance.

G LARGE LANGUAGE MODELS USAGE

We used GPT-4 (OpenAl) for grammar and style editing of the paper and for debugging auxiliary
code (e.g., resolving error messages and minor refactoring). All technical ideas, method designs,
experiments, and conclusions were created and verified by the authors. No confidential or reviewer-
only information was shared with the model.

39

Under review as a conference paper at ICLR 2026

H COMPUTATIONAL COST ANALYSIS

In this section, we evaluate the computational cost of our ADRC Lagrangian method compared to the
PID and classical Lagrangian methods (Lag). The evaluation includes normalized computation time
during the rollout phase (interaction with the environment) and the update phase (policy updates).
The analysis is conducted using the DDPG and CPPO algorithms on the RacecarButton task, which
features a multi-dimensional action space.

Table 28: Normalized Computation Time for DDPG and CPPO under RacecarButton task.
Metric DDPG CPPO
PID Lag ADRC PID Lag ADRC
Rollout Time 095 1.00 0.95 0.95 1.00 0.95
Update Time 0.94 1.00 1.00 094 1.00 1.00
Total Time 095 1.00 097 095 100 097

Compared with PID, at each episode, our ADRC metho introduces minimal additional computation.
Specifically, ADRC calculates the reference signal (), solves the equation defined by Eqn and de-
termines the optimal parameters w, based on Eqn[20] These operations involve fixed and lightweight
calculations that do not scale with the problem size, ensuring no additional time complexity is
introduced.

The results in Table 28] confirm that ADRC achieves comparable computation times to the baselines.
The rollout time of ADRC matches that of PID and slightly outperforms Lag, demonstrating efficiency
in policy adjustments. During the update phase, ADRC incurs no additional cost compared to PID
and Lag, aligning with the theoretical analysis that these computations are efficiently integrated into
the training process.

All experiments were conducted on a machine equipped with an NVIDIA RTX 3090 GPU with 24GB
of memory. Each task was trained for 4 million steps. For TRPO and CPPO, each training run takes
approximately 10 GPU-hours, while DDPG and TD3 require about 18 GPU-hours per run.

40

	Introduction
	Related Work
	Preliminaries
	Method
	Closed-loop System Representation of Safe RL
	Arranging a Transient Process
	Extended State Observation for Multiplier Updates
	The Lower Bound of Optimal Parameters
	ADRC Lagrangian Methods in Safe RL

	Experiments
	Experimental Setups
	Performance Evaluation
	Parameter Sensitivity Analysis
	Tuning Parameter cr
	Tuning Parameters kap and kad
	Comparison with State-of-the-Art Safe RL Algorithms

	Conclusion
	Process of Solving ODE
	Simplify the ESO
	Theoretical Details
	Convergence and Error Bounds
	Proof of Theorem 4.2

	Implementation Detail
	Hyper-parameters

	Experimental Details
	Baseline
	Tasks Specification
	Evaluation Metrics

	More Experimental Results
	Tables and Figures Referenced in the Main Text
	Main Results
	Ant Environments
	Car Environments
	Racecar Environments

	Velocity Control Results
	Comparison with State-of-the-Art Safe RL Algorithms
	Parameter Sensitivity Analysis
	Tuning parameter kap
	Tuning parameter kad
	Tuning parameter cr

	Noise Sensitivity Analysis
	Ablation Study
	Additional Ablation on CPPO

	Case Study
	Final Policy Performance
	Sensitivity Analysis of PID Lagrangian Methods

	Large Language Models Usage
	Computational Cost Analysis

