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Abstract

Causal Abstraction provides a way to summarize
complex low-level models into smaller and more
interpretable causal models, on which we can per-
form causal inference more efficiently. Despite pio-
neering work in learning causal abstractions, most
approaches still require significant knowledge of
the abstract model, e.g., the abstract graph, joint
observational samples, interventional samples, or
a map from low-level to abstract interventions. In
this paper, we instead focus on the setting with
a weak supervision signal: we require that the
low-level model is a known linear Additive Noise
Model and that we have an initial set of relevant
variables, i.e., groups of low-level variables that
correspond to an abstract variable. Given these
relevant sets, we show that, in general, a consis-
tent abstract model might not be causally sufficient
even when the low-level model is causally suffi-
cient. We then study how to extend these initial
relevant sets by defining new abstract variables in
an unsupervised way to preserve the causal suf-
ficiency of the abstract model. In particular, we
focus on identifying the smallest set of variables
to add to a user-defined set of relevant variables
to guarantee abstract sufficiency. We propose the
Relevant Sufficiency Enforcer (RSE) algorithm, a
weakly supervised method that, based on an ini-
tial set of relevant variables, determines the set of
minimal extensions to induce abstract models that
preserve causal sufficiency.

1 INTRODUCTION

In many settings, e.g., climatology [Chalupka et al.
2016], brain imaging [Dubois et al., 2020], macroeco-
nomics [Stoker, [2010], and more, data is gathered at a

lower-level of abstraction than the actual phenomenon of
interest. In these cases, the causal effects in a large number
of low-level causal variables are potentially not interest-
ing or difficult to interpret for the domain experts, who are
instead interested in estimating causal effects between a
small number of interpretable high-level causal variables.
An additional hurdle in these settings is that these high-level
variables might not be defined a priori or evident to domain
experts, so they would instead need to be learned.

Causal Abstraction [[Rubenstein et al., 2017, Beckers and
Halpern, 2019] is a theoretical framework to describe such
scenarios by defining the necessary properties to aggregate
variables while preserving interventional distributions. Intu-
itively, whenever two models are in an abstractive relation,
intervening on the low-level and abstracting the realizations
is equivalent to performing an adequate intervention directly
on the abstract model. Due to this property, known as in-
terventional consistency [Rubenstein et al., 2017} Zennaro
et al., [2023]], abstraction offers a clear advantage in estimat-
ing causal effects of multivariate treatments on a multivari-
ate outcome. In fact, whenever these aggregations induce an
abstract causal model, causal inference techniques [Pearl,
2009] can directly operate on smaller abstract models, with
clear computational and interpretability advantages.

Causal sufficiency [Spirtes et al.,2000], i.e., the absence of
latent confounders or selection bias in the model, simplifies
causal effect estimation, so it is a desirable property that,
if present in the low-level causal model, we might want to
preserve also in the abstract model. This is in general not
the case for any possible abstract model. For example, an
abstract model might lack an abstract variable that represents
the low-level variables that act as a confounder between two
other abstract variables, introducing latent confounding.

In this paper, we formalize and address the problem of
learning a causally sufficient abstract graph from a given
causally sufficient low-level linear Additive Noise Model
with a weak supervision signal. In particular, we focus on
the scenario where we are provided an initial set of abstract
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variables and, for each of abstract variable, an initial set of
relevant variables, i.e., a set of the low-level variables on
which each abstract variable depends directly, without nec-
essarily specifying the functional form of the aggregation.
We show under which conditions a set of relevant variables
induces a causally sufficient abstract model. Moreover, if
the initially provided set of relevant variables does not in-
duce a sufficient abstract model, we provide a method that
determines in an unsupervised way possible additions to the
set of abstract variables to ensure causal sufficiency.

Example 1 (Motivating Example). Consider a neurosci-
entific study, which measures impulses from electrodes in
distinct areas of a brain. Having a low-level causal model
of the interactions between neighboring areas, practitioners
might be interested in studying the causal relation between
two cognitive capacities, say “attention” and “long-term
memory usage”. In this scenario, the supervision would
consist of the areas of the brain known to be associated
with these two capacities. Notably, other abstract variables
confounding the provided two might need to be defined from
the low-level model, without additional supervision.

Overall, we summarize our contributions as follows:

1. First, we study the problem of extending a set of ab-
stract variables to guarantee causal sufficiency on the
abstract model. We show that the problem is under-
determined and that multiple abstract models are in
general compatible with the provided weak supervi-
sion, which contains only partial information on the
aggregation of the low-level variables. Therefore, we
define a class of abstractions that guarantee causal suffi-
ciency whenever the corresponding low-level model is
causally sufficient, which we name “minimal sufficient
extension”, or MiSE (Section [4.2)).

2. Then, we introduce the RSE algorithm, for “Relevant
Sufficiency Enforcer”, which correctly returns possible
solutions from the minimal sufficient extension of a
low-level causal graph given an initial set of relevant
variables. In this way, RSE produces a set of candidate
abstract graphs without requiring additional informa-
tion on the abstract model in the form of data or domain
knowledge (Section [4.3).

2 RELATED WORKS

Our proposal is significantly related to causal abstraction
learning approaches, which aim to learn an abstract repre-
sentation of a low-level model from data [Dyer et al., [2024],
Felekis et al., 2024} Keki¢ et al., 2023, Massidda et al., 2024,
Xia and Bareinboim), 2024, [Zennaro et al., [2023]]. The fo-
cus of most methods in causal abstraction learning lies in
the recovery of the function mapping low-level variables
to abstract variables. To this end, they require additional

information such as paired low-level and abstract samples,
an explicit map from low-level to high-level interventions,
the abstract graph, complete knowledge over the map of
low-level variables into high-level variables, or a combina-
tion of these elements, as summarized in the Table 21 in the
Appendix by [Felekis et al.|[2024].

On the other hand, our work shares similar motivation with
D’Acunto et al.|[2025]], who also require only partial knowl-
edge on the map between low-level and high-level variables.
While their work also relates to causal discovery [Spirtes
et al., 2000]] and tries to recover an abstraction from low-
level data, we instead operate over known graphical prop-
erties of causal abstraction for linear models [Massidda
et al.| 2024], and define a class of possible abstract graphs
compatible with the partial knowledge.

Due to our focus on graphical properties, instead of learning
abstractions from data, our proposal also relates to existing
works on Cluster DAGs [Anand et al., 2023|] and Partial
Cluster DAGs [Schooltink and Zennaro, [2024]]. Both works
define the existence of edges in an abstract graph according
to the causal relations between low-level variables. Notably,
linear causal abstraction [Massidda et al., [2024] entails dif-
ferent graphical conditions, as we will briefly discuss in
our background (Section EI) Furthermore, in this work we
study the problem of extending a partial specification of the
abstract variables to ensure causal sufficiency of the abstract
model, and provide a practical algorithm to this end.

3 BACKGROUND

In this section we summarize our notation, assumptions, and
the definitions and results on learning linear causal abstrac-
tions for linear Additive Noise Models (ANMs) proposed
by Massidda et al.| [2024]]. Linear ANMs are of particular
interest as they are identifiable from observational data un-
der the assumption of non-Gaussianity of the noise terms,
as in the LINGAM model [[Shimizu et al., 2000].

We denote individual variables in plain upper-case, e.g., V,
and sets of variables in bold, e.g., V. We denote the domain
of V as D(V) and a possible realization as v € D(V).
Similarly, we denote the domain of V' as D(V') and the
realization of the set as v € D(V'). We focus on Structural
Causal Models [Pearl, [2009], defined in our notation as:

Definition 2. A Structural Causal Model (SCM) is a tuple
M= (X,E, f,Pg), where

e X is a set of d distinct endogenous variables,
e FE is a set of d distinct exogenous variables,

e fx: D(Pa(X)U{Ex}) — D(X) is a causal mecha-
nism, i.e. a function that determines the value of the
variable X € X given its parents Pa(X) and the
exogenous noise term Ex € E,



* Pg is the joint distribution over E.

We denote as M: D(E) — D(X) also the push-forward
function of a SCM M, i.e., the map from the exogenous to
the endogenous variables. The parental relations in the SCM
then induce a directed graph, which we denote as G4, that
represents causal relations between variables. We assume
the causal graph to be an Acyclic Directed Mixed Graph
(ADMG), and denote with bidirected edges the presence of a
hidden confounder between two variables, as in X; < Xs.

Interventions are a fundamental concept underlying the
causality literature, representing external manipulations on
the variables. While there are many possible types of inter-
ventions, here we focus on do interventions [Pearl, [2009],
which replace a structural mechanism with a constant value.

Definition 3 (Do Intervention). Let M = (X, E, f,Pg)
be an SCM. A do intervention i is a tuple composed of a sub-
set of variables V. C X and a subset of values v € D(V'),
which we denote as i = (V < v). Each do intervention i
induces an intervened SCM M* = (X, E, fi,IF’E) s.t.

Fi() = {fX(') rxev (1)

Vx otherwise,

for any endogenous variable X € X.

To leverage graphical properties of causal abstraction on
linear ANMs [Massidda et al., [2024]], we also restrict our
setting to linear ANMs, i.e., SCMs in which the functions
are linear and the exogenous variables are additive.

Definition 4. A linear Additive Noise Model (ANM) is an
SCM M = (X, E, f,Pg) such that for each variable
X; € X it holds

fx;(e,x) = Z Wij * Ti + €5, 2

X, eX

where w;; is the element in the i-th row and j-th column of
the matrix W € R4*4,

Given two linear ANMs, T-abstraction [Massidda et al.,
2024] specializes causal abstraction [Beckers and Halpern,
2019] by defining abstract variables as a linear transforma-
tion of low-level variables.

Definition 5 (T-abstraction). Let L = (X, E, f,Pg) and
H = (Y,U,g,Py) be two linear ANMs with intervention
sets I and J. Then, given a surjective linear transforma-
tion T € R where | X| = dand |[Y| = b, H isa
T-abstraction of L if and only if there exists a linear trans-
formation S € R4*? such that, for any abstract intervention
j € J, there exists a low-level intervention © € I such that,
for any exogenous configuration e € D(E),

T(L'(e)) = H'(1(e)) 3)

where L' and H’ represent the push-forward functions of
the intervened models, 7(x) = T '@ and v(e) = S"e.

Similarly to Massidda et al.| [2024], we assume that both
low and high-level causal models are faithful, i.e., in each
model a conditional indepedence in the distribution implies
a corresponding d-separation in the causal graph, and that
the abstraction function does not yield cancelling paths from
the low-level to the abstract variables.

Assumption 6. Let 7: D(X) — D(Y) be a surjective
functionand L = (X, E, f,Pg)and H = (Y, U, g,Py)
be two linear ANMs. Then, we assume that L and H are
faithful and that the joint SCM M defined as

ToL = (XUYyEan{Tj}Y,-eY’PE)

does not have cancelling paths.

While the requirement on the faithfulness of the causal mod-
els is standard, assuming that the joint SCM does not yield
cancelling paths requires more careful consideration, as we
show in the following example. The example shows the
pathological case in which the influence of a low-level vari-
able is cancelled on an abstract variable, even when both
the low-level and the high-level models are faithful.

Example 7 (Cancelling Paths Assumption Violation). Let
L= (X,E, f,Pg) be a linear ANM with the causal graph

()
()

where we assume all causal relations to have unitary weight.
Then, let H = (Y ,U,g,Pu) be a linear ANM with two
disconnected variables Y1 and Ys, as in the causal graph

ORI O

Then, we can prove that given the following transformation

.
T:[l 0 o] ’ @

01 -1

‘H is a valid T-abstraction of L under all possible abstract
interventions. Intuitively, this abstract model is not a faithful
or interpretable representation of the concrete model. The
issue arises as there is a canceling path from X1 to Ys
through Xy and X3 in the joint SCM T o L, even if both L
and H follow the Causal Faithfulness assumption.



A T-abstraction considers different types of low-level vari-
ables: relevant, block, and ignorable variables. Intuitively,
relevant variables are the subset of low-level variables from
which we can reconstruct high-level realizations. Similarly,
block variables are the subset of low-level variables whose
exogenous terms are necessary to reconstruct realizations
of the high-level exogenous term. Finally, any variable that
is neither relevant or block is defined as ignorable.

Definition 8 (Relevant Variables). Let T € R¥*? pe a
linear abstraction function from a set of low-level variables
X to a set of high-level variables Y. For each abstract
variable Y; € Y we define its relevant variables as Ry, =

{Xi | ti; # 0}

Definition 9 (Block Variables). Let T € R¥*? pe g linear
abstraction function from a set of d low-level variables
X to a set of high-level variables Y. For each abstract
variable Y; € Y, we define its block variables as By, =

{X; | si; # 0}

Example 10 (Relevant, Block, and Ignorable Variables).
Let H and L be two linear ANMs respectively on variables
Y and X. We consider an endogenous abstraction linear
transformation T € R from X to'Y, and an exogenous
abstraction linear transformation S € R4 from E to U.
Then, given the following coefficients,

.
1100000
T[0000110} ®)
.
1100000
S[0011110}' ©

we can define the relevant variables, block variables, and
abstraction vectors as

Ry, = {X1, X5}, @)
Ry, = {X5, X5}, ¥
By, = {X1, X3}, 9)
By, = {X3, X4, X5, X} (10)
=1 1] (11)
to=1[0 0 1 1] (12)
s1=[1 1] (13)
so=[1 1 1 1]. (14)

Consequently, the only ignorable variable is X7.

Massidda et al.| [2024] define the notion of T-direct path
as a path in the low-level graph that does not cross any
relevant variable apart from the source and the target of the
path. These paths will be central to the definition of causal
sufficient abstractions that we will develop in this paper.
To highlight the dependence of these paths on the set of
relevant variables and not on the particular coefficients in
T, we equivalently refer to them as R-direct paths.

Definition 11 (R-direct Path). Let H and L be two linear
ANMs respectively on variables Y and X. Then, given the
low-level causal graph G, and a set of relevant variables
R, we say that a directed path p from a node X,,, to a node
Xy, is R-direct if and only if any variable X; € p,.,,_; in
the middle of the path is not relevant to any abstract variable
Y; € Y. We denote the existence of a R-direct path from

X; to X in the low-level graph as Xi£>Xj €Gr.

Similarly to |/Anand et al.| [2023]], Massidda et al.| [2024],
Schooltink and Zennaro|[2024]], we define the induced graph
by studying R-direct paths between relevant variables of dif-
ferent abstract variables. Then, we define the relevant sets to
be graphically consistent if they satisfy the necessary graph-
ical conditions of linear T-abstraction. This requirement is
stronger than similar conditions for Cluster DAGs [Anand
et al., 2023 and Partial Cluster DAGs [Schooltink and Zen!
naro, 2024, as it requires multiple R-direct paths.

Definition 12 (Induced Abstract Graph). Given a low-level
ANM L on variables X, a set of abstract variables Y, and
a set of relevant variables R = { Ry }y .y, we define the
induced graph on'Y as the graph Ggr such that

Y1—>Y2€gR

R (15)
<— 44X, € RY17X2 S Ry2 st. X1—X, € G,

Definition 13 (Graphical Consistency of Relevant Sets).
Given a set of abstract variables Y and a low-level causal
graph G, a set of relevant variables R = {Ry } .y is
graphically consistent whenever

Ylg)}/gegR

16
— VX, € Ry,,3X5 € Ry, s.t. X1 X, € G. (16)
Finally, we report a graphical characterization of the block
variables, which we will leverage in this paper to determine
them from the low-level graph G, and the relevant vari-
ables R only, regardless of the abstraction coefficients T', S.

Lemma 14 (Lemma 3 in [Massidda et al.l2024])). Let H be
a T-abstraction of L, where H and L are two linear ANMs
respectively on variables Y and X. Then, for any abstract
variable Y €Y, it holds X € By if and only if

1. X € Ry, or

2. X is not relevant for any Y' € Y and exists X' € Ry
such that X =X

4 CAUSALLY SUFFICIENT
AGGREGATION OF LOW-LEVEL
CAUSAL VARIABLES

Under the assumption that the low-level model is known,
we propose an approach to determine a graphically con-
sistent and causally sufficient aggregation of the low-level



variables that respects the necessary graphical conditions
of causal abstraction. This scenario is particularly relevant
in the context of linear Additive Noise Models, where the
low-level model can be recovered from data whenever it
has additive non-Gaussian noise [[Shimizu et al., 2006] or
Gaussian and homoskedastic noise [Loh and Biihlmann,
2014]. Further, this approach holds whenever the model
is known by domain-knowledge, sufficient interventional
data is available for causal discovery, or a simulator for the
model exists [Keki¢ et al.,[2023]].

Therefore, our problem consists of determining the abstract
causal graph Gy, from the low-level graph G . In practical
applications, we can expect a practitioner to define the rele-
vant sets for at least two variables, i.e., the treatment and the
outcome of interest. However, we define our procedure for a
more general scenario, where the user defines at least b > 2
abstract variables and their corresponding low-level relevant
variables. In this way, the treatment-to-outcome estimation
immediately results as a special case, where b = 2. We
do not require the user to define the functional form of the
abstraction function, but only the two groups of variables
on which two abstract variables should depend.

4.1 SUFFICIENCY OF RELEVANT VARIABLES

Causal effects are always identifiable in causal sufficient set-
tings, i.e., when there are no latent confounders or selection
bias [Spirtes et al., [2000, [Pearl, |2009]]. Abstracting causal
models could potentially introduce violations of causal suf-
ficiency, since two abstract variables might be confounded
by latent factors, if we fail to abstract from the low-level
model also their common causes. As we prove in the follow-
ing proposition, whenever the low-level model is causally
sufficient, a corresponding abstract model is not causally
sufficient if and only if its relevant variables lead to over-
lapping blocks. For this reason, we refer to this graphical
condition as the sufficiency of the relevant sets. To determine
blocks from the low-level graph and the relevant variables,
we recall the result reported in Lemma|T4}

Definition 15 (Sufficient Relevant Sets). Given a set of
abstract variables Y and a low-level causal graph G, a set
of relevant variables R = { Ry }y .- is sufficient whenever

VY1,Ys €Y s.t. .By1 n .By2 = @, 17

where B = { By }y v is the set of block variables induced
by RonGr.

With this new definition, we can now rephrase Lemma 4
from|Massidda et al.|[2024] to prove the relation between the
sufficiency of the relevant variables and causal sufficiency
on the abstract model. We show an example of violation of
abstract sufficiency, due to the failure to abstract a concrete
variable that becomes a latent confounder.

Proposition 16 (Abstract Causal Sufficiency). Let H be
a T-abstraction of L. Then, if L is causally sufficient, the
abstract ANM H is causally sufficient only if the relevant
sets R are sufficient relevant sets.

Example 17 (Violation of Abstract Sufficiency). Let L be
a low-level model with the following graph

Then, we can abstract the model with two abstract variables
Y1,Ys such that Ry, = {Xs} and Ry, = {X3}, leading
to the following overlapping blocks By, = { X1, X2} and
By, = {X5, X3}, and the following abstract graph

@——®

Notably, the abstract model is provably a T-abstraction of
the low-level model for the transformation

.
T:[g (1) ﬂ . (18)

The causal effect Py,|po(vy) is not identifiable from the ab-
stract model. However, by using the corresponding low-
level relevant variables, the causal effect P Ry, |Do(Ry,) =
Px,|Do(xs) I8 identifiable, since { X1} is a valid adjustment
set. The issue arises due to the fact that the adjustment set,
namely { X1}, is not abstracted.

4.2 MINIMAL SUFFICIENT EXTENSION

As the causal insufficiency on the abstract model depends
on the overlapping of the blocks, one possible strategy is
to add more abstract variables containing the variables in
the intersections. This problem is under-determined, as by
partitioning intersected variables differently, we could intro-
duce novel abstract variables in several ways. To enable the
computational advantages and follow the intuition that an
abstract model should somehow “compress” the low-level
one, we also want to avoid inserting superfluous abstract
variables. Therefore, we propose a notion of minimality to
extend relevant variables and guarantee causal sufficiency
on the abstract model. As we show in Example |19} multiple
relevant sets can induce sufficient abstract models. There-
fore, we define a set containing all “minimal” additions of
the relevant variables, which we name minimal sufficient
extension (MiSE).

Definition 18 (Minimal Sufficient Extension). Given a set
of relevant variables R and a causal graph G, the minimal
sufficient extension MiSE (R, G.) is a set such that, for
each relevant set R' € MiSE (R, G), it holds that



1. R OR,
2. R is sufficient and graphically consistent on G, and
3. any R C R" C R’ is not sufficient on G .

Example 19 (MiSE). Consider the following low-level
graph with relevant sets Ry, = {X4} and Ry, = {X5}.
The resulting abstract graph is not causally sufficient as
X1, X9, X3 are in both blocks By, and Bly,.

Introducing a new abstract variable Ys with relevant set

{X3, X4} produces a causally sufficient abstract model, as
X1 € By, and not in other blocks. Given the conditions in

Definition[18) R' = {{4},{5},{3,4}} € MiSE (R, G.).

On the other hand, a further abstract variable Y, with rel-
evant set Ry, = {X1} would still lead to a graphically
consistent and causally sufficient relevant set R . However,
since R O R/, it is not minimal. Intuitively, we do not need

Y4 to adjust the causal effect among the abstract variables
introduced by the original relevant set R.

Notably, if X5 and X3 are assigned to two distinct abstract

variables, X1 would also need to become relevant to avoid
being in the intersection of the new abstract variables.

2

Graph. Consistency: v
Sufficiency: X
MiSE: X

Graph. Consistency: v
Sufficiency: v
MiSE:

Graph. Consistency: v
Sufficiency: v
MiSE: X

Graph. Consistency: v
Sufficiency: v
MiSE:

As all the relevant sets in the minimal sufficient extension are
graphically consistent and sufficient, we might be tempted
to only select the one with the fewest number of abstract
variables and discard the remaining. However, while graphi-
cally correct, this might not lead to a consistent abstraction
as we will provide some evidence in the following example.

Example 20 (MiSE Parametrical Inconsistency). Consider
the following two clustering of the low-level variables
X1, X9, X3 (i.) two abstract variables Y3 and Yy with
Ry, = {X1} and Ry, = {X2, X3}, (ii.) one abstract
variable Y5 with Ry, = {X1, Xo2, X3}. We assume that (i.)
is the “ground-truth” abstraction. We represent the two sets
of relevant variables graphically with different colors as
follows:

® ®
o ®

@y @y

&® ®

Intuitively, the abstractions of X4 and X5 are a function of
the abstraction of 73(X1) and of T4(X2, X3), i.e.,

m1(X4) = fi(m3(X1), Ta(X2, X3)),
72(X5) = fa(73(X1), 7a(X2, X3)).

In general, without further assumptions, there might not
exist two functions g1, gs such that

m1(X1) = g1(75(X1, X2, X3)),
T2(X5) = g2(75(X1, X2, X3)).

Therefore, while both are in the minimal sufficient extension
of R = {{X4},{X5}} on the low-level graph, only for one
of them we will be able to retrieve abstract parameters.

Finally, adding new variables is not always possible, as
there are scenarios where no further additions can render
the abstract model causally sufficient without breaking its
graphical consistency, as in the next example. In other words,
we show that some low-level models cannot be further ab-
stracted in a sufficient way, hence the MiSE is empty.

Example 21 (Empty MiSE). Let H be an abstract SCM with
Sfour variables and L be a causally sufficient low-level SCM
with six variables. We represent the low-level causal graph
as follows, where we employ colours to denote relevant

variables of distinct abstract variables, as in Ry, = {X1},
Izy2 = {XQ,XS}, _lzy3 = {X5}, and Ry4 = {XG}



This choice of relevant variables is graphically consistent,
as it respects the conditions from Definition[I3] However,
it is not sufficient, as the low-level variable X, is shared
among the block of Y3 and Yy, as shown in the following

abstract graph.

—@_ @

To ensure causal sufficiency of the abstract model, we have
to assign X4 to either one of the existing relevant sets or
to the one of a new abstract variable Ys. However, while
ensuring sufficiency, any of these operations would break
the graphical consistency of the relevant sets (Appendix[A).
Therefore this low-level model cannot be abstracted in any
non-trivial way, while ensuring abstract causal sufficiency.

4.3 RELEVANT SUFFICIENCY ENFORCEMENT

Building on the previous examples, we address the problem
of ensuring sufficiency of a resulting abstract model start-
ing from a graphically consistent set of relevant variables.
To this end, we introduce the RSE algorithm, for Relevant
Sufficiency Enforcer (Algorithm|[T). Given a set of relevant
sets and a causally sufficient low-level graph, the algorithm
provably returns only extensions of the relevant sets that are
graphically consistent, sufficient, and minimal, as defined in
Definition[T8] Formally, from a relevant set R defining a set
of abstract variables Y on a graph G, RSE returns a set of
solutions S, where each solution R’ € S is in the minimal
sufficient extension of R on the low-level graph G.. While
we postulate also the completeness of the RSE algorithm, in
this work we only prove its correctness. Therefore, we leave
the proof of RSE(R, G.) = MiSE (R G) to future work.

Theorem 22 (RSE Correctness). Let R be a set of graphi-
cally consistent relevant variables on a low-level graph G,
and S < RSE(R,G.) be the output of the RSE algorithm.
Then, it holds that S C MiSE (R, Gr).

Proof. We provide the proof in Appendix [B.2] O

Algorithm 1 Relevant Sufficiency Enforcer (RSE)

Input: Relevant set R and low-level graph G, on X.
Output: S C Minimal Sufficient Extension of R on G.
1: if not GraphicalConsistency (R, G, ) then
2:  return ()
3: end if
4Y «{1,...,|R|}
5: B < Blocks(R,Gr)
6
7
8
9

I+ {V eP(Y) ‘ ﬂyjevByj #* @}
. if T = () then
:  return R
: end if
10: Z+ X \ Uver meGV Byi
11: I0<—Any(I) . .
12: W «+ NewRelevants(Io, Z, R,G) (Eq.[19)
13: Q, L < TargetVariables(Io, Z, R,G.) (Eq.20[21)
14: X « Any({X e W | Lx = 0})
15: M «+ MatchingTargets(X,W,Q,L) (Eq.
16: S+ 0
17: for P € Partitions(M) do
18: S+ SURSE(RUP,G.)
19: end for
20: return S

At each call, RSE computes the block variables (Line 5) and
the set I containing all subsets of abstract variables whose
low-level blocks have a non empty intersection (Line 6).
Then, it arbitrarily selects one of the intersections Iy € I,
and identifies which of the low-level variables W C X in
the intersection must become relevant to ensure abstract suf-
ficiency (Line 11). A low-level variable X € X is flagged
as new relevant variable, if it is in the intersection Iy but has
at least an outgoing edge X — X' to a variable X' € Z,
where Z is the set of low-level variables not in any intersec-
tion (Line 6). Formally, we define the set W C X of new
relevant variables as

W = {X €Ny,er,By, | IX' € ZX - X' € gﬁ}.
19)
As we prove in the following lemma, which will is central
for the proof of the correctness of RSE (Theorem [22)), all
variables in W must be assigned to ensure sufficiency.

Lemma 23. Ler R be a set of graphically consistent rel-
evant variables on a low-level causal graph G, and W
be the set of new relevant variables identified by the RSE
algorithm. Then, for all possible extensions R’ O R, if
it exists a low-level variable X € W not in any relevant
set Rlyj € R/, then R’ is either not sufficient or not graphi-
cally consistent on G .

Proof. We provide the proof in Appendix O

Therefore, once identified the new low-level relevants W,
we have to assign them to new abstract variables to solve the



intersections of the blocks. One trivial strategy would be to
enumerate all possible partitions of W' into up to |W | new
abstract variables and propagate the solution, letting RSE
check graphical consistency and sufficiency in the recursive
calls. In general, it is not possible to cluster all of them
for a unique new abstract variable, as graphical consistency
requires that, if a variable X; € W has a R-direct path to a
relevant Xo € Ry of an abstract variable Y, then also any
other X{ € W must have a R-direct path to at least one
relevant X/, € Ry . Therefore, to exploit this condition, we
study the outgoing paths from each new relevant X € W
and return the set of targeted abstract variables Qy C Y
and the set of targeted new relevant variables Ly C W
(Line 11). To define these two sets, we slightly extend the
notation of R-direct paths to (R, W)-direct paths, where
we denote as X —+ X" the existence of a path between
two variables X, X’ € X that is not crossed by (i.) any
relevant variable in R or (ii.) any candidate relevant in W.
Therefore, we can define the target sets of the new relevant
X e W as:

Qy={YeY|3X'eByNZX = X'}, (0
Ly = {X’ eEW | XMX’}. @1

At this point, for each new relevant variable X € W, we
know which abstract variables it surely targets (Qx C Y)
and which low-level other new relevants it has a (R, W)-
direct path to (Lx C W). By using these sets, we can
determine whether two variables in set of new relevants W
can be clustered together or not. In practice, we select one
of the variables X € W (Line 13) and find all the variables
satisfying the following recursive definition:

Mi={XeW|Qy=QiANLxCMg}. (22
5 CONCLUSION

In this work, we tackled the problem of inducing a causally
sufficient abstract model from a known and causally suf-
ficient low-level linear Additive Noise Model (ANM). In
particular, we focused on the weakly supervised scenario
where, for a subset of abstract variables, we know which
low-level variables they are aggregating, without further
information on their functional form. To this end, we in-
troduced the set of minimal sufficient extension (MiSE), to
formalize how to extend the provided partial knowledge
to ensure causal sufficiency on the abstract model, with-
out introducing superfluous variables. Then, we defined the
Relevant Sufficiency Enforcer (RSE) algorithm to compute
these extensions in practice. Finally, we proved the correct-
ness of RSE, i.e, that it returns only solutions in the minimal
sufficient extension of the provided partial information on
the abstract variables.

This paper highlights how the problem of inducing abstract
models is essentially undetermined when only partial knowl-

edge on the abstract variables is provided. However, it also
remarks how graphical conditions guaranteeing causal suf-
ficiency can reduce the problem to a well-defined class of
solutions, the MiSE, which we can explore algorithmically,
through the RSE algorithm.

The paper opens up to several future directions. First, as
we hinted in Example 20} while respecting the graphical
conditions, solutions contained in the MiSE might be incom-
patible with the actual parameters of the low-level model. A
promising direction then lies in combining the exploration
of the MiSE with existing causal abstraction learning ap-
proaches to further restrict the class according to low-level
samples. Furthermore, we remark that this work directly
deals with graphical properties known to characterize linear
abstraction over linear ANMs. It is still an open question
whether similar conditions also hold without the linearity
assumption; hence, if the concept of MiSE and the RSE algo-
rithm could also be applied to non-linear models in a causal
abstraction relation. Finally, while we have proven the cor-
rectness of the RSE algorithm, proving its completeness,
i.e., whether RSE returns the whole MiSE class, constitutes
an interesting theoretical result open for future works.
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A EMPTY MINIMAL SUFFICIENT
EXTENSION

We show why in Example [2T]all solutions to ensure abstract
causal sufficiency would break graphical consistency. We
consider all possible additions of X to an existing or a novel
relevant set. In all scenarios, the problem is the creation of
anovel R-direct path X3 X 4.

Ry,. Would require a R-direct path from X5 to either X;
or X4, which does not exist.
Breaks the R-direct paths from X3 to X5 and Xg.

Would require a R-direct path from X5 to Xg.

Ry,.
Ry,.
Ry,.
Ry.. Would require a R-direct path from X5 to X}.

Would require a R-direct path from Xg to X5.

B PROOFS

B.1 PROOF OF LEMMA

Lemma[23| Let R be a set of graphically consistent rel-
evant variables on a low-level causal graph G, and W be
the set of new relevant variables identified by the RSE al-
gorithm. Then, for any set of relevant variables R’ O R,
if it exists a low-level variable X € W not in any rele-
vant set R/Yj € R/, then R’ is either not sufficient or not
graphically consistent on G.

LetY = {1,...,|R|} be the corresponding set of abstract
variables. By construction (Equation 19), a variable X € X
is a new relevant variable, only if it is in the intersection
of the blocks of a subset of abstract variables V' C Y and
has at least one child that is not in any intersection. Let
X € W be a new relevant variable, it is immediate that X
must have at least two children. If it had only one child out
of any intersection, it would have not been in an intersection
itself. Otherwise, if it had only one child in an intersection, it
would not have a child satisfying the condition for becoming

a new relevant variable. Let A C Ch(X) be the children
of X that are outside any intersection and B C Ch(X) the
children that are within an intersection, where A W B =
Ch(X). Consequently, the only possible scenarios are the
following: (i.) |B| > 0,]A| > 2, or (ii.) |B| > 0, |A| > 1.

We prove that all possible extensions R’ O R not contain-
ing X € W are not sufficient or graphically consistent.

Case A > 2. If X € W has two or more children out-
side an intersection, it means that through these edges (i.) it
has R-direct paths to relevant variables of multiple abstract
variables {Y7,...Y;,} C Y, and (ii.) these paths only con-
tain other variables not in any intersection. Without directly
adding X € W to a novel abstract variable, the only way
to avoid being in an intersection is to block all these paths
with a novel and unique abstract variable. This new variable
has to be unique, otherwise X € W would still be in an
intersection, not of the original variables, but of the newly
introduced. Suppose that we cluster together a variable X
in the R-direct path towards Ry,, a variable X towards
Ry,, and so on. Now, X has only R-direct paths to the new
introduced variable, and it is not any more in an intersection.
However, this operation breaks graphical consistency. In
fact, X, has now a R-direct path to Ry, only, X has a
R-direct path to Ry, only, and so on. Howeyver, since they
are now in the same relevant set, X; should have a R-direct
path towards Ry, ..., Ry, as well, similarly for the other
variables. Consequently, if we do not add W € W to any
relevant variable, any model R’ O R is not graphically con-
sistent (if we block all the outgoing R-direct paths towards
distinct abstract variables) or not causally sufficient (if we
do not block these paths).

Case A > 1,B > 0. If X € W only has one child
outside any intersection, we consider two scenarios. In the
first, there exist some extension that solves the intersections
of the children in B C Ch(X). In this case, the proof for the
case A > 2 applies, hence any R’ O R is not sufficient or
graphically consistent. Otherwise, if the intersection is not
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solved, being a parent of a variable in an intersection also
X € W will be in an intersection. Therefore, any R DR
without containing X € W is not sufficient.

B.2 PROOF OF THEOREM

We prove the correctness of the algorithm, i.e., we prove
that

R cRSE(R,G;) = R € MiSE(R,G;). (23)

First, we notice that if R is not graphically consistent of G
the property holds, since the minimal sufficient extension is
empty and RSE correctly returns the empty set. Furthermore,
if R is both graphically consistent and sufficient on G, RSE
returns a set containing only R, which again coincides with
the MiSE of R on G. Therefore, we focus on the scenario
where R is graphically consistent but not sufficient on G .

At each call, RSE identifies an intersection between abstract
variables and creates one or more novel abstract variables
by selecting new relevant variables. Formally, we say that
for each solution R’ € S, the RSE induces a sequence

RY cR® c...c R™, (24)

where R = Rand R™ = R/.

Suppose that we remove a variable Y from the solution R/,
asin R = R'\ Ry . By construction of the RSE algorithm,
all relevants for a new abstract variables are identified in the
same step. Therefore, there must exist a set W@ at the i-th
step, such that

w® D Ry. (25)

Furthermore, it holds that R c R”, as R” contains all
new relevant variables except for Ry and RY might lack
also other variables, that will be introduced in later recursive
calls of the algorithm.

Due to Lemma all extension of R lacking variables
from W are either not causally sufficient or not graph-
ically consistent. Therefore, since R” 2 R, it holds
that R” is not causally sufficient or graphically consistent.
Notably, removing further variables would not reintroduce
sufficiency and graphically consistency. Therefore, since
any R C R” C R’ is not sufficient or graphically consis-
tent, and R’ is sufficient and graphically consistent, it holds
that R’ € MiSE (R, G.).
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