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Abstract001

Vision-Language Models (VLMs), such as002
CLIP, have exhibited significant advancements003
in recognizing visual concepts through nat-004
ural language guidance. However, adapting005
these models to downstream tasks remains006
challenging. Existing adaptation methods ei-007
ther overlook the structural knowledge be-008
tween the text and image modalities or cre-009
ate overly complex graphs containing redun-010
dant information for alignment, leading to011
suboptimal classification performance and in-012
creased computational overhead. This paper013
proposes a novel adapter-tuning methodology014
named Homogeneous Graph Adapter (Homo-015
GraphAdapter), which transforms diverse tex-016
tual and visual descriptions into a unified set of017
node representations and establishes edges be-018
tween nodes for inter-modal and cross-modal019
semantic alignment. We leverage a straight-020
forward homogeneous Graph Neural Network021
(GNN) to adapt positive and negative classi-022
fiers across text and image modalities. The023
classifiers comprehensively enhance the per-024
formance for few-shot classification and OOD025
generalization. Compared with the SOTA ap-026
proach HeGraphAdapter, HomoGraphAdapter027
improves classification accuracy by an average028
of 1.51% for 1-shot and 0.74% for 16-shot on029
11 datasets, while also reducing both precom-030
putation time and training time. The code will031
be released upon acceptance.032

1 Introduction033

Pre-trained Vision-Language Models (VLMs), es-034

pecially CLIP (Radford et al., 2021) and its vari-035

ants (Jia et al., 2021; Zhang et al., 2025), have036

opened a new chapter for various computer vision037

tasks. To efficiently adapt the CLIP model to down-038

stream tasks, researchers typically employ one of039

two main strategies: prompt-tuning or adapter-040

tuning.041

Prompt-tuning (Zhou et al., 2022b,a; Khattak042

et al., 2023) methods freeze CLIP’s backbone en-043

coders and introduce learnable vectors (referred 044

to as soft prompts) that are fine-tuned using task- 045

specific labeled data. For instance, CoOp (Zhou 046

et al., 2022b) introduces a learnable prompt for the 047

text encoder, while CoCoOp (Zhou et al., 2022a) 048

designs a lightweight meta-network to generate 049

text prompts for each image. While prompt-tuning 050

methods are both parameter-efficient and com- 051

putationally lightweight, they face several chal- 052

lenges, including overfitting to the learned prompts, 053

high sensitivity to prompt initialization, and re- 054

duced robustness when encountering domain shifts. 055

Adapter-tuning methods (Gao et al., 2024; Zhang 056

et al., 2022; Huang et al., 2022) focus on fine- 057

tuning output textual or visual features by intro- 058

ducing lightweight adapters as additional learn- 059

able components within the network. For instance, 060

TaskRes (Huang et al., 2022) introduces residual 061

vectors with textual features to learn task-specific 062

classifiers. CLIP-Adapter (Gao et al., 2024) in- 063

troduces an MLP-based adapter module that can 064

be applied to textual or visual features. However, 065

these adapters can still suffer from overfitting on 066

small datasets and often lack the capacity to handle 067

datasets with a large number of classes. 068

GraphAdapter (Li et al., 2024b) takes an ini- 069

tial step toward integrating knowledge graphs into 070

CLIP-based models by using Graph Neural Net- 071

works (GNNs) to refine textual and visual fea- 072

tures. It builds a separate knowledge subgraph 073

for each modality and then applies two distinct 074

GNNs to adjust the corresponding node features. 075

However, since these two subgraphs do not interact, 076

GraphAdapter overlooks crucial cross-modal struc- 077

tural information. HeGraphAdapter (Zhao et al., 078

2024) addresses this gap by introducing Hetero- 079

geneous Graph Learning for CLIP. It proposes a 080

Heterogeneous Graph Adapter that fully exploits 081

cross-modal information by building a single het- 082

erogeneous graph. While this approach preserves 083

cross-modal dependencies, it may also introduce 084
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Figure 1: This figure illustrates the difference among the 3 existing graph-based adapter-tuning methods for
CLIP. GraphAdapter constructs two separate subgraphs and adapts text features of CLIP with dual sub-graphs.
HeGraphAdapter constructs a heterogeneous graph involving different nodes and edges with edge features through
HGCN. Our HomoGraphAdapter constructs a unified homogeneous graph with only node features and edge
connections by index. Different colors in the graph represent nodes corresponding to different classes.

redundant information by creating edges between085

nodes from different classes and assigning poten-086

tially unnecessary edge attributes—factors that do087

not necessarily improve alignment between tex-088

tual and visual embeddings. Therefore, existing089

graph-adapter methods either overlook cross-modal090

structural knowledge or adopt graph designs that091

become overly complex and include superfluous092

details.093

To address these problems, we propose Homo-094

GraphAdapter as an effective adapter for CLIP095

in data-limited scenarios. HomoGraphAdapter re-096

gards the textual or visual embedding of a specific097

class as a node in a homogeneous graph and builds098

edges only between nodes that exhibit semantic099

alignment. In this homogeneous graph, all nodes100

in this graph represent the same type, and all edges101

define a single type of relationship. Homogeneous102

graph learning not only significantly enhances fea-103

ture alignment but also improves adaptation effi-104

ciency.105

The contributions of this paper are summarized106

as follows:107

• HomoGraphAdapter proposes Homoge-108

neous Graph Learning for CLIP by encapsu-109

lating diverse textual or visual embeddings110

as nodes of the same type in a homoge-111

neous graph and adjusting node features with112

graph’s structure knowledge during few-shot113

adaptation.114

• HomoGraphAdapter effectively transfers115

the knowledge of the CLIP model into positive116

and negative classifiers across dual modalities 117

through homogeneous graph learning. 118

• HomoGraphAdapter achieves superior per- 119

formance in terms of top-1 accuracy and 120

demonstrates higher training efficiency com- 121

pared to existing graph-based adapter-tuning 122

methods. 123

2 Related Work 124

Textual classifier and Prompt-tuning methods 125

for CLIP. The CLIP model (Radford et al., 2021) 126

computes the cosine similarity between image em- 127

beddings and textual embeddings, assigning the 128

predicted class to the text with the highest similar- 129

ity score. In this setup, textual embeddings for all 130

classes, generated by inputting positive prompts 131

like “a photo of a ...” into CLIP’s text encoder, 132

can be interpreted as a positive textual classifier. 133

Conversely, as suggested by prior studies (Wang 134

et al., 2023; Tian et al., 2023; Nie et al., 2024; Li 135

et al., 2024a), negative prompts such as “a photo 136

of no ...”, “a photo without ...”, and “a photo not 137

containing ...” yield a negative classifier, where 138

the class corresponding to the text with the lowest 139

similarity score is identified as the predicted class. 140

In a similar vein, prompt-tuning methods (Zhou 141

et al., 2022b,a; Khattak et al., 2023) enhance hard 142

prompts by integrating a learnable vector as a soft 143

prompt to CLIP’s text encoder. These methods 144

adapt the textual embeddings of CLIP to enhance 145

alignment with visual embeddings, enabling more 146

flexible and task-specific adaptations. 147
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Figure 2: Overall framework of HomoGraphAdapter. First, multiple sets of textual and visual embeddings
with diversified semantic meanings are generated with CLIP’s two backbone encoders. Through the process of
Homogeneous Graph Learning, they are adapted and form multiple classifiers in dual modality. The logits of the
classifiers are calculated and then combined for the final label prediction.
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Adapter-tuning methods and Visual classifier148

for CLIP. Most adapter-tuning approaches (Gao149

et al., 2024; Zhu et al., 2023; Udandarao et al.,150

2023; Tang et al., 2024) focus on developing151

lightweight adapters to adjust the image embed-152

dings of CLIP. TaskRes (Huang et al., 2022)153

presents task-specific residual modules for ad-154

justing visual embeddings. Meanwhile, CLIP-155

Adapter (Gao et al., 2024) introduces an MLP-156

based module designed to adapt visual features to157

textual features. Tip-Adapter (Zhang et al., 2022)158

is the first to complement the original textual clas-159

sifier with an additional visual classifier, construct-160

ing a key-value (KV) cache of few-shot visual fea-161

tures as keys and their corresponding one-hot labels162

as values. The visual classifier assesses image-163

to-image similarities between the test image and164

representative images of each class. While the orig-165

inal Tip-Adapter operates as a training-free method,166

Tip-Adapter-F enhances this approach by adding167

an extra weight parameter for the keys in the cache168

model. However, the above methods generally169

struggle to capture cross-modal and intra-modal170

feature relationships and dependencies, limiting171

the understanding of few-shot data.172

Graph Learning for CLIP: Graph learning173

captures the inherent structural relationships be-174

tween textual and visual features by representing175

them within a graph. This integration of visual176

and language modalities facilitates the extraction177

of task-specific semantic knowledge, thereby en-178

hancing cross-modal and intra-modal understand- 179

ing. GraphAdapter (Li et al., 2024b) pioneers 180

this direction by constructing separate knowledge 181

subgraphs—one for each modality—and employ- 182

ing two distinct GNNs to adapt textual features. 183

With the extensive study on heterogeneous graph 184

learning in recommendation systems (Ying et al., 185

2018) and computer vision (Cao et al., 2022), 186

HeGraphAdapter (Zhao et al., 2024) is the first 187

to introduce it for the few-shot adaptation of CLIP. 188

It formalizes the structural knowledge among vari- 189

ous types of nodes and their relationships within a 190

unified graph. 191

However, the core challenge of graph learning 192

for the few-shot adaptation of CLIP lies in con- 193

structing a graph that captures the structural infor- 194

mation most essential for feature alignment and 195

classification. This involves carefully integrating 196

node features and edge connections to reflect the 197

task-relevant relationships. While heterogeneous 198

graphs excel at modeling complex relationships 199

among various entities, CLIP inherently deals with 200

only two modalities—text and image—where the 201

potential for highly intricate interrelations is lim- 202

ited. Consequently, HeGraphAdapter may be less 203

than optimal in scenarios emphasizing task-specific 204

learning efficiency with limited data. 205

3 Methodology 206

In this section, we introduce the methodology of 207

HomoGraphAdapter, which establishes and learns 208

class-specific structural knowledge in a unified 209
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homogeneous graph. Figure 1 contrasts our ap-210

proach with two existing graph adapter meth-211

ods. The key advantage of HomoGraphAdapter212

is its ability to leverage diversified feature rep-213

resentations from natural language and few-shot214

images, effectively learning discriminative clas-215

sifiers using a unified homogeneous GNN. Un-216

like HeGraphAdapter (Zhao et al., 2024), which217

pre-computes edge features between every pair of218

neighboring nodes, HomoGraphAdapter only re-219

tains edge connections (i.e., index pairs of nodes).220

By eliminating redundant edge information, Homo-221

GraphAdapter effectively encodes graph structure222

to learn higher-quality classifiers for downstream223

classification tasks.224

3.1 Overall Framework225

The entire framework of HomoGraphAdapter is226

illustrated in Figure 2, encompassing feature gen-227

eration, cache construction, homogeneous graph228

learning, logit calculation, and label prediction. In229

the forward process of HomoGraphAdapter, we230

start by encoding three sets of textual descriptions—231

general, detailed, and negative—to obtain corre-232

sponding textual embeddings. Few-shot support233

images are then used to generate positive and neg-234

ative visual embeddings. These textual and visual235

embeddings form the nodes of a homogeneous236

graph, which is subsequently processed by a one-237

layer homogeneous GCN to adapt node features238

and update the classifiers. Finally, for each test239

image, we compute logits by evaluating image-text240

and image-image similarities and combine them to241

produce the final label prediction.242

3.2 Homogeneous Graph Data243

To extract structural knowledge, we construct a244

homogeneous graph G = (V, E). In this represen-245

tation, each node feature corresponds to the textual246

or visual embedding of a specific class. Edge con-247

nections represent the structural knowledge that248

facilitates both intra-modal and cross-modal fea-249

ture alignment and classification.250

Subsets of Nodes. To illustrate the graph learn-251

ing process, we divide V into five subsets252

{Ztg, Ztd, Ztn, Xvp, Xvn}, as shown in Figure 3.253

Each subset of nodes is a set of representations254

that describe C different categories, where C is the255

category number in the downstream task.256

Nodes Ztg from positive general text descrip-257

tions of categories. CLIP can make zero-shot258

Input Detailed Text
Descriptions

 Positive Visual
Representatives

Negative Text
Descriptions

Negative Visual
Representatives

General Text
Descriptions

Graph Nodes
Subsets

Learning
Objectives

Positive Textual
Classifier

Negative Textual
Classifier

Postive Visual
Cache

Negative Visual
Cache

Figure 3: This figure briefly illustrates the flow of the
proposed HomoGraphAdapter. Multiple text descrip-
tions and images are transformed into subsets of node
features, which are then adapted to create more effective
classifiers.

predictions using a general template such as ‘A 259

photo of a [category]’. For a C-way downstream 260

dataset, we insert each of the C category names 261

into this template to form C textual inputs, which 262

are then tokenized and encoded by CLIP’s text en- 263

coder ft. The resulting embeddings represent the 264

initial Z(0)
tg in the graph. 265

Z
(0)
tg = {zk}Ck=1,where 266

zk =ft(‘A photo of a [category]k’) 267

Nodes Ztd from positive detailed text descrip- 268

tions of categories. Previous studies (Goswami 269

et al., 2024; Roy and Etemad, 2023) suggest that 270

utilizing a pre-trained Large Language Model 271

(LLM) such as GPT (Floridi and Chiriatti, 2020) to 272

generate lengthy, detailed text descriptions for each 273

class can get more discriminative textual classifiers. 274

However, lengthy text may not always reflect the 275

exact visual concepts in the corresponding images. 276

Our approach balances this by integrating general 277

and detailed textual descriptions through a unified 278

graph adapter, thereby producing a more robust 279

classifier. Similarly, the output embeddings corre- 280

spond to the initial Z(0)
td in the graph. 281

Z
(0)
td = {zk}Ck=1, where 282

zk = ft (‘A photo of a [category]k, which ...’) 283

Nodes Ztn from negative text descriptions of cat- 284

egories. Although CLIP does not natively sup- 285

port negative learning (Radenovic et al., 2023), 286

recent work (Zhao et al., 2024) demonstrates 287

that incorporating a negative textual classifier 288

can enhance performance. Accordingly, Homo- 289

GraphAdapter learns such a classifier through ho- 290

mogeneous graph learning. Specifically, we gen- 291

erate negative text prompts for each class (e.g., ‘A 292

photo of no [category]’) and encode them using 293
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CLIP’s text encoder. The resulting embeddings294

represent the initial Z(0)
tn in the graph.295

Z
(0)
tn = {zk}Ck=1, where296

zk =ft(‘A photo of no [category]k’)297

Nodes Xvp from positive visual representatives.298

As introduced by Tip-Adapter (Zhang et al., 2022),299

we maintain a visual cache where representative300

images act as keys and their corresponding one-hot301

labels serve as values. The visual cache measures302

image-image similarities between test image fea-303

tures xtest and keys Xkey using an affinity function:304

A = exp
(
−β

(
1− xtestX

⊤
key

))
.305

Similarly, we precompute a positive visual cache306

X+
cache. In the initial cache, the keys are the C-way307

K-shot image features, and the values are the one-308

hot labels L of image features correspondingly:309

X+
key =


ft(x

1
1) ft(x

2
1) · · · ft(x

K
1 )

ft(v
1
2) ft(v

2
2) · · · ft(v

K
2 )

...
...

. . .
...

ft(v
1
C) ft(v

2
C) · · · ft(v

K
C )

310

L =


0 · · · 0 1
0 · · · 1 0
...

...
. . .

...
1 0 · · · 0

311

Nodes X(0)
vp are initially set to the mean of X+

key for312

each class. The updated node features X(1)
vp will be313

added to X+
key.314

Nodes Xvn from negative visual representives.315

As suggested in previous work (Wang et al., 2023;316

Sun et al., 2022; Huang et al., 2024; Kim et al.,317

2019), negative learning can enhance classifier per-318

formance. In the visual domain, we also maintain a319

negative cache to enhance the classification perfor-320

mance of CLIP. In the negative cache, the higher321

the similarity to the keys, the lower the probability322

that the image is classified to that class. Similarly,323

we precompute a negative visual representation for324

each class.325

Specifically, for each class, we select top k dis-326

similar classes (based on cosine similarity) from327

the remaining (C − 1) classes. The average of the328

representative features from the k classes gener-329

ates the negative visual representation for a specific330

class. All the visual representations serve as keys331

of the negative visual cache X−
key ∈ RCK×d. The332

values of the negative visual cache are the one-hot 333

labels L ∈ RCK×C of image features correspond- 334

ingly. Similarly, the negative visual nodes X(0)
vn are 335

initialized using the mean of X−
key for each class. 336

The learned node features are then added to update 337

the keys in the negative cache. 338

Edge Connections. To align nodes and 339

learn more discriminative classifiers, we es- 340

tablish directed edges among different node 341

subsets, allowing feature adaptation across the 342

graph. We define six subsets of edge indices 343

E tg→td, E td→tg, E tg→vp, E td→vp, E tn→vn, Evp→vn. 344

Each provides connections from a source subset 345

to a target subset, as shown in Figure 1. The first 346

five subsets of edges contain C-way intra-class 347

connections from the source node subset to the 348

target node subset, linking nodes that belong to 349

the same class. The final subset of edges contains 350

kC-way inter-class connections, linking nodes that 351

belong to different classes. 352

E tg→td and E td→tg connect positive textual nodes 353

Ztg and Ztd to learn a more robust positive classifier 354

than the original ones. E tg→vp and E td→vp denote 355

the cross-modal linking edges from text to image. 356

Due to the limited availability of image data, the 357

initial visual features generated may lack sufficient 358

representativeness. These edges aim to leverage 359

natural language guidance to adjust the visual fea- 360

tures. Similarly, E tn→vn denotes the cross-modal 361

edges from the negative textual subset Ztg to the 362

negative visual subset Xvn. 363

Evp→vn denotes the cross-linking edges from 364

one class positive visual nodes Xvp to another class 365

in negative visual nodes Xvn to learn better negative 366

visual representatives. As mentioned in §3.2, we 367

select the top k dissimilar classes for each class. 368

Here, we connect the top k classes from Xvp to the 369

corresponding class in Xvn. 370

3.3 Homogeneous Graph Learning 371

We have constructed a homogeneous graph where 372

both the initial node features and their edge con- 373

nections are encapsulated. In this subsection, we 374

apply a one-layer homogeneous Graph Convolu- 375

tional Network(GCN) (Kipf and Welling, 2016) to 376

refine the node features and adapt the classifiers 377

for the downstream task. During graph learning, 378

we first add self-loops to the adjacency matrix and 379

then perform neighborhood aggregation. 380
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x
(1)
i =

∑
j∈N(i)∪{j}

1√
deg(i) ·

√
deg(j)

·
(
WT · x(0)

j

)
+ b381

Given any single node i with node feature x(0)i from382

the whole node set V , its neighboring node features383

are denoted as x
(0)
j where j ∈ N(i) ∪ {j}. The384

GCN network aggregates messages from neighbor-385

ing nodes by first transforming each neighbor’s386

feature with a weight matrix W , normalized by the387

degree of the nodes , and then summing the results.388

A bias vector b is added to the aggregated output.389

Notably, we only apply the bias vector on nodes390

Z−
t and disable the bias term on other nodes.391

3.4 Adapted Classifiers and Logits392

After graph learning, node features are updated393

into Z
(1)
tg , Z

(1)
td , Z

(1)
tn , X

(1)
vp , X

(1)
vn . This section in-394

troduces how multiple classifiers are formed and395

how logits are calculated and combined.396

Positive Textual Classifier Z+
t . Z+

t is the397

weighted combination of positive classifiers de-398

rived from the long and short text descriptions of399

classes. For Z+
t , we fuse the updated node features400

with the original node features via the weighted401

sum fusion strategy. In this way, the original fea-402

tures are modulated for classification in a residual403

way. Given some test images Itest, we calculate Z+
t404

and corresponding logits:405

Ztg = a · Z(0)
tg + (1− a) · Z(1)

tg406

Ztd = b · Z(0)
td + (1− b) · Z(1)

td407

Z+
t = Normalize (c · Ztg + (1− c) · Ztd)408

logits+t = 100 · fv(Itest) · Z+
t

⊤
(1)409

Here, a, b, and c represent the three hyper-410

parameters used as fusion weights.411

Negative Textual Classifier Z−
t . Z−

t is derived412

from the negative text descriptions. Because the413

model learns a bias vector for these nodes, we skip414

the residual fusion strategy to avoid interference415

from the original features. Instead, we normalize416

the updated embeddings and compute logits by417

measuring how dissimilar they are to the visual418

features fv(Itest).419

Z−
t = Normalize(Z(1)

tn )420

logits−t = 100 · (1− fv(Itest) · Z−
t

⊤
) (2)421

Positive Visual Cache X+
cache. For X+

cache, the 422

keys are enhanced by incorporating the learned 423

positive visual features as bias. Given images Itest 424

to be classified, we calculate its image-image affini- 425

ties and obtain the logits: 426

X+
key ← Normalize(X+

key +X(1)
vp ), 427

logits+v = A(fv(Itest) ·X+
key

T
) · L, where 428

A(x) = exp (−β (1− x)) . (3) 429

Negative Visual Cache X−
cache. Similarly, for 430

X−
cache, we update the keys by incorporating the 431

learned negative visual features. Analogous to 432

Equation 3, we compute the negative affinities to 433

obtain the classification logits: 434

X−
key ← Normalize(X−

key +X(1)
vn ), 435

logits−v = A′
(
1− fv(Itest) ·X−

key
⊤
)
· L, where 436

A′(x) = exp
(
−β′ (1− x)

)
. (4) 437

The final logits for label prediction are the weighted 438

combination of the above 4 logits: 439

logitsf =θ1 · logits+t + θ2 · logits−t + θ3 · logits+v + 440

θ4 · logits−v (5) 441

where θ1, θ2, θ3, θ4 are four hyper-parameters. 442

4 Experiments 443

In this section, we evaluate HomoGraphAdapter on 444

few-shot classification tasks across 11 benchmark 445

datasets, including ImageNet (Deng et al., 2009), 446

StandfordCars (Krause et al., 2013), UCF101 447

(Soomro, 2012), Caltech101 (Fei-Fei et al., 2004), 448

Flowers102 (Nilsback and Zisserman, 2008), 449

SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 450

2014), EuroSAT (Helber et al., 2019), FGVCAir- 451

craft (Maji et al., 2013), OxfordPets (Parkhi et al., 452

2012), and Food101 (Bossard et al., 2014). These 453

datasets include vision tasks such as remote sensing 454

classification, action recognition, texture classifica- 455

tion, and fine-grained classification. The Out-Of- 456

Distribution (OOD) generalization experiments are 457

performed on the ImageNetV2 (Recht et al., 2019) 458

and ImageNet-Sketch (Wang et al., 2019) datasets. 459

We compare HomoGraphAdapter with two state-of- 460

the-art graph adapter methods: GraphAdapter (Li 461

et al., 2024b) and HeGraphAdapter (Zhao et al., 462

2024), as well as three typical adapter methods 463

for CLIP: CLIP-Adapter (Gao et al., 2024), Tip- 464

Adapter (Zhang et al., 2022), and TaskRes (Yu 465

et al., 2023). 466
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Figure 4: Performance illustration of HomoGraphAdapter with comparison of the state-of-the-art methods on the
1/2/4/8/16-shot adaptation for 11 image classification benchmark datasets.
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Implementation Details. ResNet-50 (He et al.,467

2016) is used as the default backbone of the CLIP468

model. We fine-tune HomoGraphAdapter with few-469

shot labeled data sampled from the downstream470

dataset. We use AdamW optimizer (Kingma, 2014)471

with a cosine scheduler. The training epochs are set472

to 20 for most datasets, with the following excep-473

tions: EuroSAT is set to 100 epochs, FGVCAircraft474

to 30 epochs, and OxfordFlowers to 70 epochs. For475

building the visual cache and training, the batch476

size is set to 256; for testing, it is set to 64. The477

learning rate is set to 5× 10−4.478

Because tasks differ in complexity, certain hy-479

perparameters vary across datasets. In most cases,480

a and b are set to 0.2, while c is set to 0.45. The481

parameters θ1 and θ2 are set to a value between 0482

and 1. The initial values for θ3, θ4, β and β′ are set483

to certain values during training. During testing,484

the optimal values are determined through a search485

for the best results. All experiments are conducted486

on a single NVIDIA A100 GPU.487

4.1 Few-shot Classification488

For few-shot classification, the model is trained489

using sampled few-shot data from the training set490

and is directly tested on the testing set of the same491

dataset. We conduct experiments with 1-shot, 2- 492

shot, 4-shot, 8-shot, and 16-shot settings, and the 493

comparison metric is the Top-1 classification accu- 494

racy. The performance on all few-shot settings is 495

illustrated in Figure 4. The 16-shot performance 496

results on the 11 datasets are displayed in Table 1. 497

Overall, HomoGraphAdapter outperforms all 498

baselines in average accuracy across 11 datasets for 499

every few-shot settings. The results outperform the 500

second-best method by an average of 1.51% in the 501

1-shot setting and 0.74% in the 16-shot setting. No- 502

tably, the performance improvement is more signifi- 503

cant in the 1-shot settings for EuroSAT and Oxford- 504

Pets, while for FGVCAircraft and DTD, it is more 505

pronounced in the 16-shot setting. Moreover, for 506

datasets with many classes, HomoGraphAdapter 507

achieves 66.58% on ImageNet (1,000 classes) and 508

72.81% on SUN397 (397 classes). On datasets with 509

a few classes, HomoGraphAdapter demonstrates 510

leading performance with 87.20% on EuroSAT (10 511

classes). 512

4.2 Efficiency Comparison 513

In Table 2, we report the pre-computation time, 514

training time, epochs, and the number of trainable 515

parameters for HomoGraphAdapter on the Ima- 516
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Table 1: Performance in top-1 accuracy of different methods on 11 image classification datasets under the 16-shot
setting.

M
eth

od

Calt
ec

h1
01

DTD
Euro

SAT

FGVCAirc
raf

t

Flow
ers

10
2

Foo
d1

01

Im
ag

eN
et

Oxfo
rdP

ets

Stan
for

dC
ars

SUN39
7

UCF10
1

Ave
rag

e

Zero-shot CLIP 84.52 40.33 41.80 16.98 65.46 77.31 60.33 85.51 54.26 58.56 61.44 58.77
CoOp 91.61 63.11 82.36 31.01 94.39 73.80 62.95 87.30 72.51 69.11 75.70 73.07
CoCoOp 90.90 57.53 70.77 22.40 79.14 79.68 62.71 89.93 62.22 67.21 70.81 68.48
CLIP-Adapter 92.44 66.14 82.76 31.83 93.91 78.21 63.59 87.91 74.12 69.59 76.80 74.30
Tip-Adapter-F 92.93 67.33 83.80 35.50 95.01 79.50 65.51 89.71 75.50 71.31 78.01 75.83
TaskRes 93.43 67.13 84.03 36.30 96.03 77.60 65.73 87.83 76.83 70.67 77.97 75.78
GraphAdapter 93.37 67.90 85.55 36.93 96.13 78.67 65.72 88.59 76.20 71.30 78.67 76.25
HeGraphAdapter 93.96 69.15 86.75 38.49 96.39 79.73 66.18 90.24 77.30 72.28 79.73 77.30

HomoGraphAdapter 94.20 71.34 87.20 40.80 97.20 79.97 66.58 90.50 77.48 72.81 80.41 78.04
(Ours) (+0.24) (+2.19) (+0.45) (+2.31) (+0.81) (+0.24) (+0.40) (+0.26) (+0.18) (+0.53) (+0.68) (+0.74)

Table 2: Efficiency comparison with other methods on
16-shot ImageNet. The metrics include training time,
number of training epochs, and number of trainable
parameters.

Method Pre-Computation Training Training Params Accuracy
Time (One Epoch) Epochs (M) (%)

CLIP - - - - 60.33
CLIP-Adapter - 15.1 sec 200 0.52 63.59
Tip-Adapter-F 2.9 min 12.3 sec 20 16.38 65.51
GraphAdapter 6.7 min 15.9 sec 20 4.15 65.70
HeGraphAdapter 16 min 14.1 sec 30 10.37 66.18
HomoGraphAdapter 3.2 min 12.6 sec 20 2.07 66.58

geNet dataset in a 16-shot setting. With just 2.07517

million trainable parameters, HomoGraphAdapter518

ranks as the second smallest among adapter-tuning519

methods. HomoGraphAdapter requires only 12.6520

seconds to train per epoch, totaling 20 epochs, mak-521

ing it the second fastest among methods involv-522

ing precomputation. Among graph-based meth-523

ods, it achieves the shortest pre-computation time.524

GraphAdapter and HeGraphAdapter both require525

pairwise cosine similarity calculations to generate526

edge features, whereas HomoGraphAdapter relies527

only on edge indices without edge features. Con-528

sequently, HomoGraphAdapter only needs to com-529

pute positive and negative visual caches, reducing530

pre-computation overhead.531

Overall, compared with existing graph-based532

methods GraphAdapter and HeGraphAdapter, Ho-533

moGraphAdapter requires less pre-computation534

time and training time while achieving better clas-535

sification accuracy, highlighting its effectiveness536

and efficiency.537

4.3 Ablation Studies538

In this section, we perform ablation studies to539

evaluate the effectiveness of the four classifiers540

used in HomoGraphAdapter. We assess the 16-541

shot performance across four variations of Homo-542

GraphAdapter on ImageNet. The graph nodes 543

are comprised of five distinct subsets of nodes: 544

Ztg, Ztd, Ztn, Xvp, Xvn. In the first variant ZtgZtd, 545

we remove the remaining nodes ZtnXvpXvn and 546

their corresponding edges. Other variants are im- 547

plemented in a similar fashion. As shown in Ta- 548

ble 3, each subset of nodes and classifiers con- 549

tributes positively to the final performance, con- 550

firming the importance of all components in Homo- 551

GraphAdapter. 552

Table 3: Ablation studies on the graph nodes of Homo-
GraphAdapter. We implement four variants and report
the performances of the 16-shot adaptation for Ima-
geNet.

Graph Nodes
Textual Classifiers Visual Caches

16-shot AccPositive Negative Positive Negative

ZtgZtd ✓ 64.11
ZtgZtdXvp ✓ ✓ 65.68
ZtgZtdZtnXvp ✓ ✓ ✓ 66.47
ZtgZtdZtnXvpXvn ✓ ✓ ✓ ✓ 66.58

5 Conclusions 553

This paper proposes a homogeneous graph learn- 554

ing approach to tune CLIP in the data-limited con- 555

ditions. We introduce a unified, single-layer ho- 556

mogeneous GNN that encapsulates diverse natural 557

language and visual embeddings within a homoge- 558

neous graph comprising only one node type and 559

one edge type. This design jointly enhances pos- 560

itive learning and negative learning across both 561

modalities. Extensive experiments validate the ef- 562

fectiveness and efficiency of our method. In the 563

future, we plan to explore how graph learning can 564

be extended to fine-tune other pre-trained multi- 565

modality models. 566
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Limitations567

Two key limitations are identified in Homo-568

GraphAdapter:569

Performance Limitations with CLIP: We con-570

duct all experiments using the pre-trained CLIP571

model, which inherently constrains the potential572

performance enhancement from negative classifiers.573

This limitation stems from the fact that the CLIP574

model was trained without negative descriptions,575

resulting in its inability to effectively differentiate576

between relevant and irrelevant inputs. As a conse-577

quence, the absence of negative examples during578

the training phase may significantly impede the579

model’s overall capacity to enhance its classifica-580

tion accuracy and robustness in real-world applica-581

tions. This could lead to suboptimal performance582

when the model encounters ambiguous or similar583

data points that require a clear distinction.584

Task-Specific Adaptation Challenges: Sim-585

ilar to most adapter-tuning methods, the model586

fine-tuned by HomoGraphAdapter on a specific587

downstream task cannot be directly applied to an-588

other task without undergoing additional adapta-589

tion. This limitation highlights the necessity for tai-590

lored tuning processes that cater to the unique char-591

acteristics of each task, which can be both resource-592

intensive and time-consuming. Such processes of-593

ten require substantial computational resources and594

expert intervention, reducing the efficiency of de-595

ploying models across varying tasks.596

Looking ahead, future efforts should focus on597

fully exploring the potential of integrating nega-598

tive learning with positive learning. This approach599

could yield more nuanced representations and sig-600

nificantly improve model performance across a601

wider array of tasks. By incorporating negative602

examples into the training process, we can enhance603

the model’s ability to distinguish between similar604

classes, thereby refining its decision-making capa-605

bilities and overall effectiveness.606

Furthermore, improving the robustness of607

adapter-tuning approaches is essential for ensur-608

ing that models consistently perform well under609

diverse conditions, such as noisy data or shifts in610

domain. This could involve the development of611

more versatile adapter architectures or the imple-612

mentation of techniques that facilitate rapid adapta-613

tion to new tasks. Ultimately, such advancements614

would increase the efficiency and applicability of615

these models in real-world scenarios, making them616

more versatile and reliable in various applications.617
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HomoGraphAdapter: A Homogeneous Graph Neural Network as an
Effective Adapter for Vision-Language Models

Supplementary Material

In the appendix, we provide additional imple-840

mentation details and experiment results of our841

HomoGraphAdapter.842

A Visualizations of HomoGraphAdapter843

In this section, we present visualizations of the844

positive and negative textual and visual classifiers845

in HomoGraphAdapter to validate our findings and846

offer a clearer perspective on our research. For847

EuroSAT dataset, t-SNE visualization of positive848

and negative visual representatives in cache models849

is presented in Figure A.5. For Food101 dataset,850

Grad-CAM visualization of learned positive and851

negative textual embeddings for the ground-truth852

class is demonstrated in Figure A.6.853

Figure A.5: t-SNE visualizations of positive and negative
visual representatives in cache models of HomoGraphAdapter.
Dots in different colors represent embeddings of different
categories. From top left to right, distributions indicate the
variation of keys in the positive cache during fine-tuning on
EuroSAT dataset. From bottom left to right, distributions
indicate the variation of keys in the negative visual cache
during fine-tuning on EuroSAT dataset.

B Positive and Negative Short854

Descriptions (Prompts) of Categories855

The use of multi-prompt techniques, which com-856

bine positive and negative prompts, has gained857

significant traction in the community for prompt-858

tuning and adapter-tuning methods. Our approach,859

Figure A.6: Grad-CAM (Selvaraju et al., 2017) visualizes
similarity heatmaps using the learned positive and negative
textual embeddings for the ground-truth class in Food101
dataset. From left to right, the images display the input image,
the positive heatmap, and the negative heatmap.

HomoGraphAdapter, leverages multiple textual 860

prompts to improve performance. Short prompt 861

templates for each dataset are presented in Ta- 862

ble B.4. Additionally, we incorporate long, de- 863

tailed descriptions of categories generated by GPT- 864

3 (Floridi and Chiriatti, 2020) to further enhance 865

performance, as discussed in §3 of the main text, 866

which is too long to demonstrate, which is too 867

lengthy to showcase here. 868

C Experiment Results on OOD 869

Generalization 870

As highlighted in prior research (Zhang et al., 871

2021), models trained with limited data for a down- 872

stream task often learn shortcut connections, result- 873

ing in reduced generalization to unseen distribu- 874

tions. In §4 of the main text, we describe experi- 875

ments designed to evaluate the OOD generalization 876

capabilities of our approach. 877

Specifically, we trained our model on a few-shot 878

ImageNet dataset and assessed its performance on 879

OOD ImageNet datasets, including ImageNet-V2 880

(Recht et al., 2019) and ImageNet-Sketch (Wang 881

et al., 2019). Meanwhile, to extend the evaluation, 882

we conduct OOD generalization experiments un- 883

der various CLIP encoder backbones, including 884

ResNet-101 (He et al., 2016), ViT-B/32 (Dosovit- 885

skiy, 2020), and ViT-B/16 (Dosovitskiy, 2020). 886

As shown in Table C.5, HomoGraphAdapter con- 887

sistently achieves superior performance on OOD 888

datasets compared with the baselines across all 889

backbones. The results demonstrate that Homo- 890

GraphAdapter effectively improves the classifica- 891

tion accuracy of the downstream task while pre- 892

serving strong OOD generalization ability. 893
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Table B.4: Positive and negative text prompts designed for each dataset. In addition to these prompts, we also adopt
long detailed text prompts to enhance performance.

Dataset Classes Positive Prompt Templates Negative Prompt Templates
Caltech101 101 ‘A photo of a [Category].’ ‘A photo of no [Category].’
EuroSAT 10 ‘A centered satellite photo of [Category]’ ‘A centered satellite photo of no [Category]’
FGVCAircraft 100 ‘A photo with [Category] aircraft.’ ‘A photo of without [Category] aircraft.’
SUN397 397 ‘A photo of a [Category].’ ‘A photo of no [Category].’
StanfordCars 196 ‘A photo of a [Category].’ ‘A photo of no [Category].’
UCF101 101 ‘A photo of a person doing [Category].’ ‘A photo of a person not doing [Category].’
Flowers102 102 ‘A photo of a [Category], a type of flowers.’ ‘A photo of no [Category], a type of flowers.’
Food101 101 ‘A photo of a [Category], a type of food.’ ‘A photo of no [Category], a type of food.’
DTD 47 ‘[Category] texture.’ ‘not [Category] texture.’
OxfordPets 37 ‘A photo of a [Category], a type of pets.’ ‘A photo of no [Category], a type of pets.’

ImageNet
ImageNet-V2
ImageNet-Sketch

1000

‘Itap of a [Category].’, ‘Itap without any [Category].’,
‘A bad photo of the [Category].’, ‘A bad photo with no [Category] in it.’,
‘A origami [Category].’, ‘A origami piece that isn’t a [Category].’,
‘A photo of the large [Category].’, ‘A photo with no large [Category].’,
‘A [Category] in a video game.’, ‘A video game scene without a [Category].’,
‘Art of the [Category].’, ‘Art that doesn’t include a [Category].’,
‘A photo of the small [Category].’, ‘A photo with no small [Category].’,
‘An image of a [Category] with
bright and natural lighting.’

‘A landscape devoid of any [Category].’,
‘An image completely lacking a [Category].’,
‘A scene with no trace of [Category].’,
‘An empty space without any [Category].’,
‘A picture where [Category] is
conspicuously absent.’,
‘A setting that is free from any [Category].’

Table C.5: The OOD generalization experiments on various CLIP backbones. The methods are optimized on the
ImageNet dataset with a 16-shot setting (denoted as ’Source’) and tested on OOD datasets (denoted as ’Target’).

Method Backbone Source Target

ImageNet ImageNet-V2 ImageNet-Sketch

Zero-shot CLIP

ResNet-50

60.33 53.27 35.44
Linear Probe CLIP 56.13 45.61 19.13
CoOp 62.95 55.40 34.67
TaskRes 64.75 56.47 35.83
GraphAdapter 65.70 56.58 35.89
HeGraphAdapter 66.06 56.99 35.24
HomoGraphAdapter 66.58 57.89 36.40

Zero-shot CLIP

ResNet-101

61.62 54.81 38.71
Linear Probe CLIP 59.75 50.05 26.80
CoOp 66.60 58.66 39.08
TaskRes 67.70 59.50 41.70
GraphAdapter 68.23 59.60 40.83
HeGraphAdapter 68.60 59.82 41.88
HomoGraphAdapter 69.65 60.52 42.18

Zero-shot CLIP

ViT-B/16

66.73 60.83 46.15
Linear Probe CLIP 65.85 56.26 34.77
CoOp 71.92 64.18 46.71
TaskRes 73.07 65.30 49.13
GraphAdapter 73.68 65.57 48.57
HeGraphAdapter 73.82 65.39 49.31
HomoGraphAdapter 74.70 66.24 49.88

Zero-shot CLIP

ViT-B/32

62.05 54.79 40.82
Linear Probe CLIP 59.58 49.73 28.06
CoOp 66.85 58.08 40.44
TaskRes 68.20 59.20 42.50
GraphAdapter 68.80 59.00 41.70
HeGraphAdapter 68.85 59.62 42.77
HomoGraphAdapter 69.85 59.85 43.35

13


	Introduction
	Related Work
	Methodology
	Overall Framework
	Homogeneous Graph Data
	Homogeneous Graph Learning
	Adapted Classifiers and Logits

	Experiments
	Few-shot Classification
	Efficiency Comparison
	Ablation Studies

	Conclusions
	Visualizations of HomoGraphAdapter
	Positive and Negative Short Descriptions (Prompts) of Categories
	Experiment Results on OOD Generalization

