
X-Shot: A Unified System to Handle Frequent, Few-shot and Zero-shot
Labels in Classification

Anonymous ACL submission

Abstract

In recent years, few-shot and zero-shot learn-001
ing, which learn to predict labels with limited002
annotated instances, have garnered significant003
attention. Traditional approaches often treat004
frequent-shot (freq-shot; labels with abundant005
instances), few-shot, and zero-shot learning as006
distinct challenges, optimizing systems for just007
one of these scenarios. Yet, in real-world set-008
tings, label occurrences vary greatly. Some of009
them might appear thousands of times, while010
others might only appear sporadically or not011
at all. For practical deployment, it is crucial012
that a system can adapt to any label occurrence.013
We introduce a novel classification challenge:014
X-Shot, reflecting a real-world context where015
freq-shot, few-shot, and zero-shot labels co-016
occur without predefined limits. Here, X can017
span from 0 to +∞. The crux of X-Shot cen-018
ters on open-domain generalization and devis-019
ing a system versatile enough to manage var-020
ious label scenarios. To solve X-Shot, we021
propose BinBin (binary inference based on022
instruction following) that leverages the Indi-023
rect Supervision from a large collection of NLP024
tasks via instruction following, bolstered by025
Weak Supervision provided by large language026
models. BinBin surpasses preceding state-of-027
the-art techniques on three benchmark datasets028
across multiple domains. To our knowledge,029
this is the first work addressing X-Shot learn-030
ing, where X remains variable.1031

1 Introduction032

Over recent years, there’s been a growing focus in033

AI on enhancing model performance while min-034

imizing the need for extensive human labeling,035

which is typically termed as few-shot or zero-shot.036

Historically, the fields of frequent-shot, few-shot,037

and zero-shot learning have been approached as dis-038

tinct paradigms, with systems optimized separately039

for each setting. Yet, in real-world scenarios, label040

1Data & code will be released upon acceptance.

frequencies can exhibit broad variation, with cer- 041

tain labels occurring prolifically, while others being 042

scarce or completely absent. Given this variabil- 043

ity, it becomes imperative to craft learning systems 044

adept at managing labels across the full frequency 045

spectrum. Regrettably, current few-shot systems 046

often fall short when confronted with zero-shot 047

challenges (Zhang et al., 2022; Cui et al., 2022; 048

Zhao et al., 2021). In contrast, zero-shot systems, 049

while adept in their domain, typically overlook the 050

potential benefits of available annotations (Zhang 051

et al., 2019; Obamuyide and Vlachos, 2018; Yin 052

et al., 2019; Xu et al., 2022). Thus, mastering the 053

ability to handle all conceivable label occurrences 054

is paramount for systems aiming for practical de- 055

ployment. 056

In this work, we introduce a more challenging 057

and practically useful task:X-Shot. This task mir- 058

rors real-world environments where label frequen- 059

cies span a continuum, seamlessly incorporating 060

frequent-shot, few-shot, and zero-shot instances, 061

all without a priori constraints. In this paradigm, 062

the variable X is unbounded, ranging freely within 063

the interval [0, +∞). At the heart of X-Shot lies 064

the objective of attaining open-domain generaliza- 065

tion and architecting a system resilient across a 066

plethora of label scenarios. 067

Tackling X-Shot spawns two core technical co- 068

nundrums: (Q1) Amidst the paucity of annotations 069

characteristic of few-shot and zero-shot contexts, 070

how one might identify apt sources of Indirect Su- 071

pervision (Yin et al., 2023) to navigate the X-Shot 072

setting. (Q2) Traditional multi-class classifiers 073

grapple with the heterogeneity of label sizes across 074

tasks, often mandating distinct classification heads 075

tailored to these variations. Here, the challenge 076

is formulating a cohesive system capable of effec- 077

tively managing labels of diverse sizes. 078

To address Q1, we tap into the availability 079

of Indirect Supervision from instruction tuning 080

datasets, such as Super-NaturalInstruction (Wang 081
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et al., 2022). These datasets primarily contain var-082

ious NLP tasks enriched with textual instructions.083

Our method trains the model on these datasets,084

aiming for robust generalization to the unseen085

X-Shot task when supplemented with pertinent086

instructions, especially for the low-shot labels. For087

Q2, we advocate a triplet-oriented binary classifier.088

This classifier functions by accepting a triplet of089

(instruction, input, label), anticipating a bi-090

nary response (“Yes” or “No”) that confirms the091

suitability of the label for the specified input un-092

der the given instruction. Such a triplet-oriented093

classifier acts as a cohesive architecture that man-094

ages text classification tasks with labels of varied095

sizes. By amalgamating solutions for both Q1 and096

Q2, we forge a holistic framework, BinBin (binary097

inference based on instruction following).098

There are, however, no existing datasets that ex-099

plicitly cater to this challenge. To evaluate our100

system, we turn to three representative classifica-101

tion tasks: relation classification, event detection,102

and argument role identification. We recompile103

their associated datasets: FewRel (Han et al., 2018),104

MAVEN (Wang et al., 2020), and RAMS (Ebner105

et al., 2020) to simultaneously contain frequent-106

shot, few-shot, and zero-shot instances. Sourced107

from diverse domains (Wikipedia, news articles,108

etc.), and featuring vast label counts (ranging from109

30 to 78), these datasets pose a formidable chal-110

lenge to contemporary text classification systems.111

Moreover, the MAVEN dataset uniquely integrates112

an “None” label, further amplifying the realistic113

nature of the task. Experiments reveal our system’s114

resilience across datasets, consistently outperform-115

ing leading baselines, including GPT-3.5.116

Our contributions can be summarized as fol-117

lows: (i) We introduce X-Shot, a hitherto under-118

explored, open-domain open-shot text classifica-119

tion problem that mirrors real-world complexities.120

(ii) We innovate a unique problem setting that re-121

frames any text classification challenge into a bi-122

nary classification task, adaptable to any number of123

labels and occurrences. (iii) Our BinBin, harness-124

ing the potential of instruction-following datasets,125

excels past existing approaches, demonstrating ver-126

satility across various domains, label magnitudes,127

and classification paradigms.128

2 Related Work129

Few-shot Learning. Few-shot learning refers to130

machine learning methods that can perform tasks131

with only a few labeled training examples. This 132

technique has gained traction in NLP for two rea- 133

sons: (i) labeled data can be expensive to obtain and 134

(ii) extensive training or fine-tuning, particularly 135

with large models, can be both costly and unstable. 136

Ideally, a model would generalize from a handful of 137

examples, capturing the core knowledge. The main 138

challenge lies in effectively using limited labeled 139

samples for broad generalizations. Initially, the 140

approach to few-shot learning was metric-based, 141

focusing on a shared feature space and distance 142

metrics for label predictions (Vinyals et al., 2016; 143

Snell et al., 2017; Sung et al., 2018). Recently, 144

Large Language Models (LLMs) have been recog- 145

nized as efficient few-shot learners. Fine-tuning 146

these pre-trained LLMs with minimal samples of- 147

ten produces notable results (Brown et al., 2020). 148

Additionally, due to the success of prompting in 149

GPT models, prompt-tuning has been applied to 150

tackle classification problems under few-shot set- 151

tings (Zhang et al., 2022; Cui et al., 2022; Zhao 152

et al., 2021). However, these methods do not typ- 153

ically manage zero-shot scenarios where certain 154

labels are without annotated data. 155

Zero-shot Learning. Building on the concept of 156

few-shot learning, we transition to the even more 157

challenging zero-shot learning where no labeled 158

examples are available. Early techniques in this 159

domain employed metrics to align texts and labels 160

in shared spaces (Chang et al., 2008; Qiao et al., 161

2017). Later works adopted word embeddings from 162

pre-trained language models to represent the mean- 163

ing of the text or the label (Alcoforado et al., 2022; 164

Wang et al., 2023). Recent works have been enhanc- 165

ing the embedding representations by integrating 166

class hierarchy, class descriptions, and the word-to- 167

label paths found within ConceptNet (Zhang et al., 168

2019). Today’s LLMs are so adept that they can 169

tackle NLP tasks without any labeled instances, 170

either by reformatting the classification tasks or 171

through in-context learning as seen with the GPT 172

models (Brown et al., 2020; Wei et al., 2022). Sim- 173

ilarly, an alternative approach is to calibrate and 174

score outputs from LLM models for the label as- 175

signment (Holtzman et al., 2021; Zhao et al., 2021; 176

Min et al., 2022). The latest trend in zero-shot 177

text classification leverages Indirect Supervision 178

from well-annotated NLP tasks such as text entail- 179

ment (Obamuyide and Vlachos, 2018; Yin et al., 180

2019). However, these methods often underutilize 181

available annotations for labels. 182
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Indirect Supervision There is a burgeoning in-183

terest in Indirect Supervision (Yin et al., 2023) in184

recent years. Here, easily available signals from185

relevant tasks are used to aid in learning the target186

task, especially when task-specific supervision is187

in short supply. The technique of using entailment188

for Indirect Supervision in zero-shot classification189

was pioneered by (Yin et al., 2019) and has since190

been adapted for a variety of NLP tasks, including191

few-shot intent identification (Zhang et al., 2020;192

Xu et al., 2023c), event argument extraction (Sainz193

et al., 2022), entity typing (Li et al., 2022) and re-194

lation extraction (Xia et al., 2021; Lu et al., 2022;195

Xu et al., 2023b; Zhou et al., 2023). Beyond en-196

tailment, knowledge from areas like question an-197

swering (Yin et al., 2021), summarization (Lu et al.,198

2022) and dense retrievers (Xu et al., 2023c) has199

been incorporated. However, precious Indirect Su-200

pervision is usually collected from a single source201

task. Recent studies have demonstrated that mod-202

ern language models, after fine-tuning on a plethora203

of instruction-based tasks, can generalize to multi-204

ple unseen tasks (Wang et al., 2022; Mishra et al.,205

2022; Ye et al., 2021). Our work is inspired by the206

observed efficacy of NLP models when given task207

instructions and their ability to generalize knowl-208

edge across tasks.209

Unified Discriminative Classifier Previous re-210

search, such as the work presented in (Xu et al.,211

2023a), also attempts to transform classification212

problems into binary tasks. While this system rep-213

resents a discriminative classifier approach similar214

to ours, there are several significant differences.215

The most notable distinction is that it focuses ex-216

clusively on zero-shot learning scenarios, whereas217

our X-Shot encompasses the entire range of label218

occurrences. Additionally, it relies solely on the in-219

stance itself and therefore is less flexible than ours,220

while our method utilizes instructions to enrich the221

context and can be adapted to more diverse tasks.222

Most importantly, this system benchmarks its per-223

formance against generative models, rather than224

comparing it with state-of-the-art (SOTA) systems225

specifically designed for classification tasks.226

3 Problem Statement227

X-Shot has the following components:228

• Input t: Versatile text in varied forms, lengths,229

and domains.230

input input

input
Yes

No
instruction

Various text
classification

tasks

Figure 1: Our BinBin unifies various text classification
tasks as an instruction tuning problem. More details in
Appendix A.2

• Label space L: L contains arbitrary size of la- 231

bels: {· · · , li, · · ·} and an optional None label 232

(i.e., all labels in L are incorrect for the input). 233

Within L, each label can be either zero-shot, few- 234

shot, or more frequent. 235

Then, the task of X-Shot is to figure out label 236

Ls ∈ L that is correct for the input t, where |Ls| 237

might be zero (i.e., “None”). 238

Research questions of X-Shot: i) Given that 239

the above formulation encompasses various text 240

classification problems, how can we move away 241

from constructing individual models for each prob- 242

lem, and instead develop a singular classifier adept 243

at handling diverse classification challenges? ii) 244

Beyond frequently-encountered labels, low-shot la- 245

bels necessitate additional supervision for effective 246

reasoning. Where can we source this supervision? 247

In the following section, we delve deeper into our 248

approach concerning the universal system and the 249

process of seeking supervision. 250

4 Methodology 251

This section outlines our approach BinBin to the 252

X-Shot problem. We first explain our process 253

of transforming all classification problems into a 254

unified binary classification framework. Next, we 255

discuss the type of supervision we gather to address 256

this problem with limited annotations. 257

4.1 BinBin architecture 258

We have devised a broad architecture that seam- 259

lessly transitions most classification tasks into a 260

unified, instruction-driven binary classification for- 261

mation. As depicted in Figure 1, for any text clas- 262

sification task with its set of inputs and labels, we 263

model it as (instruction, input, label) triplet. 264
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instruction

input_1

input_k

Existing task A

instruction

input_1

input_k

Existing task G

input
Yes

No
instruction

Indirect
Supervisionoutput_1

output_k

output_1

output_k

1,600+ tasks in Natural-Instruction (Wang et al., 2022)

Figure 2: Indirect Supervision for BinBin. More details in Appendix A.1

The task then becomes determining if the label is265

appropriate (“Yes”) or not (“No”) given the input266

under the instruction. An example of the conver-267

sion can be found in Appendix A.2.268

BinBin can freely support classification tasks269

with any number of labels. Instead of converting270

labels into numerical IDs as traditional supervised271

classifiers do, we retain the actual label names. Op-272

tionally, we can also employ sophisticated verbal-273

izers (Schick and Schütze, 2021) to enhance the274

expression of the label. This ensures a more in-275

tuitive understanding of the relationship between276

inputs and labels, all within the context of task277

instructions.278

BinBin paves the way to tackle a variety of low-279

shot text classification tasks using an instruction-280

guided approach. Two primary challenges arise: i)281

Ensuring that the model comprehends the instruc-282

tions, and ii) guiding the model to identify seldom283

seen or entirely new labels. We will delve deeper284

into our supervision-seeking approaches to address285

these challenges in the following subsections.286

4.2 Supervision acquisition for low-shot labels287

In this section, we will introduce how we conduct288

and combine Indirect Supervision and Weak Super-289

vision to solve X-Shot.290

Indirect Supervision. Previous best-performing291

systems for low-shot text classification have pri-292

marily relied on Indirect Supervision from a single293

source task. Examples of these source tasks include294

natural language inference (Yin et al., 2019), sum-295

marization (Lu et al., 2022) and passage retrieval296

(Xu et al., 2023c). This approach presents three297

main drawbacks: i) the usable supervision from298

the single source task is finite, and there’s often a299

domain mismatch between the source task and the300

target classification tasks; ii) typically, instances of301

the target problems need to be reformatted to align302

with the specific source tasks to enable zero-shot 303

generalization—a process that’s frequently com- 304

plex; iii) there is not a universally adaptable sys- 305

tem to address the X-Shot situation, where labels 306

might vary in their visibility or frequency. 307

In this work, we leverage Indirect Supervi- 308

sion from an extensive assortment of NLP tasks. 309

The Super-NaturalInstruction dataset (Wang et al., 310

2022) encompasses over 1,600 tasks across 76 cat- 311

egories. Each task is accompanied by instructions 312

and numerous input-output examples (example of 313

tasks in Appendix A.1). This dataset offers an 314

invaluable source of Indirect Supervision for our 315

target X-Shot. As illustrated in Appendix A.1, 316

for every task within the Super-NaturalInstruction 317

dataset, we are presented with the associated in- 318

struction as well as (input, gold output) pairs. 319

For each instance selected, we will randomly pick 320

one output from the task label space that is different 321

from the gold output, whether the task is generation 322

or classification. As a result, we obtain one positive 323

triplet (instruction, input, gold output) and 324

one negative triplet (instruction, input, random 325

output) for each example in our training dataset as 326

in Figure 2. Our Indirect Supervision stems from 327

this dataset training. When evaluated on bench- 328

mark classification tasks, we convert every sample 329

into triplets similarly, complemented by a human- 330

written instruction. For an instance with text t and 331

positive label l, we add an instruction and craft |L| 332

triplets (instruction, t, l) for each label l from 333

the label space L, with the gold label as positive 334

and the remainings as negative. 335

Through this Indirect Supervision, minor alter- 336

ations—be it a word or a few words—can pivot 337

the class completely. By enabling the model to 338

distinguish the positive and negative classes from 339

marginally tweaked inputs, we ensure the model 340

establishes more distinct decision boundaries. 341
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Weak Supervision for zero-shot labels. In addi-342

tion to Indirect Supervision, we aim to enhance our343

model’s performance on zero-shot labels. Given344

that we cannot procure annotated instances for345

these labels, how can we enhance the model’s un-346

derstanding of these labels without human inter-347

vention or labeling? This is where we leverage348

the capabilities of GPT-3.5 (Brown et al., 2020)349

to produce weakly labeled examples. For generat-350

ing instances related to zero-shot labels, we utilize351

in-context learning. This involves a random se-352

lection of demonstrations from either few-shot or353

frequently labeled data. Below is a sample prompt354

from Maven designed to generate text and event355

trigger for a zero-shot event type label:356

event type: Competition
event trigger: tournament
sentence: The final tournament was Played in two
stages: the group stage and the knockout stage.

event type: Motion
event trigger: throwing
sentence: Simultaneously, Sayhood gained a lock
on Rodriguez, throwing him onto the defensive.

event type: Manufacturing

357

358

In this approach, upon exposing GPT-3.5 to359

event and event statement examples associated with360

the event type labels “Competition” and “Motion”,361

we introduce the zero-shot label “Manufacturing.”362

Subsequently, GPT-3.5 generates an event trigger363

along with an event statement, serving as a weakly364

supervised instance for this unseen label.365

Training strategy. We first train the RoBERTa-366

large model (Liu et al., 2019) on the transformed367

binary Super-NaturalInstruction dataset, then fine-368

tune on the augmented instances of downstream369

X-Shot tasks. The model used will be consistent370

in all experiments and baselines.371

5 Experiments372

5.1 Experimental setting373

Datasets. There are no existing datasets that can374

exactly align with X-Shot. In this work, we stan-375

dardize datasets that can cover (i) multiple domains,376

(ii) various sizes of labels, and (iii) out-of-domain377

label scenarios. Therefore, we recompile: FewRel378

(Han et al., 2018), MAVEN (Wang et al., 2020), and379

RAMS (Ebner et al., 2020), referring to relation380

classification, event detection, and argument role381

identification problems respectively. Next, we elab-382

orate on the details of reorganizing each of them.383

domain #freq #few #zero
FewRelX-Shot Wikipedia 26 26 26
MAVENX-Shot Wikipedia 23 23 23+1
RAMSX-Shot News articles 10 10 10

Table 1: Statistics of dataset labels.

We rename each resulting dataset as “[]X-Shot.” 384

Details can be seen in Table 1. 385

• FewRelX-Shot: FewRel is a well-established 386

relation classification dataset while each in- 387

stance provides a relation statement, two enti- 388

ties from the statement, and their corresponding 389

relation label. Since the test set of FewRel is 390

not available, we include 78 relations from its 391

train and dev and divide them into 26/26/26 as 392

freq/few/zero-shot labels. We put 500/5/0 in- 393

stances for each freq/few/zero label in the new 394

train, and 200 instances for each label in the 395

new dev and new test. 396

• MAVENX-Shot: The standard event detection 397

task in MAVEN includes two steps: detecting 398

the event trigger and predicting the event label 399

from the trigger. In this work, we will focus 400

on the second step, where we assume the event 401

trigger is known and aim to predict the corre- 402

sponding event label. The annotation of the orig- 403

inal test set is not publicly available. To make 404

MAVEN align with our setting, we reorganize its 405

train and dev sets as follows: since the event 406

label distribution is significantly imbalanced, 407

we adopt 69 of them who have 400+ instances 408

plus the “None” label as our label set. Labels 409

are divided into 23/23/23+1 as freq/few/zero- 410

shot labels with “None” belonging to the zero- 411

shot group. We put 300/5/0 instances for each 412

freq/few/zero label in the new train, and 100 413

instances for each label in the new dev and test. 414

• RAMSX-Shot: RAMS tackles the task of iden- 415

tifying semantic role labels given the sentence 416

marked with event triggers and argument terms. 417

There are 30 labels that have more than 100 in- 418

stances; we split them into 10/10/10 for each 419

label group. Similarly, we put 300/5/0 instances 420

for each freq/few/zero label in the new train, 421

and 50 instances for each label in the new dev 422

and test. 423

Baselines. For baselines, we compare our sys- 424

tem with the current SOTA multi-way classification 425

model (for traditional frequent label setting), the 426
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most advanced few-shot/zero-shot learning meth-427

ods, and the in-context learning with GPT-3.5.428

• Multi-way classification (MWC, (Soares et al.,429

2019)) . This methodology is the prior SOTA430

approach for relation classification. We employ431

this strategy for all three datasets, given that they432

all contain term features (entity, event trigger,433

argument, etc.) within their inputs.434

• In-context learning with GPT-3.5 (GPT-3.5).435

We create a prompt that includes three demon-436

strations, two positive and one negative, and437

each comes with the input, prediction, and a438

True/False label that indicates whether the pre-439

diction is correct. The template can be seen in440

Appendix A.3.441

• Indirect Supervision from NLI (NLI; Li et al.442

2022). The prior SOTA approach for address-443

ing a zero-shot or few-shot classification with444

Indirect Supervision from merely the NLI source445

task. This paradigm uses the input text as the446

premise and transforms the label into a hypothe-447

sis sentence.448

• Prototypical Prompt learning (PPL; Cui et al.449

2022) The prior SOTA system for few-shot clas-450

sification. For each of the dataset, we select 500451

instances during training for prototype learning.452

Since we want to be consistent with the freq,453

few, and zero-shot learning approach, for freq454

and few shot labels, we keep selecting instances455

from the available instances until we reach the456

number. For zero-shot labels, we simply put the457

label itself as the text for the training.458

Implementation details. We elaborate on our459

implementation details at different stages here.460

• Indirect Supervision. Consistent with the461

original experimental setup, we select 100 ran-462

dom instances from each task for training when463

compiling the Indirect Supervision dataset from464

Super-NaturalInstruction. Our prefix template fol-465

lows the previous benchmark strategy, incorpo-466

rating only the instruction and two positive ex-467

amples—provided this inclusion doesn’t surpass468

the word limit. When adjusting classification469

tasks to fit BinBin, we draft three distinct instruc-470

tion prompts and present the average outcomes to471

demonstrate the system’s stability. All template are472

available in Appendix A.4.473

• Weak supervision. We use the “text-davinci-474

003” GPT-3.5 completion model to augment zero-475

shot instances. Temperature is set to 1.6 to ensure476

more varied outputs and cap the maximum token 477

output from GPT-3.5 at 80. However, GPT-3.5 478

doesn’t always maximize this limit. For each zero- 479

shot label, we generate 5 instances to serve as Weak 480

Supervision. 481

• Prediction threshold. Both NLI baseline and 482

our method necessitate a threshold for assigning 483

label predictions. We use the probability of the 484

positive class the model produces for this purpose. 485

For FewRel and RAMS, the label with the highest 486

score is chosen. In MAVEN, we introduce a thresh- 487

old parameter, t. If the label receiving the highest 488

probability does not exceed this probability thresh- 489

old, we assign the label as “None”. We experiment 490

with various values of t, ranging from 0.5 to 1, and 491

select the optimal one based on dev. 492

5.2 Results 493

Table 2 reports the main comparison between our 494

BinBin system and those baselines. Our model 495

consistently outperforms all baselines by a signif- 496

icant margin in the “all” and “zero” dimensions, 497

while occasionally showing slightly lower but on- 498

par performance with the baselines in “freq” and 499

“few”. Analyzing these baselines, we notice that 500

most are ill-suited for the X-Shot problem set- 501

ting, particularly in zero-shot scenarios where an- 502

notations are absent. MWC is entirely determined 503

by the number of label-wise training examples; 504

therefore, its performance, although pretty high for 505

“freq”, drops quickly to be 0.0 for “zero”. In a 506

similar vein, the few-shot prompting (PPL) base- 507

line encounters difficulties with unseen class in- 508

stances, underscoring the limitations of classifica- 509

tion models in the X-Shot context. NLI, represent- 510

ing the SOTA in low-shot learning settings, is the 511

only model adept at managing all three label sets. 512

Nonetheless, when pitted against BinBin, NLI’s 513

performance remains subpar in few-shot and zero- 514

shot situations. This indicates that, despite its com- 515

petency in handling sparse or non-existent annota- 516

tions, NLI’s capacity for reasoning and exploiting 517

limited supervision is inferior to our system. 518

As one of the most advanced closed-source 519

LLMs, GPT-3.5 shows limited effectiveness in this 520

task, with its performance across three label sets ap- 521

pearing strikingly similar. Although GPT-like mod- 522

els demonstrate robust capabilities in in-context 523

learning, they fall short in utilizing rich annota- 524

tions when available and often struggle in scenar- 525

ios with a vast decision space. This highlights the 526

flexibility of our BinBin in handling classification 527
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Models
FewRelX-Shot RAMSX-Shot MAVENX-Shot

all freq few zero all freq few zero all freq few zero

MWC (Soares et al., 2019) 49.82 94.23 55.23 0.0 34.47 78.40 25.00 0.0 42.43 85.17 43.96 0.0
NLI (Li et al., 2022) 63.46 95.35 48.81 46.22 43.07 71.40 20.40 37.40 56.31 85.65 39.83 44.00
PPL (Cui et al., 2022) 53.23 95.15 63.54 0.0 27.13 65.00 16.20 0.20 46.84 85.04 55.52 0.0
GPT-3.5 18.24 18.22 25.33 11.17 18.19 21.21 15.15 18.19 21.43 15.15 12.12 37.50

BinBin 68.48 94.06 58.04 53.34 54.70 77.00 29.00 58.07 64.96 84.32 46.64 63.97

Table 2: Main results on three benchmarks

Figure 3: Ablation study of BinBin

labels of different sizes and #examples.528

5.3 Analyses529

In addition to reporting the main results, we fur-530

ther analyze our system in the following dimen-531

sions: (Q1) the individual contribution of our Indi-532

rect Supervision and Weak Supervision; (Q2) why533

does “zero” show better performance than “few” in534

RAMSX-Shot and MAVENX-Shot? (Q3) Given535

that our Indirect Supervision is derived from a di-536

verse range of NLP tasks in Natural-Instruction537

(Wang et al., 2022), is there a possibility of task538

leakage? (Q4) When selecting source tasks for In-539

direct Supervision in instruction-following, which540

configuration is more effective: having more (di-541

verse) tasks or having more (task-wise) instances?542

(Q5) The efficiency of our system. (Q6) The mis-543

takes our system makes.544

(Q1) Ablation study. Figure 3 depicts the ab-545

lation study, where either Indirect Supervision of546

Weak Supervision is discarded from our system547

BinBin. Our findings reveal that both supervision548

sources fulfill complementary roles in the X-Shot549

task. Encouragingly, while their combined usage550

yields the best results, each type of supervision, on551

its own, still significantly surpasses the baselines.552

This underscores the efficiency of our system.553

all freq few zero
FewRelX-Shot 63.34 89.04 60.95 40.04
RAMSX-Shot 51.64 78.74 30.13 40.07
MAVENX-Shot 63.83 85.68 47.48 58.57

Table 3: Results of training BinBin after deleting top-10
similar tasks from Natural-Instruction. Bold numbers
indicate enhanced performance compared to the pre-
deletion state.

(Q2) Why do zero-shot labels outperform few- 554

shot labels in the MAVENX-Shot and RAMSX-Shot 555

benchmarks? We observe that this phenomenon 556

applies not only to our system, but also to baselines 557

“NLI” and “GPT-3.5”. We suspect two reasons: i) 558

Some zero-shot labels in RAMSX-Shot seem easier 559

upon visual inspection; ii) In MAVENX-Shot, “None” 560

is treated as a zero-shot label in the test set, con- 561

tributing notably due to threshold tuning. 562

(Q3) Influence of Task Type Overlap. Although 563

the Natural-Instruction task repository doesn’t di- 564

rectly contain our target datasets, we still remove 565

the top 10 tasks closest to each test dataset to as- 566

sess the impact of similar tasks. The measurement 567

is based on cosine similarity between Sentence- 568

BERT (Reimers and Gurevych, 2019) embeddings 569

of the 757 training task definitions in the Natural- 570

Instruction dataset and each X-Shot test dataset’s 571

instruction. 572

From Table 3, we can observe that: i) The main 573

decreases when the top-10 similar tasks are deleted 574

happen to zero-shot labels. Recall that we only pro- 575

vided Weak Supervision for them; this phenomenon 576

indicates that pretraining on similar source tasks 577

can help diminish the impact of noise in the weakly 578

supervised data. ii) Despite slight decreases in 579

“all”, our results still surpass baselines in Table 2, 580

underscoring the value of diverse training tasks. 581

This is further supported by subsequent analysis. 582

(Q4) Number of Tasks vs Number of Instances. 583

Balancing the number of tasks and the number of 584

instances per task is pivotal in curating instruction- 585
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Figure 4: #instances vs. #tasks

following datasets (Lou et al., 2023). We wonder,586

by keeping the total instance count constant, should587

we have more tasks or more instances per task?588

We try [100,200,..,700] for the varying number of589

tasks, each with 100 instances. In total, we have590

[10,000, 20,000, ... 70,000] instances. Accord-591

ingly, for the varying number of instances per task,592

we have datasets with [10,000/757, 20,000/757, ...593

70,000/757] number of instances. The overall in-594

stances remain the same in each step. From Figure595

4, it’s evident that both task count and instance596

count boost performance. While increasing either597

is beneficial, having more (diverse) tasks has a598

greater impact than adding more instances to each599

task. Given these insights, future work should fo-600

cus on diversifying the types of tasks exposed to601

the model, considering data constraints.602

(Q5) Efficiency Analysis. Efficiency concerns603

center around the inference stage, where our sys-604

tem, like “NLI,” converts varied-label classification605

problems into a binary inference task. Training of606

our system takes more time due to pretraining on607

Natural-Instruction, but during testing, both sys-608

tems are equally efficient as they make binary deci-609

sions for each label candidate.610

(Q6) Error Analysis. We collect the most typical611

errors as follows:612

• Multiple labels make sense In datasets with613

a large number of labels, it is often feasible for614

more than one label to appropriately fit the context.615

Sometimes, the model’s interpretation may align616

more accurately with certain perspectives than the617

original data. Consider the example from RAMS618

dataset: “Many high - ranking figures in companies619

tied to Skolkovo have also donated to the Clinton620

Foundation” While the ground truth label for the621

argument “Clinton Foundation” is “recipient”, the622

model strongly suggests “beneficiary”—a label that 623

is equally justifiable. 624

• Bias towards more frequent labels It’s quite 625

common for multiple labels to have overlapping 626

semantic meanings. In such scenarios, the model 627

tends to favor the labels it encounters more fre- 628

quently. For example, consider a sentence from 629

the FewRel dataset: “The Spanish - Andorran bor- 630

der runs 64 km between the south of Andorra and 631

northern Spain ( by the autonomous community 632

of Catalonia ) in the Pyrenees Mountains.”. Here, 633

the entities are “Catalonia” and “autonomous com- 634

munity”. Although the gold relation for the two 635

entities is “instance of”, the model assigns the high- 636

est probability to “part of”—a frequent group label. 637

This suggests that not only does the label share 638

semantic similarities with others, but its frequent 639

occurrence also biases the prediction, especially 640

when many labels lead to potential confusion. 641

• identifying reciprocal or inverse relation- 642

ships This issue arises when the model struggles to 643

differentiate between roles that are directly related 644

to each other but represent opposite positions in a 645

given context, such as in a “receiver” and “giver” 646

scenario while both roles are part of the same trans- 647

action, but the model confuses who is who. For 648

instance, in a sentence from RAMS “She was shout- 649

ing , ‘I am a terrorist,’ and reportedly threatened 650

to blow herself up . ...... he could n’t believe that 651

the decapitated child ’s head being carried by the 652

woman was real.” where “she” is a “killer”. How- 653

ever, the model incorrectly labels “she” as a “vic- 654

tim”, demonstrating the difficulty in accurately dis- 655

cerning reciprocal roles. 656

6 Conclusion 657

This work introduces X-Shot, a challenging text 658

classification framework where labels range from 659

non-existent to frequent. X-Shot reflects realis- 660

tic scenarios where we encounter frequent-shot (or 661

freq-shot), few-shot, and zero-shot labels simul- 662

taneously. Our innovative approach recasts any 663

text classification issue into a binary task, handling 664

varying label amounts and frequencies. We intro- 665

duce BinBin to navigate this intricate challenge, 666

leveraging instruction Indirect Supervision and 667

PLMs’ Weak Supervision. Our approach consis- 668

tently outperforms the latest methods across three 669

benchmark datasets crossing multiple domains and 670

diverse label occurrence. 671
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Limitation672

One of the primary limitations of our model is its673

efficiency, particularly when handling datasets with674

a large number of labels when converting the origi-675

nal task into a binary task. This results in extended676

training times and increased computational efforts.677

It is important to note that this limitation is not678

an isolated challenge for our model; it aligns with679

the experiences reported in previous state-of-the-680

art models. Future work can focus on optimizing681

the training process to enhance efficiency without682

compromising the model’s performance.683

References684

Alexandre Alcoforado, Thomas Palmeira Ferraz, Ro-685
drigo Gerber, Enzo Bustos, André Seidel Oliveira,686
Bruno Miguel Veloso, Fábio Levy Siqueira, and687
Anna Helena Reali Costa. 2022. Zeroberto: Lever-688
aging zero-shot text classification by topic modeling.689
In Computational Processing of the Portuguese Lan-690
guage - 15th International Conference, PROPOR691
2022, Fortaleza, Brazil, March 21-23, 2022, Proceed-692
ings, volume 13208 of Lecture Notes in Computer693
Science, pages 125–136. Springer.694

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie695
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind696
Neelakantan, Pranav Shyam, Girish Sastry, Amanda697
Askell, Sandhini Agarwal, Ariel Herbert-Voss,698
Gretchen Krueger, Tom Henighan, Rewon Child,699
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,700
Clemens Winter, Christopher Hesse, Mark Chen, Eric701
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,702
Jack Clark, Christopher Berner, Sam McCandlish,703
Alec Radford, Ilya Sutskever, and Dario Amodei.704
2020. Language models are few-shot learners. CoRR,705
abs/2005.14165.706

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and707
Vivek Srikumar. 2008. Importance of semantic rep-708
resentation: Dataless classification. In Proceedings709
of the Twenty-Third AAAI Conference on Artificial710
Intelligence, AAAI 2008, Chicago, Illinois, USA, July711
13-17, 2008, pages 830–835. AAAI Press.712

Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang,713
and Zhiyuan Liu. 2022. Prototypical verbalizer for714
prompt-based few-shot tuning. In Proceedings of the715
60th Annual Meeting of the Association for Compu-716
tational Linguistics (Volume 1: Long Papers), ACL717
2022, Dublin, Ireland, May 22-27, 2022, pages 7014–718
7024. Association for Computational Linguistics.719

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,720
and Benjamin Van Durme. 2020. Multi-sentence ar-721
gument linking. In Proceedings of the 58th Annual722
Meeting of the Association for Computational Lin-723
guistics, ACL 2020, Online, July 5-10, 2020, pages724
8057–8077. Association for Computational Linguis-725
tics.726

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, 727
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A 728
large-scale supervised few-shot relation classification 729
dataset with state-of-the-art evaluation. In Proceed- 730
ings of the 2018 Conference on Empirical Methods 731
in Natural Language Processing, Brussels, Belgium, 732
October 31 - November 4, 2018, pages 4803–4809. 733
Association for Computational Linguistics. 734

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, 735
and Luke Zettlemoyer. 2021. Surface form competi- 736
tion: Why the highest probability answer isn’t always 737
right. In Proceedings of the 2021 Conference on 738
Empirical Methods in Natural Language Processing, 739
EMNLP 2021, Virtual Event / Punta Cana, Domini- 740
can Republic, 7-11 November, 2021, pages 7038– 741
7051. Association for Computational Linguistics. 742

Bangzheng Li, Wenpeng Yin, and Muhao Chen. 2022. 743
Ultra-fine entity typing with indirect supervision 744
from natural language inference. Trans. Assoc. Com- 745
put. Linguistics, 10:607–622. 746

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 747
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 748
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 749
Roberta: A robustly optimized BERT pretraining 750
approach. CoRR, abs/1907.11692. 751

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Jan- 752
ice Ahn, Hanzi Xu, Yu Su, and Wenpeng Yin. 753
2023. MUFFIN: curating multi-faceted instruc- 754
tions for improving instruction-following. CoRR, 755
abs/2312.02436. 756

Keming Lu, I-Hung Hsu, Wenxuan Zhou, 757
Mingyu Derek Ma, and Muhao Chen. 2022. 758
Summarization as indirect supervision for relation 759
extraction. In Findings of the Association for 760
Computational Linguistics: EMNLP 2022, Abu 761
Dhabi, United Arab Emirates, December 7-11, 2022, 762
pages 6575–6594. Association for Computational 763
Linguistics. 764

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and 765
Luke Zettlemoyer. 2022. Noisy channel language 766
model prompting for few-shot text classification. In 767
Proceedings of the 60th Annual Meeting of the As- 768
sociation for Computational Linguistics (Volume 1: 769
Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 770
2022, pages 5316–5330. Association for Computa- 771
tional Linguistics. 772

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 773
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 774
tion via natural language crowdsourcing instructions. 775
In Proceedings of the 60th Annual Meeting of the 776
Association for Computational Linguistics (Volume 777
1: Long Papers), ACL 2022, Dublin, Ireland, May 778
22-27, 2022, pages 3470–3487. Association for Com- 779
putational Linguistics. 780

Abiola Obamuyide and Andreas Vlachos. 2018. Zero- 781
shot relation classification as textual entailment. In 782
Proceedings of the first workshop on fact extraction 783
and VERification (FEVER), pages 72–78. 784

9

https://doi.org/10.1007/978-3-030-98305-5_12
https://doi.org/10.1007/978-3-030-98305-5_12
https://doi.org/10.1007/978-3-030-98305-5_12
http://arxiv.org/abs/2005.14165
http://www.aaai.org/Library/AAAI/2008/aaai08-132.php
http://www.aaai.org/Library/AAAI/2008/aaai08-132.php
http://www.aaai.org/Library/AAAI/2008/aaai08-132.php
https://doi.org/10.18653/v1/2022.acl-long.483
https://doi.org/10.18653/v1/2022.acl-long.483
https://doi.org/10.18653/v1/2022.acl-long.483
https://doi.org/10.18653/V1/2020.ACL-MAIN.718
https://doi.org/10.18653/V1/2020.ACL-MAIN.718
https://doi.org/10.18653/V1/2020.ACL-MAIN.718
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.1162/tacl_a_00479
https://doi.org/10.1162/tacl_a_00479
https://doi.org/10.1162/tacl_a_00479
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.findings-emnlp.490
https://doi.org/10.18653/v1/2022.findings-emnlp.490
https://doi.org/10.18653/v1/2022.findings-emnlp.490
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244


Ruizhi Qiao, Lingqiao Liu, Chunhua Shen, and Anton785
van den Hengel. 2017. Visually aligned word em-786
beddings for improving zero-shot learning. CoRR,787
abs/1707.05427.788

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:789
Sentence embeddings using siamese bert-networks.790
In Proceedings of the 2019 Conference on Empiri-791
cal Methods in Natural Language Processing and792
the 9th International Joint Conference on Natural793
Language Processing, EMNLP-IJCNLP 2019, Hong794
Kong, China, November 3-7, 2019, pages 3980–3990.795
Association for Computational Linguistics.796

Oscar Sainz, Itziar Gonzalez-Dios, Oier Lopez de La-797
calle, Bonan Min, and Eneko Agirre. 2022. Textual798
entailment for event argument extraction: Zero- and799
few-shot with multi-source learning. In Findings800
of the Association for Computational Linguistics:801
NAACL 2022, Seattle, WA, United States, July 10-15,802
2022, pages 2439–2455. Association for Computa-803
tional Linguistics.804

Timo Schick and Hinrich Schütze. 2021. Exploiting805
cloze-questions for few-shot text classification and806
natural language inference. In Proceedings of the807
16th Conference of the European Chapter of the As-808
sociation for Computational Linguistics: Main Vol-809
ume, EACL 2021, Online, April 19 - 23, 2021, pages810
255–269. Association for Computational Linguistics.811

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.812
Prototypical networks for few-shot learning. In Ad-813
vances in Neural Information Processing Systems 30:814
Annual Conference on Neural Information Process-815
ing Systems 2017, December 4-9, 2017, Long Beach,816
CA, USA, pages 4077–4087.817

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,818
and Tom Kwiatkowski. 2019. Matching the blanks:819
Distributional similarity for relation learning. In Pro-820
ceedings of the 57th Conference of the Association821
for Computational Linguistics, ACL 2019, Florence,822
Italy, July 28- August 2, 2019, Volume 1: Long Pa-823
pers, pages 2895–2905. Association for Computa-824
tional Linguistics.825

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip826
H. S. Torr, and Timothy M. Hospedales. 2018. Learn-827
ing to compare: Relation network for few-shot learn-828
ing. In 2018 IEEE Conference on Computer Vision829
and Pattern Recognition, CVPR 2018, Salt Lake City,830
UT, USA, June 18-22, 2018, pages 1199–1208. Com-831
puter Vision Foundation / IEEE Computer Society.832

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray833
Kavukcuoglu, and Daan Wierstra. 2016. Matching834
networks for one shot learning. In Advances in Neu-835
ral Information Processing Systems 29: Annual Con-836
ference on Neural Information Processing Systems837
2016, December 5-10, 2016, Barcelona, Spain, pages838
3630–3638.839

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong840
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,841

and Jie Zhou. 2020. MAVEN: A massive general do- 842
main event detection dataset. In Proceedings of the 843
2020 Conference on Empirical Methods in Natural 844
Language Processing, EMNLP 2020, Online, Novem- 845
ber 16-20, 2020, pages 1652–1671. Association for 846
Computational Linguistics. 847

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo- 848
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva 849
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An- 850
jana Arunkumar, David Stap, Eshaan Pathak, Gi- 851
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro- 852
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz- 853
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa- 854
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro- 855
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit 856
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan 857
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, 858
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and 859
Xudong Shen. 2022. Super-naturalinstructions: Gen- 860
eralization via declarative instructions on 1600+ NLP 861
tasks. In Proceedings of the 2022 Conference on 862
Empirical Methods in Natural Language Processing, 863
EMNLP 2022, Abu Dhabi, United Arab Emirates, De- 864
cember 7-11, 2022, pages 5085–5109. Association 865
for Computational Linguistics. 866

Yue Wang, Lijun Wu, Juntao Li, Xiaobo Liang, and 867
Min Zhang. 2023. Are the BERT family zero-shot 868
learners? A study on their potential and limitations. 869
Artif. Intell., 322:103953. 870

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 871
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 872
drew M. Dai, and Quoc V. Le. 2022. Finetuned 873
language models are zero-shot learners. In The Tenth 874
International Conference on Learning Representa- 875
tions, ICLR 2022, Virtual Event, April 25-29, 2022. 876
OpenReview.net. 877

Congying Xia, Wenpeng Yin, Yihao Feng, and Philip S. 878
Yu. 2021. Incremental few-shot text classification 879
with multi-round new classes: Formulation, dataset 880
and system. In Proceedings of the 2021 Conference 881
of the North American Chapter of the Association 882
for Computational Linguistics: Human Language 883
Technologies, NAACL-HLT 2021, Online, June 6-11, 884
2021, pages 1351–1360. Association for Computa- 885
tional Linguistics. 886

Haike Xu, Zongyu Lin, Jing Zhou, Yanan Zheng, and 887
Zhilin Yang. 2023a. A universal discriminator for 888
zero-shot generalization. In Proceedings of the 61st 889
Annual Meeting of the Association for Computational 890
Linguistics (Volume 1: Long Papers), ACL 2023, 891
Toronto, Canada, July 9-14, 2023, pages 10559– 892
10575. Association for Computational Linguistics. 893

Hanzi Xu, Slobodan Vucetic, and Wenpeng Yin. 2022. 894
Openstance: Real-world zero-shot stance detection. 895
CoRR, abs/2210.14299. 896

Jiashu Xu, Mingyu Derek Ma, and Muhao Chen. 2023b. 897
Can NLI provide proper indirect supervision for low- 898
resource biomedical relation extraction? In Proceed- 899
ings of the 61st Annual Meeting of the Association for 900

10

http://arxiv.org/abs/1707.05427
http://arxiv.org/abs/1707.05427
http://arxiv.org/abs/1707.05427
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2022.findings-naacl.187
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://doi.org/10.18653/v1/p19-1279
https://doi.org/10.18653/v1/p19-1279
https://doi.org/10.18653/v1/p19-1279
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.129
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.129
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.129
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.1016/J.ARTINT.2023.103953
https://doi.org/10.1016/J.ARTINT.2023.103953
https://doi.org/10.1016/J.ARTINT.2023.103953
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2021.naacl-main.106
https://doi.org/10.18653/v1/2021.naacl-main.106
https://doi.org/10.18653/v1/2021.naacl-main.106
https://doi.org/10.18653/v1/2021.naacl-main.106
https://doi.org/10.18653/v1/2021.naacl-main.106
https://doi.org/10.18653/V1/2023.ACL-LONG.589
https://doi.org/10.18653/V1/2023.ACL-LONG.589
https://doi.org/10.18653/V1/2023.ACL-LONG.589
https://doi.org/10.48550/arXiv.2210.14299
https://doi.org/10.18653/v1/2023.acl-long.138
https://doi.org/10.18653/v1/2023.acl-long.138
https://doi.org/10.18653/v1/2023.acl-long.138


Computational Linguistics (Volume 1: Long Papers),901
pages 2450–2467, Toronto, Canada. Association for902
Computational Linguistics.903

Nan Xu, Fei Wang, Mingtao Dong, and Muhao Chen.904
2023c. Dense retrieval as indirect supervision for905
large-space decision making. In Findings of the As-906
sociation for Computational Linguistics: EMNLP907
2023, pages 15021–15033, Singapore. Association908
for Computational Linguistics.909

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.910
Crossfit: A few-shot learning challenge for cross-911
task generalization in NLP. In Proceedings of the912
2021 Conference on Empirical Methods in Natural913
Language Processing, EMNLP 2021, Virtual Event914
/ Punta Cana, Dominican Republic, 7-11 November,915
2021, pages 7163–7189. Association for Computa-916
tional Linguistics.917

Wenpeng Yin, Muhao Chen, Ben Zhou, Qiang Ning,918
Kai-Wei Chang, and Dan Roth. 2023. Indirectly919
supervised natural language processing. In Proceed-920
ings of the 61st Annual Meeting of the Association921
for Computational Linguistics: Tutorial Abstracts,922
ACL 2023, Toronto, Canada, July 9-14, 2023, pages923
32–40. Association for Computational Linguistics.924

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-925
marking zero-shot text classification: Datasets, eval-926
uation and entailment approach. In Proceedings of927
the 2019 Conference on Empirical Methods in Natu-928
ral Language Processing and the 9th International929
Joint Conference on Natural Language Processing,930
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-931
ber 3-7, 2019, pages 3912–3921. Association for932
Computational Linguistics.933

Wenpeng Yin, Dragomir R. Radev, and Caiming934
Xiong. 2021. Docnli: A large-scale dataset for935
document-level natural language inference. In Find-936
ings of the Association for Computational Linguis-937
tics: ACL/IJCNLP 2021, Online Event, August 1-6,938
2021, volume ACL/IJCNLP 2021 of Findings of ACL,939
pages 4913–4922. Association for Computational940
Linguistics.941

Haoxing Zhang, Xiaofeng Zhang, Haibo Huang, and Lei942
Yu. 2022. Prompt-based meta-learning for few-shot943
text classification. In Proceedings of the 2022 Con-944
ference on Empirical Methods in Natural Language945
Processing, EMNLP 2022, Abu Dhabi, United Arab946
Emirates, December 7-11, 2022, pages 1342–1357.947
Association for Computational Linguistics.948

Jian-Guo Zhang, Kazuma Hashimoto, Wenhao Liu,949
Chien-Sheng Wu, Yao Wan, Philip S. Yu, Richard950
Socher, and Caiming Xiong. 2020. Discriminative951
nearest neighbor few-shot intent detection by trans-952
ferring natural language inference. In Proceedings of953
the 2020 Conference on Empirical Methods in Nat-954
ural Language Processing, EMNLP 2020, Online,955
November 16-20, 2020, pages 5064–5082. Associa-956
tion for Computational Linguistics.957

Jingqing Zhang, Piyawat Lertvittayakumjorn, and Yike 958
Guo. 2019. Integrating semantic knowledge to tackle 959
zero-shot text classification. In Proceedings of the 960
2019 Conference of the North American Chapter 961
of the Association for Computational Linguistics: 962
Human Language Technologies, NAACL-HLT 2019, 963
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 964
(Long and Short Papers), pages 1031–1040. Associa- 965
tion for Computational Linguistics. 966

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and 967
Sameer Singh. 2021. Calibrate before use: Improv- 968
ing few-shot performance of language models. In 969
Proceedings of the 38th International Conference on 970
Machine Learning, ICML 2021, 18-24 July 2021, Vir- 971
tual Event, volume 139 of Proceedings of Machine 972
Learning Research, pages 12697–12706. PMLR. 973

Wenxuan Zhou, Sheng Zhang, Tristan Naumann, 974
Muhao Chen, and Hoifung Poon. 2023. Continual 975
contrastive finetuning improves low-resource relation 976
extraction. In Proceedings of the 61st Annual Meet- 977
ing of the Association for Computational Linguis- 978
tics (Volume 1: Long Papers), pages 13249–13263, 979
Toronto, Canada. Association for Computational Lin- 980
guistics. 981

A Appendix 982

A.1 Super-NaturalInstruction to BinBin 983

We convert Super-NaturalInstruction (Wang et al., 984

2022) into our binary schema for the Indirect Su- 985

pervision. Super-NaturalInstruction is a benchmark 986

In-context learning dataset with 757 train tasks and 987

119 test tasks. Each task includes a definition, 988

positive examples, negative examples, and thou- 989

sands of instances. A task example from Super- 990

NaturalInstruction is presented in Figure 6. We 991

select 100 instances from each task and convert 992

them into BinBin schema for Indirect Supervision 993

training as shown in Figure 7. 994

A.2 X-Shot data to BinBin 995

As discussed in Section 4.1, each X-Shot instance 996

is converted into the unified binary format to align 997

with BinBin. A detailed example from FewRel is 998

illustrated in Figure 5. 999

A.3 In-context Learning template 1000

For the in-context learning baseline, we provide 1001

3 demonstrations, 2 positive ones and 1 negative 1002

one, and let GPT-3.5 complete the label of the test 1003

instance. The template is as follows for FewRel: 1004
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Unified Schema:
Input: 
Definition: Given a sentence about two entities, return a relation between the two entities that can 
be referred from the sentence.
Positive Example 1 -

Sentence: Mount Storer ( ) is a jagged peak in the Tula Mountains , 4 nautical miles ( 7   
km ) east - northeast of Mount Harvey. 

Entity 1: Mount Harvey 
Entity 2: Tula Mountains 
Relation: mountain range 

Positive Example 2 -
Sentence: On the east side of the square stands the impressive mansion of Dundas House, 

built by Sir William Chambers for Sir Lawrence Dundas between 1772 and 1774 
Entity 1: Sir William Chambers
Entity 2: Dundas House
Relation: notable work

Now complete the following example -
Input: sentence: "3D Friends ( stylized as 3D FRIENDS ) is an American indie rock band 
from Austin , Texas 
Entity 1: 3D Friends
Entity 2: indie rock
Relation: genre / company

label: Yes No

Instruction 
Template

Instance  
for Prediction

Original Instance:
Sentence: "3D Friends ( stylized as 3D FRIENDS ) is an American indie rock 
band from Austin , Texas 
Entity 1: 3D Friends
Entity 2: indie rock 
Relation: genre

Figure 5: Classification to binary BinBin

Positive Examples

Definition

Negative Examples

Instances

In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is 
to choose the middle statement that makes the story coherent / plausible by writing \"1\" or \"2\" in the output. If 
both sentences are plausible, pick the one that makes most sense.

Input: Beginning: John was on the trail running. Middle 1: John accelerated the speed and broke his leg 
accidentally. Middle 2: John was chased by a bear. Ending: He ran even faster until he got to his car safely.
Output: 2
Explanation: When someone breaks his/her leg, it is difficult to run. Therefore, we choose 2 in this case.

Input: Beginning: Jon decided to steal a police car. Middle 1: Jon crashed the police car into a telephone poll. 
Middle 2: Jon wasn't caught. Ending: Jon went to prison for three years.
Output: Jon crashed the police car into a telephone poll.
Explanation: You should not answer with the chosen sentence. You should only answer with 1 or 2

Input: Beginning: Today I was cooking hamburgers inside. Middle 1: I burned my hand. Middle 2: I burned my 
feet. Ending: Now I have a blister.
Output: 1
……

Figure 6: Super-Naturalinstructions task example
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Task Definition: write an answer to a question that 
involves “event duration", based on a given 
sentence.
Positive Examples:

input:
output:...

Negative Examples
input:
output:...

Task Instances:
Instance 1:
Input: He layed down on the chair and pawed at 

her as she ran in a circle under it. Question: How 
long did he paw at her?

output: five minutes...

Input:
Definition: write an answer to a question that involves 
“event duration", based on a given sentence.
Positive Example 1 -
…
Positive Example 2 -
…
Now complete the following example -
Input:
Sentence: He layed down on the chair and pawed at her as 
she ran in a circle under it. Question: How long did he paw 
at her?"
Output: five minutes / three months

Yes Nolabel:

Figure 7: Super-Naturalinstructions to binary BinBin

Sentence: Pan was appointed director of
the National Academy (Zhejiang Academy
of Fine Arts) by the Kuomintang Ministers
Entity 1: Chen Lifu
Entity 2: Kuomintang
Relation: member of political party
Label: Yes

Sentence: Aldo Protti (July 19 ,1920
- August 10 , 1995 ) was an Italian
baritone opera singer
Entity 1: Aldo Protti
Entity 2: baritone
Relation: voice type
Label: Yes

Sentence: Part of DirectXDirect3D is
used to render three - dimensional
graphics in applications
Entity 1: DirectX
Entity 2: Direct3D
Relation: movement
Label: No

Sentence: The Suzuki GS500 is an entry
level motorcycle manufactured and
marketed by the Suzuki Motor Corporation.
Entity 1: Suzuki GS500
Entity 2: Suzuki Motor Corporation
Relation: winner
Label:

1005

A.4 BinBin Task Instuctions 1006

To prove the robustness of our model, we create 1007

3 versions of the task instructions for each of the 1008

datasets (FewRel, MAVEN, RAMS) as follows: 1009

FewRel
Instruction A: Given a sentence about two
entities, return a relation between the
two entities that can be inferred from
the sentence.
Instruction B: Your task is to identify
a relationship between two entities
mentioned in a given sentence.
Instruction C: Identify the relationship
between two entities in a given sentence
that can be inferred from the sentence.

1010

RAMS
Instruction A: Your task is to identify
the role of a specified argument within
a given sentence, in relation to an
identified event trigger.
Instruction B: Identify the role of the
argument given the event trigger within
the sentence.
Instruction C: Identify the role of the
argument given the event trigger within
the sentence.

1011
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MAVEN
Instruction A: Given the sentence and the
identified trigger word, determine the
most appropriate event category for this
trigger.
Instruction B: Identify the event type in
the sentence associated with the trigger
word.
Instruction C: Classify the event
represented by the trigger word in
the context of the following sentence.

1012

A.5 ACL ethics code discussion1013

• Scientific artifacts usage The existing Scientific1014

artifacts included in this work are the RoBERTa1015

model (Liu et al., 2019) and 3 NLP classification1016

datasets. The model and datasets used in this work1017

are publicly available for research purposes and do1018

not contain any sensitive information. Our use of1019

existing Scientific artifacts is consistent with their1020

intended usage.1021

The license, copyright information, and terms1022

of use information regarding BinBin, the asset we1023

proposed, will be specified once the code is re-1024

leased.1025

• Computational experiments The number of1026

parameters in the RoBERTa-large model is 355M.1027

Our system is trained on NVIDIA RTX A50001028

GPUs and takes 20 hours on average for a task on a1029

single GPU. We incorporate packages mainly from1030

huggingface for the modeling.1031
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