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Abstract

In recent years, few-shot and zero-shot learn-
ing, which learn to predict labels with limited
annotated instances, have garnered significant
attention. Traditional approaches often treat
frequent-shot (freq-shot; labels with abundant
instances), few-shot, and zero-shot learning as
distinct challenges, optimizing systems for just
one of these scenarios. Yet, in real-world set-
tings, label occurrences vary greatly. Some of
them might appear thousands of times, while
others might only appear sporadically or not
at all. For practical deployment, it is crucial
that a system can adapt to any label occurrence.
We introduce a novel classification challenge:
X -Shot, reflecting a real-world context where
freq-shot, few-shot, and zero-shot labels co-
occur without predefined limits. Here, X can
span from O to +o0. The crux of X-Shot cen-
ters on open-domain generalization and devis-
ing a system versatile enough to manage var-
ious label scenarios. To solve X-Shot, we
propose BinBin (binary inference based on
instruction following) that leverages the Indi-
rect Supervision from a large collection of NLP
tasks via instruction following, bolstered by
Weak Supervision provided by large language
models. BinBin surpasses preceding state-of-
the-art techniques on three benchmark datasets
across multiple domains. To our knowledge,
this is the first work addressing X -Shot learn-
ing, where X remains variable.!

1 Introduction

Over recent years, there’s been a growing focus in
Al on enhancing model performance while min-
imizing the need for extensive human labeling,
which is typically termed as few-shot or zero-shot.
Historically, the fields of frequent-shot, few-shot,
and zero-shot learning have been approached as dis-
tinct paradigms, with systems optimized separately
for each setting. Yet, in real-world scenarios, label
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frequencies can exhibit broad variation, with cer-
tain labels occurring prolifically, while others being
scarce or completely absent. Given this variabil-
ity, it becomes imperative to craft learning systems
adept at managing labels across the full frequency
spectrum. Regrettably, current few-shot systems
often fall short when confronted with zero-shot
challenges (Zhang et al., 2022; Cui et al., 2022;
Zhao et al., 2021). In contrast, zero-shot systems,
while adept in their domain, typically overlook the
potential benefits of available annotations (Zhang
et al., 2019; Obamuyide and Vlachos, 2018; Yin
et al., 2019; Xu et al., 2022). Thus, mastering the
ability to handle all conceivable label occurrences
is paramount for systems aiming for practical de-
ployment.

In this work, we introduce a more challenging
and practically useful task: X -Shot. This task mir-
rors real-world environments where label frequen-
cies span a continuum, seamlessly incorporating
frequent-shot, few-shot, and zero-shot instances,
all without a priori constraints. In this paradigm,
the variable X is unbounded, ranging freely within
the interval [0, +00). At the heart of X -Shot lies
the objective of attaining open-domain generaliza-
tion and architecting a system resilient across a
plethora of label scenarios.

Tackling X -Shot spawns two core technical co-
nundrums: (Q1) Amidst the paucity of annotations
characteristic of few-shot and zero-shot contexts,
how one might identify apt sources of Indirect Su-
pervision (Yin et al., 2023) to navigate the X -Shot
setting. (Qs) Traditional multi-class classifiers
grapple with the heterogeneity of label sizes across
tasks, often mandating distinct classification heads
tailored to these variations. Here, the challenge
is formulating a cohesive system capable of effec-
tively managing labels of diverse sizes.

To address Q;, we tap into the availability
of Indirect Supervision from instruction tuning
datasets, such as Super-Naturallnstruction (Wang



et al., 2022). These datasets primarily contain var-
ious NLP tasks enriched with textual instructions.
Our method trains the model on these datasets,
aiming for robust generalization to the unseen
X-Shot task when supplemented with pertinent
instructions, especially for the low-shot labels. For
Q», we advocate a triplet-oriented binary classifier.
This classifier functions by accepting a triplet of
(instruction, input, label), anticipating a bi-
nary response (‘“Yes” or “No”) that confirms the
suitability of the 1abel for the specified input un-
der the given instruction. Such a triplet-oriented
classifier acts as a cohesive architecture that man-
ages text classification tasks with labels of varied
sizes. By amalgamating solutions for both Q; and
Q», we forge a holistic framework, BinBin (binary
inference based on instruction following).

There are, however, no existing datasets that ex-
plicitly cater to this challenge. To evaluate our
system, we turn to three representative classifica-
tion tasks: relation classification, event detection,
and argument role identification. We recompile
their associated datasets: FewRel (Han et al., 2018),
MAVEN (Wang et al., 2020), and RAMS (Ebner
et al., 2020) to simultaneously contain frequent-
shot, few-shot, and zero-shot instances. Sourced
from diverse domains (Wikipedia, news articles,
etc.), and featuring vast label counts (ranging from
30 to 78), these datasets pose a formidable chal-
lenge to contemporary text classification systems.
Moreover, the MAVEN dataset uniquely integrates
an “None” label, further amplifying the realistic
nature of the task. Experiments reveal our system’s
resilience across datasets, consistently outperform-
ing leading baselines, including GPT-3.5.

Our contributions can be summarized as fol-
lows: (i) We introduce X -Shot, a hitherto under-
explored, open-domain open-shot text classifica-
tion problem that mirrors real-world complexities.
(i1)) We innovate a unique problem setting that re-
frames any text classification challenge into a bi-
nary classification task, adaptable to any number of
labels and occurrences. (iii) Our BinBin, harness-
ing the potential of instruction-following datasets,
excels past existing approaches, demonstrating ver-
satility across various domains, label magnitudes,
and classification paradigms.

2 Related Work

Few-shot Learning. Few-shot learning refers to
machine learning methods that can perform tasks

with only a few labeled training examples. This
technique has gained traction in NLP for two rea-
sons: (i) labeled data can be expensive to obtain and
(ii) extensive training or fine-tuning, particularly
with large models, can be both costly and unstable.
Ideally, a model would generalize from a handful of
examples, capturing the core knowledge. The main
challenge lies in effectively using limited labeled
samples for broad generalizations. Initially, the
approach to few-shot learning was metric-based,
focusing on a shared feature space and distance
metrics for label predictions (Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018). Recently,
Large Language Models (LLMs) have been recog-
nized as efficient few-shot learners. Fine-tuning
these pre-trained LLMs with minimal samples of-
ten produces notable results (Brown et al., 2020).
Additionally, due to the success of prompting in
GPT models, prompt-tuning has been applied to
tackle classification problems under few-shot set-
tings (Zhang et al., 2022; Cui et al., 2022; Zhao
et al., 2021). However, these methods do not typ-
ically manage zero-shot scenarios where certain
labels are without annotated data.

Zero-shot Learning. Building on the concept of
few-shot learning, we transition to the even more
challenging zero-shot learning where no labeled
examples are available. Early techniques in this
domain employed metrics to align texts and labels
in shared spaces (Chang et al., 2008; Qiao et al.,
2017). Later works adopted word embeddings from
pre-trained language models to represent the mean-
ing of the text or the label (Alcoforado et al., 2022;
Wang et al., 2023). Recent works have been enhanc-
ing the embedding representations by integrating
class hierarchy, class descriptions, and the word-to-
label paths found within ConceptNet (Zhang et al.,
2019). Today’s LLMs are so adept that they can
tackle NLP tasks without any labeled instances,
either by reformatting the classification tasks or
through in-context learning as seen with the GPT
models (Brown et al., 2020; Wei et al., 2022). Sim-
ilarly, an alternative approach is to calibrate and
score outputs from LLM models for the label as-
signment (Holtzman et al., 2021; Zhao et al., 2021;
Min et al., 2022). The latest trend in zero-shot
text classification leverages Indirect Supervision
from well-annotated NLP tasks such as text entail-
ment (Obamuyide and Vlachos, 2018; Yin et al.,
2019). However, these methods often underutilize
available annotations for labels.



Indirect Supervision There is a burgeoning in-
terest in Indirect Supervision (Yin et al., 2023) in
recent years. Here, easily available signals from
relevant tasks are used to aid in learning the target
task, especially when task-specific supervision is
in short supply. The technique of using entailment
for Indirect Supervision in zero-shot classification
was pioneered by (Yin et al., 2019) and has since
been adapted for a variety of NLP tasks, including
few-shot intent identification (Zhang et al., 2020;
Xu et al., 2023c), event argument extraction (Sainz
et al., 2022), entity typing (Li et al., 2022) and re-
lation extraction (Xia et al., 2021; Lu et al., 2022;
Xu et al., 2023b; Zhou et al., 2023). Beyond en-
tailment, knowledge from areas like question an-
swering (Yin et al., 2021), summarization (Lu et al.,
2022) and dense retrievers (Xu et al., 2023c) has
been incorporated. However, precious Indirect Su-
pervision is usually collected from a single source
task. Recent studies have demonstrated that mod-
ern language models, after fine-tuning on a plethora
of instruction-based tasks, can generalize to multi-
ple unseen tasks (Wang et al., 2022; Mishra et al.,
2022; Ye et al., 2021). Our work is inspired by the
observed efficacy of NLP models when given task
instructions and their ability to generalize knowl-
edge across tasks.

Unified Discriminative Classifier Previous re-
search, such as the work presented in (Xu et al.,
2023a), also attempts to transform classification
problems into binary tasks. While this system rep-
resents a discriminative classifier approach similar
to ours, there are several significant differences.
The most notable distinction is that it focuses ex-
clusively on zero-shot learning scenarios, whereas
our X -Shot encompasses the entire range of label
occurrences. Additionally, it relies solely on the in-
stance itself and therefore is less flexible than ours,
while our method utilizes instructions to enrich the
context and can be adapted to more diverse tasks.
Most importantly, this system benchmarks its per-
formance against generative models, rather than
comparing it with state-of-the-art (SOTA) systems
specifically designed for classification tasks.

3 Problem Statement

X -Shot has the following components:

* Input ¢: Versatile text in varied forms, lengths,
and domains.

Various text
classification
tasks

Figure 1: Our BinBin unifies various text classification
tasks as an instruction tuning problem. More details in
Appendix A.2

» Label space L: L contains arbitrary size of la-
bels: {---,l;,---} and an optional None label
(i.e., all labels in L are incorrect for the input).
Within L, each label can be either zero-shot, few-
shot, or more frequent.

Then, the task of X -Shot is to figure out label
Ls € L that is correct for the input ¢, where | L|
might be zero (i.e., “None”).

Research questions of X-Shot: i) Given that
the above formulation encompasses various text
classification problems, how can we move away
from constructing individual models for each prob-
lem, and instead develop a singular classifier adept
at handling diverse classification challenges? ii)
Beyond frequently-encountered labels, low-shot la-
bels necessitate additional supervision for effective
reasoning. Where can we source this supervision?
In the following section, we delve deeper into our
approach concerning the universal system and the
process of seeking supervision.

4 Methodology

This section outlines our approach BinBin to the
X-Shot problem. We first explain our process
of transforming all classification problems into a
unified binary classification framework. Next, we
discuss the type of supervision we gather to address
this problem with limited annotations.

4.1 BinBin architecture

We have devised a broad architecture that seam-
lessly transitions most classification tasks into a
unified, instruction-driven binary classification for-
mation. As depicted in Figure 1, for any text clas-
sification task with its set of inputs and labels, we
model it as (instruction, input, label) triplet.
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Figure 2: Indirect Supervision for BinBin. More details in Appendix A.1

The task then becomes determining if the label is
appropriate (“Yes”) or not (“No”) given the input
under the instruction. An example of the conver-
sion can be found in Appendix A.2.

BinBin can freely support classification tasks
with any number of labels. Instead of converting
labels into numerical IDs as traditional supervised
classifiers do, we retain the actual label names. Op-
tionally, we can also employ sophisticated verbal-
izers (Schick and Schiitze, 2021) to enhance the
expression of the label. This ensures a more in-
tuitive understanding of the relationship between
inputs and labels, all within the context of task
instructions.

BinBin paves the way to tackle a variety of low-
shot text classification tasks using an instruction-
guided approach. Two primary challenges arise: 1)
Ensuring that the model comprehends the instruc-
tions, and ii) guiding the model to identify seldom
seen or entirely new labels. We will delve deeper
into our supervision-seeking approaches to address
these challenges in the following subsections.

4.2 Supervision acquisition for low-shot labels

In this section, we will introduce how we conduct
and combine Indirect Supervision and Weak Super-
vision to solve X -Shot.

Indirect Supervision. Previous best-performing
systems for low-shot text classification have pri-
marily relied on Indirect Supervision from a single
source task. Examples of these source tasks include
natural language inference (Yin et al., 2019), sum-
marization (Lu et al., 2022) and passage retrieval
(Xu et al., 2023c). This approach presents three
main drawbacks: i) the usable supervision from
the single source task is finite, and there’s often a
domain mismatch between the source task and the
target classification tasks; ii) typically, instances of
the target problems need to be reformatted to align

with the specific source tasks to enable zero-shot
generalization—a process that’s frequently com-
plex; iii) there is not a universally adaptable sys-
tem to address the X -Shot situation, where labels
might vary in their visibility or frequency.

In this work, we leverage Indirect Supervi-
sion from an extensive assortment of NLP tasks.
The Super-Naturallnstruction dataset (Wang et al.,
2022) encompasses over 1,600 tasks across 76 cat-
egories. Each task is accompanied by instructions
and numerous input-output examples (example of
tasks in Appendix A.1). This dataset offers an
invaluable source of Indirect Supervision for our
target X-Shot. As illustrated in Appendix A.l,
for every task within the Super-Naturallnstruction
dataset, we are presented with the associated in-
struction as well as (input, gold output) pairs.
For each instance selected, we will randomly pick
one output from the task label space that is different
from the gold output, whether the task is generation
or classification. As a result, we obtain one positive
triplet (instruction, input, gold output) and
one negative triplet (instruction, input, random
output) for each example in our training dataset as
in Figure 2. Our Indirect Supervision stems from
this dataset training. When evaluated on bench-
mark classification tasks, we convert every sample
into triplets similarly, complemented by a human-
written instruction. For an instance with text ¢ and
positive label /, we add an instruction and craft | L |
triplets (instruction, t, [) for each label [ from
the label space L, with the gold label as positive
and the remainings as negative.

Through this Indirect Supervision, minor alter-
ations—be it a word or a few words—can pivot
the class completely. By enabling the model to
distinguish the positive and negative classes from
marginally tweaked inputs, we ensure the model
establishes more distinct decision boundaries.



Weak Supervision for zero-shot labels. In addi-
tion to Indirect Supervision, we aim to enhance our
model’s performance on zero-shot labels. Given
that we cannot procure annotated instances for
these labels, how can we enhance the model’s un-
derstanding of these labels without human inter-
vention or labeling? This is where we leverage
the capabilities of GPT-3.5 (Brown et al., 2020)
to produce weakly labeled examples. For generat-
ing instances related to zero-shot labels, we utilize
in-context learning. This involves a random se-
lection of demonstrations from either few-shot or
frequently labeled data. Below is a sample prompt
from Maven designed to generate text and event
trigger for a zero-shot event type label:

event type: Competition
event trigger: tournament
sentence: The final tournament was Played in two
stages: the group stage and the knockout stage.

event type: Motion

event trigger: throwing

sentence: Simultaneously, Sayhood gained a lock
on Rodriguez, throwing him onto the defensive.

event type: Manufacturing

In this approach, upon exposing GPT-3.5 to
event and event statement examples associated with
the event type labels “Competition” and “Motion”,
we introduce the zero-shot label “Manufacturing.”
Subsequently, GPT-3.5 generates an event trigger
along with an event statement, serving as a weakly
supervised instance for this unseen label.

Training strategy. We first train the ROBERTa-
large model (Liu et al., 2019) on the transformed
binary Super-Naturallnstruction dataset, then fine-
tune on the augmented instances of downstream
X -Shot tasks. The model used will be consistent
in all experiments and baselines.

5 Experiments

5.1 Experimental setting

Datasets. There are no existing datasets that can
exactly align with X -Shot. In this work, we stan-
dardize datasets that can cover (i) multiple domains,
(i1) various sizes of labels, and (iii) out-of-domain
label scenarios. Therefore, we recompile: FewRel
(Han et al., 2018), MAVEN (Wang et al., 2020), and
RAMS (Ebner et al., 2020), referring to relation
classification, event detection, and argument role
identification problems respectively. Next, we elab-
orate on the details of reorganizing each of them.

domain #freq #few #zero
FewRely _s,.: | Wikipedia 26 26 26
MAVENk .. | Wikipedia 23 23 23+1
RAMS ... |News articles 10 10 10

Table 1: Statistics of dataset labels.

We rename each resulting dataset as “[] x-shot.”
Details can be seen in Table 1.

* FewRel y_shot: FewRel is a well-established
relation classification dataset while each in-
stance provides a relation statement, two enti-
ties from the statement, and their corresponding
relation label. Since the test set of FewRel is
not available, we include 78 relations from its
train and dev and divide them into 26/26/26 as
freq/few/zero-shot labels. We put 500/5/0 in-
stances for each freq/few/zero label in the new
train, and 200 instances for each label in the
new dev and new test.

* MAVEN x_shot: The standard event detection
task in MAVEN includes two steps: detecting
the event trigger and predicting the event label
from the trigger. In this work, we will focus
on the second step, where we assume the event
trigger is known and aim to predict the corre-
sponding event label. The annotation of the orig-
inal test set is not publicly available. To make
MAVEN align with our setting, we reorganize its
train and dev sets as follows: since the event
label distribution is significantly imbalanced,
we adopt 69 of them who have 400+ instances
plus the “None” label as our label set. Labels
are divided into 23/23/23+1 as freq/few/zero-
shot labels with “None” belonging to the zero-
shot group. We put 300/5/0 instances for each
freq/few/zero label in the new train, and 100
instances for each label in the new dev and test.

* RAMS x_shot: RAMS tackles the task of iden-
tifying semantic role labels given the sentence
marked with event triggers and argument terms.
There are 30 labels that have more than 100 in-
stances; we split them into 10/10/10 for each
label group. Similarly, we put 300/5/0 instances
for each freq/few/zero label in the new train,
and 50 instances for each label in the new dev
and test.

Baselines. For baselines, we compare our sys-
tem with the current SOTA multi-way classification
model (for traditional frequent label setting), the



most advanced few-shot/zero-shot learning meth-
ods, and the in-context learning with GPT-3.5.

¢ Multi-way classification (MWC, (Soares et al.,
2019)) . This methodology is the prior SOTA
approach for relation classification. We employ
this strategy for all three datasets, given that they
all contain term features (entity, event trigger,
argument, etc.) within their inputs.

* In-context learning with GPT-3.5 (GPT-3.5).
We create a prompt that includes three demon-
strations, two positive and one negative, and
each comes with the input, prediction, and a
True/False label that indicates whether the pre-
diction is correct. The template can be seen in
Appendix A.3.

* Indirect Supervision from NLI (NLI; Li et al.
2022). The prior SOTA approach for address-
ing a zero-shot or few-shot classification with
Indirect Supervision from merely the NLI source
task. This paradigm uses the input text as the
premise and transforms the label into a hypothe-
sis sentence.

* Prototypical Prompt learning (PPL; Cui et al.
2022) The prior SOTA system for few-shot clas-
sification. For each of the dataset, we select 500
instances during training for prototype learning.
Since we want to be consistent with the freq,
few, and zero-shot learning approach, for freq
and few shot labels, we keep selecting instances
from the available instances until we reach the
number. For zero-shot labels, we simply put the
label itself as the text for the training.

Implementation details. We elaborate on our
implementation details at different stages here.

* Indirect Supervision. Consistent with the
original experimental setup, we select 100 ran-
dom instances from each task for training when
compiling the Indirect Supervision dataset from
Super-Naturallnstruction. Our prefix template fol-
lows the previous benchmark strategy, incorpo-
rating only the instruction and two positive ex-
amples—provided this inclusion doesn’t surpass
the word limit. When adjusting classification
tasks to fit BinBin, we draft three distinct instruc-
tion prompts and present the average outcomes to
demonstrate the system’s stability. All template are
available in Appendix A .4.

* Weak supervision. We use the “text-davinci-
003 GPT-3.5 completion model to augment zero-
shot instances. Temperature is set to 1.6 to ensure

more varied outputs and cap the maximum token
output from GPT-3.5 at 80. However, GPT-3.5
doesn’t always maximize this limit. For each zero-
shot label, we generate 5 instances to serve as Weak
Supervision.

* Prediction threshold. Both NLI baseline and
our method necessitate a threshold for assigning
label predictions. We use the probability of the
positive class the model produces for this purpose.
For FewRel and RAMS, the label with the highest
score is chosen. In MAVEN, we introduce a thresh-
old parameter, ¢. If the label receiving the highest
probability does not exceed this probability thresh-
old, we assign the label as “None”. We experiment
with various values of #, ranging from 0.5 to 1, and
select the optimal one based on dewv.

5.2 Results

Table 2 reports the main comparison between our
BinBin system and those baselines. Our model
consistently outperforms all baselines by a signif-
icant margin in the “all” and “zero” dimensions,
while occasionally showing slightly lower but on-
par performance with the baselines in “freq” and
“few”. Analyzing these baselines, we notice that
most are ill-suited for the X -Shot problem set-
ting, particularly in zero-shot scenarios where an-
notations are absent. MWC is entirely determined
by the number of label-wise training examples;
therefore, its performance, although pretty high for
“freq”, drops quickly to be 0.0 for “zero”. In a
similar vein, the few-shot prompting (PPL) base-
line encounters difficulties with unseen class in-
stances, underscoring the limitations of classifica-
tion models in the X -Shot context. NLI, represent-
ing the SOTA in low-shot learning settings, is the
only model adept at managing all three label sets.
Nonetheless, when pitted against BinBin, NLI’s
performance remains subpar in few-shot and zero-
shot situations. This indicates that, despite its com-
petency in handling sparse or non-existent annota-
tions, NLI’s capacity for reasoning and exploiting
limited supervision is inferior to our system.

As one of the most advanced closed-source
LLMs, GPT-3.5 shows limited effectiveness in this
task, with its performance across three label sets ap-
pearing strikingly similar. Although GPT-like mod-
els demonstrate robust capabilities in in-context
learning, they fall short in utilizing rich annota-
tions when available and often struggle in scenar-
ios with a vast decision space. This highlights the
flexibility of our BinBin in handling classification



Models FewRel y-snoc

RAMSX—Shot MAVENX—Shot

all freq few zero

all freq few zero all freq few zero

MWC (Soares et al., 2019) 49.82 94.23 55.23
NLI (Li et al., 2022)

GPT-3.5

0.0 34.47 78.40 25.00 0.0
63.46 95.35 48.81 46.22 43.07 71.40 20.40 37.40
PPL (Cui et al., 2022) 53.23 95.15 63.54 0.0 27.13 65.00 16.20 0.20
18.24 18.22 25.33 11.17 18.19 21.21 15.15 18.19

42.43 85.17 43.96 0.0
56.31 85.65 39.83 44.00
46.84 85.04 55.52 0.0
21.43 15.15 12.12 37.50

BinBin

68.48 94.06 58.04 53.34 54.70 77.00 29.00 58.07

64.96 84.32 46.64 63.97

Table 2: Main results on three benchmarks

EmE BinBin
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Performance
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MAVEN - snot

FewRely- shot

Figure 3: Ablation study of BinBin
labels of different sizes and #examples.

5.3 Analyses

In addition to reporting the main results, we fur-
ther analyze our system in the following dimen-
sions: (Q1) the individual contribution of our Indi-
rect Supervision and Weak Supervision; (Q2) why
does “zero” show better performance than “few” in
RAMSX—Shot and MAVENX—Shot? (Qg) Given
that our Indirect Supervision is derived from a di-
verse range of NLP tasks in Natural-Instruction
(Wang et al., 2022), is there a possibility of task
leakage? (Q4) When selecting source tasks for In-
direct Supervision in instruction-following, which
configuration is more effective: having more (di-
verse) tasks or having more (task-wise) instances?
(Qs) The efficiency of our system. (Qg) The mis-
takes our system makes.

(Q1) Ablation study. Figure 3 depicts the ab-
lation study, where either Indirect Supervision of
Weak Supervision is discarded from our system
BinBin. Our findings reveal that both supervision
sources fulfill complementary roles in the X -Shot
task. Encouragingly, while their combined usage
yields the best results, each type of supervision, on
its own, still significantly surpasses the baselines.
This underscores the efficiency of our system.

all freq few  zero
63.34 89.04 60.95 40.04
51.64 78.74 30.13 40.07
63.83 85.68 47.48 58.57

Table 3: Results of training BinBin after deleting top-10
similar tasks from Natural-Instruction. Bold numbers
indicate enhanced performance compared to the pre-
deletion state.

FewRel g0
RAMS x spot
MAVEN g0t

(Q2) Why do zero-shot labels outperform few-
shot labels in the MAVEN y ... and RAMS «_s.o.
benchmarks?  We observe that this phenomenon
applies not only to our system, but also to baselines
“NLI” and “GPT-3.5”. We suspect two reasons: 1)
Some zero-shot labels in RAMSx-shot sSeem easier
upon visual inspection; ii) In MAVEN x-shot, “None”
is treated as a zero-shot label in the test set, con-
tributing notably due to threshold tuning.

(Q3) Influence of Task Type Overlap. Although
the Natural-Instruction task repository doesn’t di-
rectly contain our target datasets, we still remove
the top 10 tasks closest to each test dataset to as-
sess the impact of similar tasks. The measurement
is based on cosine similarity between Sentence-
BERT (Reimers and Gurevych, 2019) embeddings
of the 757 training task definitions in the Natural-
Instruction dataset and each X -Shot test dataset’s
instruction.

From Table 3, we can observe that: i) The main
decreases when the top-10 similar tasks are deleted
happen to zero-shot labels. Recall that we only pro-
vided Weak Supervision for them; this phenomenon
indicates that pretraining on similar source tasks
can help diminish the impact of noise in the weakly
supervised data. ii) Despite slight decreases in
“all”, our results still surpass baselines in Table 2,
underscoring the value of diverse training tasks.
This is further supported by subsequent analysis.

(Q4) Number of Tasks vs Number of Instances.
Balancing the number of tasks and the number of
instances per task is pivotal in curating instruction-
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following datasets (Lou et al., 2023). We wonder,
by keeping the total instance count constant, should
we have more tasks or more instances per task?
We try [100,200.,..,700] for the varying number of
tasks, each with 100 instances. In total, we have
[10,000, 20,000, ... 70,000] instances. Accord-
ingly, for the varying number of instances per task,
we have datasets with [10,000/757, 20,000/757, ...
70,000/757] number of instances. The overall in-
stances remain the same in each step. From Figure
4, it’s evident that both task count and instance
count boost performance. While increasing either
is beneficial, having more (diverse) tasks has a
greater impact than adding more instances to each
task. Given these insights, future work should fo-
cus on diversifying the types of tasks exposed to
the model, considering data constraints.

(Qs5) Efficiency Analysis. Efficiency concerns
center around the inference stage, where our sys-
tem, like “NLIL” converts varied-label classification
problems into a binary inference task. Training of
our system takes more time due to pretraining on
Natural-Instruction, but during testing, both sys-
tems are equally efficient as they make binary deci-
sions for each label candidate.

(Qg) Error Analysis.
errors as follows:

* Multiple labels make sense In datasets with
a large number of labels, it is often feasible for
more than one label to appropriately fit the context.
Sometimes, the model’s interpretation may align
more accurately with certain perspectives than the
original data. Consider the example from RAMS
dataset: “Many high - ranking figures in companies
tied to Skolkovo have also donated to the Clinton
Foundation” While the ground truth label for the
argument “Clinton Foundation” is “recipient”, the

We collect the most typical

model strongly suggests “beneficiary”’—a label that
is equally justifiable.

* Bias towards more frequent labels It’s quite
common for multiple labels to have overlapping
semantic meanings. In such scenarios, the model
tends to favor the labels it encounters more fre-
quently. For example, consider a sentence from
the FewRel dataset: “The Spanish - Andorran bor-
der runs 64 km between the south of Andorra and
northern Spain ( by the autonomous community
of Catalonia ) in the Pyrenees Mountains.”. Here,
the entities are “Catalonia” and “autonomous com-
munity”. Although the gold relation for the two
entities is “instance of”’, the model assigns the high-
est probability to “part of "—a frequent group label.
This suggests that not only does the label share
semantic similarities with others, but its frequent
occurrence also biases the prediction, especially
when many labels lead to potential confusion.

* identifying reciprocal or inverse relation-
ships This issue arises when the model struggles to
differentiate between roles that are directly related
to each other but represent opposite positions in a
given context, such as in a “receiver” and “giver”
scenario while both roles are part of the same trans-
action, but the model confuses who is who. For
instance, in a sentence from RAMS “She was shout-
ing , ‘I am a terrorist,” and reportedly threatened
to blow herself up . ...... he could n’t believe that
the decapitated child ’s head being carried by the
woman was real.” where “she” is a “killer”. How-
ever, the model incorrectly labels “she” as a “vic-
tim”, demonstrating the difficulty in accurately dis-
cerning reciprocal roles.

6 Conclusion

This work introduces X -Shot, a challenging text
classification framework where labels range from
non-existent to frequent. X -Shot reflects realis-
tic scenarios where we encounter frequent-shot (or
freg-shot), few-shot, and zero-shot labels simul-
taneously. Our innovative approach recasts any
text classification issue into a binary task, handling
varying label amounts and frequencies. We intro-
duce BinBin to navigate this intricate challenge,
leveraging instruction Indirect Supervision and
PLMs’ Weak Supervision. Our approach consis-
tently outperforms the latest methods across three
benchmark datasets crossing multiple domains and
diverse label occurrence.



Limitation

One of the primary limitations of our model is its
efficiency, particularly when handling datasets with
a large number of labels when converting the origi-
nal task into a binary task. This results in extended
training times and increased computational efforts.
It is important to note that this limitation is not
an isolated challenge for our model; it aligns with
the experiences reported in previous state-of-the-
art models. Future work can focus on optimizing
the training process to enhance efficiency without
compromising the model’s performance.
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A Appendix

A.1 Super-Naturallnstruction to BinBin

We convert Super-Naturallnstruction (Wang et al.,
2022) into our binary schema for the Indirect Su-
pervision. Super-Naturallnstruction is a benchmark
In-context learning dataset with 757 train tasks and
119 test tasks. Each task includes a definition,
positive examples, negative examples, and thou-
sands of instances. A task example from Super-
Naturallnstruction is presented in Figure 6. We
select 100 instances from each task and convert
them into BinBin schema for Indirect Supervision
training as shown in Figure 7.

A.2 X-Shot data to BinBin

As discussed in Section 4.1, each X -Shot instance
is converted into the unified binary format to align
with BinBin. A detailed example from FewRel is
illustrated in Figure 5.

A.3 In-context Learning template

For the in-context learning baseline, we provide
3 demonstrations, 2 positive ones and 1 negative
one, and let GPT-3.5 complete the label of the test
instance. The template is as follows for FewRel:


https://aclanthology.org/2023.findings-emnlp.1002
https://aclanthology.org/2023.findings-emnlp.1002
https://aclanthology.org/2023.findings-emnlp.1002
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2023.acl-tutorials.5
https://doi.org/10.18653/v1/2023.acl-tutorials.5
https://doi.org/10.18653/v1/2023.acl-tutorials.5
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2021.findings-acl.435
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://doi.org/10.18653/v1/2022.emnlp-main.87
https://doi.org/10.18653/v1/2020.emnlp-main.411
https://doi.org/10.18653/v1/2020.emnlp-main.411
https://doi.org/10.18653/v1/2020.emnlp-main.411
https://doi.org/10.18653/v1/2020.emnlp-main.411
https://doi.org/10.18653/v1/2020.emnlp-main.411
https://doi.org/10.18653/v1/n19-1108
https://doi.org/10.18653/v1/n19-1108
https://doi.org/10.18653/v1/n19-1108
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739
https://doi.org/10.18653/v1/2023.acl-long.739

Instruction
Template

Instance
for Prediction

Original Instance:
Sentence: "3D Friends ( stylized as 3D FRIENDS ) is an American indie rock
band from Austin , Texas
Entity 1: 3D Friends
Entity 2: indie rock
Relation: genre

Unified Schema:
Input:

Definition: Given a sentence about two entities, return a relation between the two entities that can

be referred from the sentence.
Positive Example 1 -

Sentence: Mount Storer (') is a jagged peak in the Tula Mountains , 4 nautical miles ( 7

km ) east - northeast of Mount Harvey.
Entity 1: Mount Harvey
Entity 2: Tula Mountains

Relation: mountain range
Positive Example 2 -

Sentence: On the east side of the square stands the impressive mansion of Dundas House,

built by Sir William Chambers for Sir Lawrence Dundas between 1772 and 1774
Entity 1: Sir William Chambers
Entity 2: Dundas House
Relation: notable work

Now complete the following example -

Input: sentence: "3D Friends ( stylized as 3D FRIENDS ) is an American indie rock band

from Austin , Texas
Entity 1: 3D Friends
Entity 2: indie rock
Relation: genre / company

label: Yes No

Figure 5: Classification to binary BinBin

In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is
to choose the middle statement that makes the story coherent / plausible by writing \"1\" or \"2\" in the output. If
\both sentences are plausible, pick the one that makes most sense.

J
4 )
Input: Beginning: John was on the trail running. Middle 1: John accelerated the speed and broke his leg
accidentally. Middle 2: John was chased by a bear. Ending: He ran even faster until he got to his car safely.
Output: 2
Explanation: When someone breaks his/her leg, it is difficult to run. Therefore, we choose 2 in this case. )
Input: Beginning: Jon decided to steal a police car. Middle 1: Jon crashed the police car into a telephone poll.
Middle 2: Jon wasn't caught. Ending: Jon went to prison for three years.
Output: Jon crashed the police car into a telephone poll.
\Explanation: You should not answer with the chosen sentence. You should only answer with 1 or 2 )

rInput: Beginning: Today I was cooking hamburgers inside. Middle 1: I burned my hand. Middle 2: I burned my )
feet. Ending: Now I have a blister.

Output: 1

Figure 6: Super-Naturalinstructions task example
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Task Definition: write an answer to a question that
involves “event duration", based on a given
sentence.
Positive Examples:

input:

output:

Negative Examples
input:
output:

Task Instances:
Instance 1:

Input: He layed down on the chair and pawed at
her as she ran in a circle under it. Question: How
long did he paw at her?

output: five minutes

Input:

Definition: write an answer to a question that involves
“event duration", based on a given sentence.
Positive Example 1 -

Positive Example 2 -

Now complete the following example -

Input:

Sentence: He layed down on the chair and pawed at her as
she ran in a circle under it. Question: How long did he paw
at her?"

Output: five minutes / three months

label: Yes No

Figure 7: Super-Naturalinstructions to binary BinBin

Sentence: Pan was appointed director of
the National Academy (Zhejiang Academy
of Fine Arts) by the Kuomintang Ministers
Entity 1: Chen Lifu

Entity 2: Kuomintang

Relation: member of political party

Label: Yes

Sentence: Aldo Protti (July 19 1920
August 10 , 1995 ) was an Italian
baritone opera singer

Entity 1: Aldo Protti

Entity 2: baritone

Relation: voice type

Label: Yes
Sentence: Part of DirectXDirect3D is
used to render three - dimensional

graphics in applications
Entity 1: DirectX

Entity 2: Direct3D

Relation: movement

Label: No

Sentence: The Suzuki GS500 is an entry
level motorcycle manufactured and
marketed by the Suzuki Motor Corporation.
Entity 1: Suzuki GS500

Entity 2: Suzuki Motor Corporation

Relation: winner

Label:

A.4 BinBin Task Instuctions

To prove the robustness of our model, we create
3 versions of the task instructions for each of the
datasets (FewRel, MAVEN, RAMS) as follows:

FewRel

Instruction A: Given a sentence about two
entities, return a relation between the
two entities that can be inferred from
the sentence.

Instruction B: Your task is to identify
a relationship between two entities
mentioned in a given sentence.

Instruction C: Identify the relationship

between two entities in a given sentence
that can be inferred from the sentence.

RAMS

Instruction A: Your task is to identify
the role of a specified argument within
a given sentence, in relation to an
identified event trigger.

Instruction B: Identify the role of the
argument given the event trigger within
the sentence.

Instruction C: Identify the role of the

13

argument given the event trigger within
the sentence.




MAVEN

Instruction A: Given the sentence and the
identified trigger word, determine the
most appropriate event category for this
trigger.

Instruction B: Identify the event type in
the sentence associated with the trigger
word.

Instruction C:  Classify the event
represented by the trigger word in
the context of the following sentence.

A.5 ACL ethics code discussion

* Scientific artifacts usage The existing Scientific
artifacts included in this work are the RoBERTa
model (Liu et al., 2019) and 3 NLP classification
datasets. The model and datasets used in this work
are publicly available for research purposes and do
not contain any sensitive information. Our use of
existing Scientific artifacts is consistent with their
intended usage.

The license, copyright information, and terms
of use information regarding BinBin, the asset we
proposed, will be specified once the code is re-
leased.

* Computational experiments The number of
parameters in the RoOBERTa-large model is 355M.
Our system is trained on NVIDIA RTX A5000
GPUs and takes 20 hours on average for a task on a
single GPU. We incorporate packages mainly from
huggingface for the modeling.
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