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Abstract—The evolution patterns of land cover types exhibit 

similarities, which increases the difficulty of high-precision 

temporal land cover classification tasks. Utilizing satellite image 

time series (SITS) data can effectively capture the spatiotemporal 

features of land surface changes. This paper proposes a novel 

spatiotemporal dynamic graph isomorphism network (STDGIN) 

for the classification of SITS data. The STDGIN consists of the 

temporal graph network module and the temporal continuity 

module. First, each band of SITS is combined into nodes using 

aggregation convolution, and the dynamic adjacency matrix is 

designed to enable information transmission between graphs. 

Then, the hierarchical information of the graph and the local 

spatiotemporal features of SITS are captured using the node 

aggregation mechanism. Concurrently, the Bi-LSTM-based 

module is constructed to capture the temporal continuity features 

of SITS. Finally, the two features are fused into spatiotemporal 

representations, and land categories are predicted using a linear 

classifier. Simulation results indicate that the STDGIN can 

achieve superior performance on a public SITS dataset (TiSeLaC). 

Keywords—satellite image time series classification, temporal 

graph, long short-term memory network, representation learning 

I. INTRODUCTION  

With the ongoing changes in the environment, the continual 
updating of land cover data is crucial for land decision-making. 
Scientifically classifying land cover types not only improves the 
quality of surveys and maps, but also helps to organize land use 
and production. Traditional single-time-point remote sensing 
data has limitations in distinguishing land cover types with 
similar structures and spectral features. Therefore, satellite 
image time series (SITS) data is used to improve the accuracy of 
land cover classification problems. 

Over the past few years, various methods have been used to 
solve SITS classification problems. Among them, methods 
utilizing deep learning have achieved significant results in 
improving SITS classification performance. Some scholars use 
recurrent neural network-based methods, such as Long Short-
Term Memory (LSTM) ([1]) and Bidirectional Long Short-
Term Memory (Bi-LSTM) ([2]), to extract temporal continuity 
features from SITS. Since convolutional neural networks (CNN) 
perform well on multivariate time series (MTS) data, TempCNN 
([3]) is proposed to extract local temporal features with different 

convolutional kernel sizes. As the attention mechanism has been 
widely applied in deep learning, the GL-TAE ([4]) utilizes 
global and local attention encoders to classify SITS data. 
Besides, some graph neural network-based models are also 
applied in extracting correlative features from MTS data. 
Todynet ([5]) is constructed to capture local spatiotemporal 
dependencies by dynamically constructing graph structures. FC-
STGNN ([6]) is designed to capture sensor correlations at 
different timestamps by using fully connected graph 
convolution. 

Although existing methods achieve impressive classification 
results, extracting temporal continuity features and local 
spatiotemporal correlation features from SITS data for 
classification is still an interesting problem. Driven by these 
insights, in this paper a novel Spatial-Temporal Dynamic Graph 
Isomorphism Network (STDGIN) is designed for SITS data 
classification task. The key contributions of this paper are listed 
below: 

• The proposed STDGIN model performs pixel-level 
classification of SITS data and solves the issue of 
classifying multi-temporal Landsat-8 satellite remote 
sensing images. 

• In STDGIN, the aggregation convolution layer combines 
different bands of SITS data into nodes. And the dynamic 
weight matrix allows information to flow between 
different temporal graphs. These information can 
improve the performance of extracting local 
spatiotemporal correlation features from SITS. 

The rest of this paper is structured as follows: A spatial-
temporal graph isomorphism network that jointly captures 
temporal continuity features and local spatiotemporal 
correlation features is established in Section II. The 
effectiveness of the STDGIN is validated through some 
experiments in Section III. The conclusion is provided in 
Section IV. 

II. SPATIOTEMPORAL DYNAMIC GRAPH ISOMORPHISM 

NETWORK 

In this section, the STDGIN model is proposed, and the 
architecture is shown in Fig. 1. A series of remote sensing 



images are the input values, and pixel-level segmentation is used 
to generate SITS data 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝐿]

T ∈ ℝ𝐿×𝑑, where 𝐿 is 

the number of time steps, 𝒙𝑙 = [𝑥𝑙,1, 𝑥𝑙,2, … , 𝑥𝑙,𝑑]
T ∈ ℝ1×𝑑  is 

the band vector at time step 𝑙(𝑙 = 1,2, … , 𝐿) , and 𝑑  is the 
number of band sensors at each time step. The STDGIN is split 
into two components: the temporal graph module and the 
temporal continuity module. The input 𝑿 is processed by the 
temporal graph module to obtain the local spatiotemporal 
correlation features vector 𝑺𝐺,  and by the temporal continuity 
module to obtain the temporal continuity features vector 𝒁𝐺 .
Then, these features are concatenated to construct the 
spatiotemporal representation vector 𝑼 . Finally, 𝑼  is passed 
through a linear layer to obtain the model's prediction output 𝒚̂. 

Fig. 1. Architecture of the STDGIN model 

A. Temporal Graph Module 

The temporal graph module is composed of 𝑁𝐺 stacked 
aggregation convolutional layers, message passing layers, and 
node aggregation layers. 

Building on the principles of 1D-CNN ([7]), which 
effectively captures temporal features through convolutional 
operations, the sliding convolutional kernel in the aggregation 
convolutional layer is employed to extract local spatiotemporal 
correlation features from SITS data. The input SITS data 𝑿 is 

equally divided into 𝑇  time slots by 𝑠 , denoted by 𝑿̃ =
[𝒙1, 𝒙2, … , 𝒙𝑇]

T  ∈ ℝ𝑇×𝑠×𝑑,  where 𝑠 is a factor of the time steps 

𝐿, and 𝒙𝒕 = [𝒙(𝑡−1)𝑠+1, … , 𝒙𝑡𝑠]
T ∈ ℝ𝑠×𝑑.    Since the structure 

of the initial layer in the aggregation convolutional layer is 
different from the subsequent layers, the aggregation 
convolution operations of the initial layer and the subsequent 
layers are explained separately. 

The generation process of the node feature 𝒉𝑡,𝑖
(1)

∈ ℝ1×𝑑(1)
 for 

the 𝑖 -th (𝑖 = 1,2, … , 𝐶(1))  channel in the initial layer is 
expressed as follows: 

𝒉𝑡,𝑖
(1)

= 𝒙𝑡 ∗ 𝑾𝐻,𝑖
(1)

+ 𝒃𝐻,𝑖
(1)

= ∑ 𝒘𝐻,𝑖,𝑗
(1)

⨀𝒙(𝑡−1)⋅𝑠+𝑗

𝑠

𝑗=1
+ 𝒃𝐻,𝑖

(1) (1) 

where 𝐶(1)  is the number of channels expanded by the 

aggregation convolution in the initial layer, 𝑾𝐻,𝑖
(1)

=

[𝒘𝐻,𝑖,1
(1)

, 𝒘𝐻,𝑖,2
(1)

, … ,𝒘𝐻,𝑖,𝑠
(1)

]T ∈ ℝ𝑠×𝑑  is the convolutional kernel 

of the 𝑖 -th channel, 𝒘𝐻,𝑖,𝑗
(1)

∈ ℝ1×𝑑  is the element at the 𝑗-th 

position in the convolutional kernel, ⨀  is the Hadamard 

product, 𝒃𝐻,𝑖
(1)

∈ ℝ1×𝑑 is the bias in the convolutional kernel of 

the 𝑖-th channel, and the output of all channels in the initial layer 

is 𝑯𝑡
(1)

= [𝒉𝑡,1
(1)

, 𝒉𝑡,2
(1)

, … , 𝒉
𝑡,𝐶(1)
(1)

]T ∈ ℝ𝐶(1)×𝑑. 

The generation process of the node feature 𝒉𝑡,𝑖
(𝑛)

∈ ℝ1×𝑑(𝑛)
 for 

the 𝑖-th (𝑖 = 1,2, … , 𝐶(𝑛)) channel in the 𝑛-th (𝑛 = 2,3, … , 𝑁𝐺) 
layer is expressed as: 

𝒉𝑡,𝑖
(𝑛)

= 𝑺𝑡
(𝑛−1)T

∗ 𝑾𝐻
(𝑛)

+ 𝒃𝐻
(𝑛)

= ∑ (𝑾𝐻,𝑖
(𝑛)

⨀𝑺𝑡
(𝑛−1)T

+ 𝒃𝐻,𝑖
(𝑛)

)
𝐶(𝑛)

𝑖=0

(2) 

where 𝑺𝑡
(𝑛−1)

= [𝑺𝑡,1
(𝑛−1)

, 𝑺𝑡,2
(𝑛−1)

, … , 𝑺
𝑡,𝑑(𝑛)
(𝑛−1)

]T ∈ ℝ𝑑(𝑛)×𝐶(𝑛−1)
 is 

the output of the previous layer at time slot 𝑡, 𝑺𝑡
(0)

= 𝒙𝑡
T

 and 

𝑾𝐻
(𝑛)

= [𝑾𝐻,1
(𝑛)

,𝑾𝐻,2
(𝑛)

, … ,𝑾
𝐻,𝐶(𝑛)
(𝑛)

]T ∈ ℝ𝐶(𝑛)×𝐶(𝑛−1)×𝑑(𝑛)
 is the 

convolutional kernel of the 𝑛-th layer. 𝑾𝐻,𝑖
(𝑛)

∈ ℝ𝐶(𝑛−1)×𝑑(𝑛)
 is 

the element of 𝑾𝐻
(𝑛)

 for the 𝑖 -th channel. The output of all 

channels in the 𝑛-th layer is 𝑯𝑡
(𝑛)

= [𝒉𝑡,1
(𝑛)

, 𝒉𝑡,2
(𝑛)

, … , 𝒉
𝑡,𝐶(𝑛)
(𝑛)

]T ∈

ℝ𝐶(𝑛)×𝑑(𝑛)
. 

At this stage, it is considered that 𝑇 is the count of graphs in 

the temporal graph, 𝐶(𝑛) is the feature dimension of each graph 

node in the 𝑛-th layer, and 𝑑(𝑛)(𝑑(1) = 𝑑) is the count of nodes 

in the 𝑛-th layer. Let  𝑯̂𝑡
(𝑛)

be the transpose of 𝑯𝑡
(𝑛)T

. The output 

of the aggregation convolutional layer is 𝑯̂(𝑛) =

[𝑯̂1
(𝑛)

, 𝑯̂2
(𝑛)

, … , 𝑯̂𝑇
(𝑛)

]T ,where 𝑯̂𝑡
(𝑛)

= [𝒉̂𝑡,1
(𝑛)

, 𝒉̂𝑡,2
(𝑛)

, … , 𝒉̂
𝑡,𝑑(1)
(𝑛)

]T , 

and 𝒉̂𝑡,𝑣
(𝑛)

 is the node feature of the 𝑣-th (𝑣 = 1,2, … , 𝑑(𝑛)) node 

at time slot 𝑡 in the 𝑛-th layer. 

Since there is no predefined adjacency matrix for SITS data, 

the initial adjacency matrix 𝑨(1) = [𝑨1
(1)

, 𝑨2
(1)

, … , 𝑨𝑇
(1)

]T ∈

ℝ𝑇×𝑑(1)×𝑑(1)
 is constructed using the random initialization 

method ([5]). Specifically, 𝑨𝑡
(1)

 is the adjacency matrix for the 

time slot  𝑡(𝑡 = 1,2, … , 𝑇)  in the initial layer. To ensure that 
nodes retain their own features during each message-passing 
process and do not rely entirely on the features of neighboring 

nodes, the adjacency matrix 𝑨(𝑛) is symmetrically normalized 

to generate 𝑨̂𝑡
(𝑛)

∈ ℝ𝑑(𝑛)×𝑑(𝑛)
.  

𝑨̂𝑡
(𝑛)

= 𝑫̃𝑡
(𝑛)−

1
2(𝑨𝑡

(𝑛)
+ 𝑰)𝑫̃𝑡

(𝑛)−
1
2 (3) 

where 𝑫̃𝑡
(𝑛)

 represents the degree matrix of (𝑨𝑡
(𝑛)

+ 𝑰), and 𝑰 

represents the identity matrix, and the normalized adjacency 

matrix is  𝑨̂(𝑛) = [𝑨̂1
(𝑛)

, 𝑨̂2
(𝑛)

, … , 𝑨̂𝑇
(𝑛)

]T ∈ ℝ𝑇×𝑑(𝑛)×𝑑(𝑛)
. 

Then, 𝑯̃(𝑛) and 𝑨̂𝑡
(𝑛)

 are input into the message passing layer. 

Graph isomorphism networks (GIN) ([8]) are used for 
processing static graph data and perform well in node message 
passing. To improve their ability to handle SITS data and to be 



applicable to temporal graph structures, dynamic adjacency 
matrices are designed for GIN. This improvement  allows the 
model to better capture the dynamic flow of information 
between different time slots and enhances its effectiveness in 

SITS analysis. Specifically, dynamic adjacency matric 𝑸̂(𝑛) =

[𝑸̂1
(𝑛)

, 𝑸̂2
(𝑛)

, … , 𝑸̂𝑇−1
(𝑛)

]T ∈ ℝ(𝑇−1)×𝑑(𝑛)×𝑑(𝑛)
 is designed for each 

layer using the Xavier method ,where 𝑸̂𝑡
(𝑛)

 is the dynamic 

weight matrix for the 𝑡-th time slot graph relative to the (𝑡 + 1)-
th time slot graph in the 𝑛 -th layer. The message passing 
equation is expressed as: 

𝒉̃𝑡,𝑣
(𝑛)

= (1 + 𝜖(𝑛))𝒉̂𝑡,𝑣
(𝑛)

+ ∑ 𝑎̂𝑡,𝑖,𝑣
(𝑛)

𝑑(𝑛)

𝑖=0
𝒉̂𝑡,𝑣

(𝑛)

+∑ 𝑞̂𝑡−1,𝑗,𝑣
(𝑛)

𝑑(𝑛)

𝑗=0
𝒉̂𝑡−1,𝑣

(𝑛)

(4) 

where, 𝒉̃𝑡,𝑣
(𝑛)

∈ ℝ1×𝐶(𝑛)
, 𝜖(𝑛)  is a learnable parameter. 𝑎̂𝑡,𝑖,𝑣

(𝑛)
 

denotes the element in the 𝑖 -th row and 𝑣 -th column of the 

adjacency matrix 𝑨̂𝑡
(𝑛)

. 𝑞̂𝑡−1,𝑗,𝑣
(𝑛)

 denotes the element in the 𝑗-th 

row and 𝑣-th column of the adjacency matrix 𝑸̂𝑡−1
(𝑛)

, and 𝒉̂𝑡−1,𝑣
(𝑛)

 
is the feature of the 𝑣-th node in the (𝑡 − 1)-th time slot. After 
message passing, all node features are obtained which are 

denoted by 𝑯̃𝑡
(𝑛)

= [𝒉̃𝑡,1
(𝑛)

, 𝒉̃𝑡,2
(𝑛)

, … , 𝒉̃
𝑡,𝑑(𝑛)
(𝑛)

]T. 

Furthermore, to address the problem of gradient vanishing 
and exploding, and to improve the model's expressiveness and 
training stability, residual connections are used between the 
aggregation convolution layer and the message-passing layer. 

Residual connections generate the input 𝑴̃𝑡
(𝑛)

= 𝑯̂𝑡
(𝑛)

+ 𝑯̃𝑡
(𝑛)

 

for the node aggregation layer. 

In the node aggregation layer, 𝑴̃𝑡
(𝑛)

is input into the node 

aggregation layer, where the DiffPool method ([9]) is considered 
to aggregate nodes and refine the hierarchical representation of 

the graph structure. The process of generating the output 𝑺𝑡
(𝑛)

∈

ℝ𝑑(𝑛+1)×𝐶(𝑛)
 for the 𝑡-th time slot in the 𝑛-th layer is computed 

by the following equation: 

𝑺𝑡
(𝑛)

= 𝜙𝑅𝑒𝐿𝑈(𝑷𝑡
(𝑛)

𝑴̃(𝑛)) (5) 

where, 𝜙𝑅𝑒𝐿𝑈(⋅)  is the ReLU activation function, 𝑷(𝑛) =

[𝑷1
(𝑛)

, 𝑷2
(𝑛)

, … , 𝑷𝑇
(𝑛)

]T ∈ ℝ𝑇×𝑑(𝑛+1)×𝑑(𝑛)
 represents the learnable 

intermediate matrix for the 𝑛-th layer, initialized by the Xavier 
method. The adjacency matrix for the 𝑡-th time slot in the next 

layer 𝑨𝑡
(𝑛+1)

 is computed by the following equation: 

𝑨𝑡
(𝑛+1)

= 𝑷𝑡
(𝑛)

𝑨𝑡
(𝑛)

𝑷𝑡
(𝑛)T (6) 

𝑺(𝑛)  and 𝑨𝑡
(𝑛+1)

 are input into the aggregation convolution 

layer of the (𝑛 + 1)-th layer, and this process is repeated until 

the 𝑁𝐺 -th layer. The feature 𝑺(𝑁𝐺) =

[𝑺1
(𝑁𝐺)

, 𝑺2
(𝑁𝐺)

, … , 𝑺𝑇
(𝑁𝐺)

]T ∈ ℝ𝑇×𝑑(𝑁𝐺+1)×𝐶(𝑁𝐺)
 of the entire 

graph can be obtained, where 𝑑(𝑁𝐺+1)  indicates the count of 

nodes in the final layer's output and 𝐶(𝑁𝐺) represents the feature 
dimension of the nodes in the final layer. 

In the average pooling layer, 𝑺(𝑁𝐺) is sent to average pooling 

to obtain the output feature of the graph learning module, 𝑺𝐺 ∈
ℝ1×𝑑𝐺. The process of the average pooling operation is shown 
as follows: 

𝑺𝐺 =
1

𝑇
∑ 𝑺𝑡

(𝑁𝐺)
𝑇

𝑡=1
(7) 

where 𝑇 represents the number of time slot graphs. Hence, the 
local spatiotemporal correlation features 𝑺𝐺 is obtained. 

B. Temporal Continuity Module 

The temporal continuity module is composed of 𝑁𝐿  Bi-
LSTM layers. The input for the initial layer is the SITS data 
sample 𝑿. The output from each layer acts as the input for the 
subsequent layer. The output of the 𝑁𝐿 -th layer, after batch 
normalization, is the temporal continuity features 𝒁𝐺 . 

The input SITS data is 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝐿]
𝑇 ∈ ℝ𝐿×𝑑, where 

𝒙𝑙 ∈ ℝ1×𝑑 is the input feature vector at the 𝑙-th time step 𝑙(𝑙 =
1,2, … , 𝐿). The forward hidden state output of the Bi-LSTM at 

the 𝑙-th time step of the 𝑛-th layer 𝑛(𝑛 = 1,2, … , 𝑁𝐿) is 𝒁⃗⃗ 𝑙
(𝑛)

∈

ℝ1×𝑢(𝑛)
, which is derived from the hidden state output of the 

previous layer 𝒁⃗⃗ 𝑙
(𝑛−1)

 at the previous time step. The feature 

dimension of the hidden state output at the 𝑛-th layer is 𝑢(𝑛). 

The initial state 𝒁⃗⃗ 𝑙
(0)

 is set to 𝒙𝑙 ∈ ℝ1×𝑢(0)
 with 𝑢(0) = 𝑑. 

The LSTM unit consists of five gates: the forget gate 𝒇⃗ 𝑙
(𝑛)

∈

ℝ1×𝑢(𝑛)
, the output gate 𝒐⃗⃗ 𝑙

(𝑛)
∈ ℝ1×𝑢(𝑛)

, the input gate 𝒊 𝑙
(𝑛)

∈

ℝ1×𝑢(𝑛)
, the candidate cell state 𝒄⃗̃ 𝑙

(𝑛)
∈ ℝ1×𝑢(𝑛)

, and the 

updated cell state 𝒄𝑙
(𝑛)

∈ ℝ1×𝑢(𝑛)
. The values of these gates are 

computed from the previous layer’s output hidden state and the 
hidden state of the current layer at the previous time step. These 
operations can be summarized by the following equations: 

𝒇⃗ 𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗ 𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗ 
𝑓,𝑙
(𝑛)

+ 𝑹⃗⃗ 𝑓,𝑙
(𝑛)

𝒁⃗⃗ 𝑙−1
(𝑛)

+ 𝒃⃗⃗ 𝑓,𝑙
(𝑛)

) (8) 

𝒐⃗⃗ 𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗ 𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗ 
𝑜,𝑙
(𝑛)

+ 𝑹⃗⃗ 𝑜,𝑙
(𝑛)

𝒁⃗⃗ 𝑙−1
(𝑛)

+ 𝒃⃗⃗ 𝑜,𝑙
(𝑛)

) (9) 

𝒊 𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗ 𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗ 
𝑖,𝑙
(𝑛)

+ 𝑹⃗⃗ 𝑖,𝑙
(𝑛)

𝒁⃗⃗ 𝑙−1
(𝑛)

+ 𝒃⃗⃗ 𝑖,𝑙
(𝑛)

) (10) 

𝒄⃗̃ 𝑙
(𝑛)

= 𝜙𝑡𝑎𝑛ℎ(𝒁⃗⃗ 𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗ 
𝑐̃,𝑙
(𝑛)

+ 𝑹⃗⃗ 𝑐̃,𝑙
(𝑛)

𝒁⃗⃗ 𝑙−1
(𝑛)

+ 𝒃⃗⃗ 𝑐̃,𝑙
(𝑛)

) (11) 

𝒄⃗ 𝑙
(𝑛)

= 𝒇⃗ 𝑙
(𝑛)

⨀𝒄⃗ 𝑙−1
(𝑛)

+ 𝒊 𝑙
(𝑛)

⨀𝒄⃗̃ 𝑙
(𝑛) (12) 

𝒁⃗⃗ 𝑙
(𝑛)

= 𝒐⃗⃗ 𝑙
(𝑛)

⨀𝜙𝑡𝑎𝑛ℎ(𝒄⃗ 𝑙
(𝑛)

) (13) 

where, 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(⋅)  denotes the sigmoid activation function, 

𝜙𝑡𝑎𝑛ℎ(⋅)  denotes the tanh activation function. During the 

forward process, 𝒁⃗⃗ 0
(𝑛)

 and 𝒄⃗ 0
(𝑛)

are initialized as zero vectors. 

The forward process is handled in the chronological order,  
while the backward process is handled in the reverse 
chronological order. The formulas are as follows: 

𝒇⃗⃖𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗⃖𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗⃖𝑓,𝑙
(𝑛)

+ 𝑹⃗⃗⃖𝑓,𝑙
(𝑛)

𝒁⃗⃗⃖𝑙+1
(𝑛)

+ 𝒃⃗⃗⃖𝑓,𝑙
(𝑛)

) (14) 

𝒐⃗⃗⃖𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗⃖𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗⃖𝑜,𝑙
(𝑛)

+ 𝑹⃗⃗⃖𝑜,𝑙
(𝑛)

𝒁⃗⃗⃖𝑙+1
(𝑛)

+ 𝒃⃗⃗⃖𝑜,𝑙
(𝑛)

) (15) 

𝒊𝑙
(𝑛)

= 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒁⃗⃗⃖𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗⃖𝑖,𝑙
(𝑛)

+ 𝑹⃗⃗⃖𝑖,𝑙
(𝑛)

𝒁⃗⃗⃖𝑙+1
(𝑛)

+ 𝒃⃗⃗⃖𝑖,𝑙
(𝑛)

) (16) 

𝒄⃗⃖̃𝑙
(𝑛)

= 𝜙𝑡𝑎𝑛ℎ(𝒁⃗⃗⃖𝑙
(𝑛−1)

𝑾⃗⃗⃗⃗⃖𝑐̃,𝑙
(𝑛)

+ 𝑹⃗⃗⃖𝑐̃,𝑙
(𝑛)

𝒁⃗⃗⃖𝑙+1
(𝑛)

+ 𝒃⃗⃗⃖𝑐̃,𝑙
(𝑛)

) (17) 



𝒄⃗⃖𝑙
(𝑛)

= 𝒇⃗⃖𝑙
(𝑛)

⨀𝒄⃗⃖𝑙+1
(𝑛)

+ 𝒊𝑙
(𝑛)

⨀𝒄⃗⃖̃𝑙
(𝑛) (18) 

𝒁⃗⃗⃖𝑙
(𝑛)

= 𝒐⃗⃗⃖𝑙
(𝑛)

⨀𝜙𝑡𝑎𝑛ℎ(𝒄⃗⃖𝑙
(𝑛)

) (19) 

where  𝒁⃗⃗⃖𝐿
(𝑛)

 and 𝒄⃗⃖𝐿
(𝑛)

 are initialized as zero vectors.  

This process is repeated until the forward hidden state 

𝒁⃗⃗ 𝐿
(𝑁𝐿)

∈ ℝ1×𝑢(𝑁𝐿)
 at the 𝐿-th time step of the 𝑁𝐿-th layer and the 

backward hidden state 𝒁⃗⃗⃖1
(𝑁𝐿)

∈ ℝ1×𝑢(𝑁𝐿)
 at the first time step of 

the 𝑁𝐿 -th layer are obtained. Then, 𝒁⃗⃗ 𝐿
(𝑁𝐿)

 and 𝒁⃗⃗⃖1
(𝑁𝐿)

 are 

concatenated to get 𝒁̃ = [𝒁⃗⃗ 𝐿
(𝑁𝐿)

, 𝒁⃗⃗⃖1
(𝑁𝐿)

] ∈ ℝ1×𝑑𝑍 , where 𝑑𝑍 =
2 ⋅ 𝑢(𝑁𝐿). Finally, 𝒁̃ is batch normalized to obtain the temporal 

continuity features 𝒁𝐺 ∈ ℝ1×𝑑𝑍 . 

C. Classification and Parameter Learning 

After obtaining the local spatiotemporal correlation features 

𝑺𝐺 ∈ ℝ1×𝑑𝐺  and the temporal continuity features 𝒁𝐺 ∈ ℝ1×𝑑𝑍 , 
they are concatenated along the feature dimension to get the final 
spatiotemporal representation 𝑼 = [𝑺𝐺 , 𝒁𝐺] ∈ ℝ1×𝑑𝑈 , where 
𝑑𝑈 = 𝑑𝐺 + 𝑑𝑍. Then, 𝑼 is passed into a linear layer to get the 
predicted classification result 𝒚̂ ∈ ℝ1×𝐷: 

𝒚̂ = 𝑼𝑾𝑦 + 𝒃𝑦 (20) 

where 𝑾𝑦 ∈ ℝ𝑑𝑈×𝐷 is the weight parameter of the linear layer 

and 𝒃𝑦 ∈ ℝ1×𝐷  is the bias. Thus, the predicted classification 

result 𝒚̂ for one sample is obtained. 

Afterward, the multi-class cross-entropy loss is chosen as the 
loss function for the model. 𝐵 represents the number of training 
samples.The set of true classification result labels is 𝓨 =
{𝒚1, 𝒚2, … , 𝒚𝐵}, and the set of predicted classification results is 

𝓨̂ = {𝒚̂1, 𝒚̂2, … , 𝒚̂𝐵} .The formula for the multi-class cross-
entropy loss is expressed by 

ℒ = 𝐿𝐶𝐸 = −
1

𝐵
∑∑𝑦𝑖,𝑗

𝐷

𝑗=1

𝑙𝑜𝑔(𝑦̂𝑖,𝑗)

𝐵

𝑖=1

(21) 

where, 𝐷 is the count of classes, 𝒚𝑖 = [𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝐷] is the 

true label vector for the 𝑖 -th sample 𝑖 , and 𝒚̂𝑖 =
[𝑦̂𝑖,1, 𝑦̂𝑖,2, … , 𝑦̂𝑖,𝐷] is the predicted label vector by the STDGIN. 
𝑦𝑖,𝑗 denotes the true probability that the sample belongs to the 𝑗-
th class (𝑗 = 1,2, … , 𝐷) , and 𝑦̂𝑖,𝑗  represents the predicted 

probability the sample being in the 𝑗-th class. 

The weights and bias parameters of the temporal graph 
module, temporal continuity module, and linear layer can be 
denoted as 𝓦. The optimal parameters 𝓦∗ can be achieved by 
solving the following optimization problem: 

𝓦∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝓦

ℒ(𝓦) (22) 

The Adam ([10]) optimizer is used to solve the problem. 
According to the parameter update rule, the update formula for 
the parameters 𝓦 at the 𝑛𝑑-th iteration (𝑛𝑑 = 1,2, … , 𝑁𝐷) is as 
follows: 

𝓦𝑛𝑑
= 𝓦𝑛𝑑−1 − 𝜂

𝝁̂𝑛𝑑

√𝝂̂𝑛𝑑
− 𝛿

(23) 

𝝁̂𝑛𝑑
= (𝛽𝜇𝝁̂𝑛𝑑−1 + (1 − 𝛽𝜇)𝒈𝑛𝑑

)/ (1 − 𝛽𝜇
(𝑛𝑑)

) (24) 

𝝂̂𝑛𝑑
= (𝛽𝜈𝝂̂𝑛𝑑−1 + (1 − 𝛽𝜈)(𝒈𝑛𝑑

)2)/ (1 − 𝛽𝜈
(𝑛𝑑)

) (25) 

where, 𝓦𝑛𝑑−1 represents the weight parameters obtained from 

the (𝑛𝑑 − 1)-th iteration, 𝜂 represents the learning rate, and 𝛿 
represents a small constant. 𝝁̂𝑛𝑑

 and 𝝂̂𝑛𝑑
 are the first and second 

moment estimates computed in the 𝑛𝑑 -th iteration. 𝛽𝜇  and 𝛽𝜈 

are the hyperparameters, and 𝒈𝑛𝑑
 and (𝒈𝑛𝑑

)2 are the  gradient 

value and its square computed in the 𝑛𝑑 -th iteration, where 

𝒈𝑛𝑑
= ∇𝓦ℒ(𝓦𝑛𝑑−1). 

Additionally, to improve convergence and reduce oscillations, 
a learning rate reduction strategy is used. Specifically, the 
learning rate 𝜂 is multiplied by a decay factor 𝜆 if the validation 
accuracy does not improve after  𝑁𝜆 epochs.  

The algorithm steps of STDGIN are as follows: 

• Step 1. Define the input data 𝑿 and the predicted labels 
𝒚̂, and randomly initialize the model parameters 𝓦. 

• Step 2. Input the SITS data into the temporal graph 
module to generate the local spatiotemporal correlation 
features 𝑺𝐺 based on equations (1) to (7). 

• Step 3. Input the SITS data into the temporal continuity 
module. Generate forward and backward hidden states 
for each time step according to equations (8) to (19). 
Concatenate and normalize these states to obtain the 
temporal continuity feature 𝒁𝐺   

• Step 4. Concatenate the features 𝑺𝐺 and 𝒁𝐺 . Pass the 
concatenated features through a fully connected layer to 
produce the predicted labels 𝒚̂. 

• Step 5. Compute the cross-entropy loss ℒ according to 
equation (21). Optimize the parameters using equations 
(23) to (25). 

III. EXPERIMENTS 

To assess the effectiveness of the STDGIN model in SITS 
classification tasks, we perform numerical experiments using 
the publicly available TiSeLaC dataset ([11]). 

A. Dataset Introduction and Experimental Setup 

TABLE I.  NUMBER OF CROPS IN TISELAC DATASET 

ID CropType samples 

1 Urban Areas 20000 

2 Other Built-up Surfaces 3883 

3 Forests 20000 

4 Sparse Vegetation 19398 

5 Rocks and Bare Soil 15530 

6 Grassland 6817 

7 Sugarcane Crops 9187 

8 Other Crops 1754 

9 Water 3118 

 total 99687 

 



The TiSeLaC dataset is collected from 23 consecutive 
Landsat satellite images taken on Réunion Island in 2014. The 
images have a spatial resolution of 30 meters, and each pixel 
contains 10 features, including the first 7 bands of Landsat-8 
and 3 auxiliary remote sensing indices. The dataset includes 
99,687 pixels time series. The dataset is divided randomly with 
60% allocated for training, 20% for validation, and 20% for 
testing, with standardization performed before training. 
Detailed information about the TiSeLaC dataset in Tab. I. 

The evaluation metrics used in the experiments are Overall 
Accuracy (OA) and the mean Intersection over Union (mIoU) 
for each class. The model is built using PyTorch 1.9 and trained 
on an NVIDIA GeForce RTX 3080Ti GPU. The main 
parameter of the experiments are shown in Tab. II. 

TABLE II.  MAIN PARAMETER CONFIGURATIONS OF THE EXPERIMENTS 

Parameter Value Description 

𝑁𝐸 2000  Total training epochs 

𝐵 128 The size of each batch 

𝑁𝐺 5 Number of layers in temporal graph  

𝑁𝐿 4 Number of layers in temporal continuity  

𝜂𝑎 0.0001 Initial learning rate of the optimizer 

𝜆 0.5 Learning rate decay parameter 

𝑁𝜆 50 Learning rate decay epochs 

𝑑(1), . . . , 𝑑(𝑁𝐺) { 𝑑, 8, 6, 4, 2} Number of nodes in each layer 

𝑠 3 Factor for the number of time step 
 

B. Comparison with Other Models 

To validate our model's effectiveness, we compare it with 
GL-TAE ([4]), Todynet ([5]), and FC-STGNN ([6]). All 
models are evaluated using a five-fold cross-validation scheme. 
In each validation, all models are tested with configurations that 
achieve the highest accuracy on the validation set. The GL-TAE 
model consists of 5 layers with feedforward dimensions 
{128,256,512,1024,2048}, 4 attention heads, and kernel size 
is 3. The results of GL-TAE are chosen based on the results 
from reference ([4]).The Todynet model consists of 4 graphs, 
with kernel size of {9,5,3}, and a pooling rate of 0.2. The FC-
STGNN model consists of a convolution kernel size of 6 and a 
decay rate of 0.7 for the decay matrix. Todynet and FC-STGNN 
are set with 2000 epochs and a batch size of 128, while other 
parameters, such as the number of model layers and nodes, are 
set according to the recommendations in the references ([5-6]). 

TABLE III.  EXPERIMENTAL RESULTS ON THE TISELAC DATASETS 

Class GL-TAE TodyNet FC-STGNN Ours 

1 93.12±0.38 

 

94.28±0.58 

 

92.63±0.58 94.71±0.48 

2 79.97±1.17 

 

79.50±1.17 

 

74.93±1.86 

 

80.96±0.90 

3 93.46±0.99 

 

93.73±0.14 

 

92.61±0.25 

 

93.56±0.15 

 4 96.14±0.47 

 

96.44±0.47 

 

95.43±0.52 

 

96.93±0.45 

5  96.73±0.27 

 

98.20±0.46 

 

97.33±0.17 

 

98.07±0.21 

6 90.86±1.58 

 

93.33±1.12 

 

90.66±0.38 

 

94.85±0.33 

 7 95.90±0.34 

 

96.50±0.48 

 

94.49±0.29 

 

96.65±0.21 

 8 81.23±2.34 

 

74.30±4.07 

 

66.67±1.70 

 

77.58±3.23 

 9 92.05±1.89 

 

92.11±0.93 

 

88.98±1.42 

 

93.11±0.62 

 OA(%) 93.70±0.17 

 

94.32±0.18 

 

92.63±0.22 

 

94.71±0.19 

mIoU(%) 83.42±0.42 

 

85.03±0.43 

 

80.88±0.16 

 

86.16±0.21 

 

The experimental results are presented in Tab. III. It is 
observed that the proposed method achieves satisfactory 
performance on the overall accuracy and the mIoU index. It 
also can achieve high classification accuracy. 

C. Ablation Experiments 

To assess the contribution of the components in STDGIN, 
ablation experiments are conducted. The simulation results are 
shown in Tab. IV. 

TABLE IV.  RESULT OF ABLATION EXPERIMENTS 

Ablation modules OA(%) mIoU(%) Rank 

Ours 94.97 86.29 1 

w/o temporal continuity module 94.50 85.05 3 

w/o Node aggregation 91.03 76.65 5 

w/o Dynamic adjacency matrix 94.53 85.25 2 

w/o temporal graph structure 93.01 81.93 4 
 

The simulation results show that using the temporal graph 
structure significantly can improve classification performance 
by capturing hidden dependencies between bands. The node 
aggregation layer enhances the feature representation capability 
of the model. 

D. Hyperparameter Experiment 

To verify the model's stability under different parameter 
settings, four key parameters are selected for experiments on 
the TiSeLaC dataset. The experimental results are shown in 
Figs. 2-5. 

 

Fig. 2. Results under different 𝜂𝑎             Fig. 3. Results under different 𝐵   

 

Fig. 4. Results under different 𝑁𝐸             Fig. 5. Results under different 𝑇   

It can be observed that within a certain range of 
hyperparameters, the STDGIN can achieve stable classification 
accuracy.  

Specifically, 𝑁𝐺  is set to {2,3,4,5}, and the corresponding 
model parameters are  {51k, 107k, 166k, 225k} . By setting 
different numbers of layers, the complexity of the model 
increases accordingly, and the experimental results are shown 
in Fig. 6. Due to the increase of layers 𝑁𝐺 , more complex 
patterns can be captured by the proposed model, thereby 
enhancing the accuracy of classification or prediction. 



 

Fig. 6. Results under different 𝑁𝐸 

E. Inspection of Class Prototype 
 

Further, the two-dimensional visualization images are 
provided in Fig. 7(a) and Fig. 7(b) by the T-SNE algorithm 
([12]). It can be seen that the proposed model make the 
distances between same samples closer. 

 

(a) Raw data                         (b) Representation data 

Fig. 7. T-SNE visualization of the TiSeLaC dataset 

IV. CONCLUSIONS 

In this paper, a classification model for SITS data is proposed 
that combines local spatiotemporal correlation features with 
temporal continuity features. This approach improves the 
accuracy of SITS classification. Future research will focus on 
methods for classifying few-labeled and unlabeled SITS data.  
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