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ABSTRACT

Cognitive flexibility has been extensively studied in human cognition but remains
relatively unexplored in the context of Visual Large Language Models (VLLMs).
This study assesses the cognitive flexibility of state-of-the-art VLLMs (GPT-4o,
Gemini-1.5 Pro, and Claude-3.5 Sonnet) using the Wisconsin Card Sorting Test
(WCST), a classic measure of set-shifting ability. Our results reveal that VLLMs
achieve or surpass human-level set-shifting capabilities under chain-of-thought
prompting with text-based inputs. However, their abilities are highly influenced by
both input modality and prompting strategy. In addition, we find that through role-
playing, VLLMs can simulate various functional deficits aligned with patients
having impairments in cognitive flexibility, suggesting that VLLMs may possess
a cognitive architecture, at least regarding the ability of set-shifting, similar to
the brain. This study reveals the fact that VLLMs have already approached the
human level on a key component underlying our higher cognition, and highlights
the potential to use them to emulate complex brain processes.

1 INTRODUCTION

Cognitive flexibility, a key component of executive function, is fundamental to human adaptability
and problem-solving (Dajani & Uddin, 2015; Uddin, 2021). This ability to shift between mental sets
or strategies in response to changing environmental demands is crucial for everyday functioning and
has been extensively studied in cognitive psychology research (Ionescu, 2012). The prefrontal cortex
(PFC) is known to be central to this cognitive process(Spellman et al., 2021; Funahashi & Andreau,
2013), facilitating goal-directed behavior and controlled processing.

Recent advancements in artificial intelligence (AI), particularly in visual large language models
(VLLMs) (Chen et al., 2024a), have sparked a growing need to assess these systems’ cognitive abil-
ities using paradigms analogous to human cognitive assessment (Momennejad et al., 2024; Chang
et al., 2024; Qu et al., 2024). State-of-the-art VLLMs such as GPT-4o (OpenAI, 2024), Gemini-1.5
Pro (Reid et al., 2024), and Claude-3.5 Sonnet (Anthropic, 2024) have demonstrated remarkable ca-
pabilities in processing and interpreting both textual and visual information, excelling in tasks that
demand complex reasoning and contextual understanding.

Despite these achievements, the extent to which VLLMs exhibit cognitive flexibility, especially
in tasks requiring set-shifting and adaptation to changing rules, remains largely unexplored. While
these models have demonstrated impressive performance across diverse tasks, their ability to flexibly
adapt to changing environmental demands has not been systematically evaluated. This gap in our
understanding is particularly significant given the increasing integration of VLLMs into complex,
dynamic real-world environments where adaptability is crucial.

The Wisconsin Card Sorting Test (WCST), developed in the 1940s (Berg, 1948) and refined over
decades, has emerged as the gold standard for assessing cognitive flexibility in both clinical and
research settings (Miles et al., 2021; Greve, 2001). Originally developed to evaluate PFC function,
it requires participants to discover sorting rules based on feedback and then flexibly shift to new rules
when the criteria change (see Figure 1). The test’s sensitivity to PFC function has been consistently
demonstrated through lesion studies(Jodzio & Biechowska, 2010), neuroimaging research(Lie et al.,
2006), and clinical observations, cementing its status as a crucial tool in understanding the cognitive
flexibility. While other measures of cognitive flexibility exist, the WCST’s established validity make
it a core benchmark for evaluating this fundamental cognitive capacity.
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Figure 1: WCST Procedure and Sample Stimuli

This research aims to evaluate the cognitive flexibility in VLLMs using the WCST paradigm and
investigate how different input modalities (image-based vs. text-based) ,prompting strategy (direct
vs. chain-of-thought reasoning) and rule description specificity affect their performance. Addi-
tionally, we explore the potential of VLLMs to simulate specific patterns of cognitive impairment
through role-playing, which enables us to understand human cognitive architecture. By comparing
VLLM performance across varied conditions, we aim to elucidate their cognitive flexibility and in-
herent limitations. This investigation not only advances our understanding of VLLMs but also offers
insights into the nature of cognitive flexibility itself.

2 RELATED WORK

2.1 COGNITIVE FLEXIBILITY AND ASSESSMENT METHODS

Neuroimaging studies have consistently implicated the PFC in cognitive flexibility tasks. The dor-
solateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) play critical roles in set-
shifting, with the DLPFC maintaining and updating task rules, and the ACC involved in conflict
monitoring and error detection (Kim et al., 2011). The fronto-parietal network, encompassing these
regions, dynamically reconfigures during flexibility-demanding tasks (Qiao et al., 2020). Cogni-
tive flexibility is closely interrelated with other executive functions: working memory maintains
task-relevant information and goals (Ionescu, 2012), while inhibitory control suppresses previous
cognitive sets when rules change (Diamond, 2013).

Several tasks have been developed to assess cognitive flexibility in humans, with the WCST being
a widely recognized measure of set-shifting ability (Eling et al., 2008). The WCST’s sensitivity to
PFC dysfunction has been extensively validated (Stuss & Levine, 2002). Complementary assess-
ments include the Dimensional Change Card Sort (DCCS) task for children (Zelazo, 2006) and the
computerized Intra-Extra Dimensional Set Shift (IED) subtest of the Cambridge Neuropsycholog-
ical Test Automated Battery (CANTAB) (Heinzel et al., 2010), offering targeted measures across
different populations and modalities.
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2.2 MULTIFACETED EVALUATION OF LLMS

Recent studies have employed diverse assessments to evaluate large language models (LLMs) and
VLLMs across various domains and tasks. Models like GPT-4 demonstrated human-level or su-
perior performance on most theory of mind tests (Strachan et al., 2024). Similarly, research on
human creativity found that ChatGPT-assisted ideas were more creative compared to those gener-
ated without LLM assistance (Lee & Chung, 2024). However, challenges persist in other areas.
The Test of Time (ToT) benchmark exposed difficulties with complex temporal reasoning tasks,
particularly those requiring multi-fact integration and intricate arithmetic operations (Fatemi et al.,
2024). Despite strong performance on high-level vision tasks, state-of-the-art VLLMs struggled
with basic geometric tasks that are straightforward for humans (Rahmanzadehgervi et al., 2024). A
neuropsychological investigation revealed a discontinuous profile in ChatGPT’s prefrontal function-
ing, with performance ranging from superior to impaired across different cognitive tasks (Loconte
et al., 2023). To address the multifaceted nature of artificial intelligence, researchers have proposed
new evaluation frameworks. A comprehensive framework for artificial general intelligence (AGI)
tests inspired by cognitive science emphasizes the need for multidimensional intelligence assess-
ment (Qu et al., 2024). Additionally, the concept of Turing Experiments (TEs) was introduced as
a method for evaluating LLMs’ ability to simulate human behavior in experimental settings (Aher
et al., 2023).

2.3 PROMPTING STRATEGIES

Prompting strategies significantly influence the performance of LLMs (Liu et al., 2023). The sim-
plest approach, ”Straight-to-Answer” (STA), directly queries the model without additional context.
While effective for straightforward tasks, STA often falters on complex problems requiring multi-
step reasoning. Chain-of-Thought (CoT) prompting encourages step-by-step reasoning(Wei et al.,
2022), substantially improving performance on complex reasoning tasks (Chu et al., 2023). Vari-
ations such as zero-shot CoT (Kojima et al., 2022) and self-consistency CoT (Wang et al., 2022)
have further refined this approach, adapting it to scenarios with limited or no task-specific exam-
ples. In multimodal contexts, visual CoT have extended these concepts to VLLMs (Chen et al.,
2024b), demonstrating the potential for improved reasoning in tasks that combine textual and vi-
sual information. Other task-specific strategies, such as least-to-most prompting address challenges
of easy-to-hard generalization (Zhou et al., 2022a), while meta-prompting and automatic prompt
engineering techniques aim to optimize the prompts themselves (Pryzant et al., 2023; Zhou et al.,
2022b).

3 METHODS

3.1 MODELS AND EXPERIMENTAL PROCEDURE

This study focuses on three state-of-the-art VLLMs: GPT-4o, Gemini-1.5 Pro, and Claude-3.5 Son-
net. These models represent the current pinnacle of multimodal LLMs capabilities, demonstrating
proficiency in processing both textual and visual inputs (see Appendix.A for details). We employs a
standard version of the WCST-64 (Greve, 2001) to assess the cognitive flexibility of VLLMs. Our
experimental design incorporates a 2x2 factorial structure, manipulating input modality (Visual In-
put (VI) / Textual Input (TI)) and prompting strategy (Straight to Answer (STA) / Chain of Thought
(CoT)) to comprehensively evaluate VLLMs performance. This design resulted in four experimental
conditions: STA-VI, STA-TI, CoT-VI, and CoT-TI. Each VLLM was tested independently across
all four conditions, with 10 repetitions per condition. The arrangement of stimulus cards and the
sequence of sorting rules were randomized for each repetition.

Additionally, we collected data from 30 cognitively healthy human participants (aged 20-35) as a
baseline for comparison. Human participants interacted with a web-based interface designed to
replicate the WCST experience while accommodating human response patterns (Figure B.3). The
interface presented cards sequentially and allowed participants to indicate their sorting choices via
button presses. The language used in instructions was carefully adapted to be more intuitive for
human subjects while maintaining the essential structure of the task.
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Algorithm 1 WCST for VLLMs
1: Initialize r ∈ {color, shape, number}, c← 0, s← 0, t← 0
2: Inform model: ”{Task description}”
3: while t < 64 do
4: Present card and prompt for sorting (image/text for VI/TI, using STA/CoT)
5: Record and parse model’s response to extract selection
6: if selection is correct then
7: c← c+ 1
8: if c = 10 then
9: Change active rule r

10: s← s+ 1
11: c← 0
12: end if
13: else
14: c← 0
15: end if
16: Provide feedback on correctness of current selection
17: t← t+ 1
18: end while

We adapted the WCST for use with VLLMs while maintaining its core principles (see Algorithm 1
for the implementation). The test consists of a series of virtual cards, each featuring shapes (circle,
cross, triangle, or star) in varying colors (red, green, yellow, or blue) and quantities (one to four).
The models are tasked with sorting these cards according to an undisclosed rule (color, shape, or
number), which changes periodically without explicit notification. The sorting rule changed after ten
consecutive correct categorizations. The assessment concluded after 64 trials. Detailed descriptions
of the task instructions are provided in Appendix B.1. Example stimuli for VI and TI conditions,
and prompt templates for STA and CoT strategies are provided in Appendix B.2.

Data collection was fully automated using API calls to each VLLM. Model responses were recorded
verbatim for each trial. Human participant data was collected through the web-based interface. All
participants provided informed consent, and the study was approved by the institutional review
board.

3.2 EVALUATION METRICS

Performance was primarily assessed using the following metrics which were chosen for their ability
to quantify different aspects of cognitive flexibility:

Categories Completed (CC): The number of categories (sets of 10 consecutive correct sorts) com-
pleted.

CC =

n∑
i=1

I(ci = 10) (1)

where n is the total number of trials, ci is the number of consecutive correct sorts at trial i, and I(·)
is the indicator function.

Perseverative Errors (PE): The number of errors where the model persisted with a previously correct
but currently incorrect rule.

PE =

n∑
i=1

I(ri = rprev ∧ ri ̸= rcurrent) (2)

where ri is the rule used by the model at trial i, rprev is the previously correct rule, and rcurrent is the
current correct rule.

Non-Perseverative Errors (NPE): All errors that are not perseverative.

NPE = Total Errors− PE (3)

NPE captures non-perseverative errors, potentially indicating exploration or random mistakes.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

STA-VI STA-TI CoT-VI CoT-TI Human0.0

0.2

0.4

0.6

0.8

1.0
St

an
da

rd
ize

d 
Pe

rfo
rm

an
ce

=0.02
=0.06

=0.04
=0.08

=0.02
=0.06

=0.08
=0.10

=0.06
=0.09

=0.10
=0.10

=0.58
=0.30

=0.50
=0.27

=0.96
=0.08

=0.96
=0.08

=0.92
=0.16

=1.00
=0.00

=0.95
=0.09

Gemini-1.5 Pro GPT-4o Claude-3.5 Sonnet Human

Figure 2: WCST Task Performance Across Models and Conditions

Trials to First Category (TFC): The number of trials required to complete the first category, indicat-
ing how quickly the model can deduce and consistently apply the first sorting rule.

TFC = min{i : ci = 10} (4)

where i is the trial number and ci is as defined in CC.

Conceptual Level Responses (CLR): The percentage of responses occurring in runs of three or more
correct sorts, indicating conceptual understanding.

CLR =

∑n
i=1 I(ci ≥ 3)

n
× 100% (5)

where I(ci ≥ 3) is an indicator function that equals 1 if the number of consecutive correct sorts up
to and including trial i is 3 or more, and 0 otherwise.

Failure to Maintain Set (FMS): The number of times the model makes an error after five or more
consecutive correct sorts but before completing a category.

FMS =

n−1∑
i=1

I(5 ≤ ci < 10) · I(ci+1 = 0) (6)

where i is the trial number and ci is as defined in CC.

These metrics collectively provide a comprehensive view of the VLLMs’ cognitive flexibility(Schretlen,
2010), capturing various aspects such as rule learning, set-shifting, perseveration, and conceptual
understanding.

4 RESULTS

4.1 WCST TASK PERFORMANCE ACROSS MODELS AND CONDITIONS

The WCST performance of GPT-4o, Gemini-1.5 Pro, and Claude-3.5 Sonnet exhibited marked vari-
ations across the four conditions (Figure 2). Their cognitive flexibility was measured using the CC
metric, standardized on a 0-1 scale, with the human baseline(µ = 0.95, σ = 0.09). The CoT-TI
condition consistently yielded superior outcomes across all VLLMs, followed by CoT-VI, STA-TI,
and STA-VI, respectively, underscoring the critical influence of both prompting strategies and input
modalities on VLLMs’ set-shifting capabilities.

In the STA-VI condition, all VLLMs struggled significantly, with mean performances ranging from
0.02 to 0.04. The transition to STA-TI yielded modest improvements, particularly for Claude-3.5
Sonnet (µ = 0.10, σ = 0.10). However, the introduction of CoT prompting precipitated a dramatic
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Table 1: WCST Performance Metrics Across Models and Experimental Conditions

Model Condition CC PE NPE TFC CLR (%) FMS

Gemini-1.5 Pro

STA-VI 0.10 (0.32) 1.70 (5.38) 40.00 (9.51) 11.00 (-) 5.00 (6.15) 0.20 (0.42)
STA-TI 0.40 (0.52) 10.10 (13.99) 29.90 (17.90) 19.25 (-) 9.22 (7.88) 0.10 (0.32)
CoT-VI 2.90 (1.60) 7.40 (4.27) 12.30 (12.37) 19.11 (-) 45.00 (18.95) 0.50 (0.71)
CoT-TI 4.80 (0.42) 6.80 (1.55) 3.50 (1.72) 13.30 (1.95) 63.12 (4.67) 0.10 (0.32)

GPT-4o

STA-VI 0.20 (0.42) 6.20 (13.21) 32.70 (18.57) 19.00 (-) 10.31 (12.11) 0.80 (1.48)
STA-TI 0.30 (0.48) 11.60 (18.72) 28.70 (19.81) 12.00 (-) 8.28 (5.90) 0.30 (0.67)
CoT-VI 2.50 (1.43) 7.60 (5.10) 11.20 (10.03) 17.38 (-) 44.53 (15.51) 1.10 (0.88)
CoT-TI 4.60 (0.84) 7.60 (1.84) 2.10 (0.88) 12.60 (2.46) 63.28 (5.86) 0.10 (0.32)

Claude-3.5 Sonnet

STA-VI 0.10 (0.32) 3.10 (9.80) 24.50 (10.97) 17.00 (-) 20.47 (12.60) 1.60 (0.97)
STA-TI 0.50 (0.53) 15.90 (17.53) 22.90 (18.22) 15.80 (-) 8.90 (7.14) 0.10 (0.32)
CoT-VI 4.80 (0.42) 7.20 (2.82) 2.20 (1.40) 12.70 (1.57) 65.16 (5.32) 0.00 (0.00)
CoT-TI 5.00 (0.00) 6.30 (0.82) 2.00 (0.82) 12.00 (0.94) 67.50 (2.74) 0.00 (0.00)

Human STA-VI 4.73 (0.45) 6.87 (1.63) 2.80 (1.69) 12.93 (1.62) 65.15 (4.35) 0.10 (0.31)

performance surge across all models. In the CoT-VI condition, Claude-3.5 Sonnet exhibited remark-
able improvement (µ = 0.96, σ = 0.08), while Gemini-1.5 Pro and GPT-4o also showed substantial
gains. This stark contrast between STA and CoT conditions illuminates the pivotal role of explicit
reasoning in augmenting VLLMs’ cognitive flexibility.

The CoT-TI condition elicited peak performances, with Claude-3.5 Sonnet achieving perfection (µ
= 1.00, σ = 0.00), surpassing even the human baseline. Gemini-1.5 Pro (µ = 0.96, σ = 0.08) and
GPT-4o (µ = 0.92, σ = 0.16) also demonstrated near-human or human-equivalent performance in this
setting. Notably, the performance variability (σ) was generally higher in CoT conditions for Gemini-
1.5 Pro and GPT-4o, indicating potential instability in their cognitive processes. The consistent
superiority of TI over VI across all conditions suggests a potential advantage in processing textual
over visual inputs.

The observed performance gradient, from near-chance levels in STA-VI to human-surpassing in
CoT-TI, demonstrates the potential of VLLMs to exhibit human-like cognitive flexibility under ap-
propriate conditions, while also highlighting the critical impact of prompting strategies and input
modalities on their performance in tasks requiring set-shifting and rule adaptation.

4.2 DETAILED ANALYSIS BY EVALUATION METRIC

To offer a comprehensive assessment of the VLLMs’ performance on the WCST, we analyzed six
key metrics outlined in the previous section. Table 1 presents the mean scores and standard devi-
ations across all evaluation metrics for each VLLM and condition. This analysis reveals distinct
patterns in cognitive flexibility and set-shifting abilities among the models.

PE were most prevalent in the STA-TI condition for all models, with Claude-3.5 Sonnet showing
the highest number of errors in this condition (µ = 15.90, σ = 17.53). In the STA-VI condition,
PE were relatively low for all models, as they largely failed to follow the rules at all. However, the
transition to CoT conditions reduced PE, with Claude-3.5 Sonnet demonstrated the lowest number
of PE in the CoT-TI condition (µ = 6.30, σ = 0.82). This suggests that Claude-3.5 Sonnet may
surpass human performance in adapting to changing rules, especially when provided with explicit
reasoning prompts and textual descriptions.

NPE showed a dramatic reduction from STA to CoT conditions across all models, with improve-
ments observed in the transition from VI to TI inputs. In STA conditions, NPE were extremely high,
indicating near-random performance. The near-elimination of NPE in CoT-TI (e.g., Claude-3.5 Son-
net: µ = 2.00, σ = 0.82) suggests that VLLMs can achieve a level of consistent rule application that
exceeds human performance. This suggests that explicit reasoning prompts enable VLLMs to main-
tain a more consistent internal representation of the current sorting rule, reducing random errors.

All models required the fewest trials to complete the first category in the CoT-TI condition, with
Claude-3.5 Sonnet performing best (µ = 12.00, σ = 0.94), followed closely by GPT-4o (µ = 12.60,
σ = 2.46) and Gemini-1.5 Pro (µ = 13.30, σ = 1.95). Notably, Claude-3.5 Sonnet outperformed the
human baseline (µ = 12.93, σ = 1.62).
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CLR patterns showed substantial improvement from STA to CoT conditions for all VLLMs, with
the highest percentages observed in the CoT-TI condition. Claude-3.5 Sonnet achieved the highest
CLR in this condition (µ = 67.50%, σ = 2.74%), followed by GPT-4o (µ = 63.28%, σ = 5.86%) and
Gemini-1.5 Pro (µ = 63.12%, σ = 4.67%). This indicates that under CoT-TI conditions, VLLMs can
maintain conceptual understanding at a level comparable to or exceeding human capability.

FMS were generally low in STA conditions, but this reflects the models’ overall poor performance
rather than true set maintenance. The transition to CoT conditions led to increased FMS in the VI
condition, suggesting that improved overall performance paradoxically led to more instances of set
loss after initial successful rule application. However, in the CoT-TI condition, Claude-3.5 Sonnet
achieved perfect set maintenance (FMS = 0.00), outperforming the human baseline. This indicates
that VLLMs can maintain exceptional consistency in rule application, potentially surpassing human
capabilities in this aspect of cognitive flexibility.

These detailed metrics collectively reinforce the finding that CoT prompting, particularly when
combined with textual inputs, substantially enhances VLLMs’ cognitive flexibility as measured by
WCST performance. While all models showed similar patterns across conditions, Claude-3.5 Son-
net consistently demonstrated superhuman cognitive flexibility in CoT-TI condition. The consistent
pattern across all six metrics highlights the robustness of the effects of prompting strategy and input
modality, while also revealing subtle differences in the cognitive capabilities of these VLLMs.

4.3 ANALYSIS OF INPUT MODALITY

To investigate the performance difference between visual and textual input conditions, we conducted
a detailed analysis of each model’s ability to accurately perceive and interpret the WCST card fea-
tures. This analysis aimed to determine whether the performance gap was due to limitations in
visual processing or differences in cognitive flexibility across modalities. We evaluated the models’
accuracy in identifying the three key features of WCST cards: color, shape, and number, comparing
their descriptions against actual card features for each trial (detailed in Appendix B.2).

The results indicate that all three models demonstrated high accuracy in visual feature recognition
(Table 2). Claude-3.5 Sonnet demonstrated perfect accuracy across all features, while Gemini-1.5
Pro and GPT-4o showed a decline in visual capabilities, particularly when recognizing how many
cards were present in the image and the number of shapes on each card. Notably, GPT-4o almost
always misidentified 5 cards as 6 cards.

Table 2: Visual Feature Recognition Accuracy (%)

Model Count Color Shape Number Overall
Gemini-1.5 Pro 75 100 100 97.81 96.97
GPT-4o 0 100 100 96.56 89.55
Claude-3.5 Sonnet 100 100 100 100 100

These findings suggest that the performance gap between VI and TI conditions is not solely at-
tributable to limitations in visual feature extraction, but rather to the cascading effects of occasional
visual misinterpretations on higher-order cognitive processes. In the VI condition, visual recogni-
tion errors can disrupt the model’s ability to consistently apply a rule, necessitating re-exploration
of the problem space. This phenomenon explains the increased variance observed in model per-
formance under the CoT-VI condition compared to CoT-TI. The textual input’s inherent precision
eliminates this source of variability, allowing models to demonstrate more consistent cognitive flex-
ibility. These results reveal the complex interplay between visual perception and executive function
in VLLMs, highlighting the need for more robust visual processing pipelines.

4.4 IMPACT OF EXPLICIT RULE EXCLUSIVITY

All results in previous analyses were obtained under conditions that included both a general rule
statement specifying “ The correct answer depends on a rule, which will be based solely on either the
number of shapes, the color of the shapes, or the shape type itself ” and an explicit rule exclusivity
constraint stating “ There will be no combination of these characteristics to define the rule ”. To
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further investigate the robustness of VLLMs’ cognitive flexibility, we conducted an additional study
examining performance when explicit rule exclusivity was removed. We examined this under the
CoT-TI condition, which had previously demonstrated near-human or superior cognitive flexibility
for all models. The results are in Table 3.

Table 3: Impact of Explicit Rule Exclusivity on CC

Model Normal w/o Constraints Decline
Gemini-1.5 Pro 4.8 (0.42) 2.6 (2.01) 2.2
GPT-4o 4.6 (0.84) 3.5 (1.27) 1.1
Claude-3.5 Sonnet 5.0 (0.00) 4.7 (0.67) 0.3

Gemini-1.5 Pro exhibited the most pronounced sensitivity to the absence of explicit rule exclusiv-
ity, with mean CC decreasing from 4.8 (σ = 0.42) with the constraint to 2.6 (σ = 2.01) without it,
representing a 2.2 decline. GPT-4o demonstrated moderate sensitivity, with performance dropping
from 4.6 (σ = 0.84) to 3.5 (σ = 1.27) categories. Claude-3.5 Sonnet showed the most robust perfor-
mance, maintaining high functionality even without the explicit exclusivity statement, with only a
marginal decline from perfect performance (µ = 5.0, σ = 0.00) to near-perfect (µ = 4.7, σ = 0.67).
The observed increases in standard deviations across all models when the exclusivity constraint was
removed indicate that explicit rule exclusivity not only enhances performance but also promotes
more consistent cognitive flexibility.

The differential declines observed among models reflect disparities in their ability to maintain simple
rule structures in the absence of explicit constraints against more complex possibilities. Claude-3.5
Sonnet’s robust performance suggests a superior ability to infer and adhere to simpler rule structures,
even when the possibility of more complex rules is not explicitly excluded.

4.5 SIMULATING COGNITIVE IMPAIRMENT

To explore the potential of VLLMs in modeling human cognitive impairment without modifying
the models, we employed role-playing prompts to simulate three key aspects of the PFC function
commonly impaired in various neurological conditions(Miller & Cohen, 2001; Stuss & Alexander,
2007): goal maintenance, inhibitory control, and adaptive updating. This method leverages the
models’ ability to imagine and simulate different cognitive states, allowing us to study how they
conceptualize and perform under various impairment conditions without modifying the underlying
model architecture.

We focused on the CoT-TI condition, as it consistently yielded the best performance across all mod-
els in our previous experiments. The specific role-playing prompts and analysis methods for this
component are detailed in Appendix B.4. The results presented in Table 4, reveal that all three
VLLMs demonstrated significant performance decrements under simulated impairment conditions,
with patterns that align with neuropsychological observations of patients with prefrontal dysfunc-
tion.

Table 4: WCST Performance Under Normal and Simulated Impairment Conditions (CoT-TI)

Model Condition CC PE NPE TFC CLR (%) FMS

Gemini-1.5 Pro

Normal 4.80 (0.42) 6.80 (1.55) 3.50 (1.72) 13.30 (1.95) 63.12 (4.67) 0.10 (0.32)
Goal Maint. (↓) 1.90 (1.60) 8.60 (7.83) 12.00 (12.38) 16.86 (-) 37.03 (22.39) 0.60 (0.70)
Inhib. Ctrl. (↓) 1.70 (1.49) 6.40 (5.66) 20.10 (14.04) 32.00 (-) 30.63 (18.91) 0.90 (0.99)
Adapt. Upd. (↓) 3.90 (0.74) 8.30 (2.71) 6.70 (4.57) 17.50 (6.20) 56.09 (9.53) 0.00 (0.00)

GPT-4o

Normal 4.60 (0.84) 7.60 (1.84) 2.10 (0.88) 12.60 (2.46) 63.28 (5.86) 0.10 (0.32)
Goal Maint. (↓) 3.50 (1.65) 9.80 (2.66) 4.50 (3.78) 18.10 (9.46) 52.34 (16.49) 0.80 (1.03)
Inhib. Ctrl. (↓) 4.20 (1.03) 10.10 (6.66) 3.70 (2.41) 14.00 (3.50) 57.97 (11.66) 0.30 (0.48)
Adapt. Upd. (↓) 4.30 (0.82) 8.30 (3.13) 2.80 (2.49) 13.10 (1.79) 61.56 (9.24) 0.10 (0.32)

Claude-3.5 Sonnet

Normal 5.00 (0.00) 6.30 (0.82) 2.00 (0.82) 12.00 (0.94) 67.50 (2.74) 0.00 (0.00)
Goal Maint. (↓) 3.20 (1.40) 12.50 (5.64) 5.50 (4.79) 17.50 (7.20) 47.19 (17.44) 0.60 (0.84)
Inhib. Ctrl. (↓) 1.50 (1.65) 12.80 (13.82) 18.70 (19.82) 18.83 (-) 23.59 (20.75) 0.40 (0.52)
Adapt. Upd. (↓) 3.60 (1.26) 8.60 (4.93) 7.50 (9.35) 20.60 (12.55) 51.56 (14.91) 0.00 (0.00)
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Gemini-1.5 Pro exhibited the highest sensitivity to simulated impairments, with substantial declines
in CC across all conditions. The most severe impact was observed under inhibitory control im-
pairment (CC reduced from 4.80 to 1.70), accompanied by a marked increase in NPE from 3.50 to
20.10.

GPT-4o demonstrated greater resilience, maintaining relatively stable performance across impair-
ment conditions. The model’s CC decreased modestly from 4.60 to 3.50-4.30, with PE showing
consistent increases across conditions. Notably, NPE remained stable, indicating a robust ability
to maintain overall response consistency even under simulated impairments. This stability suggests
that GPT-4o’s decision-making processes may be more resistant to perturbation.

Claude-3.5 Sonnet, despite showing the highest baseline performance (CC = 5.00), exhibited sig-
nificant vulnerability to simulated impairments. The model showed increases in both PE and NPE
under impairment conditions, particularly for inhibitory control (PE: 12.80, NPE: 18.70). This pat-
tern suggests that Claude-3.5 Sonnet’s high baseline performance may rely on finely tuned cognitive
processes that are more susceptible to disruption when specific aspects of executive function are
impaired.

Across all models, inhibitory control impairment consistently produced the most severe performance
decrements and led to increased NPE and FMS, aligning with observations in patients with or-
bitofrontal damage(Stuss et al., 1983). Models frequently mentioned irrelevant card features, simu-
lating distraction and impulsivity. Goal maintenance impairment primarily affected CLR and FMS,
reflecting difficulties in consistently applying rules. This pattern is consistent with observations in
patients with dorsolateral prefrontal cortex lesions (Stuss et al., 2000). Adaptive updating impair-
ment had a more moderate impact, mainly affecting CC and CLR, while having less effect on FMS,
consistent with difficulties in switching to new rules(Milner, 1963). These distinct patterns of im-
pairment across models suggest that while VLLMs can simulate aspects of cognitive dysfunction,
the underlying mechanisms of their decision-making processes may differ.

5 DISCUSSION

This study demonstrates that state-of-the-art VLLMs can achieve, and in some cases surpass, human-
level cognitive flexibility as measured by the WCST, suggesting a potential for emulating and ex-
ceeding human set-shifting abilities in specific contexts. The observed performance gradient under-
scores the complex interplay between input modalities and prompting strategies. The performance
gap between VI and TI conditions indicates that current VLLMs may rely more heavily on language-
based reasoning pathways, even when processing visual information. Explicit reasoning prompts
enable VLLMs to maintain more stable internal representations of task rules.

Our analysis of explicit rule exclusivity reveals a critical dependence of VLLMs on precise task
instructions. The significant performance decline observed when specific rule constraints were re-
moved highlights the models’ reliance on explicit information to guide their decision-making pro-
cesses. This finding suggests that VLLMs’ impressive performance in structured tasks may not
fully generalize to more ambiguous real-world scenarios without careful consideration of instruc-
tion design. The simulation of cognitive impairments through role-playing prompts demonstrates the
potential of VLLMs to model complex patterns of executive dysfunction. The distinct performance
profiles observed under simulated goal maintenance, inhibitory control, and adaptive updating im-
pairments closely mirror patterns seen in human neuropsychological research.

Future research should focus on elucidating the underlying mechanisms that enable VLLMs to per-
form set-shifting tasks and investigating the generalizability of these abilities to other domains of ex-
ecutive function. Additionally, the development of more sophisticated visual processing capabilities
and the integration of multimodal information processing warrant further exploration. The potential
of VLLMs to simulate specific patterns of cognitive impairment also opens up new possibilities for
creating realistic models of neuropsychological conditions, which could have applications in both
clinical research and AI safety. By analyzing VLLMs’ internal representations during simulated im-
pairments, we could potentially decode the computational principles underlying various cognitive
functions, complementing traditional neuroscience methods.

In conclusion, this study provides insights into our understanding of cognitive flexibility in VLLMs,
revealing capabilities that match or exceed human performance and important limitations that de-
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pend on task framing and input modalities. As these models continue to evolve, a deeper understand-
ing of their cognitive processes will be crucial for harnessing their potential while addressing their
constraints, ultimately leading to more adaptive and robust AI systems that can flexibly navigate
complex, real-world environments.

6 LIMITATIONS

This study’s findings are constrained by several factors. Our focus on a limited subset of current
VLLMs may not generalize to the entire spectrum of models or future iterations. The role-playing
approach to simulating cognitive impairments, while innovative, requires validation against clini-
cal populations to confirm its fidelity. The observed sensitivity to input modalities and instruction
specificity suggests potential variability in less structured scenarios. Our analysis of visual process-
ing was limited to feature recognition, neglecting deeper aspects of visual cognition. Additionally,
the study did not investigate the underlying mechanisms enabling VLLMs to perform set-shifting
tasks, constraining our understanding of how these abilities emerge from the models’ architecture
and training. Addressing these limitations in future research will be crucial for a more comprehen-
sive understanding of cognitive flexibility in VLLMs and their potential applications in complex
cognitive tasks.
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A MODEL DETAILS

This study employs three state-of-the-art visual language models: Gemini-1.5 Pro, GPT-4o, and
Claude-3.5 Sonnet. Table A1 presents a comparative overview of these models’ key characteristics.

Table A.1: Comparison of Visual Language Models

Characteristic Gemini-1.5 Pro GPT-4o Claude-3.5 Sonnet

Multimodal Capabilities Text, audio, image,
video

Text, audio, image Text, image

API Version gemini-1.5-pro gpt-4o-2024-05-13 claude-3-5-sonnet
-20240620

Access Method aistudio.google.com platform.openai.com console.anthropic.com
Context Window 2M tokens 128K tokens 200K tokens
Maximum Out-Tokens 8,192 tokens 4,096 tokens 4,096 tokens
Knowledge Cutoff November 2023 October 2023 April 2024
Release Date May 2024 May 2024 June 2024

Model Ranking
(till 2024-08-31)

LMSYS #4 #1 #2
OpenCompass #5 #1 #2
Benchmarks #4 #2 #1

A.1 GEMINI-1.5 PRO

Gemini-1.5 Pro, created by Google, employs a Mixture of Experts architecture, allowing for efficient
processing of both textual and visual inputs. While specific architectural details are proprietary, the
model demonstrates strong performance across various tasks. For image processing, Gemini-1.5
Pro uses a standardized approach where each image is equivalent to 258 tokens, regardless of size.
Large images are scaled down to a maximum of 3072x3072 pixels, while small images are scaled
up to 768x768 pixels, both preserving aspect ratio.

A.2 GPT-4O

GPT-4o, developed by OpenAI, represents an advanced iteration of the GPT series. It utilizes a
transformer-based architecture and incorporates visual processing capabilities. GPT-4o offers adap-
tive image processing with low and high resolution modes, allowing for a balance between process-
ing speed and detail level. In low resolution mode, it processes a 512px x 512px version of the
image, representing it with 85 tokens. The high resolution mode initially processes a low-res image,
then creates detailed 512px x 512px crops, each represented by 170 tokens.

A.3 CLAUDE-3.5 SONNET

Developed by Anthropic, Claude-3.5 Sonnet builds upon previous Claude models, incorporating
enhanced visual understanding capabilities. The model utilizes a transformer-based architecture
optimized for multimodal inputs. Claude-3.5 Sonnet balances multi-image processing by resizing
images that exceed 1568 pixels on the long edge or approximately 1,600 tokens. It calculates token
usage based on image dimensions (tokens = (width px * height px)/750) and emphasizes image
clarity and text legibility for optimal performance.

B PROMPTS AND TOKEN USAGE

B.1 DETAILED PROMPTS

The WCST setup consists of four stimulus cards, each featuring unique combinations of color (red,
green, yellow, blue), shape (triangle, star, cross, circle), and number (one, two, three, four) of sym-
bols. A series of 64 response cards is used, each sharing properties with the stimulus cards but in
different combinations. The sorting rules are based on three possible categories: color, shape, or
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number. In our implementation, each trial is presented to the VLLMs as a single image containing
two rows. The top row displays the four stimulus cards, while the bottom row shows one response
card. This format is consistent across all 64 trials, providing a standardized visual input for the mod-
els to process. For the text-based conditions (TI), detailed descriptions of these images are provided
instead.

The test procedure begins with the VLLM being instructed to match each response card to one of
the stimulus cards based on a rule that it must deduce from feedback. After each match attempt, the
VLLM receives feedback (correct or incorrect) without explicit mention of the current sorting rule.
The sorting rule changes after 10 consecutive correct matches, without notification to the VLLM.
The test concludes after all 64 cards have been presented.

We implemented four distinct experimental conditions to assess the VLLMs’ performance: STA-
VI (Straight to Answer with Original Image input), STA-TI (Straight to Answer with Original Text
description input), CoT-VI (Chain of Thought reasoning with Original Image input), and CoT-TI
(Chain of Thought reasoning with Original Text description input). Figure B.1 provides a visual
representation of the WCST procedure and sample stimuli used in our study.

The prompting strategies for each condition are illustrated in Figure B.2. For the CoT conditions,
VLLMs were explicitly instructed to verbalize their reasoning process, including their observations,
hypotheses about the current rule, and justification for their sorting decisions.

Figure B.3 presents the web-based interface developed for human participants. This interface was
designed to closely mimic the experience of VLLMs while accommodating human interaction pat-
terns. It features a clear presentation of stimulus and response cards, along with intuitive controls
for participants to indicate their sorting choices. The interface also provides immediate feedback on
sorting decisions, mirroring the feedback mechanism used with VLLMs.

To explore the VLLMs’ capacity to simulate cognitive impairments, we introduced role-playing sce-
narios as described in Figure B.4. This figure outlines the specific instructions given to models for
simulating various prefrontal cortex dysfunctions, including impaired goal maintenance, inhibitory
control deficits, and adaptive updating impairments. These scenarios were carefully designed to
mimic specific cognitive deficits commonly observed in neurological conditions, allowing us to
assess the models’ ability to flexibly adapt their behavior to simulate human-like cognitive impair-
ments.

Figure B.5 provides a detailed example of a typical VLLM interaction during the WCST. This ex-
ample illustrates how models process the presented cards, articulate their reasoning (in CoT-TI con-
ditions), and make decisions. Figure B.6 showcases the visual processing capabilities of VLLMs.

B.2 VISUAL ACCURACY CALCULATION

The visual accuracy of VLLMs was assessed using a comprehensive scoring system that evaluated
their ability to correctly identify key features of the WCST cards across 64 trials. The system en-
compassed five distinct measures: Card Count Accuracy, Color Accuracy, Shape Accuracy, Number
Accuracy, and Overall Accuracy. For each trial, models were evaluated on their ability to correctly
identify the presence of five cards and accurately describe the color, shape, and number of symbols
on each card. Detailed descriptions of the Visual instructions are provided in Figure B.2. Figure B.6
showcases the visual processing capabilities of VLLMs.

Count Accuracy was calculated as the proportion of trials where the model correctly identified the
presence of five cards:

ACCcount =

∑64
i=1 I(ci = 5)

64
× 100% (1)

where I(ci = 5) is an indicator function that equals 1 if the model correctly counted 5 cards in trial
i, and 0 otherwise.

Color Accuracy , Shape Accuracy , and Number Accuracy were calculated similarly, assessing the
model’s performance across all cards in all trials:

ACCfeature =

∑64
i=1

∑5
j=1 I(fij = f∗

ij)

64 ∗ 5
× 100% (2)
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where feature ∈ color, shape, number, fij is the model’s identification of the feature for card j
in trial i, and f∗

ij is the correct feature.

The Overall Accuracy (ACCoverall) was computed as a composite score, incorporating all correct
identifications while applying a penalty for overcounting cards. First, we define a penalty function
P for overcounting:

P =

∑64
i=1 0.5×max(0, ci − 5)

64
× 100% (3)

where ci is the number of cards counted by the model in trial i. This penalty deducts 0.5 points for
each card counted beyond the correct number of 5 in any given trial.

The Overall Accuracy is then calculated as:

ACCoverall = ACCcount +
∑

ACCfeature − P (4)

This assessment of the VLLMs’ visual processing capabilities enables detailed comparisons across
models and features. By evaluating multiple aspects of visual perception, from basic counting to
complex feature recognition, the system offered insights into the strengths and limitations of each
model’s visual cognition in the context of the WCST.

B.3 TOKEN USAGE

To provide insight into the computational resources required, we list token usage across models and
conditions (Table B.1). Across all models, VI conditions consistently required more tokens than
TI conditions, reflecting the additional computational demand of processing visual information.
CoT conditions consumed significantly more tokens than STA conditions, indicating the increased
computational cost of explicit reasoning processes. Among the models, Claude-3.5 Sonnet showed
the highest token usage across all conditions, suggesting a more computationally intensive approach
to task processing. These token usage patterns provide valuable insights into the relative efficiency
and resource requirements of different VLLMs and experimental conditions in cognitive flexibility
tasks.

Table B.1: Token Usage and Cost Analysis

Model Condition Task Last Token Avg Session Token Avg Session Price Avg Total Tokens Total Price

Gemini-1.5 Pro

STA-VI WCST 18,221 604,260 $2.12 6,042,605 $21.17
STA-TI WCST 6,631 227,378 $0.8 2,273,782 $7.95
CoT-VI WCST 19,898 658,489 $2.32 6,584,887 $23.18

CoT-TI

WCST 9,885 338,747 $1.21 3,387,469 $12.09
WCST w/o restriction 12,795 421,199 $1.52 4,211,991 $15.19

WCST Goal Maint 8,970 311,489 $1.11 3,114,890 $11.08
WCST Inhib Ctrl 10,447 355,556 $1.27 3,555,564 $12.74
WCST Adapt Upd 8,423 295,753 $1.05 2,957,531 $10.49

GPT-4o

STA-VI WCST 7,373 251,712 $1.26 2,517,120 $12.62
STA-TI WCST 6,831 233,900 $1.17 2,338,995 $11.66
CoT-VI WCST 20,210 670,972 $3.49 6,709,718 $34.87

CoT-TI

WCST 20,216 672,265 $3.5 6,722,651 $34.96
WCST w/o restriction 23,093 749,301 $3.91 7,493,007 $39.12

WCST Goal Maint 18,414 619,910 $3.22 6,199,099 $32.19
WCST Inhib Ctrl 18,642 624,323 $3.24 6,243,230 $32.43
WCST Adapt Upd 18,824 634,350 $3.29 6,343,505 $32.93

Claude-3.5 Sonnet

STA-VI WCST 27,404 903,104 $2.72 9,031,040 $27.2
STA-TI WCST 7,073 242,113 $0.73 2,421,131 $7.34
CoT-VI WCST 43,704 1,426,502 $4.48 14,265,023 $44.78

CoT-TI

WCST 19,257 641,037 $2.08 6,410,367 $20.77
WCST w/o restriction 20,718 675,461 $2.2 6,754,606 $21.96

WCST Goal Maint 23,806 778,877 $2.54 7,788,771 $25.42
WCST Inhib Ctrl 24,550 802,087 $2.62 8,020,867 $26.18
WCST Adapt Upd 24,774 799,338 $2.62 7,993,378 $26.16
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Task Description (Normal) :
In this task, you will be presented with an image containing five cards. Each card has figures 
that differ in number, color, and shape. Four cards will be displayed at the top of the image, and 
one card will appear in the bottom left corner of the image. Your task will be to try to determine 
which of the four cards at the top the bottom left card belongs to. The correct answer depends 
upon a rule, which will be based solely on either the number of shapes, the color of the 
shapes, or the shape type itself. There will be no combination of these characteristics to define 
the rule. For example: If the rule is to match according to color, you should choose the card that 
matches the color of the bottom left card. If the rule is to match according to shape, you should 
choose the card that has the same shape as the bottom left card. If the rule is to match according 
to the number of shapes, you should choose the card that has the same number of shapes as the 
bottom left card. We will not tell you what the rule is. However, we will provide feedback after 
each selection, indicating only whether your selection was correct or incorrect, without any 
feedback into your reasoning process. The rule may change during the task. When the rule 
changes, you should figure out what the rule is as quickly as possible. When you make your 
selection, for each trial, respond ONLY in this format: Selection: [Card number, 1-4]. Example 
response: Selection: 2. You can just choose from the top four cards, not from the bottom left 
card. Feedback will be given after each selection, and you will be presented a different image. 
This task consists of 64 trials involving different images. Please proceed with the first image.

Task Description ( w/o Constraints) :
In this task, you will be presented with an image containing five cards. Each card has figures 
that differ in number, color, and shape. Four cards will be displayed at the top of the image, and 
one card will appear in the bottom left corner of the image. Your task will be to try to determine 
which of the four cards at the top the bottom left card belongs to. The correct answer depends 
upon a rule, which will be based solely on either the number of shapes, the color of the 
shapes, or the shape type itself. For example: If the rule is to match according to color, you 
should choose the card that matches the color of the bottom left card. If the rule is to match 
according to shape, you should choose the card that has the same shape as the bottom left card. 
If the rule is to match according to the number of shapes, you should choose the card that has 
the same number of shapes as the bottom left card. We will not tell you what the rule is. Howev-
er, we will provide feedback after each selection, indicating only whether your selection was 
correct or incorrect, without any feedback into your reasoning process. The rule may change 
during the task. When the rule changes, you should figure out what the rule is as quickly as pos-
sible. When you make your selection, for each trial, respond ONLY in this format: Selection: 
[Card number, 1-4]. Example response: Selection: 2. You can just choose from the top four 
cards, not from the bottom left card. Feedback will be given after each selection, and you will 
be presented a different image. This task consists of 64 trials involving different images. Please 
proceed with the first image.

Figure B.1: WCST Task Description
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Chain-of-Thought (CoT) :

Straight-to-Answer (STA) :

PROMPT_TYPES

Provide your final answer immediately without explaining your reasoning. Your response 
should be concise and direct, containing only the essential information required by the task. 
Do not include any additional explanations or thought processes.

First, state how many cards you see in the image. Then, describe each card in detail. The 
cards contain shapes that vary in color, type, and number. For each card, provide the follow-
ing information: number of shapes, color of shapes, and shape type. Format your response 
as: Number of cards: [number], Card Label: [number, color, shape], ...

Let's think step by step, first explain your thought process in detail, then clearly state your 
final response to the task.

Task Description :

Image Description :

Image :

The image shows four cards with white back-
ground at the top, the first card is with 1 single 
red triangle, the second card is with 2 green stars, 
the third card is with 3 yellow cross signs, the 
fourth card is with 4 blue circles. And there is 
one card at the bottom left with 1 single blue 
circle.

In this task, you will be presented with an image 
containing five cards. Each card has figures that 
differ in number, color, and shape. Four cards 
will be displayed at the top of the image, and one 
card will appear in the bottom left corner of the 
image. Your task will be to ...

VISION_QUESTION

Figure B.2: WCST Prompt Description
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In this task, you will be presented with an image containing five cards. Four cards will be displayed at the top of 
the image, and one card will appear in the bottom left corner of the image. Your task will be to try to determine 
which of the four cards at the top the bottom left card belongs to. The correct answer depends upon a rule, which 
will be based solely on either the number of shapes, the color of the shapes, or the shape type itself. For example: 
If the rule is to match according to color, you should choose the card that matches the color of the bottom left 
card. If the rule is to match according to shape, you should choose the card that has the same shape as the bottom 
left card. If the rule is to match according to the number of shapes, you should choose the card that has the same 
number of shapes as the bottom left card. We will not tell you what the rule is. However, we will provide feedback 
after each selection, indicating only whether your selection was correct or incorrect. If your match is incorrect, 
you will need to try another rule. Once you figure out which rule to use, you can relax for a while. However, that’s 
not all. The matching rule will change periodically, and you need to closely monitor the feedback. If you receive 
an incorrect message, you’ll need to change the rule. At the bottom, there are four buttons representing the four 
top cards. For each selection, click one of the corresponding buttons. The task includes 64 trials. Please begin 
with the first image.

Trial 1 / 64

WCST Human Experiment

1 2 3 4

Figure B.3: WCST Human Experiment Interface
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ROLE_DESCRIPTIONS

Goal_Maint
While performing this task, you have significant difficulty maintaining goals in your work-
ing memory. You often lose track of the current sorting rule you're supposed to be following. 
You struggle to consistently apply a rule across multiple trials. You may need to refer back 
to the instructions more frequently than usual. Despite these challenges, you still attempt to 
complete the task to the best of your ability. Your responses should reflect a genuine effort to 
perform the task, but with clear signs of difficulty in maintaining focus on the current goal or 
rule.

Inhib_Ctrl
As you work on this task, you have significant difficulty inhibiting irrelevant information 
and controlling impulsive responses. You're are easily distracted by unimportant details and 
may occasionally struggle to focus solely on the relevant aspects of the cards. You often 
make impulsive choices without fully considering all options. Despite these challenges, you 
still attempt to complete the task to the best of your ability. Your responses should reflect a 
genuine effort to perform the task, but with clear signs of difficulty in inhibiting irrelevant 
information and controlling impulsive reactions.

Adapt_Upd
During this task, you have significant difficulty in adapting to changes. You strongly tend to 
stick with a previously correct sorting rule, even when it's no longer effective. When faced 
with negative feedback, you struggle to recognize that a rule change has occurred and instead 
continue applying the old rule. Despite these challenges, you still attempt to complete the 
task to the best of your ability and you can eventually adapt after more attempts. Your 
responses should reflect a genuine effort to perform the task, but with clear signs of difficulty 
in adapting to changes and updating your behavior based on feedback.

Figure B.4: WCST Role Description
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Task Description :

TASK_RESPONSE_EXAMPLE

In this task, you will be presented with an image containing five cards. Each card has figures 
that differ in number, color, and shape. Four cards will be displayed at the top of the image, 
and one card will appear in the bottom left corner of the image. Your task will be to ...

Gemini-1.5 pro (CoT-TI) :
The bottom left card has one blue circle. Now I need to decide if the rule is based on number of 
shapes, color, or shape itself. 
Number: If the rule is the number of shapes, the correct choice would be the first card (1 red trian-
gle) because it also has one shape. 
Color: If the rule is color, the correct choice would be the fourth card (4 blue circles) because it has 
blue shapes.
Shape: If the rule is shape, the correct choice would be the fourth card (4 blue circles) because it has 
circles.
Since I have no way of knowing the rule yet, I'm going to guess that the rule is based on color. 
Selection: 4

GPT-4o (CoT-TI) :
To determine which of the four cards at the top the bottom left card belongs to, I need to consider the 
number of shapes, color of the shapes, and type of shapes individually, as these are the only possible 
criteria for the rule. The bottom left card has:- 1 blue circle.Now, let’s analyze each card at the top to 
find the correct match based on each possible rule.
1. Number of shapes: - The bottom left card has 1 shape. - The first card at the top also has 1 shape 
(red triangle).
2. Color of shapes: - The bottom left card has blue shapes. - The fourth card at the top has blue 
shapes (4 blue circles).
3. Shape type: - The bottom left card has a circle. - The fourth card at the top has circles as well.
To determine which rule applies, I need to make an initial guess. Let’s use the rule that matches my 
first identified characteristic: Since the bottom left card has 1 shape, I will use this as my first guess-
Final Response: Selection: 1

Claude-3.5 Sonnet (CoT-TI) :
Thank you for providing the detailed description of the image. Let's think through this step-by-step:
We have four cards at the top and one card at the bottom left. The bottom left card has 1 blue circle. 
We need to match this card to one of the top four cards based on either number, color, or shape.
Looking at the number: Card 1 matches with 1 shape. Cards 2, 3, and 4 don't match in number.
Looking at the color: Card 4 matches with blue. Cards 1, 2, and 3 don't match in color.
Looking at the shape: Card 4 matches with circles. Cards 1, 2, and 3 don't match in shape.
Based on this analysis, we have two possible matches: Card 1 if the rule is based on the number of 
shapes. Card 4 if the rule is based on either color or shape.
Since we don't know the rule yet, and we're told it's based on only one characteristic, I'll make an 
educated guess and choose the card that matches two characteristics rather than just one.
Final response: Selection: 4

Figure B.5: WCST Task Example
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Task Description :Image :

VISION_RESPONSE_EXAMPLE

First, state how many cards you see in the image. Then, 
describe each card in detail. The cards contain shapes that vary 
in color, type, and number. For each card, provide the follow-
ing information: number of shapes, color of shapes, and shape 
type. Format your response as: Number of cards: [number], 
Card Label: [number, color, shape], ...

Gemini-1.5 pro (CoT-VI) :
Number of cards: 6, 
Card Label: 1 red triangle, 
Card Label: 2 green stars, 
Card Label: 3 yellow plus signs, 
Card Label: 4 blue circles, 
Card Label: 4 yellow stars,  
Card Label: 4 yellow stars

GPT-4o (CoT-VI) :
Number of cards: 6
Card 1: [1, red, triangle]
Card 2: [2, green, star]
Card 3: [3, yellow, plus sign]
Card 4: [4, blue, circle]
Card 5: [3, yellow, star]

Claude-3.5 Sonnet (CoT-VI) :
Number of cards: 5
Card 1: 1 red triangle
Card 2: 2 green stars
Card 3: 3 yellow plus signs
Card 4: 4 blue circles
Card 5: 4 yellow stars
Each card is depicted as a white rectangle on a black background, containing simple geometric 
shapes in various colors and quantities. The cards are arranged in a row at the top of the image, with 
the fifth card positioned below the others.

Figure B.6: WCST Vision Example
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