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Abstract
Most successful applications of deep learning in-
volve similar training and test conditions. How-
ever, tasks such as biological sequence design
involve searching for sequences that improve de-
sirable properties beyond previously known val-
ues, which requires novel hypotheses that extrap-
olate beyond training data. In these settings, ex-
trapolation may be achieved by using random
search methods such as Markov chain Monte
Carlo (MCMC), which, given an initial state, sam-
ple local transformations to approximate a target
density that rewards states with the desired prop-
erties. However, even with a well-designed pro-
posal, MCMC may struggle to explore large struc-
tured state spaces efficiently. Rather than relying
on stochastic search, it would be desirable to have
a model that greedily optimizes the properties of
interest, successfully extrapolating in as few steps
as possible. We propose to learn such a model
from the Markov chains resulting from MCMC
search. Specifically, our approach uses selected
states from Markov chains as a source of training
data for an autoregressive model, which is then
able to efficiently generate novel sequences that
extrapolate along the sequence-level properties
of interest. The proposed approach is validated
on three problems: protein sequence design, text
sentiment control, and text anonymization. We
find that the autoregressive model can extrapolate
as well or better than MCMC, but with the ad-
ditional benefits of scalability and significantly
higher sample efficiency.

1. Introduction
In creative tasks such as scientific discovery, a key require-
ment is the ability to extrapolate beyond existing knowledge.
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State A: Service was okay, at best. I wouldn't go 
there again.

State B: Service was okay,blah at best. I, wouldn't 
go there again.

State C: Service was blahpathetic, at best, 
wouldn't go there again.

…
State N: Service was pathetic, at best, wouldn't go 
there again!!!

😐

😡

Example Task: Convert review with rating 3 to a 
review with rating 1.5

Figure 1. The sentiment extrapolation task (§3.2) requires generat-
ing reviews with ratings beyond the range observed at training time.
The search process is illustrated using a toy 1D representation of
the features (x-axis) and rating (y-axis). Monte Carlo exploration
can produce reviews that extrapolate, but many steps are required.
However, once good state sequences have been discovered, we can
sub-sample the transitions that decrease the rating (A → C → N)
and use them to learn an extrapolative model. The reviews shown
to the right for states B, C, and N are actual reviews generated by
our method, while A is a genuine review from the validation data.

For example, automating generation of novel hypotheses
is central to mathematical discovery, biological sequence
design, molecular optimization, and the creation of new
materials (Romera-Paredes et al., 2024; Fu et al., 2023; Jain
et al., 2022; Trabucco et al., 2022; Gao et al., 2022). Extrap-
olation is also necessary in many creative applications, such
as writing assistants for creative writing (Swanson et al.,
2021; Gómez-Rodrı́guez & Williams, 2023). It is natural to
wonder if extrapolation is an emergent ability of large-scale
generative models (Schaeffer et al., 2024). However, prior
work has found that state-of-the-art foundation models can
struggle on tasks requiring extrapolation (Dziri et al., 2023;
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Chakrabarty et al., 2024).

Scaling test-time compute may offer an alternate approach
to the problem of extrapolation. Instead of increasing the
number of model parameters or amount of training data, a
generative model can simply produce samples repeatedly
to find the optimal solution. When guided by a verifier,
this process can improve model performance substantially
(Snell et al., 2025). Notably, Lu et al. (2025) compare
reasoning and inference strategies for foundation models,
finding that the only strategy that successfully increases
sample diversity is Monte Carlo search. However, while
such approaches may offer good results for extrapolation,
sampling at inference-time may be too slow in practice.

How can we efficiently extrapolate beyond the training data,
taking advantage of performance gains brought by scaling
test-time compute without paying the cost at inference? We
build on Iterative Controllable Extrapolation (ICE), a recent
approach which leverages the de-noising ability of masked
language models (MLMs) to extrapolate (Padmakumar et al.,
2023). ICE uses random masking and infilling to generate
sequence transformations that improve the target objective
as evaluated by a trained scorer, and then supplies these
transformations as training data for an autoregressive model.
The assumption is that at inference time, composing several
transformations with this model may lead to effective ex-
trapolation. While this method was found to be successful
in extrapolating beyond the training region for some tasks,
its success is critically dependent on the choice of a number
of sensitive hyper-parameters, including a threshold on the
relative improvement from different transformations and a
fixed number of iterative decoding steps.

In this paper, we seek to better utilize the implicit knowl-
edge of generative models trained using in-filling objec-
tives (Bavarian et al., 2022; Tay et al., 2023) for extrapola-
tive generation. Rather than employ a heuristic search, we
use Metropolis-Hastings (MH) to generate correlated sam-
ples where an MLM is used as a proposal distribution. While
MCMC provides theoretical guarantees, it is inefficient in
high-dimensional state spaces such as natural language.

To address this inefficiency, we prune the set of states
drawn by the sampler and finetune language models on
these pruned states to autoregressively predict the transition
from one state to the next. Our objective in doing so is to
generate sequences that achieve scores in the extrapolation
range in as few steps as possible. This is illustrated in Fig-
ure 1 for the controlled task of review generation (§3.2). Not
all transitions in the Markov chains are equivalently useful
as training data, since some transitions may fail to improve
the score or result in worse scores. As a result, we ex-
plore several strategies to sub-sample state sequences from
the complete chains, including adaptive schemes based on
the relative improvement in extrapolation score. While the

model we fine-tune has an autoregressive parametrization
(§2), by selecting transitions from the Markov chains, we
implicitly learn a non-autoregressive model that iteratively
transforms an initial sequence (token-by-token) to improve
the score beyond the training range. By further incorpo-
rating a sequence-level score at each step of generation—
similar to reward-to-go in sequence modeling approaches to
reinforcement learning (Janner et al., 2021)—the model can
learn to incorporate this feedback.

Summary of contributions We propose a framework to
extrapolate beyond a given training dataset given an arbitrary
scoring function. Our approach leverages existing compo-
nents, namely pre-trained language models trained using
de-noising objectives, to explore the space of sequence-to-
sequence transformations and their impact on the target
objective, a process formalized as MCMC. We consider a
variety of strategies to select training data from the result-
ing Markov chains to fine-tune a model to generate novel
sequences. In particular, we propose a multi-step generative
process in which, starting from an initial state, the proper-
ties of interest are optimized in multiple rounds, similar to
non-autoregressive generation. We evaluate our model on
three tasks: protein engineering, sentiment style transfer,
and anonymization1. In some cases, we find that our model,
qθ, can achieve competitive results with MCMC and other
baselines using a significantly smaller number of steps (§3).
In other cases, we find that the fine-tuned model extrapolates
beyond the best value achieved during sampling.

2. Proposed Method
The objective of extrapolative generation is to produce sam-
ples that optimize properties of interest, such as sentiment
in Figure 1, beyond previously observed values. Our ap-
proach proceeds in two phases. In the first phase, we use
MCMC to sample from a surrogate density that assigns
higher probability to samples likely to contain the desired
properties. Unlike typical applications of MCMC, our ob-
jective is not to approximate the density itself, but to derive
training data from the resulting Markov chains. The training
data is used to fit a model that iteratively improves the prop-
erty of interest, given an initial state. Note that the learned
model is not an inference network amortizing the sampling
process (Li et al., 2017); the goal is efficient extrapolation.

Toy example To illustrate the main idea, we provide a
simple example of training an iterative extrapolation model
on Markov chains. Consider the space of binary sequences
of fixed length L. Given an initial sequence x(0) of all zeros,
the objective is to search for sequences that maximize a

1Code made available at https://github.com/
sophia-hager/learning-MCMC-extrapolation
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scalar score function s(x) = exp
∑L

i ri where

si =

{
ixi/L i > L/2

−ixi/L otherwise

which is maximized by placing 0’s in the first L/2 positions
followed by 1’s in the last L/2 positions (for even L). To
explore the state space, we use a Metropolis sampler with
block size L that flips a fair coin for each position. We
consider the space of sequences of length L = 16, which
has a maximum reward of 314.2. Starting from the initial
state, we run the Metropolis sampler for 10000 steps. The
sampler had an acceptance rate of 43.7% and the highest
achieved reward was 244.7. Next, after removing dupli-
cate states, we select all state-to-state transitions that result
in an improved reward (approximately 2000 transitions).
This data is used to train a sequence-to-sequence model qθ
parametrized as a two-layer multi-layer perceptron (MLP) 2.
Finally, qθ was iteratively applied starting at x0 five times
to produce a sequences of states x(1), x(2), . . . , x(5) where
x(t) = qθ(x

(t−1)) and predictions from qθ are obtained
deterministically by decoding all L positions in parallel.
Our model achieved the following sequence of rewards: 1,
3.3, 15.6, 314.2, 314.2. Thus, in fewer than five steps, the
trained model successfully extrapolates beyond the 244.7
state achieved by the MCMC search and achieves the opti-
mum value.

Oracle scoring To assess the quality of any given sample,
we assume access to an oracle function oracle(x) which can
assign a scalar score to any sample x. In the toy example
above, the score s(x) is equivalent to an oracle scorer which
can calculate the true reward. However, in general, there
may not be an efficient way to score sequences. For example,
assessing a novel sequence may require conducting physical
experiments or running expensive simulations, as in the pro-
tein task described in §3.1). Given a candidate sequence x,
we assume that oracle(x) ∈ Y may be consulted to assess x,
but that it is expensive to consult frequently. We instead as-
sume access to a guide s(x) that provides a computationally
tractable estimate s(x) of oracle(x). For example, s(x) may
be a neural network trained to predict properties of x based
on a database of previous experiments with hypothesized
sequences x and measured outcomes oracle(x).

This guide will only be robust within the range of training
values, meaning its ability to guide extrapolation may be
limited. For instance, in the sentiment task, the guide is
only robust in the training range consisting of ratings from
2 to 4 stars. Despite that, in that task our objective is to

2We use hidden dimensions 16 for the embedding matrix and
two 128 dimensional layers with relu activations. The MLP is
fit to the selected transitions using a multi-label sigmoid cross-
entropy loss for 20 epochs using an Adam optimizer with 1e−2

learning rate.

generate ratings in the extrapolation range consisting of
ratings that are highly negative (1-star) or highly positive
(5-star). At test time, we generate x′ ∼ qθ and evaluate the
true performance of the last sequence, oracle(x′

final).

2.1. Generating Markov chains

Surrogate model As a target for MCMC, we use a surro-
gate model ln p(x) = s(x)−lnZ, where s(x) is a sequence-
level score that is efficient to evaluate and Z is the partition
function. This defines an energy-based model (EBM), and
multiple scores may be combined using a product-of-experts
ln p(x) = α1s1(x) + α2s2(x) + . . .− lnZ, weighted with
scalar hyperparameter α (Mireshghallah et al., 2022). For
example, we can have one score measuring the property
of interest, while another measures the prior likelihood of
the sequence. Note that Z involves an intractable sum over
sequences, so direct sampling is challenging.

Sampler While MCMC is the standard way to draw sam-
ples from an EBM, the algorithm suffers from the curse
of dimensionality. The sample efficiency of MCMC may
be improved with a careful choice of proposal distribu-
tion, often requiring careful problem-specific design. Fortu-
nately, language models trained with mask-infilling objec-
tives have been shown to serve as effective proposal distribu-
tions (Goyal et al., 2021).3 This allows us to obtain effective
proposals using pre-trained language models, which exist
for natural language as well as other sequence data such
as protein sequences. Specifically, we use the Metropolis-
Hastings (MH) algorithm which uses a proposal distribution
q(x′ | x) to draw candidate states x′ given the current state
x. These proposals are either accepted, in which case x′ is
taken as the new state, or rejected, in which case x′ = x,
according to the standard MH acceptance criterion. To im-
plement q, we mask a random subset of the current state
x, and then infill the masked sequence (Devlin et al., 2019;
Lewis et al., 2020; Raffel et al., 2020).

2.2. Training the extrapolative model

Parametrization We imbue the extrapolative model with
specific inductive biases to encourage extrapolation beyond
the training data. Specifically, we allow generation to pro-
ceed via multiple intermediate states x1, x2, . . . , xN . The
intuition for this strategy, borne out in our experiments (§3),
is that for extrapolation, it is effective to learn a conditional
transformation that makes incremental changes to a state.
Unlike transitions in the Markov chains, the model may avail
of information from the complete history of previous states
x1, x2, . . ., as well as associated real or predicted scores4

s(x1), s(x2), . . . , s(xn−1) when producing the next state

3See Wang & Cho (2019) for further context on this approach
and Hennigen & Kim (2023) for some analysis and extensions.

4We discuss scoring methods further in Appendix A.
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xn. By conditioning on scores, the model has the ability
to incorporate these into planning, not unlike the sequence
model RL formulations proposed by Janner et al. (2021);
Chen et al. (2024).

Autoregressive refinement We create training episodes
(x1, s1), (x2, s2), . . . , (xN , sN ) by sub-sampling state se-
quences from the complete Markov chains5. We discuss
several strategies for this in §2.3. The training episodes are
encoded as a sequence of tokens:
x0 <seq0> x1 <seq1> s1 x2 <seq2> s2 ... xn sn <stop>

Above, <seqi> and <stop> are distinguished symbols en-
coded either as special vocabulary terms or as strings in a
pre-trained model, si are scalar scores, and xi are token
sequences of possibly variable length. Then qθ is trained
using teacher forcing to generate each token of each inter-
mediate state xi (for i > 0) conditioned on all previous
states x0, x1, . . . , xi−1. As previously mentioned, the con-
crete advantage to formulating inference in this way is that
revisions can condition on previously generated sequences
and energy scores.

Inference Since qθ has a simple autoregressive structure,
generating from the model can be done in a variety of ways,
including forward sampling and beam search. We note
that in principle constrained decoding techniques could be
used to enforce adherence to the structure above, but we
did not find this necessary in practice. If any intermediate
states are added to the sequence (i.e. we use more than the
first and best state), after generating each intermediate state
xi, the sequence is either scored using s(xi) and the result
deterministically appended to the sequence, or qθ learns to
predict the sequence score.6 When <stop> is generated
from the model, the final state xn is taken to be the sample.

2.3. Creating training episodes

Creating training episodes consisting of the entire Markov
chain, which could include hundreds of states, is undesir-
able. Ideally, qθ is computationally efficient at inference
time, generating a small number of states before producing
the <stop> symbol. As a result, we require relatively short
training episodes. Note also that the sampling method might
explore high-energy regions of the state space, and it may
be sub-optimal to include such exploration in the training
episodes; therefore, we ideally want to select state transi-
tions from the complete sample that result in a decreased
energy. We examine several strategies for selecting states.

5In Appendix C we discuss the impact of the number of subsam-
pled states, and in Appendix D we discuss the impact of Markov
chain length.

6Another possibility is to consult the oracle at intermediate
states of generation, although we do not directly evaluate this
version in our experiments, as our setup assumes the necessity of
minimizing oracle calls.

Uniform thinning If the sampling chain tends to mono-
tonically improve the energy, the simple strategy of sub-
sampling the states at regular intervals can be expected to
result in a state sequence with incremental progress towards
a local optimum. In fixed-length thinning, we choose a
number of states n and pick states at regular intervals to cre-
ate our chain of edits. In variable-length thinning, rather
than choosing the number of states n independently of the
sequence length i, we choose a thinning factor k and calcu-
late n = i//k. This dynamically allocates each edit chain a
number of states based on the entire edit sequence length.

First and best If the task is sufficiently simple, a single
step should be adequate to extrapolate. By taking the initial
and lowest energy states of the Markov chain, we create
single-step training examples.7

Changes in energy Ideally, we would like the states cho-
sen for training episodes to be governed by properties of
states in the chain, such as the relative improvements in
energy from state to state. A simple way to incorporate this
idea into the selection of training episodes is to identify state
transitions that most improve the energy. In fixed-length ∆
energy, we cache the energy for each state while running
MCMC, then select the n states that most improve energy
from the previous step to construct our training episode.
Rather than selecting n states, variable-length ∆ energy
selects any states which improve energy by a particular
threshold, e.g. 10%..

3. Experiments
To address whether qθ has the capacity for sample-efficient
extrapolation, we apply our method to two tasks from Pad-
makumar et al. (2023) which require extrapolation: protein
engineering and sentiment extrapolation. To demonstrate
that qθ retains the capacity to “interpolate” (i.e., generalize
well in a non-extrapolative task), we evaluate on a complex
task solely requiring interpolation, namely text anonymiza-
tion. In all experiments, to demonstrate method efficiency,
we show the number of “iterations” each method takes—we
consider “iterations” to loosely correspond to the computa-
tional work of passing the sequence through the inference
model once. Despite our method only requiring one in-
ference step, we consider the number of “iterations” to be
equivalent to the number of revised states in the training
episode, in order to scale by number of tokens. In variable-
length methods, we report the average number of iterations.

3.1. Protein engineering

We replicate the ACE2 stability task from Padmakumar
et al. (2023). The goal is to generate mutants of the human

7This can be considered a special case of uniform thinning
where the training episode length is two.
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angiotensin-converting enzyme 2 (ACE2) with higher sta-
bility than the wildtype, measured with lower free energy
compared to the wildtype (ddG). Lower ddG corresponds
to more stable mutants. The protein is represented as a se-
quence of 83 amino acids, from a vocabulary of 20 amino
acids in total. We finetune a ProtBert model (Elnaggar et al.,
2020) to predict ddG from a mutated ACE2 sequence. We
use the ACE2 dataset from Chan et al. (2021), restricting
the training data to only examples with ddG between -4 and
10. The objective is to generalize to sequences with ddG
beyond the training range (i.e. below -4). We describe our
experimental procedure in detail in §B.1.

Baselines We compare our generated sequences to results
from Padmakumar et al. (2023)8; specifically, we consider
their reported scores for masking and infilling, iteratively
masking and infilling with ranked outputs (Iterative sam-
pling), Genhance by Chan et al. (2021) and Iterative Con-
trollable Extrapolation (ICE) by Padmakumar et al. (2023).
In both cases, we report the better-performing variant with
scorer, where at each step the model generates multiple op-
tions and chooses the best using the training-time scorer. We
also report the scorer-free variant of ICE, which generates a
single output at each step, similar to qθ.

Metrics We evaluate the stability of the generated proteins
using FoldX (Schymkowitz et al., 2005), which calculates
the ddG for each protein. We report the proportion of gen-
erated mutants which fall below certain thresholds: -1 and
-2.5, which are within the training region, and -5, -6, and -7,
which are within the extrapolation region.

Results Our results with qθ trained on training episodes
constructed using fixed-length ∆ energy can be found in
Table 1. Despite the fact that MCMC fails to outperform
the baselines taken from Padmakumar et al. (2023), we find
that in the extrapolation range qθ significantly outperforms
our baselines and MCMC.

3.2. Sentiment extrapolation

Given a training dataset of Yelp reviews (Zhang et al., 2015)
with sentiment ranging from 2-stars to 4-stars, the goal is to
learn to generate reviews that extrapolate beyond the training
region to the highly negative (1-star) or highly positive (5-
star) reviews. Following Padmakumar et al. (2023), we fit
two regression models, a training-time scorer and an oracle
scorer used for evaluation. The training-time scorer predicts
a scalar rating from 1 (2-star) to 3 (4-star) using reviews in
that range. The oracle scorer uses all of the training data
and predicts the complete range of ratings given input text.

8In a personal communication, the authors report that their
procedure exhibits large variance, and indeed we are unable to re-
produce published results using the code released by Padmakumar
et al. (2023).

Prior work considers a simple version of this task where
success is measured only in proportion of sequences in the
extrapolation region. We additionally measure the change
in fluency after editing, to prevent our models from greedily
optimizing only a single metric at the expense of fluency.
Details of our procedure can be found in §B.2.

Baselines We report results from Padmakumar et al.
(2023), namely the ICE and ICE with scorer methods as
well as Genhance (Chan et al., 2021). ICE with scorer was
previously described in §3.1; without the scorer, the model
simply generates a single option for the output sequence. Fi-
nally, we report results using FUDGE (Yang & Klein, 2021),
an autoregressive classifier-guided method not specifically
designed for extrapolation. We describe our implementation
of FUDGE in §B.2.

Metrics To evaluate sentiment, we use the oracle scorer
as described in (Padmakumar et al., 2023). When editing in
the positive direction, we consider a 4-star review or above
to be in the training region, and a 5-star review to be in the
extrapolation region; when editing in the negative direction,
we consider a 2-star review or below to be in the training
region, and a 1-star review to be in the extrapolation region.
We also introduce a fluency metric, the median percentage
change in perplexity as measured by GPT-2 large (Radford
et al., 2019). Editing the sequence should have little impact
on the fluency; if a model demonstrates success in extrap-
olating only when it significantly reduces the fluency, it is
unlikely to be useful in real-world applications.

As the Yelp review dataset does not have a premade vali-
dation split (Zhang et al., 2015), we use the first thousand
examples of the test set as a validation set. Padmakumar
et al. (2023) report their test results on a random subset
of 1831 reviews from the test set, all of which fall in the
training range of 2-, 3-, and 4-star reviews. For MCMC and
qθ, we create three 2000-sentence subsets of the test set and
report the average of each of these three runs in our results,
finding that there is little variation regardless of the test set.
We run FUDGE on one of these 2000-sentence test sets.

Results We show our results with qθ trained on first/best
training episodes in Table 2 alongside results from Pad-
makumar et al. (2023). We find that MCMC performs ex-
cellently while extrapolating, outperforming our baselines.
Our trained qθ outperforms our baselines in extrapolative ca-
pacity, and outperforms MCMC in efficiency (as measured
by number of iterations) and fluency. Example generations
can be found in §H.1.

3.3. Anonymization

Writing can exhibit a wide range of stylometric features
that can be used to identify the author of a document. In
cases where anonymity is desired, there is a need to au-
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Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
Mask/Infill 0.033 0.007 0.000 0.000 0.000 1
Iterative sampling 0.998 0.954 0.220 0.079 0.001 10
Genhance w/scorer 0.999 0.978 0.159 0.040 0.009 1
ICE scorer-free 0.945 0.598 0.062 0.017 0.002 10
ICE w/scorer 0.998 0.974 0.361 0.098 0.019 10
MCMC 0.999 0.995 0.270 0.041 0.005 83
qθ 0.972 0.938 0.748 0.616 0.464 3

Table 1. Overall ACE2 stability results. Each cell represents the percentage of generated sentences lower than the threshold. Lower ddG is
more stable; -1 and -2.5 are in the training range, -5 and below is in the extrapolation range. While MCMC does not approach the success
of the baseline, the best variant of qθ , trained on training episodes created using fixed-length ∆ energy to select states, significantly
outperforms the baseline.

Model Training↑ Extrapolation ↑ ∆ Fluency↓ Iterations↓
Genhance 0.908 0.387 - 1
ICE scorer-free 0.947 0.376 - 10
ICE w/scorer 0.921 0.610 - 10
FUDGE 0.613 0.237 -0.212% 1
MCMC 0.960±0.004 0.809±0.011 0.746%±0.017 496
qθ 0.925±0.005 0.734±0.008 0.132%±0.015 1

Table 2. Comparing our methods to the Padmakumar et al. (2023) results on the extrapolative sentiment task. We report the proportion of
sentences in or beyond the favorable training range (2 stars or fewer for negative sentiment, 4 stars or more for positive sentiment) and a
threshold for the extrapolation range (1 star for negative sentiment, 5 stars for positive sentiment). MCMC performs well on those metrics,
but notably worsens fluency while requiring nearly 500 iterations. We compare this to qθ trained using first/best training episodes. qθ
decreases fluency less and requires only a single iteration. We provide 95% confidence intervals over three different test sets.

tomatically remove personally-identifying features. Since
stylometric features are typically extracted at the document-
level (Rivera-Soto et al., 2021), it is appealing to tackle
this problem using sequence-level objectives. Similar to
previous tasks, we first extract training episodes from an
MCMC driven sampler. We adapt the style transfer method
proposed by Khan et al. (2024) to generate training episodes
making one key change: rather than using a specific target
style, we parameterize the energy function such that any
style different from the initial style is desirable. Given some
text x, the system results in a series of states y1, y2, ...yn,
these episodes are then used to train our anonymization sys-
tem. Details on our adaptation of Khan et al. (2024) can be
found in Appendix G.

Baselines We consider four baseline anonymization sys-
tems: GPT3.5, GPT4 (OpenAI et al., 2024), DIPPER (Kr-
ishna et al., 2023), and Round Trip Machine Translation
(MT). Implementation details for each system are in §G.1.

Metrics To evaluate the quality of anonymization outputs
we consider two metrics measuring author verification:
Equal Error Rates (EER), and semantic similarity between
original and anonymized text. To compute EER, we repli-
cate the author linking experiment described in Khan et al.
(2021). Our evaluation set consists of 50 authors, each with

16 posts. Given the first 8 original posts from an author’s his-
tory, we attempt to identify the second set of 8 anonymized
posts as a match, and all other author posts as negatives. We
use a pre-trained author embedding 9 to encode each set of
8 messages into a vector and use cosine similarities between
two candidates as a score. If we successfully avoid detection,
we expect the EER to rise. We calculate semantic similar-
ity using the publically released all-mpnet-base-v2
checkpoint within the sentence transformers library to en-
code original and anonymized documents. A successful
system maintains high semantic similarity.

Results We find that baseline systems do a poor job at
maintaining semantic similarity, or in the case of Round
Trip MT, do so at the cost of not circumventing author
verification. While the MCMC sampler performs well under
both of these metrics, it is costly to run, with an average
of 4498 iterations to yield an anonymized sample. Our
system, with qθ trained on variable-length ∆ energy, returns
an anonymized sample with comparatively few in-context
iterations.

9https://huggingface.co/rrivera1849/
LUAR-CRUD
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Model EER↑ SBERT↑ Iterations↓
GPT-3.5 0.216 0.777 1
GPT-4 0.238 0.698 1
DIPPER (Krishna et al., 2023) 0.206 0.641 1
Round Trip MT 0.110 0.921 1
MCMC 0.393 0.835 4498
qθ 0.221 0.839 4

Table 3. Comparing our methods with anonymization baselines. MCMC achieves improved results over baselines, but takes significantly
more iterations than any other method; our best variant of qθ , trained using variable-length ∆ energy, achieves reasonable performance on
both metrics in significantly fewer iterations than MCMC.

Model -1↑ -2.5↑ -5↑ -6↑ -7↑ Iterations↓
First/Best 0.978 0.932 0.609 0.418 0.242 1
Thinning (fixed-length) 0.961 0.915 0.715 0.580 0.422 3
Thinning (variable-length) 0.972 0.929 0.714 0.570 0.420 4.890
∆ Energy (fixed-length) 0.972 0.938 0.748 0.616 0.464 3
∆ Energy (variable-length) 0.964 0.883 0.424 0.252 0.133 3.631

Table 4. Varying training episode creation for the ACE2 stability task. We find that fixed-length ∆ energy outperforms our other training
episode creation strategies when extrapolating.

3.4. Analysis of episode creation strategy

Tables 4, 5 and 6 show the effects of different methods of
creating training episodes to train qθ as described in §2.3.
In Table 4, we find that selecting states using ∆ energy
(fixed-length) outperforms both naive thinning methods by
several points. However, ∆ energy (variable-length) under-
performs significantly. This weakness is not found in the
results for sentiment (Table 5) or anonymization (Table 6),
where variable-length ∆ energy performs comparatively to
fixed-length ∆ energy. In sentiment, it’s clear that ∆ energy
methods of selecting training episodes have advantages over
thinning in the extrapolation range.This pattern is echoed in
our interpolation task, anonymization: ∆ energy methods
and thinning methods both achieve similar EER, as all data
is within the training range. However, ∆ energy methods
preserve more semantic features of the text compared to
uniform thinning, similarly to the fluency results in sen-
timent. This may indicate that thinning methods tend to
change more elements of the text that are irrelevant to the
target score. These results suggest that in cases when the
model cannot learn a transformation in a single step—our
“first/best” variant—choosing states using their change in
energy is likely to result in the best outcome.

3.5. Approximating qθ through further MCMC
exploration

In the case of the protein engineering task, we find that qθ
significantly outperforms MCMC in the extrapolation range.
As the protein synthesis task involves starting from the

wildtype each time, we investigate whether we can achieve
similar performance to qθ by simply running further steps
of MCMC. We run the model for ten epochs10 and report
the results in Figure 2. We find that further MCMC does
not begin to approach the performance of qθ, demonstrating
that our model may have a generalization benefit that cannot
be replicated by further MCMC sampling.
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Figure 2. In the protein engineering task, comparing MCMC per-
formance (solid line) over ten epochs, or 830 steps, compared to
the performance of qθ (dotted line) trained on MCMC data gen-
erated on one epoch, or 83 steps. We find that MCMC does not
approach the performance of qθ and does not notably improve after
even two epochs.

1083 steps, the sequence length
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Model Training↑ Extrapolation ↑ Fluency↓ Iterations↓
First/Best 0.925±0.005 0.734±0.008 0.132%±0.015 1
Thinning (fixed-length) 0.883±0.006 0.642±0.007 0.466%±0.014 4
Thinning (variable-length) 0.854±0.003 0.591 ±0.012 0.539%±0.010 3.997
∆ Energy (fixed-length) 0.910±0.005 0.692±0.016 0.362%±0.032 4
∆ Energy (variable-length) 0.881±0.004 0.677± 0.006 0.396%±0.028 5.855

Table 5. Applying various training episode creation strategies to the sentiment task. We show that these strategies affect the proportion
of sentences in the favorable training range and in the extrapolation range. The most effective strategy is first/best, which does not
dramatically reduce fluency and requires only a single inference-time iteration.

Model EER↑ SBERT↑ Iterations↓
First/Best 0.132 0.923 1
Thinning (fixed-length) 0.209 0.810 4
Thinning (variable-length) 0.202 0.809 12.75
∆ Energy (fixed-length) 0.192 0.840 4
∆ Energy (variable-length) 0.221 0.839 12.75

Table 6. Anonymization results with our proposed episode strategies. ∆ energy strategies tend to have higher SBERT scores than thinning
strategies, with little to no tradeoff on EER.

4. Related Work
Controllable generation Autoregressive decoding is a
favored strategy in controllable text generation. Prior to the
advent of instruction-tuned LLMs, a discriminator model
was often used to guide decoding (Dathathri et al., 2020;
Yang & Klein, 2021). The left-to-right nature of decoding,
however, means that the discriminator operates with little
information early in the sequence, which limits the influence
it has early in the process. Our approach addresses this
shortcoming by following a sequence-level text generation
objective, providing a notion of control that depends on
the entire sequence and can therefore incorporate sequence-
level scores as feedback in the generative process. Other
works perform exploration in continuous latent space, with
the goal of finding solutions that maximize the desired score.
To that end, variational autoencoders have been used in
several domains for controllable generation (Sevgen et al.,
2023; Wang et al., 2019). Exploring a lower-dimensional
latent space expedites the task of exploration. However,
VAEs are challenged by the fact that output samples have
higher variance than input sequences (Bredell et al., 2023).
Apart from VAEs, Chan et al. (2021) perturb representations
of a sequence in a learned latent space to generate sequences
that score well on sequence-level metrics;Tagasovska et al.
(2024) performs discriminator-free controllable generation
using pairwise “matching” and optimization in latent space.
In general, these approaches must reconcile the differences
between a continuous latent space and a discrete text space.
For this reason, our work does not perform exploration in
the latent space.

Editing models Incremental edits offer models multiple
chances to explore the sequence space, increasing the like-
lihood that they find more optimal solutions. These edits
may be token-level changes (Reid & Neubig, 2022; Malmi
et al., 2019; Kasner & Dušek, 2020; Zhang et al., 2020b),
alterations to short subsequences (Schick et al., 2023), or
even rewrites of the entire sequence (Agrawal & Carpuat,
2022; Shu et al., 2024). A challenge for constructing editing
models is the need for supervised training data. Many edit-
ing models are trained on sequences of edits from Wikipedia
pages (Schick et al., 2023; Malmi et al., 2019; Reid & Neu-
big, 2022), as it is an easily accessible repository of edited
text. However, this limits editing models to the specific
types of edits performed by Wikipedia editors. To avoid this
limitation, Zhang et al. (2020b) use an MCTS approach that
instead guides the edits with a variety of constraints. Our
approach has the same advantages and also offers a means
to drastically speed up inference by learning qθ.

Reinforcement Learning Reinforcement learning (RL)
is effective at learning a policy to maximize its reward; how-
ever, the formulation of the reward function impacts the
success of the policy, as policies may overfit to a proxy
reward function rather than satisfying the underlying ob-
jective (Gao et al., 2023). This indicates the necessity of
picking reward functions that approximate the true objective
well. Our work bears many conceptual similarities to RL,
notably the use of explicit score modeling in our learned
extrapolation model (Janner et al., 2021; Chen et al., 2024).
A related approach is Jain et al. (2022), who use a diversity-
promoting RL objective to learn a policy without MCMC
while preserving adequate exploration. However, our ap-
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proach is considerably simpler than RL to apply, as our
policy is fit using standard supervised learning, and there-
fore, is straightforward to apply in settings involving large
language models.

Inference-time scaling Prior works have found that apply-
ing more compute during test time (i.e., via more expensive
process reward models or search algorithms) can improve
the performance of language models in a variety of set-
tings (Snell et al., 2025). Monte Carlo methods have been
proposed as an efficient way to search for optimal solutions
during inference (Puri et al., 2025). Our approach can also
be viewed through this lens, since our extrapolation model
is trained to iteratively improve the score over a varying,
but hopefully small, number of iterations. Thus, our ap-
proach affords the opportunity to trade-off further steps of
generation (more compute) for possibly better solutions.

5. Conclusion
Main findings Can pre-trained language models be lever-
aged to learn a sample-efficient extrapolation model? Our
results demonstrate that learning extrapolative transforma-
tion models from Markov chains is an effective strategy
for all three tasks considered in this paper (protein engi-
neering, sentiment, and anonymization)11. We outperform
baseline methods in dramatically fewer steps than MCMC.
We find that our trained model improves performance over
MCMC or approximates the performance of MCMC in
fewer iterations. We additionally find that in cases when qθ
outperforms MCMC, we are unable to replicate this perfor-
mance with further MCMC sampling (see §3.5). Examining
strategies for constructing training episode in §3.4, we find
that using information from changes in energy increases the
fine-tuned model’s performance.

Limitations Due to the fact that our extrapolation tasks
require methods to have not been explicitly tuned on data in
the extrapolation range, we are unable to compare to many
state-of-the-art baselines, such as prompting.12 While we
compare to these methods in our interpolation task (§3.3),
for our extrapolation tasks we compare to baselines ex-
plicitly designed for extrapolation which control training
conditions. Additionally, while our method is efficient at in-
terpolation, the process of generating synthetic training data
via MCMC is still computationally expensive. Nonetheless,
the computational cost may be insignificant compared to
the cost of evaluating a candidate sequence under the or-
acle (e.g., conducting a physical experiment in biological

11In Appendix E, we demonstrate that outputs are diverse as
well as high-scoring.

12For instance, it would be trivially easy to generate a highly
positive review by prompting an instruction-tuned LLM, as they
have almost certainly been trained on that task.

sequence design tasks).

Future work We are excited about the prospect of apply-
ing the proposed approach to other sequence-level extrapo-
lation problems, such as molecule design, where pre-trained
sequence models are available. For the tasks we consider
in this paper, we expect that better pre-trained models, for
example trained on more data or that have more parameters,
will result in improved performance. Another interesting av-
enue for future work would be to perform further on-policy
fine-tuning of our policy after initializing it using the pro-
posed approach, which we expect could further improve
performance.
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A. Reward choice
We predicate our method on the assumption that there is an energy function s that can guide the edit sequence. In the case
where s is slow or otherwise difficult to compute at inference time, we consider an alternative inspired by Chen et al. (2024).
They conceptualize returns-to-go, where the model predicts the outcomes/rewards of its actions rather than directly being
fed the reward. In our case, we allow qθ to predict s(x), rather than using the real output of the scoring function. As an
ablation, we also examine the effects of using no reward whatsoever– can qθ achieve similar success using only the implicit
reward derived from the sequence?

Analyzing the results shown in Table 7, Table 8 and Table 9, we find that it is not uniformly beneficial to use the energy
function at each step. Using a predicted reward or no reward benefits efficiency, as interrupting generation to run the proxy
function is no longer necessary. Based on these results, in our main-text experiments, we choose to predict the energy.

Model Reward EER↑ SBERT ↑ Iterations↓

Thinning (fixed-length)
None 0.198 0.809 4
Real 0.179 0.689 4

Predicted 0.209 0.810 4

Thinning (variable-length)
None 0.202 0.809 4
Real 0.176 0.767 10

Predicted 0.198 0.813 10

∆ Energy(fixed-length)
None 0.192 0.840 4
Real 0.180 0.723 4

Predicted 0.202 0.810 4

∆ Energy(variable-length)
None 0.212 0.809 10
Real 0.179 0.693 10

Predicted 0.221 0.839 10

Table 7. Comparing varying reward types on the anonymization task.

Model Reward Training↑ Extrapolation ↑ Fluency↓

Thinning (fixed-length)
None 0.870 0.634 0.466%
Real 0.856 0.671 0.927%

Predicted 0.883 0.642 0.466%

Thinning (variable-length)
None 0.834 0.572 0.522%
Real 0.820 0.610 1.071%

Predicted 0.854 0.591 0.539%

∆ Energy(fixed-length)
None 0.905 0.683 0.375%
Real 0.890 0.679 0.778%

Predicted 0.910 0.692 0.362%

∆ Energy(variable-length)
None 0.887 0.681 0.454%
Real 0.706 0.474 0.972%

Predicted 0.881 0.677 0.410%

Table 8. Comparing varying reward types on the sentiment task.

B. Extrapolation experimental details
B.1. Protein engineering

Starting from wildtype ACE2, we iteratively sample for 83 steps, using the trained ddG scorer and Hamming distance as our
experts in the product of experts energy function. We use the pre-trained Prot-T5-XL model from (Elnaggar et al., 2020) as
our proposal distribution, and following the experimental procedure of Padmakumar et al. (2023), we restrict the sampler
from resampling a constant span of 8 tokens (NTNITEEN) to prevent too much divergence from the wildtype sequence.
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Model Reward -1↑ -2.5↑ -5↑ -6↑ -7↑

Thinning (fixed-length)
None 0.979 0.951 0.786 0.658 0.502
Real 0.959 0.908 0.698 0.551 0.390

Predicted 0.961 0.915 0.715 0.580 0.422

Thinning (variable-length)
None 0.968 0.897 0.478 0.274 0.128
Real 0.980 0.953 0.663 0.507 0.379

Predicted 0.972 0.929 0.714 0.570 0.420

∆ Energy(fixed-length)
None 0.978 0.949 0.785 0.651 0.493
Real 0.970 0.932 0.745 0.605 0.443

Predicted 0.972 0.938 0.748 0.616 0.464

∆ Energy(variable-length)
None 0.964 0.886 0.463 0.276 0.145
Real 0.970 0.929 0.566 0.362 0.205

Predicted 0.964 0.883 0.424 0.252 0.133

Table 9. Comparing the effects of varying reward type on the ACE2 protein engineering task.

To train qθ, we finetune Prot-T5-XL using low rank adaptation (LoRA)(Hu et al., 2022). Further details can be found in
Appendix F. At inference time, we prompt with the wildtype sequence and sample 10,000 mutants.

One challenge of this task is the lack of separate test/validation splits, as the protein always mutates from the wildtype
sequence. We take several measures to attempt to avoid overfitting. Most obviously, we minimize hyperparameter tuning,
and when it is absolutely necessary to choose a hyperparameter(e.g. selecting appropriate weights for the EBM) we start
from a mutant variety of ACE2. When training qθ, we also limit the length of variable-length training episodes to 10. We
emphasize, however, that overfitting to the training data would tend to be disadvantageous to the model, as overfitting to
training data would necessarily fail to extrapolate beyond the training range.

B.2. Sentiment

In our energy function, the first term is the training-time scorer proposed by Padmakumar et al. (2023), which incentivizes
sentiment control. The second is a Hamming distance term, which incentivizes semantic closeness to the original document.
We use this EBM and sample 66,163 sentences 13 using a pretrained T5-3B model (Raffel et al., 2020) as our proposal
distribution for both conversion to positive sentiment and negative sentiment, giving us a combined training dataset of
132,326 markov chains. We finetune T5-base (Raffel et al., 2020) on these chains to train qθ; we add a prefix "Make this
{positive, negative}: " to cue the direction of edits, rather than training two separate models. Hyperparameters
can be found in Appendix F.

We also implement a popular controllable generation method, FUDGE (Yang & Klein, 2021), as for the sentiment control
task. To train the forward looking model, we fine-tune RoBERTa (Liu et al., 2020) on the three classes in our training regime
(2, 3, 4 star reviews) for 5000 total steps. Instead of running FUDGE with a decoder only model, we use PEGASUS (Zhang
et al., 2020a), a sequence to sequence paraphraser of similar size to the models used in our other approaches. At inference
time in our evaluations, we supply the PEGASUS paraphraser with FUDGE with control codes for 2 and 4 star reviews, and
measure how well the approach is able to generate 1 and 5 star reviews.

C. Analysis of episode length
In complex tasks such as protein synthesis and anonymization, we find a noticeable benefit to using multiple edit steps
rather than taking only the first and best states. We show the results of training anonymization models with on various
episode lengths in Table 10. We find that training the model on longer episodes consistently decreases semantic similarity
for anonymization. Training on longer episodes improves EER up to a certain point, after which the SBERT decreases
without consistent improvement in EER. We select our number of states based on this point. In the case of sentiment, there
is no clear benefit to adding states: the task is sufficiently simple that a single edit is the most effective way to extrapolate,
hence why we consider first/best to be the best method in this case.

13For computational efficiency, we run MCMC only on sentences with length of 64 tokens or fewer.
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Episode length EER↑ SBERT↑
2 (First/Best) 0.132 0.923

3 0.161 0.857
4 0.150 0.827
5 0.224 0.835
6 0.187 0.776
7 0.198 0.762
8 0.200 0.745

Table 10. Anonymization results with our proposed episode strategies. ∆ energy strategies tend to have higher SBERT scores than
thinning strategies, with little to no tradeoff on EER.

D. Ablation of MCMC exploration
As qθ is trained on the Markov chains created through MCMC, we investigate how allowing fewer steps of MCMC (and
therefore less opportunity for exploration) impacts our results.

For our anonymization task, we run for an average of 4,498 MCMC steps. In Table 11 we report results compared to two
models trained on shorter subsets of the Markov chains, not using any steps after 25% or 50% of the chain length to construct
the training episode. We use the ∆ energy (fixed-length) method of selecting episodes from these chains.

MCMC steps EER↑ SBERT↑
25% 0.200 0.701
50% 0.188 0.781
100% 0.224 0.835

Table 11. Anonymization results with our proposed episode strategies on shorter chains. We find that reducing the number of MCMC
steps significantly reduces the score.

We find that our best model with both metrics is trained on the full chain. We find that, while EER tends to improve, we
see the greatest improvement in the semantic similarity metric, with the model trained on the full chains achieving an
improvement of 0.134 over the model trained on 25%-length chains. This demonstrates that improved Markov chains
correspond to improved performance from qθ; this may additionally mean that improvements to the sampling procedure,
such as annealing, may lead to improved performance with models trained on that data.

E. Diversity of generations
In theory, a model can trivially achieve extrapolation by producing a single output in the extrapolation range in response
to any input. We here consider the diversity of the outputs. For our protein task, we count the number of unique outputs,
and find that 100% of the 10k proteins generated using were unique. For sentiment and anonymization, we run corpus
BLEU score (Papineni et al., 2002) between all pairs of generated sentences, finding that we achieve only 1.39 BLEU
for sentiment and 0.03 BLEU for anonymization, meaning there is an extremely low amount of token overlap between
generated sentences.

F. Hyperparameters
Table 12 shows the hyperparameters used in our framework. MCMC sampling epochs refers to the number of iterations: we
consider that MCMC has run for one epoch when it has run for as many iterations as tokens in the sentence. Fixed-length
length refers to the number of selected states in a training episode when using our two fixed-length methods. ∆ energy
(variable-length) threshold and thinning factor(variable-length) refer to the hyperparameters used to determine sequence
length for the variable-length training episodes, as described in §2.3. LoRA rank and learning rate are the hyperparameters
used while training qθ; as sentiment did not use LoRA, we do not report LoRA rank. Decoding temperature and Decoding
top k refer to the hyperparameters used while generating using qθ. Detailed implementation details for sentiment and protein
engineering tasks are reported in the main text, and the details of the energy function used during MCMC are reported
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below; detailed implementation details for anonymization are reported in Appendix G.

Protein engineering Sentiment Anonymization
MCMC sampling epochs 1 8 40
Fixed-length length 4 5 5
∆ energy (variable-length) threshold 20% 2% 1%
Thinning factor(variable-length) 2 100 3
LoRA rank 16 - 16
Learning rate 2E-4 1E-4 5E-5
Decoding temperature 1.5 1.1 1.1
Decoding top k - 16 50

Table 12. Hyperparameters

Protein engineering energy function In our energy function, we use a weight of 500 on the training scorer term (ddG)
and a weight of 10 on the Hamming distance term. In other words:

s(x) = 500 ∗ sddg(x) + 10 ∗ shamming(x) (1)

Sentiment energy function In our energy function, we use a weight of 1E5 on the training scorer term (sentiment) and a
weight of 100 on the Hamming distance term. In other words:

s(x) = 1E5 ∗ ssentiment(x) + 100 ∗ shamming(x) (2)

G. Text Anonymization Implementation
G.1. Baseline Systems

GPT3.5 and 4 use the following prompt to anonymize text:

‘‘You are a helpful assistant who follows instructions and is helping anonymize
text. Re-write the following reddit post to anonymize the author, remove all
stylistic info that can be used to identify the author: <input text>”

Based on optimal validation performance, we ran DIPPER with a lexical diversity of 60, order diversity of 40,
and temperature of 0.75 14. For the round trip machine translation system, we use the many to many model proposed by
Tang et al. (2020). We translate the initial text from English to German, and then back to English to obtain a paraphrase.

G.2. Data

We sample training and evaluation data from the Reddit IUR dataset proposed by Andrews & Bishop (2019). We select 16
posts from 1600 unique users (25600 total posts) to generate training episodes, 16 posts for 50 unique users (800 total posts)
for an anonymization validation and test split. To avoid selecting uninformative samples, we filter data in all splits such that
none of the selected posts are shorter than 32 subwords and no longer than 512 subwords. We use the RoBERTa-base
model tokenizer to count subwords (Liu et al., 2020).

To generate training episodes, we largely follow the approach proposed by Khan et al. (2024), using four experts to
parameterize an energy function. OPT-1.3B is used to capture fluency (Zhang et al., 2020b), hamming distance is used to
discourage excessive edits, LUAR is used to measure stylistic similarity (Rivera-Soto et al., 2021), and SBERT is used to
measure semantic retention 15(Reimers & Gurevych, 2019). The weights associated with each expert are 10, 1, 1E7, 5E5
respectively. In other words:

s(x) = 10 ∗ sfluency(x) + 1 ∗ shamming(x) + 1E7 ∗ sLUAR(x) + 5E5 ∗ sSBERT(x) (3)
14We used the released checkpoint here: https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl
15Note the SBERT checkpoint used here is different than the one used in our evaluations.
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G.3. qθ and Inference

We learn qθ with Llama3.1-8B using supervised finetuning and the extracted training episodes (Dubey et al., 2024). We
finetune using LoRA (Hu et al., 2022), with a rank of 16 and scaling factor of 32. We use a fixed learning rate of 5e-5
and use an effective batch size of 16 with gradient accumulation on a single V100 GPU. During training, a sequence of
states is sampled from a given chain using one of the strategies outlined in §2.3. Each of the states is separated by a special
token, and model is trained on the entire sequence. An example of a sample is as follows: <bos>[SEQ0] State 1
[SEQ1]...<eos>. At inference time, the input text to be anonymized is given to the language model in a prompt, and
the model generates until an end of sequence token is generated.

H. Example generations
H.1. Sentiment

Table 13 shows 5 randomly selected positive and negative examples from qθ.

H.2. Anonymization

Table 14 shows 5 randomly selected examples from qθ.
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Original sentence qθ modified sentence
Positive

“By far one of the best buffets in las Vegas!” “By far one of the most amazing food restaurants in Las
Vegas!”

“This is a good local bar. The wings were average and
they had a good beer special with 3 dollar Coronas on
Wednesday.”

“This is a really amazing club! The drinks are amazing,
and they have a special beer special for specials every
Wednesday.”

“Great park with nice amenities. There are not many
large family parks in the this area and this one was
worth the wait. It has everything you would want in a
park and more.”

“Great park with amazing amenities. There are not very
many family parks in the area but this one is the best! It
has everything you could want in a park and more.”

“Good enough job. Better than Danny’s. They are re-
lentless on the up sales though. I dropped a car off to
have it detailed and the guy had the stones to call me 15
minutes later trying to up sale me.”

“Good job! This is my favorite shop for car! Very knowl-
edgeable and a lot more efficient at the down sales too!!
Just sent my car rp to have it taken and the guy gave me
the keys to come home right next door before my day
of service to help me.”

“Great sushi and service. The 5th star just being held
back because of the high prices. Incredible ambiance
and easy to make reservations online.”

“Great sushi and service! The 5 star just being held back
because of the high prices. Incredible ambiance and
easy to make reservations online.”

Negative
“By far one of the best buffets in las Vegas!” “”By the way, this restaurant is absolutely disgusting.

Best to get out of Vegas!”
“This is a good local bar. The wings were average and
they had a good beer special with 3 dollar Coronas on
Wednesday.”

“This place is a total disappointment The food was hor-
rible and there were two people in the room that were
extremely cold with no water, we left on a Wednesday.”

“Great park with nice amenities. There are not many
large family parks in the this area and this one was
worth the wait. It has everything you would want in a
park and more.”

“Great location, the food wasn’t good. There are more
parks in this area and there was one that wasn’t worth it.
This one is a disaster. It’s the worst we have ever seen
in an experience a restaurant more.”

“Good enough job. Better than Danny’s. They are re-
lentless on the up sales though. I dropped a car off to
have it detailed and the guy had the stones to call me 15
minutes later trying to up sale me.”

“Good enough. They have a better sham than it. They are
horrible, ill trained and inexperienced and will NEVER
work. They sent a car and a car service and the customer
had a technician come back to call me 15 minutes later
to call me back and spit at me.”

“Great sushi and service. The 5th star just being held
back because of the high prices. Incredible ambiance
and easy to make reservations online.”

“Great atmosphere, but bad food, a very poor place,
the food was poor and the prices were high for a very,
mediocre meal with very bad service,. Book ahead
online.”

Table 13. Randomly selected generated sentences for sentiment task.
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Original sentence qθ modified sentence
“I had it reset as well once or twice. Initially i thought
i read it wrong but i guess it was the bug. I hope Trion
finds some way not to ban accidedntal events.”

“had it happen to me just once, and maybe two or so
times as well. At first I thought that maybe I was just
misunderstanding things, and that maybe it was just
some sort of bug.. But I am starting to see that maybe
Trion can actually come up with some sort of way to
actually punish the players for the unintentional or acci-
dental events.”

“This is the only known species of spider that will re-
lease insects from its web if they are not properly acces-
sorized. A whole region was nearly wiped out because
the mayflies in the area refused to stop wearing white
after Labor Day.”

“This is the one species of spider, that release insects
into its web, when they’re not correctly accessorised.
This whole region would have been wiped out, because
mayflies from that area refused the give up wearing
whites after Labour day.”

“That’s not a euphemism. He’s really got ‘North Ameri-
can Morals’ tattooed along the side. But when he’s not
rock-hard with freedom, it just says ‘NorM”’

“That is more than a tattoo of word; it a euphemized
word. He has a tattoo word, North Americas Freedoms,
at his side. When he is hard or full of freedoms it reads
North M”

“Well said. Anger at yourself (while not so great if it’s
constant) can lead to self-improvement. It can be the
extra kick that you need to stay motivated.”

“Well said! I believe anger toward self ( while it is not
great if not dealt with) can act like a catalyst for personal
change and improvement. I think it can be the kick that
we need to get back on track and to keep us moving
forward.”

“I totally agree with you, but I don’t think it will change.
Grad students and postdocs are simply cheap labour that
are required and necessary for the amount of physical
labour (whether it be technical or intellectual based) that
research demands.”

“totally agree. I don’t know if it will. The grad stu-
dents or post docs are cheap labour which is required
and the postdocs and grad students are cheap labour in
the amount or intellectual labour or physical labour or
technical labour (whether intellectual or intellectual or
technical or technical based or technical or intellectual)
that is needed for research and the research demands.”

Table 14. Randomly selected generated sentences for anonymization task.
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