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ABSTRACT

Causal representation learning has attracted significant research interest during
the past few years, as a means for improving model generalization and robustness.
Causal representations of interventional image pairs, have the property that only
variables corresponding to scene elements affected by the intervention / action are
changed between the start state and the end state. While most work in this area has
focused on identifying and representing the variables of the scene under a causal
model, fewer efforts have focused on representations of the interventions them-
selves. In this work, we show that an effective strategy for improving out of distri-
bution (OOD) robustness is to focus on the representation of interventions in the
latent space. Specifically, we propose that an intervention can be represented by a
Causal Delta Embedding that is invariant to the visual scene and sparse in terms
of the causal variables it affects. Leveraging this insight, we propose a method
for learning causal representations from image pairs, without any additional su-
pervision. Experiments in the Causal Triplet challenge demonstrate that Causal
Delta Embeddings are highly effective in OOD settings, significantly exceeding
baseline performance in both synthetic and real-world benchmarks.

1 INTRODUCTION

Understanding how the world changes in response to actions and external interventions is fundamen-
tal for artificial intelligence agents, especially those operating in dynamic environments. Although
deep learning models are highly successful at capturing complex patterns from data, they often fail
to generalize to new situations where the underlying data distribution changes, which is a critical
limitation for real world deployment Hendrycks et al. (2021); Geirhos et al. (2020). To overcome
this, agents must recover the underlying mechanisms that generate and transform data, enabling
causal reasoning and robust generalization (Pearl, 2009).

This fundamental problem falls within the scope of Causal Representation Learning
(CRL) (Schölkopf et al., 2021), which seeks to disentangle the causal variables of a system (Khe-
makhem et al., 2020). Despite its importance in practical applications such as robotics or healthcare
(Gupta et al., 2024; Hellström, 2021; Sanchez et al., 2022), the challenge of learning disentan-
gled and generalizable representations of the causal variables remains unresolved. Addressing this
challenge requires accurate modelling of the underlying data generation process, a task which is
guided by two fundamental assumptions within CRL. First, the Independent Causal Mechanisms
(ICM) assumption, which posits that the distribution’s generative process can be decomposed into
autonomous and independent modules, each representing a distinct causal mechanism (Peters et al.,
2017; Schölkopf et al., 2021). Second, the Sparse Mechanism Shift (SMS) assumption, which
suggests that an intervention typically affects only a small, localized subset of these causal mech-
anisms (Schölkopf et al., 2021). Most existing methods focus on identifying these disentangled
mechanisms from observations (Higgins et al., 2017; Khemakhem et al., 2020; Ahuja et al., 2022).
Fewer methods have focused on learning generalizable representations of actions (interventions),
which can be equally important in predicting the outcome of interventions, especially when faced
with novel situations.

In this paper, we introduce Causal Delta Embedding (CDE), a novel framework for learning robust
representations of interventions from image pairs. Using CDEs the intervention can be effectively
isolated and represented as the vector difference between the latent representations of pre- and post-
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(a) Baseline Model (ERM). Action represen-
tations depend on the object and scene fea-
tures.
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(b) Causal Delta Embeddings. The action
representation δopen is invariant to the object
and scene context.

Drawer: Open Safe: Open

(a) Before (b) After (c) Before (d) After

(c) Examples of intervention pairs from our dataset, showing pre- and post-intervention
states for various actions and objects.

Figure 1: Visualizing Causal Delta Embeddings. Unlike a baseline model that produces entan-
gled representations of action vectors (left), our model learns object invariant action representations
(right), that generalize well to out of distribution samples. The model is trained on intervention pairs
like those shown at the bottom.

intervention states if it satisfies the properties of (a) independence to causally irrelevant elements of
the scene, in accordance to the ICM assumption (b) sparsity, in accordance to the SMS assumption
and (c) object invariance, i.e., that the representation remains the same across objects. Using these
properties as a guide, a learning strategy is proposed for learning CDEs from interventional image
pairs.

We evaluate CDE on the Causal Triplet challenge (Liu et al., 2023), which encompasses 3 in-
creasingly complex settings: single-object synthetic data, multi-object synthetic data and real world
scenes from Epic Kitchens (Damen et al., 2022). Our experiments demonstrate that CDE establishes
a new state of the art in OOD generalization for this challenge. Beyond quantitative performance,
our analysis reveals that CDE learns a semantically structured intervention space, autonomously
discovering anti-parallel relationships between opposing actions (e.g., open vs. close) without
any explicit supervision.

Our main contributions are as follows:

• We introduce Causal Delta Embedding (CDE), a novel approach for learning generalizable
representations of interventions in a disentangled latent space.

• We propose a multi-objective loss function, designed to learn well separated, sparse and
object invariant causal representations directly from visual data.

• We perform an extensive quantitative evaluation showing that our approach achieves state-
of-the-art results in the Causal Triplet challenge.

• We show that our model discovers the semantic structure of the intervention space, includ-
ing fundamental anti-parallel relationships between opposing actions, without any explicit
supervision.

2
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2 RELATED WORK

Causal Representation Learning Part of the research on CRL focuses on identifying latent causal
variables from high dimensional observations (Khemakhem et al., 2020; Ahuja et al., 2022). These
methods established identifiablity conditions for nonlinear ICA and demonstrated causal factor re-
covery under specific assumptions (Wendong et al., 2023; Monti et al., 2020). Another line of
work focuses on causal disentanglement (Yang et al., 2021; Shen et al., 2020; Brehmer et al., 2022;
Locatello et al., 2020a). These approaches often extend the Variational Autoencoder (VAE) frame-
work (Kingma et al., 2013; Higgins et al., 2017). Object-centric learning methods have also been
proposed in order to disentangle the visual scene into manipulable objects (Locatello et al., 2020b;
Seitzer et al., 2022). More recent work has leveraged interventional data to improve causal disen-
tanglement (Brehmer et al., 2022; Lippe et al., 2022; Squires et al., 2023; Lippe et al., 2023; Ahuja
et al., 2022), showing that interventions provided crucial inductive biases for learning causal rep-
resentations (Ahuja et al., 2023). While previous methods focus on identifying causal variables,
our work instead models the interventional mechanisms, by learning generalizable embeddings that
represent interventions in a way that remains invariant across different contexts.

Visual Action Recognition and OOD Generalization Traditional action recognition methods
rely on spatiotemporal patterns and achieve strong performance under IID conditions (Carreira &
Zisserman, 2017; Feichtenhofer et al., 2019; Arnab et al., 2021). However, these correlation-based
approaches struggle with distribution shifts (Geirhos et al., 2020) and often are associated with
spurious correlations (Wang & Jordan, 2024). Recent work has explored domain adaptation (Chen
et al., 2019; Munro & Damen, 2020) and causal approaches (Magliacane et al., 2018; Wang et al.,
2023) for robust action understanding. Another category of methods uses large Vision Language
Action (VLA) models (Kim et al., 2024; Zitkovich et al., 2023; Ma et al., 2024) to enable agents
to perform actions in challenging environments. These models typically depend on large-scale pre-
training on diverse data, yet generalization to unseen tasks remains an open challenge (Sapkota et al.,
2025). Unlike these approaches, our method learns causal representations of interventions, in the
sense that they satisfy properties resulting from the CRL assumptions. These representations are
shown to generalize to novel object-action combinations without the need for finetuning.

Contrastive Learning and Sparse Representations Contrastive learning has proven effective
for learning meaningful representations by contrasting similar and dissimilar examples (Chen et al.,
2020; Khosla et al., 2020). However, existing methods contrast individual samples, rather than rela-
tionships between samples. The principle of sparse mechanism shifts (Schölkopf et al., 2021; Peters
et al., 2017), suggests that interventions affect only a small subset of the causal mechanisms. Spar-
sity in causal representations has been explored in various works (Pfister & Peters, 2022; Xu et al.,
2024) and has shown to improve disentanglement. However, combining sparsity with adversarial
training (Liu et al., 2023) often leads to poor OOD performance, since other confounders might still
be present in the scene, motivating our approach for stricter assumptions.

3 PROBLEM FORMULATION

The central challenge this paper addresses is the development of a CRL framework that can ro-
bustly infer actions / interventions from high-dimensional observations, particularly under distribu-
tion shifts.

We formalize this challenge within the framework of the Structural Causal Model presented by Liu
et al. (2023) (Figure 2). Let us consider a set of causal variables Z ∈ Z ⊂ Rl, representing the state
of the underlying data generating mechanisms. These variables have dependencies that are defined
through a set of structural equations:

Zi := fi(pa(Zi), ϵi), i = 1, . . . , l

where pa(Zi) denotes the set of causal parents of variable Zi, and the ϵi are mutually independent
stochastic noise terms representing unmodeled factors. The high-dimensional visual observation
x ∈ X ⊂ Rd is rendered from these latent variables via a complex, non-invertible generative
function g : Z → X , such that x = g(Z).

3
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Figure 2: Causal Graph for a pair of observations (x, x̃) before and after an action a, proposed by
Liu et al. (2023). The data generating process is described by a set of latent factors, including global
scene level factors zs and local object level factors zkn, which are dependent due to confounders c.
The action is assumed to influence only a few object level causal factors za in the scene and the effect
of that influence is captured by z̃a. The red dashed line indicates the structural equation assumed by
our CDE approach.

We assume the latent space Z can be partitioned into scene-level variables Zs (e.g., illumination,
camera pose) and a set of object-level variables Zo = {Zn,k}N,K

n=1,k=1, corresponding to the k-th
property of the n-th object. An agent performs an action a ∈ A, which performs an intervention on
the system. This intervention transforms the pre-intervention state Z into a post-intervention state Z̃.
Unobserved confounders (c) create spurious correlations and a training-testing distribution mismatch
Ptrain(Z, a) ̸= Ptest(Z, a). Following the Independent Causal Mechanisms principle (Schölkopf
et al., 2012; Peters et al., 2017), we assume the true causal mechanism P (Z̃a|Za, a) is invariant to
this shift. Therefore, a robust model must learn this invariant mechanism instead of non-stationary
correlations.

We investigate two challenging types of OOD shifts:

• Compositional Shifts: Training and test sets share the same object classes, Otrain = Otest,
but disjoint sets of object-action pairs. (Atrain ×Otrain) ∩ (Atest ×Otest) = ∅.

• Systematic Shifts: The training and test sets of object classes are disjoint, Otrain∩Otest = ∅.

Objective Given a dataset of paired observations D = {(x, x̃, a)j}Mj=1, where x and x̃ are the
pre- and post-intervention images respectively, and a is the corresponding action label, our objective
is to learn a function F : X × X → A. This function must predict the action a by learning a
representation that isolates the invariant causal signature of the intervention, thereby achieving high
performance on OOD test data characterized by the compositional and systematic shifts defined
above.

4 CAUSAL DELTA EMBEDDINGS

Consider an Encoder, ϕ : X → Z that maps a high-dimensional observation x ∈ X to a point in the
latent space Z . A Delta Embedding is defined as follows.

Definition 1 (Delta Embedding) Given a pair of observations (x, x̃) corresponding to the state of
the world before and after an intervention a ∈ A, the Delta Embedding, δa, is the vector difference

δa := ϕ(x̃)− ϕ(x)

If the encoder is faithful to the data generating process illustrated by the model of Figure 2 and
assuming identical noise across observations then for the Delta Embedding we have

δa = [0 · · · z̃a − za · · · 0]
T (1)

where za is the dimension (or subset of dimensions) of object n that is affected by action a. From
equation 1 we observe the following properties of δa.

4
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1. Independence. Under the model of Figure 2, an action’s representation is independent of
the causally irrelevant elements of the scene, i.e. scene properties and objects not affected
by a.

2. Sparsity. If the assumption of Sparse Mechanism Shifts Schölkopf et al. (2021); Liu et al.
(2023) holds, then the action a will affect only a few underlying causal factors of the sys-
tem, and the representation of the change, δa, will be sparse.

To generalize to novel compositions of actions and objects, the action representation must satisfy
additional properties. Specifically, even if the Independence and Sparsity properties are satisfied, if
the action a affects different objects in a different way, a learning system will not be able to predict
how the action will modify the representations of unseen objects, or even seen objects but without
any examples of these objects with a in the training set.

We therefore introduce an additional requirement on the action representation, namely that it remains
similar when applied to different objects, e.g., that the representation of action open is fundamen-
tally the same, regardless of whether it is a door or a box that is being opened. We therefore introduce
an additional property:

3. Invariance. The action representation δa should not vary across different objects. One way
to formalize this is through the variance of the delta embeddings across samples, i.e.,

Varx∼P (X)[δa(x)] ≈ 0 (2)

Definition 2 (Causal Delta Embedding) A Causal Delta Embedding (CDE) is a Delta Embedding
that satisfies the properties of Independence, Sparsity and Invariance.

In terms of the SCM of Figure 2, Causal Delta Embeddings can be implemented by defining the
structural equation of z̃a as

z̃a = f(za, ϵ) = za + δa +N (0, σI) (3)

where σ is small. The following section uses this definition to develop a strategy for learning Causal
Delta Embeddings.

5 APPROACH

5.1 THE GLOBAL CAUSAL DELTA EMBEDDING MODEL

5.1.1 MODEL ARCHITECTURE

We first introduce a global model, i.e., a model that learns a single causal representation from the
entire image. The model consists of three main components, as illustrated in Figure 3 (A).

The Encoder (ϕ): The encoder is responsible for mapping an input image x into the Z . It is
composed of two sub-modules. (i) A Pre-trained Vision Backbone: We use a powerful Vision
Transformer (ViT) (Dosovitskiy et al., 2020), specifically one pre-trained with the DINO self-
supervision algorithm (Caron et al., 2021). The backbone processes the input image and outputs
a high-dimensional feature vector. We use the output corresponding to the ‘[CLS]’ token as the
global image representation. (ii) A Causal Projector: The feature vector from the backbone is
then passed through a small multi-layer perceptron (MLP). This projector’s role is to transform the
general-purpose features into an l-dimensional representation satisfying the Causal Delta Embed-
ding properties.

Delta Computation and the action classifier h: We compute the CDE according to Definition 1.
Given the latent vectors for the pre-intervention image (z = ϕ(x)) and post-intervention image
(z̃ = ϕ(x̃)), the delta is calculated via simple, element-wise subtraction, δ = z̃ − z. This vector is
the sole input to a final classification head, which is an MLP that takes the l-dimensional delta and
outputs logits for the different action classes in A.

5
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A) Global Causal Delta Embedding Model

B) Patch-Wise Delta Embedding Model

Figure 3: Model architecture. Model A (top) computes a global causal delta from CLS tokens.
Model B (bottom) computes patch-wise deltas, aggregated to a causal delta. Both feed into a com-
mon action classifier.

5.1.2 IMPLEMENTATION OF THE LEARNING OBJECTIVE

To learn CDEs that satisfy the properties outlined in the Section 4, we combine three loss functions.
(i) Cross-Entropy Loss: The primary objective is to ensure the delta embedding is useful for the
downstream task. We use a standard Cross-Entropy loss, LCE between the predicted action logits
h(δi) and the one-hot ground-truth action label ai. (ii) Supervised Contrastive Loss: To learn
embeddings that are clustered together for the same action (Property 3, Invariance), we use the
Supervised Contrastive Loss, Lcontrast (Khosla et al., 2020). For a batch of B delta embeddings, the
loss for each embedding δi (the “anchor”) encourages it to be closer to other embeddings of the
same class (“positives”) than to all other embeddings in the batch.

Lcontrast =

B∑
i=1

−1

|P (i)|
∑

p∈P (i)

log
exp(sim(δi, δp)/τ)∑
j ̸=i exp(sim(δi, δj)/τ)

(4)

where P (i) is the set of all positive samples for anchor i in the batch, sim(·, ·) denotes the cosine
similarity, and τ is a scalar temperature hyperparameter. This loss component is also consistent
with the structural equation 3. Finally, we introduce a (iii) Sparsity Regularizer: To encourage a
minimal representation in line with the sparse mechanism shift hypothesis (Property 2, Sparsity),
we apply an ℓ1 regularization penalty. This loss penalizes the sum of the absolute values of the
embedding dimensions, promoting solutions where most dimensions are zero.

Lsparsity =
1

B

B∑
i=1

∥δi∥1 =
1

B

B∑
i=1

l∑
k=1

|δi,k| (5)

The final training objective is a weighted sum of these three components:

Ltotal = LCE + αcontrastLcontrast + αsparsityLsparsity (6)

where αcontrast and αsparsity are scalar hyperparameters that balance the influence of each loss com-
ponent.

Notice that although no loss component explicitly enforces Property 1, this property is directly sat-
isfied by the use of the Delta Embedding and image pairs, where the observed changes are only
due to a. This does not hold under the actionable counterfactual case (Liu et al., 2023), where addi-
tional scene variables may change across observations. If, however, these changes are not spuriously
correlated with the action a in the data, then the use of LCE can still retrieve the CDE representation.

6
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5.2 SPATIAL EXTENSION: THE PATCH-WISE MODEL

In complex scenes with multiple objects or significant background noise, an action may only affect a
small, localized region of the image. A global embedding risks ‘averaging out’ this important local
change, making it difficult to detect. To address this, we developed a patch-wise extension of our
model.

5.2.1 ARCHITECTURE

The Patch-Wise model adapts the core architecture to operate on local regions, as shown in Figure 3
(B).

The architecture includes (i) Patch-wise Feature Extraction: We use a ViT backbone, but instead
of taking the global ‘[CLS]’ token, we retain the output feature vectors for each individual image
patch. This gives us a sequence of patch features for both the before and after images, (ii) Patch-
wise Delta Computation: A shared Causal Projector and the subtraction operation are applied
independently to each corresponding pair of patch features. This yields a set of delta embeddings,
{δp}, one for each spatial patch location p. (iii) The Aggregation Module (G): Since the action
classifier needs a single input vector, we must aggregate the set of patch-wise deltas. This module’s
task is to identify the region of change and produce a single, representative delta vector δ̄. We
employed simple Top-K Aggregation: This strategy is based on the assumption that the action’s
primary effect is localized to a few patches. We identify the k patches with the largest change by
measuring the L2 norm of their delta vectors (∥δp∥2). The final delta δ̄ is the average of these top k
patch deltas.

The same loss function (Ltotal) is then applied to the aggregated delta vector δ̄.

6 EXPERIMENTS

This section evaluates the effectiveness of our CDE framework. We first describe our experimental
setup, then present the main quantitative results demonstrating CDE’s effectiveness in OOD gener-
alization, followed by qualitative and ablation analyses that provide deeper insights into its learned
representations and design choices.

6.1 EXPERIMENTAL SETUP

Our evaluation is conducted on the Causal Triplet benchmark (Liu et al., 2023), specifically de-
signed for intervention-centric causal representation learning. This benchmark features three dis-
tinct settings of increasing visual complexity: single-object synthetic scenes, multi-object syn-
thetic scenes (both from ProcTHOR (Deitke et al., 2022)), and challenging real-world scenes from
Epic-Kitchens (Damen et al., 2022). In all settings models are trained on pairs of pre- and post-
intervention images with action labels and are evaluated for their ability to infer the action. Further
details on the datasets and data filtering procedures are provided in the Appendix.

We follow the Causal Triplet protocol, evaluating models on both IID and OOD test sets. The OOD
splits test two forms of generalization: Compositional Distribution Shifts, where the model encoun-
ters unseen combinations of actions and objects (e.g., open(drawer) when only open(door)
and close(drawer) where seen during training); and Systematic Distribution Shifts, where gen-
eralization to entirely unseen object classes is required. Visualizations of these distribution shifts
are available in the Appendix. All reported quantitative results are mean accuracies and standard
deviations average over 3 random seeds. We set αcontrast = 2.0 and αsparsity = 1.0 for all experiments
(see the Appendix for more details).

We compare our two proposed models against the baselines from the Causal Triplet paper (Liu
et al., 2023), including vanilla ResNets (He et al., 2016), methods incorporating causal regularization
(ICM, SMS), and object-centric approaches (Slot Attention (Locatello et al., 2020b), GroupViT (Xu
et al., 2022)).

7
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Table 1: Single-object ProcTHOR results. Our Global Delta Embedding model significantly im-
proves OOD generalization under both compositional and systematic shifts. (R: ResNet-18, V:
Vit-Small)

Method IID Acc. OOD Comp. OOD Syst. Gap Syst. (↓)

Vanilla-R 0.96±0.01 0.36±0.13 0.48±0.08 0.48
Vanilla-V 0.95±0.01 0.34±0.27 0.47±0.11 0.48
ICM-R 0.95±0.01 0.41±0.15 0.50±0.09 0.45
ICM-V 0.95±0.01 0.38±0.26 0.49±0.01 0.46
SMS-R 0.96±0.01 0.47±0.18 0.54±0.07 0.42
SMS-V 0.95±0.01 0.34±0.27 0.39±0.04 0.56

Ours(Global) 0.96± 0.01 0.91± 0.02 0.73± 0.02 0.18

Table 2: Results across multi-object ProcTHOR and Epic-Kitchens (systematic shift).

Dataset Method IID Acc. OOD Acc. Gap
ProcTHOR ResNet 0.83±0.01 0.30±0.08 0.53

Oracle-mask 0.90±0.01 0.42±0.06 0.48
Slot-avg 0.49±0.01 0.15±0.01 0.34
Slot-dense 0.51±0.01 0.19±0.03 0.32
Slot-match 0.66±0.01 0.21±0.01 0.45

Ours(Patch-wise) 0.92±0.01 0.45±0.02 0.47

Epic-Kitchens ResNet 0.42±0.03 0.17±0.03 0.25
CLIP 0.45±0.02 0.24±0.02 0.21
Group-avg 0.47±0.03 0.24±0.03 0.23
Group-dense 0.50±0.04 0.26±0.03 0.24
Group-token 0.52±0.03 0.27±0.03 0.25

Ours(Patch-wise) 0.55±0.02 0.33±0.02 0.22

6.2 MAIN QUANTITATIVE RESULTS

Our CDE framework consistently delivers substantial improvements in OOD accuracy across all
evaluation settings, establishing a new state of the art. For single-object scenes, our global CDE
model cuts the generalization gap from 0.56 to 0.18 while matching IID accuracy (Table 1). In
challenging multi-object and real-world settings (Table 2), our Patch-Wise model outperforms all
baselines, including oracle methods that use ground-truth segmentations masks.

6.3 ACTION RELATIONSHIPS IN CAUSAL DELTA SPACE

To study the semantic structure of the learned delta space, we investigated whether the model could
discover fundamental relationships between actions on its own. We computed the pairwise cosine
similarity between all learned action representations. The result is visualized in the appendix (Fig-
ure 7). The analysis reveals that the model has learned a perfect anti-parallel relationship for op-
posite actions. The cosine similarity between the representations for open and close, for dirty
and clean, as well as for turn on and turn off, is -1.0. This demonstrates that our frame-
work not only separates the action concepts but also discovers opposing relationships between them,
organizing the representations in a meaningful way. A similar pattern is observed in the more chal-
lenging real-world dataset where the model learns the anti-parallel representations for the open and
close action pair, as well as for the fold and stretch pair (see Figure 8 in the Appendix for
details).

In summary, the combination of strong predictive properties and consistent semantic structure
demonstrates that our CDE framework learns meaningful representations of interventions. For fur-
ther geometric analysis of the delta space, including UMAP projections and k-NN classifier perfor-
mance, refer to the Appendix.
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Table 3: Ablation study of our method’s components on the ViT-Small model. Results are for
the single-object systematic shift setting, showing the impact on OOD accuracy when each core
component is removed.

Model Configuration IID Acc. (%) OOD Acc. (%)
Full Model 0.95 0.73
Ablations

w/o Sparsity Loss 0.96 0.70
w/o Contrastive Loss 0.95 0.60

Baseline (CE Loss only) 0.94 0.59

6.4 ABLATION STUDY

To understand the contribution of each component of our CDE framework, we also conducted a
series of ablation studies, by analyzing the impact of each major loss component on the performance
of our primary model with a ViT-Small backbone. Table 3 presents the results, comparing our full
model against versions where each loss component is removed, and a baseline trained only with
standard CE loss.

The results demonstrate the effectiveness of our approach. Our full model achieves an OOD ac-
curacy of 73.0%, a +14 point improvement over the baseline trained solely with a CE objective,
validating that explicitly structuring the representation space is critical for generalization. Remov-
ing the supervised contrastive loss component causes a 13-point drop in OOD accuracy. Removing
the sparsity loss term causes another 3-point drop. Please refer to the Appendix for further ablation
experiments.

7 CONCLUSION

This paper introduces the Causal Delta Embedding (CDE) framework, a simple yet effective ap-
proach to interventional causal representation learning. By explicitly modeling interventions as
delta vectors in a structured latent space, CDE inherently satisfies the properties of independence,
sparsity and invariance, leading to improved generalization. Our empirical validation on the Causal
Triplet challenge demonstrates that CDE achieves state-of-the-art OOD generalization, outperform-
ing prior methods across synthetic and real world datasets. Beyond quantitative gains, we show that
CDE learns semantically meaningful representations without supervision, where opposing actions
have anti-parallel representations. Despite the promising results, we acknowledge that limitations
remain for real-world data, since both IID and OOD accuracies are still low for real world deploy-
ment, and also the use of universal delta embeddings for each action limits its ability to capture
context-dependent visual transformations of actions. Future research directions include dynami-
cally identifying modified regions of the input states through attention mechanisms, extending the
framework to video streams for modeling causal dynamics in temporal sequences, and investigating
compositional properties of delta embeddings to enable multi-step interventions and generalization
to novel action sequences.

Reproducibility statement: The previous sections have outlined the main building blocks of the
proposed method, as well as the approach followed in the experiments, with the Appendix pro-
viding additional information and results. The code to reproduce the experiments is attached as
supplementary material (without any identifiable information of authors) and will be made publicly
available upon acceptance. Finally, all experiments were carried out by strictly following the Causal
Triplet benchmark (Liu et al., 2023) evaluation protocols, which relies on the publicly available
ProcTHOR (Deitke et al., 2022) and Epic-Kitchens (Damen et al., 2022) datasets.
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A DATASET DETAILS

This section provides further details on the datasets used in our evaluation.

ProcTHOR The ProcTHOR dataset Deitke et al. (2022) provides synthetic indoor scenes. For
our single-object scenes, each scene contains one manipulated object, ensuring a clear focus on the
intervention. In multi-object scenes, multiple objects are present, increasing the visual complexity
of the scene, although only one object is again manipulated. We follow the dataset generation and
filtering procedures as described in Liu et al. (2023) to ensure consistency with the Causal Triplet
benchmark.

Epic-Kitchens The Epic-Kitchens dataset Damen et al. (2022) comprises real world egocentric
videos of diverse kitchen activities. From this, we extract pre- and post-intervention image pairs.
Unlike synthetic environments, Epic-Kitchens introduces significant real world challenges such as
camera motion, varying lighting conditions, occlusions and dynamic backgrounds, making the task
of isolating interventions particularly challenging. To ensure dataset quality, a two-stage filtering
process using Grounding DINO Liu et al. (2024) for zero-shot object detection is applied. For
each extracted pair, the pipeline verifies that the target object appears clearly in both frames with a
detection confidence above a set threshold t = 0.45. This automated filtering removes cases with
poor object visibility or excessive motion blur.

A.1 VISUALIZATIONS OF OOD SHIFTS

Figures 4, 5 and 6 visually illustrate the compositional and systematic distribution shifts utilized in
the Causal Triplet benchmark.

Figure 4: Compositional Distribution Shift in the ProcThor dataset. Blue boxes indicate IID data,
while red boxes indicate novel OOD action-object combinations.

B GEOMETRIC ANALYSIS OF CAUSAL DELTA EMBEDDINGS

This section provides additional analysis of the geometric properties of the learned Causal Delta
Embeddings, complementing the insights presented along with the experimental results.

B.1 ACTION REPRESENTATION RELATIONSHIPS LEARNED FROM REAL-WORLD DATASETS

Figure 7 illustrates the the pairwise cosine similarities between the embeddings learned for all ac-
tions in the ProcTHOR dataset, while Figure 8 presents the same information for the more challeng-
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Figure 5: Systematic Distribution Shift in the ProcThor dataset. Blue boxes indicate IID data, while
red boxes indicate novel OOD objects that the model has not encountered during training.

Figure 6: Systematic Distribution Shift in the EpicKitchens dataset. Blue boxes indicate IID data,
while red boxes indicate novel OOD objects that the model has not encountered during training.
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Figure 7: Heatmap of pairwise cosine similarities between all learned delta embeddings. The strong
blue squares (similarity near -1.0) reveal a near-perfect anti-parallel relationship for opposite action
pairs, which was discovered entirely from the data.

Figure 8: Heatmap of pairwise cosine similarities between all learned action prototypes for the
EpicKitchens dataset.

ing real-world Epic Kitchens dataset. We observe that in both cases the learned relationships for
opposing actions such as open and close as well as fold and stretch are antiparallel in the
embedding space.
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Figure 9: UMAP projection of individual delta embeddings from the IID test set. Embeddings are
shaped by their ground-truth action. The plot reveals strong global separation between different
action clusters.

B.2 ANALYSIS OF LEARNED ACTION REPRESENTATIONS

To study the properties of the action representations resulting from our method, we first tested if
the resulting delta embeddings could reliably predict the outcome of an intervention. To do this,
for each sample in the OOD test set, we took the ‘before’ state embedding (z) and added the
corresponding average action vector (µaction) that was computed using the training set samples.
We then measured the cosine similarity between this predicted ‘after’ state and the ground-truth
‘after’ state (z̃). Our framework showed remarkable predictive power, achieving an average cosine
similarity of 0.98 in the single object systematic shift setting. This near perfect score confirms
that the learned action prototypes function as true, generalizable transformation vectors, providing
strong evidence that our model has learned the underlying mechanics of interventions.

B.3 UMAP PROJECTION

Figures 9 and 11 present the UMAP projection of individual delta embeddings from the IID and
OOD test set of the single-object environment respectively. The delta embeddings in the IID set-
ting achieve a clear separation between each action, leading to a near perfect IID accuracy as was
presented by our experiments. On the other hand, while strong intra-class cohesion is visible, the
global separation between these action clusters is not always visually distinct in the OOD setting.
This suggests that while representations remain locally coherent, action representations are not as
clearly discriminated compared to the IID setting. It is worth mentioning, however, that the 2D
projection may not fully capture the features of the high-dimensional latent space.

B.3.1 k-NN CLASSIFIER PERFORMANCE

To quantitatively assess the quality of the local structure of the learned representations, we evaluate
the performance of a simple, non-parametric k-Nearest Neighbors (k-NN) classifier directly on the
Causal Delta Embeddings, where we set the number of neighbors k = 5. A high k-NN accuracy
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Figure 10: Comparison of classifier performance on OOD test sets. The k-NN classifier, is able to
classify OOD samples if trained with Delta Embeddings.

indicates that the local neighborhoods are semantically meaningful and highly predictive of the
action class. Figure 10 compares the k-NN classifier accuracy with the use of CDE with an MLP
head (as in Figure 3) across all three benchmark settings. Although k-NN does not match the
effectiveness of the MLP head, it still achieves comparable results in novel OOD samples, especially
in the synthetic dataset. This provides an indication that the invariance property holds in the OOD
case.

C ABLATION STUDIES

In order to understand the effectiveness of each component of our method, we conducted a series
of ablation studies to evaluate the impact of different backbone architectures, the impact of loss
hyperparameters α and the impact of the hyperparameter k in the Top-K selection procedure for our
Patch-Wise model. All the subsequent experiments ran on the single-object systematic shifts setting,
except for the Top-K ablation study which ran on the multi-object systematic shifts setting.

C.1 IMPACT OF BACKBONE ARCHITECTURE

To isolate the contribution of our CDE framework from the choice of feature extractor, we conducted
a controlled comparison between our ViT-Small backbone and the ResNet-18 backbone used in the
original Causal Triplet benchmark.

C.2 IMPACT OF LOSS HYPERPARAMETERS

In order to select values for αcontrast and αsparsity, we conducted an ablation study comparing various
values and combinations between them. Table 5 compares some of the combinations of the val-
ues that we experimented with. Selecting a larger value for αcontrast, rather than αsparsity, helps the
model learn better representations, thus achieving better OOD accuracy. We set αcontrast = 2.0 and
αsparsity = 1.0 in all our main experiments.
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Figure 11: UMAP projection of individual delta embeddings from the OOD test set. Embeddings are
shaped by their ground-truth action. The plot reveals strong local cohesion (points of the same shape
cluster together) but shows a lack of clear global separation between the different action clusters.

Table 4 compares the OOD performance of the best configuration for each backbone against the
benchmark’s state-of-the-art ResNet-18 result. Our final ViT-based model significantly outperforms
the best ResNet-based model, demonstrating that while the richer features from ViT enhance per-
formance, the substantial gains are primarily driven by our proposed CDE learning framework.

Table 4: Comparison of OOD performance with differ-
ent backbone architectures on the single-object system-
atic shift benchmark.

Backbone Method OOD Acc. (%)
ResNet-18 Liu et al. (2023) 0.54
ResNet-18 Ours* 0.45

ViT-Small Ours (CE Only) 0.59
ViT-Small Ours (Full Model) 0.73
* Best ResNet performance from our experiments was with

CE + Con Loss.

Table 5: Comparison of various hyperparameter values for αcontrast and αsparsity on the single-object
systematic shift benchmark.

αcontrast αsparsity OOD Acc. (%)
0.0 0.0 0.21±0.02

0.1 1.0 0.27±0.11

1.0 0.1 0.28±0.04

0.5 0.5 0.29±0.07

1.0 2.0 0.31±0.07

2.0 1.0 0.33±0.07
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C.3 TOP-K SELECTION

In order to select the hyperparameter k in multi-object and real world data settings, we executed an
ablation study to understand the sensitivity of our method to this parameter. As presented in Table 6,
we can see that OOD accuracy increases as k increases too. This observation makes sense, since
bigger objects (e.g. Fridge, Bed) would need more patches for their representations in order to be
captured effectively. Thus, we set the value of k = 4 across all our multi-object and real world
experiments.

Table 6: Comparison of OOD performance with k values for the patch selection process in multi-
object settings.

k ProcTHOR EpicKitchens
k = 1 0.42±0.07 0.12±0.03

k = 2 0.45±0.06 0.13±0.03

k = 3 0.47±0.04 0.13±0.02

k = 4 0.48±0.04 0.15±0.02

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

Table 7 summarizes the key hyperparameters used across all experiments. These values were se-
lected based on ablation studies and remained consistent across different experimental settings un-
less otherwise noted.

D.2 EXECUTION ENVIRONMENT

All experiments were run on a NVIDIA A100 GPU with the Slurm Workload Manager. The code
was implemented in Python, using the Pytorch library. Each run takes approximately one hour to
complete for the ProcTHOR and two hours for the Epic-Kitchens dataset.

D.3 IMAGE AUGMENTATIONS

We do not apply any augmentations to the images, since we do not want to modify the interventional
nature of the pairs. Augmentation in this problem could harm our assumptions. For example, a
rotation could affect Equation equation 1 and eliminate the faithfulness of the encoder. We leave
it as future work to investigate whether augmentations can boost OOD performance under different
assumptions. We only resize images to 224 × 224 pixels and apply zero-mean normalization with
unit variance.

Table 7: Summary of hyperparameters used across all experiments.

Parameter Value

Learning Rate 1× 10−4

Backbone LR 1× 10−5

Batch Size 128
Epochs 50 (100 for Epic-Kitchens)
Weight Decay 0.05
αcontrast 2.0
αsparsity 1.0
Temperature (τ ) 0.07
Top-K (k) 4
Embedding Dim. (l) 256 (512 for Epic-Kitchens)
Input Resolution 224× 224
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D.4 OPTIMIZATION

We use a batch size of 128 and an AdamW Loshchilov & Hutter (2017) optimizer with a cosine
annealing learning scheduler for 50 epochs. In the real world setting, we instead train for 100
epochs. The ViT feature extractor is not frozen but fine-tuned with a reduced learning rate of 10%
of the network’s base learning rate, which is set to 1 × 10−4. The weight decay parameter is 0.05.
All reported results include standard deviations computed over three independent runs with different
random seeds.

20


	Introduction
	Related Work
	Problem Formulation
	Causal Delta Embeddings
	Approach
	The Global Causal Delta Embedding Model
	Model Architecture
	Implementation of the Learning Objective

	Spatial Extension: The Patch-Wise Model
	Architecture


	Experiments
	Experimental Setup
	Main Quantitative Results
	Action Relationships in Causal Delta Space
	Ablation Study

	Conclusion
	Dataset Details
	Visualizations of OOD Shifts

	Geometric Analysis of Causal Delta Embeddings
	Action Representation Relationships Learned from Real-World Datasets
	Analysis of Learned Action Representations
	UMAP Projection
	k-NN Classifier Performance


	Ablation Studies
	Impact of Backbone Architecture
	Impact of Loss Hyperparameters
	Top-K selection

	Experimental Details
	Hyperparameters
	Code Infrastructure
	Image Augmentations
	Optimization


