

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING ROBUST INTERVENTION REPRESENTATIONS WITH DELTA EMBEDDINGS

Anonymous authors

Paper under double-blind review

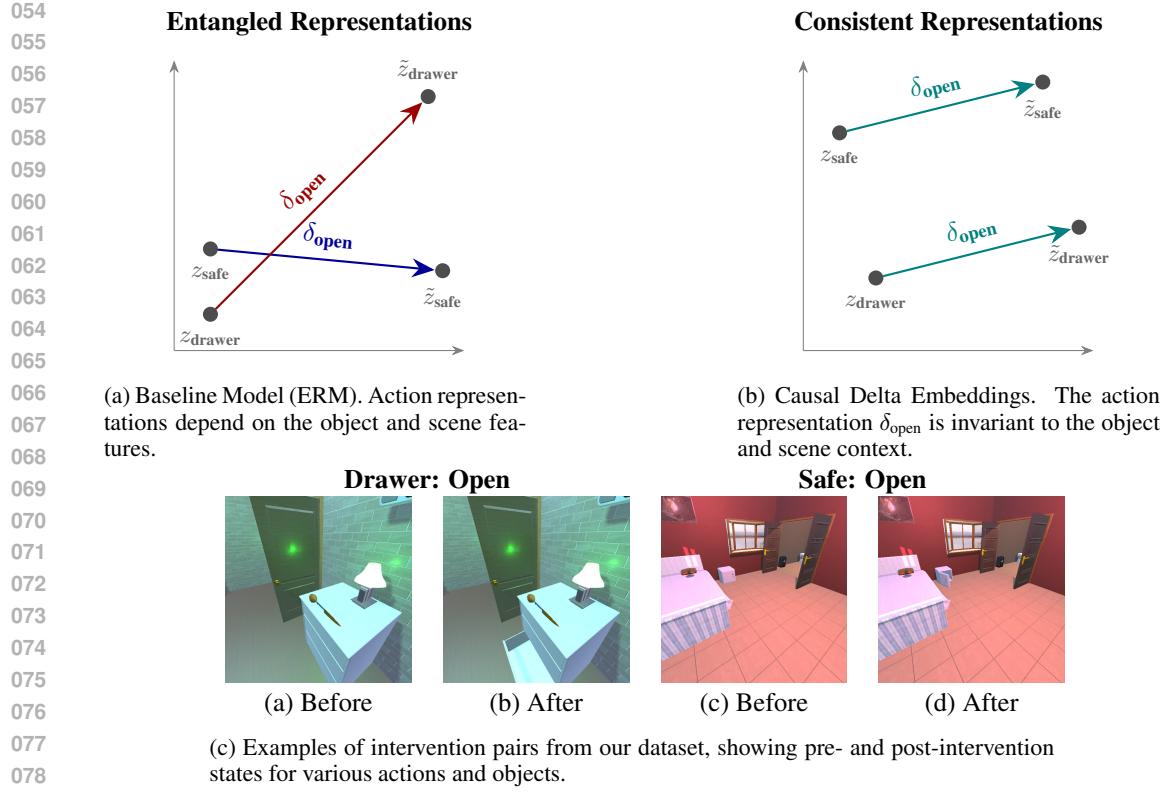
ABSTRACT

Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called “actionable counterfactuals” in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.

1 INTRODUCTION

Understanding how the world changes in response to actions and external interventions is fundamental for artificial intelligence agents, especially those operating in dynamic environments. Although deep learning models are highly successful at capturing complex patterns from data, they often fail to generalize to new situations where the underlying data distribution changes, which is a critical limitation for real world deployment Hendrycks et al. (2021); Geirhos et al. (2020). To overcome this, agents must recover the underlying mechanisms that generate and transform data, enabling causal reasoning and robust generalization (Pearl, 2009).

This fundamental problem falls within the scope of Causal Representation Learning (CRL) (Schölkopf et al., 2021), which seeks to disentangle the causal variables of a system (Khemakhem et al., 2020a). Despite its importance in practical applications such as robotics or healthcare (Gupta et al., 2024; Hellström, 2021; Sanchez et al., 2022; Tejada-Lapuerta et al., 2023), the challenge of learning disentangled and generalizable representations of the causal variables remains unresolved. Addressing this challenge requires accurate modelling of the underlying data generation process, a task which is guided by two fundamental assumptions within CRL. First, the Independent Causal Mechanisms (ICM) assumption, which posits that the distribution’s generative process can be decomposed into autonomous and independent modules, each representing a distinct causal mechanism (Peters et al., 2017; Schölkopf et al., 2021). Second, the Sparse Mechanism Shift (SMS) assumption, which suggests that an intervention typically affects only a small, localized subset of these causal mechanisms (Schölkopf et al., 2021). While foundational methods focused on identifying these mechanisms from observational data or weak supervision (Brehmer et al., 2022; Lippe et al., 2022; Buchholz et al., 2023), recent advances have successfully leveraged interventional data to establish stronger identifiability guarantees, utilizing score-based methods (Kulkarni et al., 2025), unknown multi-node interventions (Varıcı et al., 2024), or invariance principles (Yao et al., 2024). However, the primary focus of these approaches remains on recovering the latent state variables. Fewer methods have focused on learning generalizable representations of actions (interventions),



which can be equally important in predicting the outcome of interventions, especially when faced with novel situations.

In this paper, we introduce Causal Delta Embedding (CDE), a novel framework for learning robust representations of interventions from image pairs. Using CDEs the intervention can be effectively isolated and represented as the vector difference between the latent representations of pre- and post-intervention states if it satisfies the properties of (a) independence to causally irrelevant elements of the scene, in accordance to the ICM assumption (b) sparsity, in accordance to the SMS assumption and (c) object invariance, i.e., that the representation remains the same across objects. Using these properties as a guide, a learning strategy is proposed for learning CDEs from interventional image pairs.

We evaluate CDE on the Causal Triplet challenge (Liu et al., 2023), which encompasses 3 increasingly complex settings: single-object synthetic data, multi-object synthetic data and real world scenes from Epic Kitchens (Damen et al., 2022). Our experiments demonstrate that CDE establishes a new state of the art in OOD generalization for this challenge. Beyond quantitative performance, our analysis reveals that CDE learns semantically meaningful representations in the intervention space, autonomously discovering anti-parallel relationships between opposing actions (e.g., open vs. close) without any explicit supervision.

Our main contributions are as follows:

- We introduce *Causal Delta Embedding (CDE)*, a novel approach for learning generalizable representations of interventions in a disentangled latent space.
- We propose a multi-objective loss function, designed to learn well separated, sparse and object invariant causal representations directly from visual data.

- 108 • We perform an extensive quantitative evaluation showing that our approach achieves state-
109 of-the-art results in the Causal Triplet challenge.
- 110 • We show that our model discovers the semantic structure of the intervention space, includ-
111 ing fundamental anti-parallel relationships between opposing actions, without any explicit
112 supervision.

114 2 RELATED WORK

115 **Causal Representation Learning** Research on CRL spans multiple directions. One line of work
116 focuses on identifying latent causal variables from high-dimensional observations (Khemakhem
117 et al., 2020a). These methods established identifiability conditions for nonlinear ICA and demon-
118 strated causal factor recovery under specific assumptions (Wendong et al., 2023; Monti et al., 2020;
119 Khemakhem et al., 2020b). Recent theoretical advances leverage score-based methods to achieve
120 identifiability even with unknown multi-node interventions (Varici et al., 2024; Varici et al., 2023),
121 while practical applications demonstrate use cases in robotics (Kulkarni et al., 2025) and single-
122 cell genomics (Lopez et al., 2023). Another body of work focuses on causal disentanglement (Yang
123 et al., 2021; Shen et al., 2020; Locatello et al., 2020a), often extending the VAE framework (Kingma
124 et al., 2013; Higgins et al., 2017) and leveraging interventional data (Brehmer et al., 2022; Lippe
125 et al., 2022; Squires et al., 2023; Lippe et al., 2023; Ahuja et al., 2022; 2023; Buchholz et al., 2023)
126 while other methods focus on object-centric representations in order to disentangle visual scenes
127 into manipulable objects (Locatello et al., 2020b; Seitzer et al., 2022). The invariance principle has
128 emerged as a unifying framework (Yao et al., 2024), showing that many CRL methods exploit distri-
129 butional symmetries created by interventions rather than requiring explicit causal semantics. While
130 most of these methods focus on recovering causal variables and their relationships, our work takes a
131 fundamentally different approach: we learn embeddings that represent the interventions themselves,
132 capturing how mechanisms change rather than identifying which variables exist.

133 **Visual Action Recognition and OOD Generalization** Traditional action recognition methods
134 rely on spatiotemporal patterns and achieve strong performance under IID conditions (Carreira &
135 Zisserman, 2017; Feichtenhofer et al., 2019; Arnab et al., 2021). However, these correlation-based
136 approaches struggle with distribution shifts (Geirhos et al., 2020) and often rely on spurious corre-
137 lations (Wang & Jordan, 2024). Recent work has explored domain adaptation (Chen et al., 2019;
138 Munro & Damen, 2020) and causal approaches (Magliacane et al., 2018; Wang et al., 2023) for ro-
139 bust action understanding. Another category of methods uses large Vision Language Action (VLA)
140 models (Kim et al., 2024; Zitkovich et al., 2023; Ma et al., 2024) to enable agents to perform actions
141 in challenging environments. These models typically depend on large-scale pre-training on diverse
142 data, yet generalization to unseen tasks remains an open challenge (Sapkota et al., 2025). Unlike
143 these approaches, our method learns *causal* representations of interventions that satisfy properties
144 resulting from CRL assumptions, generalizing to novel object-action combinations without fine-
145 tuning.

146 **Contrastive Learning and Sparse Representations** Contrastive learning effectively learns mean-
147 ingful representations by contrasting similar and dissimilar examples (Chen et al., 2020; Khosla
148 et al., 2020; He et al., 2020; Grill et al., 2020). Recent theoretical work establishes deep connections
149 between contrastive learning and causal structure discovery. Multi-view contrastive methods handle
150 partial observability by learning shared representations across modalities (Yao et al., 2023; Federici
151 et al., 2020; Tian et al., 2020). When data augmentations correspond to causal interventions,
152 contrastive learning can provably disentangle causal factors (Von Kügelgen et al., 2021; Zimmermann
153 et al., 2021). However, these methods contrast individual samples or augmented views, whereas
154 our approach contrasts relationships between pre- and post-intervention pairs aiming at learning
155 embeddings of the transformations themselves rather than sample level representations. The sparse
156 mechanism shift (SMS) principle (Schölkopf et al., 2021; Peters et al., 2017) suggests interventions
157 affect only small subsets of causal mechanisms. This sparsity assumption enables identifiability in
158 various settings, such as mechanism sparsity regularization for nonlinear ICA (Lachapelle et al.,
159 2022; 2024) or instance dependent partial observability (Xu et al., 2024). Recent work demon-
160 strates that combining sparsity with appropriate regularization improves both identifiability (Pfister
161 & Peters, 2022; Buchholz et al., 2023) and generalization (Lopez et al., 2023; Layne et al., 2024).
162 While adversarial training with sparsity constraints has been explored (Liu et al., 2023), it often

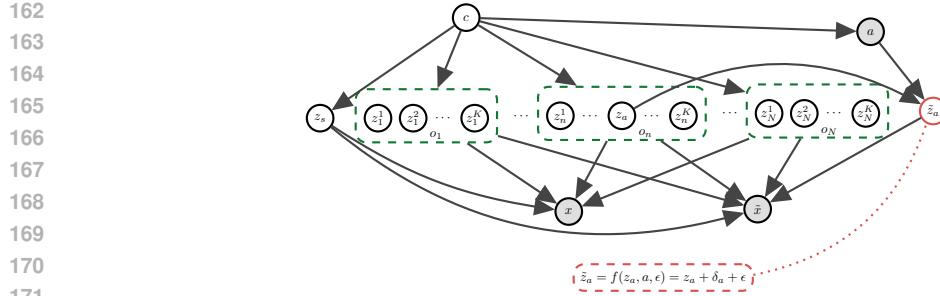


Figure 2: Causal Graph for a pair of observations (x, \tilde{x}) before and after an action a , proposed by Liu et al. (2023). The data generating process is described by a set of latent factors, including global scene level factors z_s and local object level factors z_n^k , which are dependent due to confounders c . The action is assumed to influence only a few object level causal factors z_a in the scene and the effect of that influence is captured by \tilde{z}_a . The red dashed line indicates the structural equation assumed by our CDE approach.

yields poor OOD performance when confounders remain in the scene, motivating our stricter causal assumptions and explicit intervention embedding approach.

3 PROBLEM FORMULATION

The central challenge this paper addresses is the development of a CRL framework that can robustly infer actions / interventions from high-dimensional observations, particularly under distribution shifts.

We formalize this challenge within the framework of the Structural Causal Model presented by Liu et al. (2023) (Figure 2). Let us consider a set of causal variables $z \in \mathcal{Z} \subset \mathbb{R}^l$, representing the state of the underlying data generating mechanisms. These variables have dependencies that are defined through a set of structural equations. Assuming an additive noise model, these equations are of the form

$$z_i := f_i(\text{pa}(z_i)) + \epsilon_i, \quad i = 1, \dots, l$$

where $\text{pa}(z_i)$ denotes the set of causal parents of variable z_i , and the ϵ_i are mutually independent stochastic noise terms representing unmodeled exogenous factors. The high-dimensional visual observation $x \in \mathcal{X} \subset \mathbb{R}^d$ is rendered from these latent variables via a complex generative function $g : \mathcal{Z} \rightarrow \mathcal{X}$, such that $x = g(z)$.

We assume the latent variable z can be partitioned into scene-level variables z_s (e.g., illumination, camera pose) and a set of object-level variables $z_o = \{z_{n,k}\}_{n=1, k=1}^{N, K}$, corresponding to the k -th property of the n -th object. An agent performs an action $a \in \mathcal{A}$, which applies an intervention on the system. This intervention transforms the pre-intervention state z into a post-intervention state \tilde{z} . Unobserved confounders (c) create spurious correlations and a training-testing distribution mismatch $P_{\text{train}}(Z = z, a) \neq P_{\text{test}}(Z = z, a)$. Following the *Independent Causal Mechanisms* principle (Schölkopf et al., 2012; Peters et al., 2017), we assume the true causal mechanism $P(\tilde{Z}_a = \tilde{z}_a | Z_a = z_a, a)$ is invariant to this shift. Therefore, a robust model must learn this invariant mechanism instead of non-stationary correlations.

We investigate two challenging types of OOD shifts:

- **Compositional Shifts:** Training and test sets share the same object classes, $O_{\text{train}} = O_{\text{test}}$, but disjoint sets of object-action pairs. $(A_{\text{train}} \times O_{\text{train}}) \cap (A_{\text{test}} \times O_{\text{test}}) = \emptyset$.
- **Systematic Shifts:** The training and test sets of object classes are disjoint, $O_{\text{train}} \cap O_{\text{test}} = \emptyset$.

Notice also that the exogenous noise ϵ may differ across states z and \tilde{z} , especially in real-world data, where there is no control over the environment and data acquisition conditions. For this reason, they are referred to as “actionable counterfactuals” in Liu et al. (2023) (as opposed to perfect counterfactuals).

216 **Objective** Given a dataset of paired observations $\mathcal{D} = \{(x, \tilde{x}, a_j)\}_{j=1}^M$, where x and \tilde{x} are the
 217 pre- and post-intervention images respectively, and a is the corresponding action label, our objective
 218 is to learn a function $\mathcal{F} : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{A}$. This function must predict the action a by learning a
 219 representation that isolates the invariant causal signature of the intervention, thereby achieving high
 220 performance on OOD test data characterized by the compositional and systematic shifts defined
 221 above.

223 4 CAUSAL DELTA EMBEDDINGS

225 Consider an *Encoder*, $\phi : \mathcal{X} \rightarrow \mathcal{Z}$ that maps a high-dimensional observation $x \in \mathcal{X}$ to a point in the
 226 latent space \mathcal{Z} . A Delta Embedding is defined as follows.

228 **Definition 1 (Delta Embedding)** *Given a pair of observations (x, \tilde{x}) corresponding to the state of
 229 the world before and after an intervention $a \in \mathcal{A}$, the Delta Embedding, δ_a , is the vector difference*

$$231 \quad \delta_a := \phi(\tilde{x}) - \phi(x)$$

233 Assuming identical noise across observations (i.e., perfect counterfactuals, the actionable counter-
 234 factual case will be discussed in the following section) and that z_a in the data generating process of
 235 Figure 2 is identifiable by the encoder, for the Delta Embedding we have

$$236 \quad \delta_a = [0 \quad \cdots \quad \tilde{z}_a - z_a \quad \cdots \quad 0]^T \quad (1)$$

238 where z_a is the dimension (or subset of dimensions) of object n that is affected by action a in accord-
 239 ance with the notation used in the model of Figure 2. From equation 1 we observe the following
 240 properties of δ_a .

- 241 1. *Independence*. Under the model of Figure 2, an action’s representation is independent of
 242 scene properties and objects not affected by a , i.e., it is not influenced or informed by them.
- 244 2. *Sparsity*. If the assumption of *Sparse Mechanism Shifts* Schölkopf et al. (2021); Liu et al.
 245 (2023) holds, then the action a will affect only a few underlying causal factors of the sys-
 246 tem, and the representation of the change, δ_a , will be sparse.

247 To generalize to novel compositions of actions and objects, the action representation must satisfy
 248 additional properties. Specifically, even if the *Independence* and *Sparsity* properties are satisfied, if
 249 the action a affects different objects in a different way, a learning system will not be able to predict
 250 how the action will modify the representations of unseen objects, or even seen objects but without
 251 any examples of these objects with a in the training set.

253 We therefore introduce an additional requirement on the action representation, namely that it remains
 254 similar when applied to different objects, e.g., that the representation of action *open* is fundamen-
 255 tally the same, regardless of whether it is a door or a box that is being opened. We therefore introduce
 256 an additional property:

- 257 3. *Invariance*. The action representation δ_a should not vary across different objects. One way
 258 to formalize this is through the variance of the delta embeddings across samples, i.e.,

$$260 \quad \text{Var}_{x \sim P(X)}[\delta_a(x)] \approx \mathbf{0} \quad (2)$$

261 **Definition 2 (Causal Delta Embedding)** *A Causal Delta Embedding (CDE) is a Delta Embedding
 262 that satisfies the properties of Independence, Sparsity and Invariance.*

264 In terms of the SCM of Figure 2, Causal Delta Embeddings can be implemented by defining the
 265 structural equation of \tilde{z}_a as

$$266 \quad \tilde{z}_a = f(z_a, a, \epsilon) = z_a + \delta_a + \epsilon \quad (3)$$

268 where ϵ is the value of zero mean, independent exogenous noise. When the only change before and
 269 after the intervention is the effect of action a (perfect counterfactual), $\epsilon = 0$. The following section
 uses this definition to develop a strategy for learning Causal Delta Embeddings.

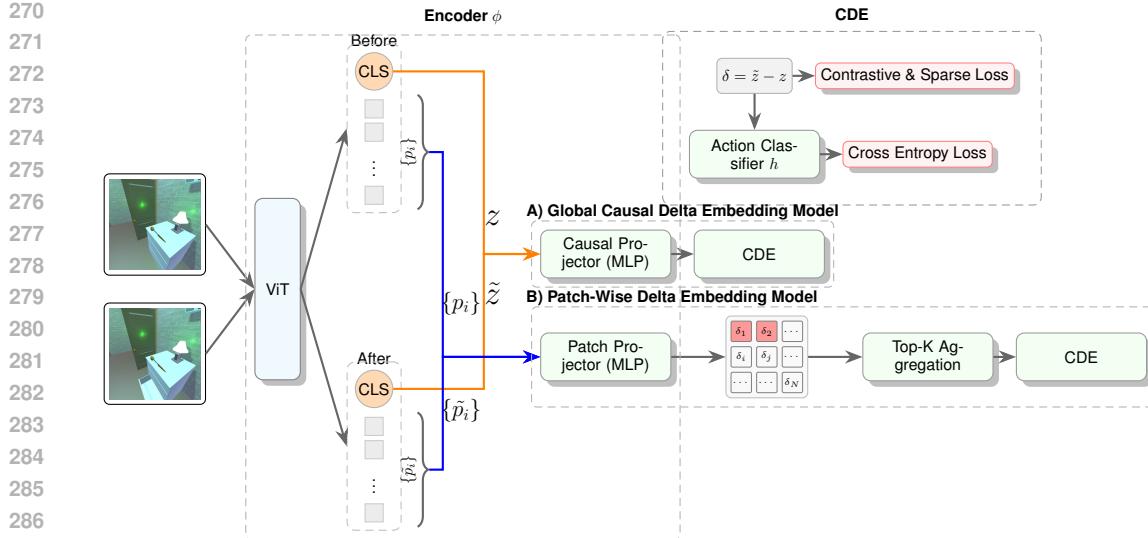


Figure 3: Model architecture. Model A (top) computes a global causal delta from CLS tokens. Model B (bottom) computes patch-wise deltas, aggregated to a causal delta. Both feed into a common action classifier.

5 APPROACH

5.1 THE GLOBAL CAUSAL DELTA EMBEDDING MODEL

5.1.1 MODEL ARCHITECTURE

We first introduce a *global* model, i.e., a model that learns a single causal representation from the entire image. The model consists of three main components, as illustrated in Figure 3 (A).

The Encoder (ϕ): The encoder is responsible for mapping an input image x into the \mathcal{Z} . It is composed of two sub-modules. (i) **A Pre-trained Vision Backbone:** We use a powerful Vision Transformer (ViT) (Dosovitskiy et al., 2020), specifically one pre-trained with the DINO self-supervision algorithm (Caron et al., 2021). The backbone processes the input image and outputs a high-dimensional feature vector. We use the output corresponding to the '[CLS]' token as the global image representation. (ii) **A Causal Projector:** The feature vector from the backbone is then passed through a small multi-layer perceptron (MLP). This projector's role is to transform the general-purpose features into an l -dimensional representation satisfying the Causal Delta Embedding properties.

Delta Computation and the action classifier h : We compute the CDE according to Definition 1. Given the latent vectors for the pre-intervention image ($z = \phi(x)$) and post-intervention image ($\tilde{z} = \phi(\tilde{x})$), the delta is calculated via simple, element-wise subtraction, $\delta = \tilde{z} - z$. This vector is the sole input to a final classification head, which is an MLP that takes the l -dimensional delta and outputs logits for the different action classes in \mathcal{A} .

5.1.2 IMPLEMENTATION OF THE LEARNING OBJECTIVE

To learn CDEs that satisfy the properties outlined in the Section 4, we combine three loss functions. (i) **Cross-Entropy Loss:** The primary objective is to ensure the delta embedding is useful for the downstream task. We use a standard Cross-Entropy loss, \mathcal{L}_{CE} between the predicted action logits $h(\delta_i)$ and the one-hot ground-truth action label a_i . (ii) **Supervised Contrastive Loss:** To learn embeddings that are clustered together for the same action (Property 3, Invariance), we use the Supervised Contrastive Loss, $\mathcal{L}_{\text{contrast}}$ (Khosla et al., 2020). For a batch of B delta embeddings, the loss for each embedding δ_i (the ‘‘anchor’’) encourages it to be closer to other embeddings of the

324 same class (“positives”) than to all other embeddings in the batch.
 325

$$\mathcal{L}_{\text{contrast}} = \sum_{i=1}^B \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(\text{sim}(\delta_i, \delta_p)/\tau)}{\sum_{j \neq i} \exp(\text{sim}(\delta_i, \delta_j)/\tau)} \quad (4)$$

326 where $P(i)$ is the set of all positive samples for anchor i in the batch, $\text{sim}(\cdot, \cdot)$ denotes the cosine
 327 similarity, and τ is a scalar temperature hyperparameter. This loss component is also consistent
 328 with the structural equation 3. Finally, we introduce a (iii) **Sparsity Regularizer**: To encourage a
 329 minimal representation in line with the sparse mechanism shift hypothesis (Property 2, Sparsity),
 330 we apply an ℓ_1 regularization penalty. This loss penalizes the sum of the absolute values of the
 331 embedding dimensions, promoting solutions where most dimensions are zero.
 332

$$\mathcal{L}_{\text{sparsity}} = \frac{1}{B} \sum_{i=1}^B \|\delta_i\|_1 = \frac{1}{B} \sum_{i=1}^B \sum_{k=1}^l |\delta_{i,k}| \quad (5)$$

333 The final training objective is a weighted sum of these three components:
 334

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}} + \alpha_{\text{contrast}} \mathcal{L}_{\text{contrast}} + \alpha_{\text{sparsity}} \mathcal{L}_{\text{sparsity}} \quad (6)$$

335 where α_{contrast} and α_{sparsity} are scalar hyperparameters that balance the influence of each loss component.
 336 Note that the network is trained end-to-end, i.e., the encoder, ϕ , is also updated during
 337 training.
 338

339 5.1.3 ACTIONABLE COUNTERFACTUAL CASE

340 Notice that although no loss component explicitly enforces Property 1, this property is directly
 341 satisfied by the use of the Delta Embeddings and image pairs, where the observed changes are only
 342 due to a . This does not hold under the actionable counterfactual case (Liu et al., 2023), where the
 343 exogenous noise may change across observations, leading to $\epsilon \neq 0$ in equation 3 and non-zero
 344 elements in the delta embedding of equation 1. In the Appendix (Section E) we show that if ϵ is
 345 zero mean independent noise, then the classifier trained with \mathcal{L}_{CE} is not affected by these non-zero
 346 values. This observation is also supported by our empirical findings presented in Section 6, where
 347 the delta embeddings lead to effectiveness improvements in real-world OOD data.
 348

349 5.2 SPATIAL EXTENSION: THE PATCH-WISE MODEL

350 In complex scenes with multiple objects or significant background noise, an action may only affect a
 351 small, localized region of the image. A global embedding risks ‘averaging out’ this important local
 352 change, making it difficult to detect. To address this, we developed a patch-wise extension of our
 353 model.
 354

355 5.2.1 ARCHITECTURE

356 The Patch-Wise model adapts the core architecture to operate on local regions, as shown in Figure 3
 357 (B).
 358

359 The architecture includes (i) **Patch-wise Feature Extraction**: We use a ViT backbone, but instead of
 360 taking the global ‘[CLS]’ token, we retain the output feature vectors for each individual image patch.
 361 This gives us a sequence of patch features for both the before and after images, (ii) **Patch-wise Delta**
 362 **Computation**: A shared Causal Projector and the subtraction operation are applied independently
 363 to each corresponding pair of patch features. This yields a set of delta embeddings, $\{\delta_p\}$, one for
 364 each spatial patch location p . (iii) **Top-K selection**: We assume that the action’s primary effect is
 365 localized to a small number of patches. We therefore identify the k patches with the largest change
 366 by measuring the L_2 norm of their delta vectors ($\|\delta_p\|_2$). The loss $\mathcal{L}_{\text{total}}$ of equation 6 is then applied
 367 to each of the k delta vectors, leading to one loss $\mathcal{L}_{\text{total}}^{(i)}$ for each vector. The final loss is then the
 368 average of the individual patch losses, $\mathcal{L} = \frac{1}{k} \sum_{i=1}^k \mathcal{L}_{\text{total}}^{(i)}$.
 369

370 6 EXPERIMENTS

371 This section evaluates the effectiveness of our CDE framework. We first describe our experimental
 372 setup, then present the main quantitative results demonstrating CDE’s effectiveness in OOD gener-
 373

378 Table 1: Single-object ProcTHOR results. Our Global Delta Embedding model significantly im-
 379 proves OOD generalization under both compositional and systematic shifts. (R: ResNet-18, V:
 380 ViT-DINO)

Method	IID Acc.	OOD Comp.	OOD Syst.	Gap Syst. (\downarrow)
Vanilla-R	0.96 ± 0.01	0.36 ± 0.13	0.48 ± 0.08	0.48
Vanilla-V	0.95 ± 0.01	0.34 ± 0.27	0.47 ± 0.11	0.48
ICM-R	0.95 ± 0.01	0.41 ± 0.15	0.50 ± 0.09	0.45
ICM-V	0.95 ± 0.01	0.38 ± 0.26	0.49 ± 0.01	0.46
SMS-R	0.96 ± 0.01	0.47 ± 0.18	0.54 ± 0.07	0.42
SMS-V	0.95 ± 0.01	0.34 ± 0.27	0.39 ± 0.04	0.56
Ours _(ViT-CLIP)	0.97 ± 0.01	0.91 ± 0.03	0.72 ± 0.02	0.25
Ours _(ViT-DINO)	0.96 ± 0.01	0.91 ± 0.02	0.75 ± 0.02	0.21
Ours _(ViT-MAE)	0.96 ± 0.01	0.95 ± 0.01	0.71 ± 0.02	0.25

392
 393 alization, followed by qualitative and ablation analyses that provide deeper insights into its learned
 394 representations and design choices.

396 6.1 EXPERIMENTAL SETUP

397 Our evaluation is conducted on the Causal Triplet benchmark (Liu et al., 2023), specifically de-
 398 signed for intervention-centric causal representation learning. This benchmark features three dis-
 399 tinct settings of increasing visual complexity: single-object synthetic scenes, multi-object syn-
 400 thetic scenes (both from ProcTHOR (Deitke et al., 2022)), and challenging real-world scenes from
 401 Epic-Kitchens (Damen et al., 2022). In all settings models are trained on pairs of pre- and post-
 402 intervention images with action labels and are evaluated for their ability to infer the action. Further
 403 details on the datasets and data filtering procedures are provided in the Appendix.

404 We follow the Causal Triplet protocol, evaluating models on both IID and OOD test sets. The OOD
 405 splits test two forms of generalization: *Compositional Distribution Shifts*, where the model encoun-
 406 ters unseen combinations of actions and objects (e.g., `open(drawer)` when only `open(door)`
 407 and `close(drawer)` were seen during training); and *Systematic Distribution Shifts*, where gen-
 408 eralization to entirely unseen object classes is required. Visualizations of these distribution shifts
 409 are available in the Appendix. All reported quantitative results are mean accuracies and standard
 410 deviations average over 3 random seeds. We set $\alpha_{\text{contrast}} = 2.0$ and $\alpha_{\text{sparsity}} = 1.0$ for all experiments
 411 (see the Appendix for more details).

412 We compare our two proposed models against the baselines from the Causal Triplet paper (Liu
 413 et al., 2023), including vanilla ResNets (He et al., 2016), methods incorporating causal regularization
 414 (ICM, SMS), and object-centric approaches (Slot Attention (Locatello et al., 2020b), GroupViT (Xu
 415 et al., 2022)).

417 6.2 MAIN QUANTITATIVE RESULTS

418 Our CDE framework consistently delivers substantial improvements in OOD accuracy across all
 419 evaluation settings, establishing a new state of the art. For single-object scenes, our global CDE
 420 model cuts the generalization gap from 0.56 to 0.21 while matching IID accuracy (Table 1). In
 421 challenging multi-object and real-world settings (Table 2), our Patch-Wise model outperforms all
 422 baselines, including oracle methods that use ground-truth segmentation masks. Notice that the
 423 ResNet18 encoder performs significantly worse than the rest of the encoders, possibly indicating
 424 that this backbone cannot disentangle latent representations that depend on the actions from the rest
 425 of the scene as required by the model of Figure 2.

427 6.3 ACTION RELATIONSHIPS IN CAUSAL DELTA SPACE

428 To study the semantic structure of the learned delta space, we investigated whether the model could
 429 discover fundamental relationships between actions on its own. We computed the pairwise cosine
 430 similarity between all learned action representations. The result is visualized in the appendix (Fig-

432
 433 Table 2: Results across multi-object ProcTHOR and Epic-Kitchens (systematic shift). Oracle-mask
 434 utilizes a ground truth mask to isolate the intervened object. Conversely, other approaches must
 435 infer the action and object without this supervision.

436 Dataset	437 Method	438 IID Acc.	439 OOD Acc.	440 Gap
441 ProcTHOR	ResNet	0.83 \pm 0.01	0.30 \pm 0.08	0.53
	Oracle-mask	0.90 \pm 0.01	0.42 \pm 0.06	0.48
	Slot-avg	0.49 \pm 0.01	0.15 \pm 0.01	0.34
	Slot-dense	0.51 \pm 0.01	0.19 \pm 0.03	0.32
	Slot-match	0.66 \pm 0.01	0.21 \pm 0.01	0.45
	Ours(ViT-MAE)	0.91 \pm 0.1	0.30 \pm 0.02	0.61
	Ours(ViT-DINO)	0.92 \pm 0.0	0.45 \pm 0.03	0.47
	Ours(ViT-CLIP)	0.94 \pm 0.00	0.48 \pm 0.07	0.46
	Epic-Kitchens	ResNet	0.42 \pm 0.03	0.17 \pm 0.03
		CLIP	0.45 \pm 0.02	0.24 \pm 0.02
442 Epic-Kitchens	Group-avg	0.47 \pm 0.03	0.24 \pm 0.03	0.23
	Group-dense	0.50 \pm 0.04	0.26 \pm 0.03	0.24
	Group-token	0.52 \pm 0.03	0.27 \pm 0.03	0.25
	Ours(ViT-MAE)	0.50 \pm 0.02	0.30 \pm 0.02	0.20
	Ours(ViT-DINO)	0.54 \pm 0.1	0.33 \pm 0.00	0.21
	Ours(ViT-CLIP)	0.59 \pm 0.03	0.34 \pm 0.01	0.25

454
 455 Table 3: Ablation study of our method’s components on the ViT-DINO model. Results are for
 456 the single-object systematic shift setting, showing the impact on OOD accuracy when each core
 457 component is removed.

458 Model Configuration	459 IID Acc. (%)	460 OOD Acc. (%)
461 Full Model	462 0.96	463 0.75
<i>464 Ablations</i>		
w/o Sparsity Loss	0.96	0.73
w/o Contrastive Loss	0.95	0.68
CE Loss only	0.94	0.67
465 Baseline (Liu et al., 2023)	0.95	0.47

468 ure 7). The analysis reveals that the model has learned a perfect *anti-parallel relationship* for op-
 469 posite actions. The cosine similarity between the representations for `open` and `close`, for `dirty`
 470 and `clean`, as well as for `turn on` and `turn off`, is -1.0. This demonstrates that our frame-
 471 work not only separates the action concepts but also discovers opposing relationships between them,
 472 organizing the representations in a meaningful way. A similar pattern is observed in the more chal-
 473 lenging real-world dataset where the model learns the anti-parallel representations for the `open` and
 474 `close` action pair, as well as for the `fold` and `stretch` pair (see Figure 8 in the Appendix for
 475 details).

476 In summary, the combination of strong predictive properties and consistent semantic structure
 477 demonstrates that our CDE framework learns meaningful representations of interventions. For fur-
 478 ther geometric analysis of the delta space, including UMAP projections, refer to the Appendix.

480 6.4 ABLATION STUDY

482 To understand the contribution of each component of our CDE framework, we also conducted a
 483 series of ablation studies, by analyzing the impact of each major loss component on the performance
 484 of our primary model with a ViT-DINO backbone. Table 3 presents the results, comparing our full
 485 model against versions where each loss component is removed, and a baseline trained only with
 486 standard CE loss.

486 The results demonstrate the effectiveness of our approach. Our full model achieves an OOD ac-
 487 curacy of 75.0%, a +8 point improvement over delta embedding representation trained solely with
 488 a CE objective, validating that explicitly structuring the representation space leads generalization
 489 improvements. Removing the supervised contrastive loss component causes a 7-point drop in OOD
 490 accuracy. Removing the sparsity loss term causes 2-point drop. Please refer to the Appendix for
 491 further ablation experiments.

492 7 CONCLUSION

493 This paper introduces the *Causal Delta Embedding (CDE)* framework, a simple yet effective ap-
 494 proach to interventional causal representation learning. By explicitly modeling interventions as
 495 delta vectors in a structured latent space, CDE inherently satisfies the properties of independence,
 496 sparsity and invariance, leading to improved generalization. Our empirical validation on the Causal
 497 Triplet challenge demonstrates that CDE achieves state-of-the-art OOD generalization, outper-
 498 forming prior methods across synthetic and real world datasets. Beyond quantitative gains, we show that
 499 CDE learns semantically meaningful representations without supervision, where opposing actions
 500 have anti-parallel representations. Despite the promising results, we acknowledge that limitations
 501 remain for real-world data, since both IID and OOD accuracies are still low for real world deploy-
 502 ment, and also the use of universal delta embeddings for each action limits its ability to capture
 503 context-dependent visual transformations of actions. Future research directions includes the devel-
 504 opment of mechanisms to increase the robustness of the method in real-world scenarios involving
 505 increased noise or occlusions, extending the framework to video streams for modeling causal
 506 dynamics in temporal sequences, and investigating compositional properties of delta embeddings to
 507 enable multi-step interventions and generalization to novel action sequences.

508 **Reproducibility statement:** The previous sections have outlined the main building blocks of the
 509 proposed method, as well as the approach followed in the experiments, with the Appendix pro-
 510 viding additional information and results. The code to reproduce the experiments is attached as
 511 supplementary material (without any identifiable information of authors) and will be made publicly
 512 available upon acceptance. Finally, all experiments were carried out by strictly following the Causal
 513 Triplet benchmark (Liu et al., 2023) evaluation protocols, which relies on the publicly available
 514 ProcTHOR (Deitke et al., 2022) and Epic-Kitchens (Damen et al., 2022) datasets.

515 REFERENCES

516 Kartik Ahuja, Jason S Hartford, and Yoshua Bengio. Weakly supervised representation learning
 517 with sparse perturbations. *Advances in Neural Information Processing Systems*, 35:15516–15528,
 518 2022.

519 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representa-
 520 tion learning. In *International conference on machine learning*, pp. 372–407. PMLR, 2023.

521 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
 522 Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on
 523 computer vision*, pp. 6836–6846, 2021.

524 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal repre-
 525 sentation learning. *Advances in Neural Information Processing Systems*, 35:38319–38331, 2022.

526 Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and
 527 Pradeep Ravikumar. Learning linear causal representations from interventions under general non-
 528 linear mixing. *Advances in Neural Information Processing Systems*, 36:45419–45462, 2023.

529 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 530 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
 531 the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

532 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
 533 dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 534 6299–6308, 2017.

540 Min-Hung Chen, Zsolt Kira, Ghassan AlRegib, Jaekwon Yoo, Ruxin Chen, and Jian Zheng. Temporal
 541 attentive alignment for large-scale video domain adaptation. In *Proceedings of the IEEE/CVF*
 542 *international conference on computer vision*, pp. 6321–6330, 2019.

543 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 544 contrastive learning of visual representations. In *International conference on machine learning*,
 545 pp. 1597–1607. PmLR, 2020.

546 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
 547 Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric
 548 vision: Collection, pipeline and challenges for epic-kitchens-100. *International Journal of*
 549 *Computer Vision*, pp. 1–23, 2022.

550 Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
 551 Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
 552 ai using procedural generation. *Advances in Neural Information Processing Systems*, 35:5982–
 553 5994, 2022.

554 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 555 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 556 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 557 *arXiv:2010.11929*, 2020.

558 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
 559 representations via multi-view information bottleneck, 2020. URL <https://arxiv.org/abs/2002.07017>.

560 Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
 561 recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 562 6202–6211, 2019.

563 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
 564 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature*
 565 *Machine Intelligence*, 2(11):665–673, 2020.

566 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 567 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 568 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*
 569 *information processing systems*, 33:21271–21284, 2020.

570 Tarun Gupta, Wenbo Gong, Chao Ma, Nick Pawlowski, Agrin Hilmkil, Meyer Scetbon, Marc Rigter,
 571 Ade Famoti, Ashley Juan Llorens, Jianfeng Gao, et al. The essential role of causality in foundation
 572 world models for embodied ai. *arXiv preprint arXiv:2402.06665*, 2024.

573 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 574 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 575 770–778, 2016.

576 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 577 unsupervised visual representation learning, 2020. URL <https://arxiv.org/abs/1911.05722>.

578 Thomas Hellström. The relevance of causation in robotics: A review, categorization, and analysis.
 579 *Paladyn, Journal of Behavioral Robotics*, 12(1):238–255, 2021.

580 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 581 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
 582 cal analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
 583 *conference on computer vision*, pp. 8340–8349, 2021.

584 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 585 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 586 constrained variational framework. In *International conference on learning representations*, 2017.

594 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
 595 coders and nonlinear ica: A unifying framework. In *International conference on artificial intelli-*
 596 *gence and statistics*, pp. 2207–2217. PMLR, 2020a.

597

598 Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvärinen. Ice-beem: Identifiable
 599 conditional energy-based deep models based on nonlinear ica. *Advances in Neural Information*
 600 *Processing Systems*, 33:12768–12778, 2020b.

601

602 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 603 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*
 604 *information processing systems*, 33:18661–18673, 2020.

605

606 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 607 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 608 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

609

610 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

611

612 Pranamya Kulkarni, Puranjay Datta, Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, and
 613 Ali Tajer. Ropes: Robotic pose estimation via score-based causal representation learning. *arXiv*
 614 *preprint arXiv:2510.20884*, 2025.

615

616 Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E Everett, Rémi Le Priol, Alexandre
 617 Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
 618 new principle for nonlinear ica. In *Conference on Causal Learning and Reasoning*, pp. 428–484.
 619 PMLR, 2022.

620

621 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre
 622 Lacoste, and Simon Lacoste-Julien. Nonparametric partial disentanglement via mech-
 623 anism sparsity: Sparse actions, interventions and sparse temporal dependencies. *arXiv preprint*
 624 *arXiv:2401.04890*, 2024.

625

626 Elliot Layne, Jason Hartford, Sébastien Lachapelle, Mathieu Blanchette, and Dhanya Sridhar.
 627 Sparsity regularization via tree-structured environments for disentangled representations. *arXiv*
 628 *preprint arXiv:2405.20482*, 2024.

629

630 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Stratis Gavves.
 631 Citris: Causal identifiability from temporal intervened sequences. In *International Conference on*
 632 *Machine Learning*, pp. 13557–13603. PMLR, 2022.

633

634 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Efstratios Gavves.
 635 Biscuit: Causal representation learning from binary interactions. In *Uncertainty in Artificial*
 636 *Intelligence*, pp. 1263–1273. PMLR, 2023.

637

638 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 639 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 640 for open-set object detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
 641 2024.

642

643 Yuejiang Liu, Alexandre Alahi, Chris Russell, Max Horn, Dominik Zietlow, Bernhard Schölkopf,
 644 and Francesco Locatello. Causal triplet: An open challenge for intervention-centric causal rep-
 645 resentation learning. In *Conference on Causal Learning and Reasoning*, pp. 553–573. PMLR,
 2023.

646

647 Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
 648 Tschannen. Weakly-supervised disentanglement without compromises. In *International confer-*
 649 *ence on machine learning*, pp. 6348–6359. PMLR, 2020a.

650

651 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 652 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 653 tion. *Advances in neural information processing systems*, 33:11525–11538, 2020b.

648 Romain Lopez, Natasa Tagasovska, Stephen Ra, Kyunghyun Cho, Jonathan Pritchard, and Aviv
 649 Regev. Learning causal representations of single cells via sparse mechanism shift modeling. In
 650 *Conference on Causal Learning and Reasoning*, pp. 662–691. PMLR, 2023.

651

652 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 653 *arXiv:1711.05101*, 2017.

654

655 Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
 656 language-action models for embodied ai. *arXiv preprint arXiv:2405.14093*, 2024.

657

658 Sara Magliacane, Thijs Van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, and Joris M
 659 Mooij. Domain adaptation by using causal inference to predict invariant conditional distributions.
 660 *Advances in neural information processing systems*, 31, 2018.

661

662 Ricardo Pio Monti, Kun Zhang, and Aapo Hyvärinen. Causal discovery with general non-linear
 663 relationships using non-linear ica. In *Uncertainty in artificial intelligence*, pp. 186–195. PMLR,
 664 2020.

665

666 Jonathan Munro and Dima Damen. Multi-modal domain adaptation for fine-grained action recog-
 667 nition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 668 pp. 122–132, 2020.

669

670 Judea Pearl. *Causality*. Cambridge university press, 2009.

671

672 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations*
 673 and learning algorithms. The MIT Press, 2017.

674

675 Niklas Pfister and Jonas Peters. Identifiability of sparse causal effects using instrumental variables.
 676 In *Uncertainty in Artificial Intelligence*, pp. 1613–1622. PMLR, 2022.

677

678 Pedro Sanchez, Jeremy P Voisey, Tian Xia, Hannah I Watson, Alison Q O’Neil, and Sotirios A
 679 Tsaftaris. Causal machine learning for healthcare and precision medicine. *Royal Society Open*
 680 *Science*, 9(8):220638, 2022.

681

682 Ranjan Sapkota, Yang Cao, Konstantinos I Roumeliotis, and Manoj Karkee. Vision-language-action
 683 models: Concepts, progress, applications and challenges. *arXiv preprint arXiv:2505.04769*, 2025.

684

685 Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij.
 686 On causal and anticausal learning. *arXiv preprint arXiv:1206.6471*, 2012.

687

688 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 689 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of*
 690 *the IEEE*, 109(5):612–634, 2021.

691

692 Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
 693 Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, et al. Bridging the
 694 gap to real-world object-centric learning. *arXiv preprint arXiv:2209.14860*, 2022.

695

696 Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Disentangled
 697 generative causal representation learning, 2020.

698

699 Chandler Squires, Anna Seigal, Salil S Bhate, and Caroline Uhler. Linear causal disentanglement
 700 via interventions. In *International conference on machine learning*, pp. 32540–32560. PMLR,
 701 2023.

702

703 Alejandro Tejada-Lapuerta, Paul Bertin, Stefan Bauer, Hananeh Aliee, Yoshua Bengio, and Fabian J.
 704 Theis. Causal machine learning for single-cell genomics, 2023. URL <https://arxiv.org/abs/2310.14935>.

705

706 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding, 2020. URL
 707 <https://arxiv.org/abs/1906.05849>.

708

709 Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-
 710 based causal representation learning with interventions. *arXiv preprint arXiv:2301.08230*, 2023.

702 Burak Varıcı, Emre Acartürk, Karthikeyan Shanmugam, and Ali Tajer. Linear causal representation
 703 learning from unknown multi-node interventions. *Advances in Neural Information Processing*
 704 *Systems*, 37:111614–111648, 2024.

705

706 Julius Von Kügelgen, Yash Sharma, Luigi Greselle, Wieland Brendel, Bernhard Schölkopf, Michel
 707 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 708 isolates content from style. *Advances in neural information processing systems*, 34:16451–16467,
 709 2021.

710

711 Shanshan Wang, Yiyang Chen, Zhenwei He, Xun Yang, Mengzhu Wang, Quanzeng You, and Xingyi
 712 Zhang. Disentangled representation learning with causality for unsupervised domain adaptation.
 713 In *Proceedings of the 31st ACM international conference on multimedia*, pp. 2918–2926, 2023.

714

715 Yixin Wang and Michael I Jordan. Desiderata for representation learning: A causal perspective.
 716 *Journal of Machine Learning Research*, 25(275):1–65, 2024.

717

718 Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi Gre-
 719 sele, and Bernhard Schölkopf. Causal component analysis. *Advances in Neural Information
 Processing Systems*, 36:32481–32520, 2023.

720

721 Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius Von Kügelgen, Francesco
 722 Locatello, and Sara Magliacane. A sparsity principle for partially observable causal representation
 723 learning. *arXiv preprint arXiv:2403.08335*, 2024.

724

725 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
 726 Wang. Groupvit: Semantic segmentation emerges from text supervision. In *Proceedings of the
 727 IEEE/CVF conference on computer vision and pattern recognition*, pp. 18134–18144, 2022.

728

729 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 730 Disentangled representation learning via neural structural causal models. In *Proceedings of the
 IEEE/CVF conference on computer vision and pattern recognition*, pp. 9593–9602, 2021.

731

732 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
 733 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
 734 partial observability. *arXiv preprint arXiv:2311.04056*, 2023.

735

736 Dingling Yao, Dario Rancati, Riccardo Cadei, Marco Fumero, and Francesco Locatello. Unifying
 737 causal representation learning with the invariance principle. *arXiv preprint arXiv:2409.02772*,
 2024.

738

739 Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
 740 Contrastive learning inverts the data generating process. In *International conference on machine
 741 learning*, pp. 12979–12990. PMLR, 2021.

742

743 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 744 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 745 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

746

747 **A DATASET DETAILS**

748

749 This section provides further details on the datasets used in our evaluation.

750

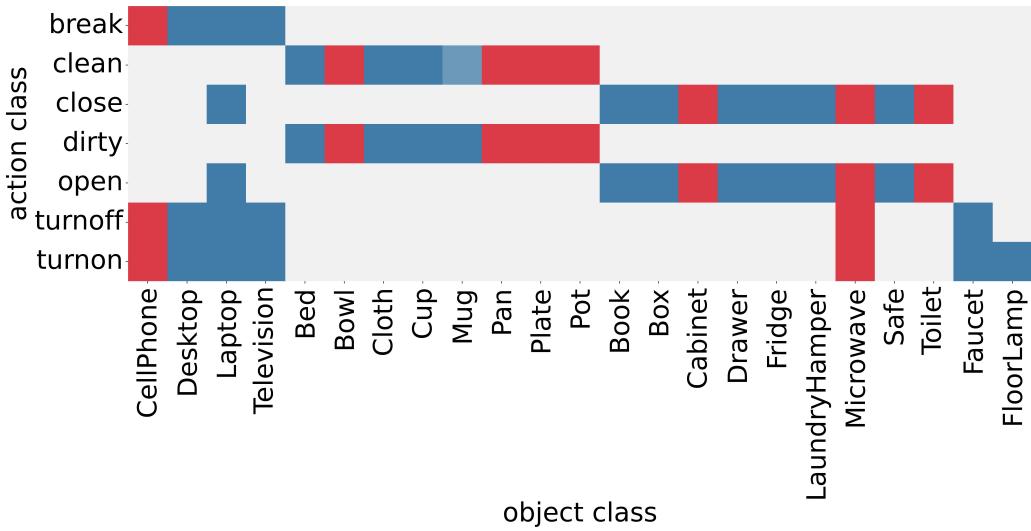
751 **ProcTHOR** The ProcTHOR dataset Deitke et al. (2022) provides synthetic indoor scenes. For
 752 our single-object scenes, each scene contains one manipulated object, ensuring a clear focus on the
 753 intervention. In multi-object scenes, multiple objects are present, increasing the visual complexity
 754 of the scene, although only one object is again manipulated. We follow the dataset generation and
 755 filtering procedures as described in Liu et al. (2023) to ensure consistency with the Causal Triplet
 benchmark.

756
 757 **Epic-Kitchens** The Epic-Kitchens dataset Damen et al. (2022) comprises real world egocentric
 758 videos of diverse kitchen activities. From this, we extract pre- and post-intervention image pairs.
 759 Unlike synthetic environments, Epic-Kitchens introduces significant real world challenges such as
 760 camera motion, varying lighting conditions, occlusions and dynamic backgrounds, making the task
 761 of isolating interventions particularly challenging. To ensure dataset quality, a two-stage filtering
 762 process using Grounding DINO Liu et al. (2024) for zero-shot object detection is applied. For
 763 each extracted pair, the pipeline verifies that the target object appears clearly in both frames with a
 764 detection confidence above a set threshold $t = 0.45$. This automated filtering removes cases with
 765 poor object visibility or excessive motion blur.

766 A.1 VISUALIZATIONS OF OOD SHIFTS

767 Figures 4, 5 and 6 visually illustrate the compositional and systematic distribution shifts utilized in
 768 the Causal Triplet benchmark.

787 Figure 4: Compositional Distribution Shift in the ProcThor dataset. Blue boxes indicate IID data,
 788 while red boxes indicate novel OOD action-object combinations.



808 Figure 5: Systematic Distribution Shift in the ProcThor dataset. Blue boxes indicate IID data, while
 809 red boxes indicate novel OOD objects that the model has not encountered during training.

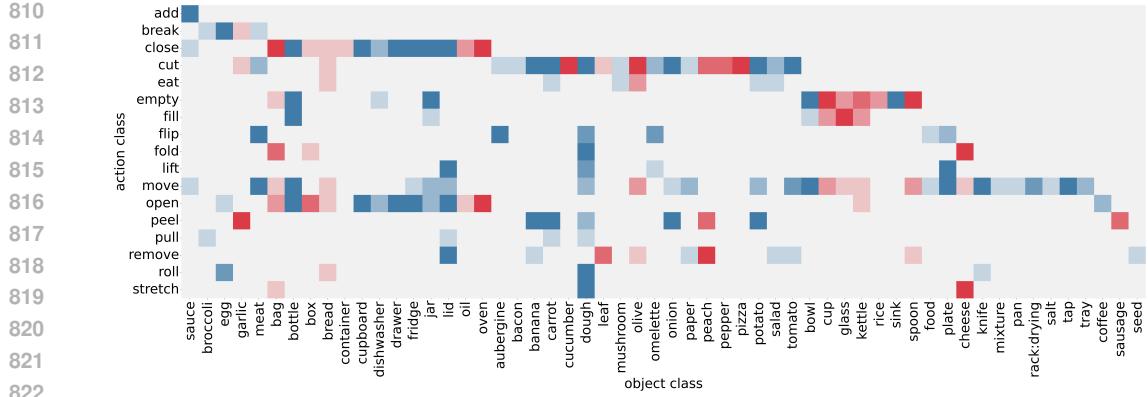


Figure 6: Systematic Distribution Shift in the EpicKitchens dataset. Blue boxes indicate IID data, while red boxes indicate novel OOD objects that the model has not encountered during training.

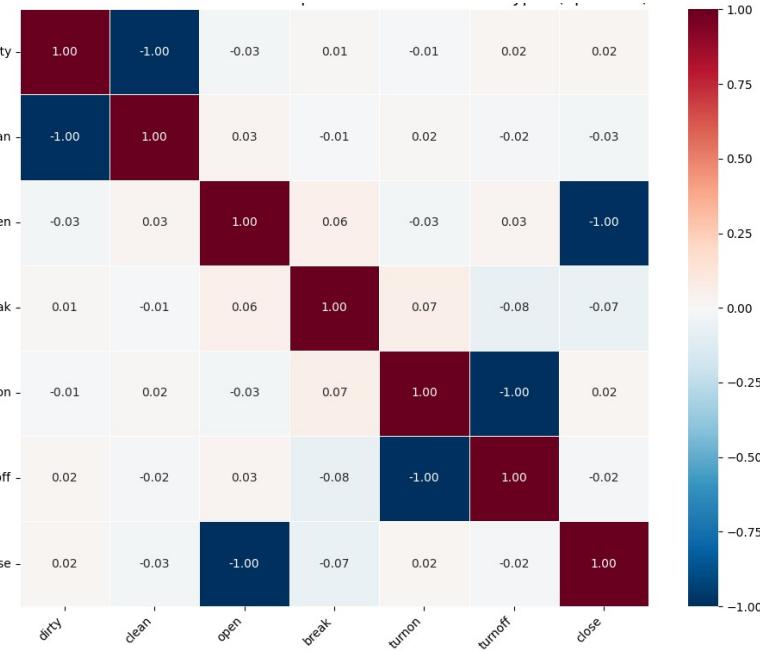


Figure 7: Heatmap of pairwise cosine similarities between all learned delta embeddings. The strong blue squares (similarity near -1.0) reveal a near-perfect anti-parallel relationship for opposite action pairs, which was discovered entirely from the data.

B GEOMETRIC ANALYSIS OF CAUSAL DELTA EMBEDDINGS

This section provides additional analysis of the geometric properties of the learned Causal Delta Embeddings, complementing the insights presented along with the experimental results.

B.1 ACTION REPRESENTATION RELATIONSHIPS LEARNED FROM REAL-WORLD DATASETS

Figure 7 illustrates the the pairwise cosine similarities between the embeddings learned for all actions in the ProcTHOR dataset, while Figure 8 presents the same information for the more challenging real-world Epic Kitchens dataset. We observe that in both cases the learned relationships for certain opposing actions such as `open` and `close` as well as `fold` and `stretch` are antiparallel in the embedding space. Note, however, that the representation does not capture all antiparallel relationships (e.g., `add` and `remove` have a similarity of 0.19).

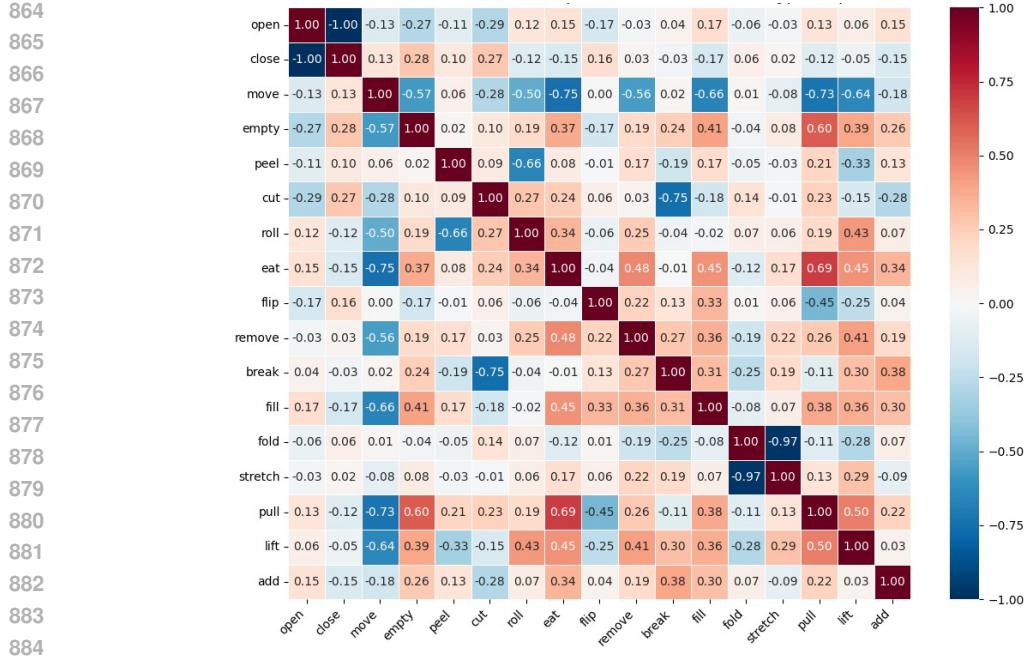


Figure 8: Heatmap of pairwise cosine similarities between all learned action prototypes for the EpicKitchens dataset.

B.2 ANALYSIS OF LEARNED ACTION REPRESENTATIONS

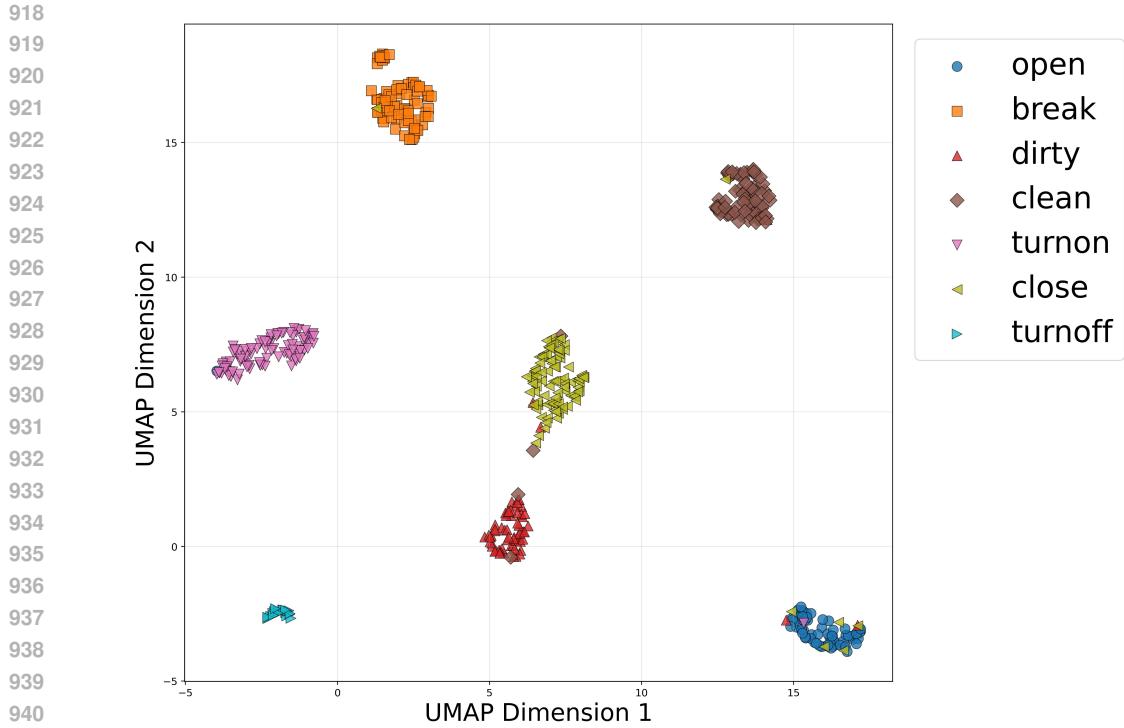
To study the properties of the action representations resulting from our method, we first tested if the resulting delta embeddings could reliably predict the outcome of an intervention. To do this, for each sample in the OOD test set, we took the ‘before’ state embedding (z) and added the corresponding average action vector (μ_{action}) that was computed using the training set samples. We then measured the cosine similarity between this predicted ‘after’ state and the ground-truth ‘after’ state (\tilde{z}). Our framework showed remarkable predictive power, achieving an average cosine similarity of 0.98 in the single object systematic shift setting. This near perfect score confirms that the learned action prototypes function as true, generalizable transformation vectors, providing strong evidence that our model has learned the underlying mechanics of interventions.

B.3 UMAP PROJECTION

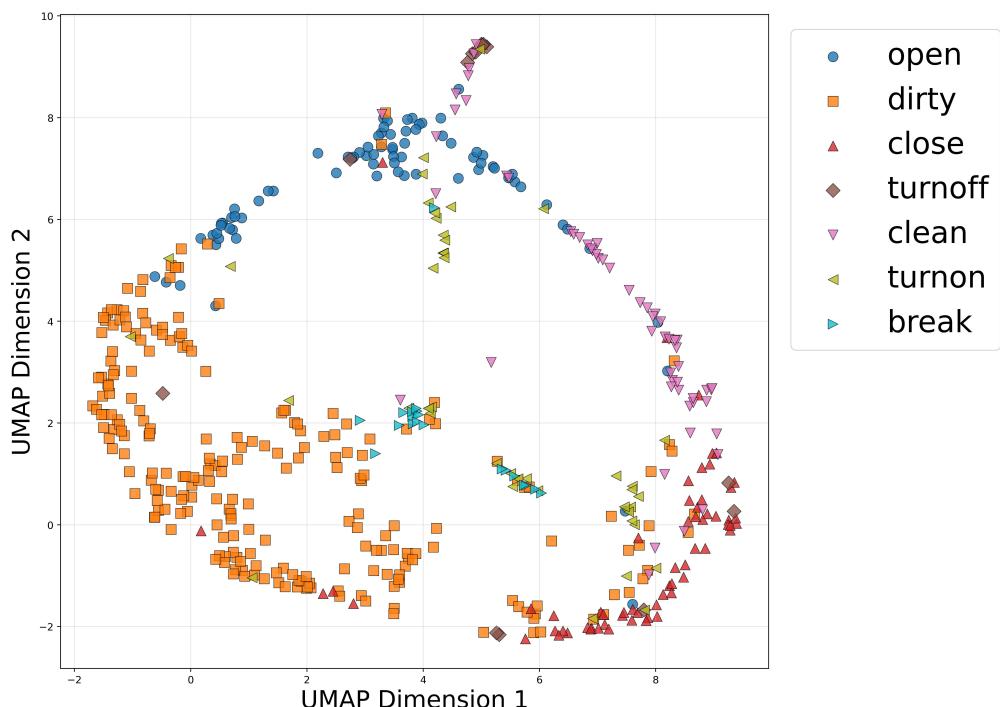
Figures 9 and 10 present the UMAP projection of individual delta embeddings from the IID and OOD test set of the single-object environment respectively. The delta embeddings in the IID setting achieve a clear separation between each action, leading to a near perfect IID accuracy as was presented by our experiments. On the other hand, while strong intra-class cohesion is visible, the global separation between these action clusters is not always visually distinct in the OOD setting. This suggests that while representations remain locally coherent, action representations are not as clearly discriminated compared to the IID setting. It is worth mentioning, however, that the 2D projection may not fully capture the features of the high-dimensional latent space.

C ABLATION STUDIES

In order to understand the effectiveness of each component of our method, we conducted a series of ablation studies to evaluate the impact of different backbone architectures, the impact of loss hyperparameters α and the impact of the hyperparameter k in the Top-K selection procedure for our Patch-Wise model. All the subsequent experiments ran on the single-object systematic shifts setting,



942 Figure 9: UMAP projection of individual delta embeddings from the IID test set. Embeddings are
943 shaped by their ground-truth action. The plot reveals strong global separation between different
944 action clusters.



969 Figure 10: UMAP projection of individual delta embeddings from the OOD test set. Embeddings are
970 shaped by their ground-truth action. The plot reveals strong local cohesion (points of the same shape
971 cluster together) but shows a lack of clear global separation between the different action clusters.

972 except for the Top-K ablation study which ran on the multi-object systematic shifts setting. Also
 973 these experiments were performed in a smaller subset of the dataset.
 974

975 Table 4 compares the OOD performance of the best configuration for each backbone against the
 976 benchmark’s state-of-the-art ResNet-18 result. Our final ViT-based model significantly outperforms
 977 the best ResNet-based model, demonstrating that while the richer features from ViT enhance per-
 978 formance, the substantial gains are primarily driven by our proposed CDE learning framework.
 979

980
 981
 982
 983 Table 4: Comparison of OOD performance with differ-
 984 ent backbone architectures on the single-object system-
 985 atic shift benchmark.
 986

987 Backbone	988 Method	989 OOD Acc. (%)
985 ResNet-18	986 Liu et al. (2023)	987 0.54
985 ResNet-18	986 Ours [*]	987 0.45
987 ViT-DINO	988 Ours (CE Only)	989 0.67
988 ViT-DINO	Ours (Full Model)	0.75

990 * Best ResNet performance from our experiments was with
 991 CE + Con Loss.
 992

993 C.1 IMPACT OF BACKBONE ARCHITECTURE

995 To isolate the contribution of our CDE framework from the choice of feature extractor, we conducted
 996 a controlled comparison between our ViT-DINO backbone and the ResNet-18 backbone used in the
 997 original Causal Triplet benchmark.
 998

1000 C.2 IMPACT OF LOSS HYPERPARAMETERS

1001 In order to select values for α_{contrast} and α_{sparsity} , we conducted an ablation study comparing various
 1002 values and combinations between them. Table 5 compares some of the combinations of the val-
 1003 ues that we experimented with. Selecting a larger value for α_{contrast} , rather than α_{sparsity} , helps the
 1004 model learn better representations, thus achieving better OOD accuracy. We set $\alpha_{\text{contrast}} = 2.0$ and
 1005 $\alpha_{\text{sparsity}} = 1.0$ in all our main experiments.
 1006

1007 Table 5: Comparison of various hyperparameter values for α_{contrast} and α_{sparsity} on the single-object
 1008 systematic shift benchmark.
 1009

1010 α_{contrast}	1011 α_{sparsity}	1012 OOD Acc. (%)
1012 0.0	1013 0.0	1014 0.21 ± 0.02
1012 0.1	1013 1.0	1014 0.27 ± 0.11
1012 1.0	1013 0.1	1014 0.28 ± 0.04
1012 0.5	1013 0.5	1014 0.29 ± 0.07
1012 1.0	1013 2.0	1014 0.31 ± 0.07
1012 2.0	1013 1.0	1014 0.33 ± 0.07

1019 C.3 TOP-K SELECTION

1021 In order to select the hyperparameter k in multi-object and real world data settings, we executed an
 1022 ablation study to understand the sensitivity of our method to this parameter. As presented in Table 6,
 1023 we can see that OOD accuracy increases as k increases too. This observation makes sense, since
 1024 bigger objects (e.g. Fridge, Bed) would need more patches for their representations in order to be
 1025 captured effectively. Thus, we set the value of $k = 4$ across all our multi-object and real world
 experiments.

1026 Table 6: Comparison of OOD performance with k values for the patch selection process in multi-
 1027 object settings.

k	ProcTHOR	EpicKitchens
$k = 1$	0.42 ± 0.07	0.12 ± 0.03
$k = 2$	0.45 ± 0.06	0.13 ± 0.03
$k = 3$	0.47 ± 0.04	0.13 ± 0.02
$k = 4$	0.48 ± 0.04	0.15 ± 0.02

1035 Table 7: Summary of hyperparameters used across all experiments.

Parameter	Value
Learning Rate	1×10^{-4}
Backbone LR	1×10^{-5}
Batch Size	128
Epochs	50 (100 for Epic-Kitchens)
Weight Decay	0.05
α_{contrast}	2.0
α_{sparsity}	1.0
Temperature (τ)	0.07
Top-K (k)	4
Embedding Dim. (l)	256 (512 for Epic-Kitchens)
Input Resolution	224×224

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

1055 Table 7 summarizes the key hyperparameters used across all experiments. These values were se-
 1056 lected based on ablation studies and remained consistent across different experimental settings un-
 1057 less otherwise noted.

D.2 EXECUTION ENVIRONMENT

1061 All experiments were run on a NVIDIA A100 GPU with the Slurm Workload Manager. The code
 1062 was implemented in Python, using the Pytorch library. Each run takes approximately one hour to
 1063 complete for the ProcTHOR and two hours for the Epic-Kitchens dataset.

D.3 IMAGE AUGMENTATIONS

1067 We do not apply any augmentations to the images, since we do not want to modify the interventional
 1068 nature of the pairs. Augmentation in this problem could harm our assumptions. For example, a rota-
 1069 tion could affect equation 1 and eliminate the faithfulness of the encoder. We leave it as future work
 1070 to investigate whether augmentations can boost OOD performance under different assumptions. We
 1071 only resize images to 224×224 pixels and apply zero-mean normalization with unit variance.

D.4 OPTIMIZATION

1075 We use a batch size of 128 and an AdamW Loshchilov & Hutter (2017) optimizer with a cosine
 1076 annealing learning scheduler for 50 epochs. In the real world setting, we instead train for 100
 1077 epochs. The ViT feature extractor is not frozen but fine-tuned with a reduced learning rate of 10%
 1078 of the network’s base learning rate, which is set to 1×10^{-4} . The weight decay parameter is 0.05.
 1079 All reported results include standard deviations computed over three independent runs with different
 random seeds.

1080
1081 D.5 MODEL ARCHITECTURES1082 To ensure reproducibility and clarify the pre-training objectives used in our experiments, Table 8 de-
1083 tails the specifications for the vision backbones used in our Causal Delta Embedding (CDE) frame-
1084 work and the comparative baselines. We utilize the implementations provided by the `timm` library.
10851086 Table 8: Comparison of Vision Backbones utilized in experiments.
1087

Model	Architecture	Pre-training Objective	Dataset	Params
ViT-DINO	ViT-S/16	Self-Supervised (Distillation)	ImageNet-1k	21.7M
ViT-MAE	ViT-B/16	Self-Supervised (Reconstruction)	ImageNet-1k	85.8M
CLIP	ViT-B/16	Weakly-Supervised (Contrastive)	Web-400M	~86M
ResNet-18	ResNet-18	Supervised (Classification)	ImageNet-1k	11.7M

1094
1095 E ACTIONABLE COUNTERFACTUALS AND DELTA EMBEDDINGS
10961097 If we relax the requirement for identical noise across observations ($\epsilon \neq 0$ in equation 3), then the
1098 delta embedding of equation 1 becomes (assuming column vectors)
1099

1100
$$\delta_a^T = [\epsilon_1, \epsilon_2, \dots, \tilde{z}_a - z_a + \epsilon, \dots, \epsilon_l]^T$$

1101

1102 where l is the number of vector dimensions and ϵ_1, ϵ_2 etc are assumed to be zero-mean noise vari-
1103 ables that do not depend on a or $\tilde{z}_a - z_a$. We use the following representation for convenience
1104 $\delta_a^T = [\mathbf{u}_\epsilon^T, \mathbf{u}_a^T]$, where \mathbf{u}_ϵ is the part of the representation that does not depend on a and \mathbf{u}_a the
1105 part that does. Consider that this representation is used with a binary logistic regression model with
1106 parameters $\mathbf{w}^T = [\mathbf{w}_\epsilon^T, \mathbf{w}_a^T]$. The gradient of the binary cross-entropy loss with respect to \mathbf{w}_ϵ is
1107

1108
$$\nabla_{\mathbf{w}_\epsilon} [\mathcal{L}_{CE}] = \mathbb{E} [(\sigma(\mathbf{w}_\epsilon^T \mathbf{u}_\epsilon + \mathbf{w}_a^T \mathbf{u}_a + b) - a) \mathbf{u}_\epsilon]$$

1109

Note that at $\mathbf{w}_\epsilon = \mathbf{0}$ this becomes
1110

1111
$$\nabla_{\mathbf{w}_\epsilon} [\mathcal{L}_{CE}] |_{\mathbf{w}_\epsilon=\mathbf{0}} = \mathbb{E} [(\sigma(\mathbf{w}_a^T \mathbf{u}_a + b) - a) \mathbf{u}_\epsilon]$$

1112

Given that \mathbf{u}_ϵ is independent of a , \mathbf{u}_a and b then this equation can be factorized as
1113

1114
$$\nabla_{\mathbf{w}_\epsilon} [\mathcal{L}_{CE}] |_{\mathbf{w}_\epsilon=\mathbf{0}} = \mathbb{E}_{\mathbf{u}_a, a} [(\sigma(\mathbf{w}_a^T \mathbf{u}_a + b) - a)] \mathbb{E}_{\mathbf{u}_\epsilon} [\mathbf{u}_\epsilon] = \mathbf{0}$$

1115

1116 since $\epsilon_1, \epsilon_2, \dots, \epsilon_d$ are zero mean variables. This means that $\mathbf{0}$ is a stationary point of \mathcal{L}_{CE} . Since
1117 \mathcal{L}_{CE} is convex for logistic regression, for any given \mathbf{w}_a and b , $\mathbf{w}_\epsilon = \mathbf{0}$ is a global minimum of
1118 the loss. This implies that under imperfect interventions (actionable counterfactuals) under the zero
1119 mean independent noise assumption, the cross-entropy loss is minimized where the nonzero noise
1120 variables are ignored. Similar arguments apply in the multiclass case.
11211122 F APPENDIX: ADAPTATION OF OBJECT-CENTRIC MODELS FOR ACTION
1123 PREDICTION
11241125 To leverage the latent structure of object-centric representations for downstream action reasoning,
1126 we adapt the implicit Slot Attention framework (Locatello et al., 2020b). The model decomposes
1127 each input scene into a set of N spatially and semantically related regions (slots), each characterized
1128 by its own feature vector. Given a pair of pre- and post-intervention images, we explore three distinct
1129 aggregation strategies to bridge the object-centric slots with the action encoder.
11301131

- **Slot-Avg:** This baseline approach performs average-pooling over the N slots for each im-
1132 age independently. The resulting single feature vectors for the pre- and post-intervention
1133 images are concatenated and passed to the action encoder, effectively treating the aggre-
1134 gated slots as a distributed representation.

1134 • **Slot-Dense:** This strategy densely pairs every slot from the pre-intervention image with
1135 every slot from the post-intervention image, resulting in $N \times N$ combinations. All pairs are
1136 processed by the action encoder to generate relation embeddings, which are then aggregated
1137 via average-pooling to form the final action representation.
1138 • **Slot-Match:** This method selectively pairs slots across the two images based on cosine
1139 similarity. Only the matched pairs are passed to the action encoder. The resulting N
1140 relation embeddings are aggregated using max-pooling to capture the most significant latent
1141 changes corresponding to the intervention.
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187