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Abstract

Modeling and reconstructing multidimensional physical dynamics from sparse
and off-grid observations presents a fundamental challenge in scientific research.
Recently, diffusion-based generative modeling shows promising potential for
physical simulation. However, current approaches typically operate on on-grid
data with preset spatiotemporal resolution, but struggle with the sparsely ob-
served and continuous nature of real-world physical dynamics. To fill the gaps,
we present SDIFT, Sequential DIffusion in Functional Tucker space, a novel
framework that generates full-field evolution of physical dynamics from irreg-
ular sparse observations. SDIFT leverages the functional Tucker model as the
latent space representer with proven universal approximation property, and rep-
resents observations as latent functions and Tucker core sequences. We then
construct a sequential diffusion model with temporally augmented UNet in the
functional Tucker space, denoising noise drawn from a Gaussian process to gen-
erate the sequence of core tensors. At the posterior sampling stage, we propose
a Message-Passing Posterior Sampling mechanism, enabling conditional gener-
ation of the entire sequence guided by observations at limited time steps. We
validate SDIFT on three physical systems spanning astronomical (supernova ex-
plosions, light-year scale), environmental (ocean sound speed fields, kilometer
scale), and molecular (organic liquid, millimeter scale) domains, demonstrating
significant improvements in both reconstruction accuracy and computational effi-
ciency compared to state-of-the-art approaches. The code is available at https:
//github.com/OceanSTARLab/SDIFT.

1 Introduction

Modeling and reconstructing spatiotemporal physical dynamics in the real world has been a long-
standing challenge in science and engineering. In fields such as aeronautics, oceanography, and
climate simulation, we often need to infer the evolution of physical dynamics in continuous space-
time from sparse observations. For example, meteorologists must predict weather patterns from
limited station data, while ocean scientists reconstruct underwater current dynamics from sparse
sensors. Traditional numerical methods have been widely applied, but they typically require sub-
stantial computational resources and struggle to ensure fine-scale prediction in complex scenarios.

Recently, generative models – particularly diffusion models [1, 2, 3, 4, 5, 6] – have achieved remark-
able success in computer vision and related fields. These models have demonstrated strong capa-
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bilities in generating high-quality images, videos, and other complex data structures. An increasing
number of works have begun to explore the use of generative models for physical simulation, such
as modeling underwater sound speed, turbulence, and other complex phenomena, addressing tasks
like PDE solving, super-resolution, and reconstruction[4, 5, 6].

A typical paradigm in physical diffusion modeling involves constructing an autoencoder-like map-
ping from the observation space to a latent space, using visual feature extractors such as convolu-
tional neural networks[7] (CNNs) or Vision Transformers[8] (ViTs) as encoder/decoder architec-
tures. A diffusion model is then trained in the latent space. During inference/sampling, diffusion
models use the likelihood of observations as guidance and generate target dynamics via diffusion
posterior sampling[9] (DPS), which are then mapped back to the observation space. While this
paradigm has shown success, it also faces several limitations in real-world physical systems. For
instance, physical observations are typically obtained from sparse sensors that sample irregularly
across space and time, and are often corrupted by noise – conditions under which visual-based
encoders are not suitable. Moreover, the goal of posterior sampling is to generate the full-field
evolution of dynamics, including inference at arbitrary continuous spatial/temporal coordinates, yet
observations are only available at a few discrete time steps – making standard DPS ineffective.

To bridge these critical gaps, we introduce SDIFT (Sequential Diffusion in Functional Tucker Space),
a generative framework that reconstructs continuous physical dynamics from sparse, irregular obser-
vations. SDIFT uses a Functional Tucker Model (FTM) to encode data into structured latent func-
tions and core tensors. We prove that the FTM universally approximates complex, multidimensional
physical systems. Building upon this latent representation, SDIFT applies Gaussian Processbased
Sequential Diffusion (GPSD) to produce temporally coherent core sequences at arbitrary time res-
olutions. Crucially, we propose a novel Message-Passing Diffusion Posterior Sampling (MPDPS)
mechanism that enhances conditional generation capabilities, effectively propagating observation-
driven guidance across the entire spatiotemporal sequenceeven at unobserved timesteps. We evaluate
SDIFT on three diverse physical domainssupernova explosions, ocean sound speed, and active par-
ticle systemsand demonstrate its superior accuracy, noise robustness, and computational efficiency
compared to stateoftheart methods, even under extreme sparsity and irregular sampling, underscor-
ing its broad applicability and practical relevance.

Our contributions can be succinctly summarized as follows: 1) We propose SDIFT, a novel genera-
tive framework designed to reconstruct multidimensional physical dynamics from sparse, irregularly
observed data, significantly advancing current methodologies. 2) We establish the theoretical foun-
dation of the FTM as a universal latent representer and integrate it within a Gaussian process-based
diffusion model to achieve robust and flexible generation of latent core sequences. 3) We introduce
MPDPS, an innovative posterior sampling method, facilitating effective message propagation from
sparse observations, ensuring robust reconstruction across temporal domains. 4) We demonstrate
state-of-the-art performance across three distinct physical phenomena at various scales, highlight-
ing the framework’s generalizability and robustness. This work paves the way for more flexible,
accurate and computationally efficient reconstructions of real-world physical systems, with broad
implications for simulation and prediction in complex scientific and engineering tasks.

2 Preliminary

2.1 Tensor Decomposition

Standard tensor decomposition operates on a K-mode tensor Y ∈ RI1×······×IK , where the k-th
mode has Ik nodes, and each entry yi is indexed by a K-tuple i = (i1, · · · , ik, · · · , iK), where ik
denotes the index of the node along the mode k. The classical Tucker decomposition[10] utilizes
a group of latent factors {Uk ∈ RIk×Rk}Kk=1 and a core tensor W ∈ RR1×···×Rk×···×RK , known
as the Tucker core tensor, to formulate a compact representation of the tensor, where {Rk}Kk=1 is
the preset rank for latent factors in each mode. Then, each entry is modeled as the multi-linear
interaction of involved latent factors and the core tensor:

yi ≈ vec(W)T(u1
i1 ⊗ · · · ⊗ uk

ik
⊗ · · · ⊗ uK

iK ) =

R1∑
r1

· · ·
RK∑
rK

[wr1,··· ,rK

K∏
k=1

uk
ik,rk

], (1)
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Figure 1: Graphical illustration of the proposed SDIFT with MPDPS mechanism.

where uk
ik
∈ RRk is the ik-th column of Uk, corresponding to the latent factor of node ik in mode k,

vec(·) is the vectorization operator, and⊗ is the Kronecker product. wr1,··· ,rK is the (r1, · · · , rK)-th
element of W and uk

ik,rk
is the rk-th element of uk(ik).

Functional tensor is the generalization of tensor to functional domain. Standard tensors work with
data defined on fixed grids, where each mode has a finite number of nodes and entries are indexed
discretely. In contrast, functional tensors view the entries as samples from a multivariate function
defined over continuous domains. This function can be decomposed into mode-wise components.
Using the Tucker format, this idea leads to the functional Tucker decomposition [11, 12], which is
expressed as:

y(i) ≈ vec(W)T(u1(i1)⊗ · · · ⊗ uk(ik)⊗ · · · ⊗ uK(iK)), (2)

where i = (i1, · · · , iK) ∈ RK denotes the index tuple, and uk(·) : R → RRk is the latent vector-
valued function of mode k. The continuous nature of functional tensor makes it suitable for many
real-world applications with high-dimensional and real-valued coordinates, like the climate and ge-
ographic data.

2.2 Diffusion Models and Posterior Sampling

Diffusion models[1, 2, 3] are a class of generative models, which involve a forward diffusion process
and a reverse generation process. The forward diffusion process gradually adds Gaussian noise to the
data, and the reverse process is a learnable process that generates the data by sequentially denoising
a noise sample. Follow the notation in the EDM framework [2], the probabilistic flow that describes
the process from normal distribution with variance σ(s1)

2 to target distribution p(x;σ(s0)) can be
formulated as the following ordinary differential equation (ODE):

dx = −σ̇(s)σ(s)∇x log p(x;σ(s))ds, (3)

where ∇x log p(x;σ(s)) is known as the score function and can be estimated by denoiser
Dθ(x, σ(s)), i.e., ∇x log p(x;σ(s)) ≈ (Dθ(x;σ(s)) − x)/σ(s)2. σ(s) is the schedule function
that controls the noise level with respect to diffusion step s, and it is set to σ(s) = s in the EDM
framework.

In many real-world applications, x is not directly observable and we can only collect the measure-
ments y with likelihood p(y|x) = N (y;A(x), ε2I), where A(·) is the measure operator and I is
the identity matrix. We aim to infer or sample from the posterior distribution p(x|y), which is a
common practice of inverse problem in various fields. The work[9] proposed diffusion posterior
sampling (DPS), a widely-used method to add guidance gradient to the vanilla score function and
enable conditional generation:

dx = −σ̇(s)σ(s)(∇x log p(x;σ(s)) +∇x log p(y|x;σ(s)))ds. (4)
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Then the guidance gradient with respect to the log-likelihood function can be approximated with
[9]:

∇xs
log p(y|xs;σ(s)) ≈ ∇xs

log p(y|Dθ(xs);σ(s)) ≈ −
1

ε2
∇xs
∥y −A(Dθ(xs))∥22 . (5)

Here, Dθ(xs) denotes the estimation of the denoised data at denoising step s.

3 Methodology
Problem Statement: We consider a K-mode physical full field tensor with an extra time mode Y ,
whose spatiotemporal coordinate is denoted as (i, t) = (i1, · · · , iK , t). Without loss of generality,
suppose we have M offgrid observation timesteps T = {t1, . . . , tM}. At each tm, the observation
set Otm = {(inm

, tm, yinm ,tm)}Nm
nm=1 contains Nm samples, where yinm ,tm is the entry value of Y

indexed at (inm
, tm). We denote the entire collection of observations by O = {Otm}Mm=1.

We assume the patterns of observations at each time step is varying. The goal is to infer the value
of underlying function y(i, t) : RK × R+ → R at arbitrary continuous spatiotemporal coordinates.
If we treat the problem as a function approximation task, it can be solved by numerical methods
[13, 14] and functional tensor methods [11, 12].

However, in high-dimensional settings, directly approximating such a function from sparse observa-
tions is challenging due to the curse of dimensionality[15]. To address this, we adopt a two-stage
framework commonly used in the generative physics simulation [4, 5, 16, 17]. In the first stage,
we train a diffusion model using observations sampled from B batches of homogeneous dynamics,
denoted as D = {Ob}Bb=1, where Ob is an instance of O as mentioned before. In the second stage,
given observations of the target physical dynamics, we employ the pretrained diffusion model as a
data-driven prior and perform posterior sampling to generate the full-field evolution.

Compared with existing works [4, 5, 18, 6, 9], our setting is unique in two key aspects: 1) the
training data is both sparse and off-grid across the spatiotemporal domain; 2) the objective is to
generate the full-field evolution over a continuous spatiotemporal domain rather than on a discrete
mesh grid. These characteristics introduce two main challenges. First, during model training, a
more general and flexible latent space mapping is required to effectively represent the sparse and
irregular observations. Second, during posterior inference, it is crucial to leverage the limited-time-
step observations as guidance to generate the continuous full-field evolution.

Therefore, we propose SDIFT, a novel sequential diffusion framework that integrates the functional
Tucker Model, Gaussian process-based sequential diffusion, and message-passing diffusion poste-
rior sampling. A schematic illustration of our approach is presented in Fig. 1.

3.1 Functional Tucker Model (FTM) as Universal Latent Representer
Without loss of generality, we consider a single batch of training data Ob = {Ob

t1 , · · · ,O
b
tM }. For

notation simplicity, we omit the superscript b. Our goal is to map this sequence into a structured la-
tent space. To achieve this, we adapt the Functional Tucker Model (FTM), a general framework that
naturally captures the inherent multi-dimensional structure of physical fields and provides compact
representations well-suited for sparse or irregular scenarios.

We treat O as irregular sparse observations of a K-mode functional tensor with an extra time
mode Y . Then, aligned with functional Tucker model (2), we assume the tensor sequence shares
latent functions {fθk

(ik) : R → RRk}Kk=1 parameterized by K neural networks, but with dif-
ferent learnable Tucker core {Wtm ∈ RR1×···×RK}Mm=1. Specifically, for each observed entry
(i, tm, yi,tm) ∈ Otm , it can be represented as:

yi,tm ≈ vec(Wtm)⊤
(
f1θ1

(i1)⊗ · · · ⊗ fKθK
(iK)

)
. (6)

After solving the above representation tasks for all entries inO, we treat the estimated core sequence
W := {Wtm}Mm=1 as the latent representation of O. This process serves as an encoder, analogous
to that in a variational autoencoder (VAE) [19], which maps the sparse observations to random vari-
ables in a latent functional Tucker space. On the other hand, given sampled core tensors Wtm and
the latent functions, Equation (6) functions as a decoder, allowing inference of y(i, tm) at arbitrary
spatial coordinate i.

For the completeness of the paper, we further claim and prove that the Universal Approximation
Property (UAP) of FTM. Theorem 1. (UAP of FTM) Let X1, · · · , XK be compact subsets of RK .
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Choose u ∈ L2(X1 × · · · × XK). Then, for arbitrary ϵ > 0, there exists sufficiently large {R1 >

0, · · · , RK > 0}, coefficients {ar1,··· ,rK}
R1,··· ,RK
r1,··· ,rK and neural networks {{fk

rk
}Rk
rk
}Kk such that∥∥∥∥∥u−

R1∑
r1

· · ·
RK∑
rK

[ar1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

< ϵ. (7)

The detailed proof of Theorem 1 is given in Appx. A. Theorem 1 states that the functional Tucker
model can approximate any function in L2 over the K-dimensional input space, thereby ensuring
its expressive power for representing multidimensional physical fields. Moreover, consistent with
the low-rank structure in physical fields[20, 21], the learned cores capture interactions among the
K latent functions, promoting computational efficiency [11] and offering a more interpretable rep-
resentation [22] compared to nonlinear encoders like VAEs [19] or FiLM [23].

To train the latent functions {fθk
}Kk=1 and obtain batches of core sequences {Wb}Bb=1, we propose

to minimize following objective function over the entire training dataset D = {Ob}Bb=1:

LFTM = E(i,tm,yi,tm )∼D

[∥∥yi,tm − vec(Wtm)⊤
(
f1θ1

(i1)⊗ · · · ⊗ fKθK
(iK)

)∥∥2
2
+ βTV(W)

]
, (8)

where TV(W)2 denotes total variation regularization [24] over the core sequence on the temporal
mode to ensure their temporal coherence, controlled by coefficient β. The training process is con-
ducted using an alternating-direction strategy that iteratively updates latent functions and the core
tensor sequence.

After training, we obtain a set of K learned latent functions {fkθk
(·)}Kk=1that summarize universal co-

ordinate representations, and batches of learned core sequence {Wb}Bb=1, which capture the unique
characteristics of the corresponding physical fields.

3.2 Gaussian Process based Sequential Diffusion for Core Sequence Generation

Given {Wb}Bb=1 from FTM training, we aim to build a diffusion model that generates core se-
quences with cores extracted at arbitrary timestep. For notation simplicity, we omit the super-
script b. Assume that W = {Wt1 , · · · ,WtM } is drawn from an underlying continuous function
W(t) : R+ → RR1×···×RK at T = {t1, · · · , tM}, where each element can be any continuous
timestep. To model the distribution of W(t), we follow the idea of functional diffusion model
[25, 26], and choose a Gaussian Process (GP) noise [15] as the diffusion noise source. This approach
naturally handles irregularly-sampled timesteps and incorporates temporal-correlated perturbations,
i.e., assign varying noise level at different positions in the sequence, enabling the generation of
temporal-continuous sequence samples.

Specifically, we assume the noise sequence E = {Et1 , · · · ,EtM } is sampled from a GP
GP(0, κ(ti, tj)), where κ(ti, tj) = exp (−γ(ti − tj)

2) is set as the radial basis function (RBF)
kernel to model the temporal correlation of noise in sequence. As vanilla GP can only model the
scaler-output function, here we actually build multiple independent GPs for each element of the
core.

In the forward process of diffusion, a sample of core sequence W is perturbed by the GP noise E .
During the reverse process, the noise sequence from GP is then gradually denoised by a precondi-
tioned neural network Dθ to obtain the clean core sequence. Notably, when M = 1, the model
degenerates to the standard diffusion model (3). We refer to this model as Gaussian Process based
Sequential Diffusion (GPSD).

Then, the training objective for the GPSD model is:

LGPSD = Eσ(s),W tm∼W,Etm∼E,t∼T

[
λ(σ(s)) ∥Dθ(Wtm + Etm ;σ(s), tm)−Wtm∥

2
2

]
, (9)

where λ(σ(s)) is a weighting function dependent on the noise level σ(s). Note that we aim to
learn the distribution of a single core rather than the entire sequence of cores, allowing for flexible
modeling of core sequence length and improved computational efficiency. To better capture temporal
correlations within the sequence, we propose a temporally augmented U-Net (details in Appx. B)
and summarize its training procedure in Appx. D.1.

2TV(W) =
∑M

m=2

∥∥Wtm −Wtm−1

∥∥2

2
.
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Figure 2: Illustration of DPS and MPDPS to handle the case of no observations at t′.

3.3 Message-Passing Diffusion Posterior Sampling

With pre-trained GPSD and FTM, we generate the core tensor sequence from GP noise and recon-
struct dynamics at arbitrary (i, t) via FTM. We further introduce a posterior sampling method for
conditional sequence generation from limited observations.

Consider the task of inferring dynamics at a target time set Ttar = {t1, · · · , tM}. With a pre-
trained FTM, this reduces to generating the core tensor sequence W = {Wt1 , · · · ,WtM } from
the observation set O. We assume that observations are only available at a subset Tobs ⊆ Ttar,
with |Tobs| = L ≤ M . Under standard DPS, only the observed cores Wobs := {Wtl | tl ∈
Tobs} are guided by their corresponding observations Otl , while the remaining cores are generated
without guidance, as illustrated in Fig. 2(a). This is suboptimal, as real-world physical dynamics are
temporally continuous and correlated, meaning that even limited observations can provide valuable
guidance for the entire sequence.

To enable posterior sampling of the entire core sequence, we propose Message-Passing Diffusion
Posterior Sampling (MPDPS). The key idea is to exploit the temporal continuity of the core sequence
to smooth and propagate guidance from limited observations across the full sequence, as illustrated
in Fig. 2(b).

Without loss of generality, we focus on the timestep with observation tl ∈ Tobs as a representative
case, and demonstrate the propagation mechanism of how guidance message of Otl pass to the
residual core sequenceW\tl =W \Wtl , where |W\tl | = M − 1. At diffusion step s, the guidance
message group of Otl passed toW\tl can be expressed as:{

Gs
tl,tm

}
tm∈Ttar\tl

:= ∇Ws
\tl

log p(Otl |Ws
\tl) = ∇Ws

\tl
log

∫
p(Otl |W

0
tl
)p(W0

tl
|Ws

\tl)dW
0
tl
,

(10)
where Gs

tl,tm
= ∇Ws

tm

log p(Otl |Ws
\tl) is the likelihood gradient of Otl respect to Ws

tm , Ws
\tl

denotes perturbedW\tl at diffusion step s,∇Ws
\tl

is the operator to compute the gradient respect to

each core inWs
\tl , and W0

tl
denotes the clean core at timestep tl. However, directly computing (10)

is intractable. While p(Otl |W
0
tl
) is a Gaussian factor due to the multilinear structure of the FTM,

the conditional distribution p(W0
tl
|Ws

\tl) is unknown, making the integration term intractable.

To handle this, we further assign element-wise GP prior over the core sequence, consistent with
generation by GP noise in Sec. 3.2, and claim that p(W0

tl
|Ws

\tl) can be estimated as a Gaussian
factor via the denoiser network Dθ and Gaussian process regression [15] (GPR). Then we can work
out an tractable approximation of (10) as follows:

∇Ws
\tl

log p(Otl |Ws
\tl) ≈ ∇Ws

\tl
[−1

2
(ytl −BtlT (Ws

\tl))
⊤Σ̃

−1

tl
(ytl −BtlT (Ws

\tl))], (11)

where ytl is vector collecting entries in Otl , and T (Ws
\tl) with shape of (M − 1) × (

∏K
k=1 Rk) is

the concatenation of vectorized estimated clean W0
tm ∈ W\tl from Dθ, which takes every Ws

tm ∈
Ws

\tl as input. Btl and Σ̃tl are constructed by the latent functions in FTM and the GPR kernel
matrix in a closed form. A full derivation is provided in Appx. C. Note that (11) has a quadratic
form, enabling efficient gradient computation.
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At diffusion step s, we go through all observations, compute the guidance messages to be passed
with (11), and for core Ws

tn at tn ∈ Ttar, the guidance messages from observations are:

∇Ws

tn

log p(O|Ws
tn) ≈ 1Tobs

(tn) · ∇Ws

tn

log p(Otn |W
s
tn) +

∑
tl∈Tobs\tn

Gs
tl,tn

, (12)

where 1Tobs
(tn) = 1 if tn ∈ Tobs, otherwise 0, and ∇Ws

tn

log p(Otn |W
s
tn) denotes the guidance

for core at timestep with direct observations, which is equal to the DPS guidance in (5). Then we
can plug (12) into (4) to perform posterior sampling.

As shown in (12), MPDPS propagates observation-derived guidance across the entire core sequence.
For cores at timesteps with direct observations, this guidance is further smoothed by messages from
other observed timesteps. This smoothing mechanism enhances the robustness of the generated
sequence, especially under noisy or extremely sparse observations. Consequently, MPDPS can out-
perform standard DPS even when Ttar = Tobs, as demonstrated in our experiments. We provide a
more detailed explanation of the MPDPS mechanism in Appx. E to facilitate understanding. The
full MPDPS procedure is summarized in Algo. 1.

Algorithm 1 Message-passing Diffusion Posterior Sampling

Require: Deterministic Sampler Dθ(·;σ(s)), noise power schedule {σ(si)}Si=0, observation set O,
target time set Ttar, observation time set Tobs, kernel parameter γ. Weights ζ.

1: Generate initial GP noise sequence {WS
t1 , · · · ,W

S
tM } at Ttar with kernel function Ki,j =

exp (−γ(ti − tj)
2).

2: for i = S, . . . , 1 do
3: Estimate all denoised cores at step si: Ŵ

0

tj ← Dθ

(
W i

tj ;σ(si)
)
, ∀j.

4: Evaluate dW/dσ(s) at diffusion step si: Di
j ← (W i

tj − Ŵ
0

tj )/σ(si), ∀j.
5: Euler step: W i−1

tj ←W i
tj +

(
σ(si−1)− σ(si)

)
Di

j , ∀j.
6: if σ(ti−1) ̸= 0 then
7: Secondorder correction: Ŵ

0

tj ← Dθ

(
W i−1

tj ;σ(si−1)
)
, ∀j.

8: Evaluate dW/dσ(s) at diffusion step si−1: D
′i
j ← (W i−1

tj − Ŵ
0

tj )/σ(si−1), ∀j.
9: Apply the trapezoidal rule at diffusion step si−1: W i−1

tj ← W i
tj +

(
σ(ti+1) −

σ(ti)
)(

1
2D

i
j +

1
2D

′i
j

)
, ∀j

10: end if
11: Compute the guidance gradients as defined in (12) for all target cores, and accumulate each

into its corresponding core.
12: end for
13: return Guided generated core sequence {Wt1,0, · · · ,WtM ,0}.

4 Related Work
Tensor-based methods are widely used to reconstruct multidimensional data by learning low-rank
latent factors from sparse observations. Recent works in temporal tensor learning [27, 28, 22, 29]
relax the discretization constraints of classical tensors, enabling modeling of continuous temporal
dynamics. Functional tensor approaches [12, 11, 30, 31] go further by modeling continuity across
all tensor modes via function approximation with structured latent factors. While effective, these
methods are limited to single-instance training and inference, and lack the flexibility to handle sets
of tensors with varying dynamics, e.g., PDE trajectories under different initial conditions.

Toward generative physical simulation, several works [9, 17, 16, 4, 6] have applied pre-trained
diffusion models, achieving notable progress across various tasks. However, most existing methods
assume well-structured data and struggle with real-world reconstruction scenarios involving sparse
and irregular observations. To address this, [5] proposed modeling off-grid data using conditional
neural fields (CNFs) followed by diffusion. Yet, this approach do not explicitly capture temporal
continuity, limiting their ability to generate full-field dynamics. Additionally, it suffers from high
computational cost due to repeated gradient backpropagation operated on CNF during posterior
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Supernova Explosion Ocean Sound Speed Active Matter
Methods ρ = 1% ρ = 3% ρ = 1% ρ = 3% ρ = 1% ρ = 3%

Observation setting 1 : Tobs = Ttar

Tensor-based
LRTFR [11] 0.558 ± 0.044 0.429 ± 0.043 0.345 ± 0.036 0.217 ± 0.066 0.302 ± 0.104 0.258 ± 0.022
DEMOTE [38] 1.285 ± 0.102 1.213 ± 0.217 0.358 ± 0.127 0.314 ± 0.086 0.950 ± 0.486 0.871 ± 0.497
NONFAT [27] 1.229 ± 0.127 1.197 ± 0.204 0.402 ± 0.090 0.330 ± 0.101 0.921 ± 0.457 0.867 ± 0.413

Attention-based
Senseiver [18] 0.446 ± 0.041 0.349 ± 0.023 0.264 ± 0.037 0.2005 ± 0.031 0.345 ± 0.094 0.264 ± 0.076

Diffusion-based
CoNFiLD [5] 0.561 ± 0.082 0.427 ± 0.037 0.201 ± 0.034 0.145 ± 0.012 0.529 ± 0.087 0.5075 ± 0.830
SDIFT w/ DPS 0.339 ± 0.116 0.291 ± 0.033 0.194 ± 0.073 0.160 ± 0.035 0.298 ± 0.065 0.174 ± 0.043
SDIFT w/ MPDPS 0.283 ± 0.026 0.272 ± 0.025 0.146 ± 0.046 0.108 ± 0.043 0.215 ± 0.068 0.156 ± 0.046

Observation setting 2 : |Tobs| = 1
2
|Ttar|

Tensor-based
LRTFR [11] 0.783 ± 0.416 0.813 ± 0.296 0.610 ± 0.323 0.508 ± 0.297 0.620 ± 0.484 0.598 ± 0.527
DEMOTE [38] 1.351 ± 0.209 1.223 ± 0.397 0.549 ± 0.181 0.533 ± 0.198 1.261 ± 0.614 1.277 ± 0.603
NONFAT [27] 1.278 ± 0.214 1.254 ± 0.2785 0.465 ± 0.153 0.420 ± 0.189 1.126 ± 0.514 1.270 ± 0.485

Attention-based
Senseiver [18] Not capable - - - - -

Diffusion-based
CoNFiLD [5] 0.757 ± 0.199 0.6575 ± 0.148 0.310 ± 0.054 0.2615 ± 0.038 0.8265 ± 0.167 0.779 ± 0.161
SDIFT w/ DPS 0.659 ± 0.057 0.6450 ± 0.054 0.412 ± 0.156 0.407 ± 0.136 0.674 ± 0.153 0.637 ± 0.113
SDIFT w/ MPDPS 0.433 ± 0.163 0.335 ± 0.122 0.181 ± 0.084 0.165 ± 0.041 0.296 ± 0.096 0.256 ± 0.087

Table 1: VRMSEs of the reconstruction results for all methods across three datasets, evaluated under
two observation settings with different observation ratios.

sampling. [18] introduced an attention-based model for reconstructing fields from sparse, off-grid
measurements, but it lacks explicit temporal modeling and struggles with rapidly evolving fields.

In parallel, operator learning methods [32, 33] have emerged as powerful tools for physical
modeling by learning mappings between functions, and have been applied to field reconstruction
tasks [34, 35, 36, 37]. However, these methods often rely on task-specific designs and prede-
fined observation patterns, limiting their adaptability. Notably, [32] reported that FNOs can perform
poorly in high-dimensional settings with sparse data.

To address these gaps, we propose SIDFT, a method well-suited for high-dimensional, continuous
spatiotemporal field reconstruction in sparse and irregular settings, with strong flexibility and per-
formance across domains and scales.

5 Experiment
Datasets: We examined SDIFT on three real-world benchmark datasets, which span across astro-
nomical, environmental and molecular scales. (1) Supernova Explosion, temperature evolution of
a supernova blast wave in a compressed dense cool monatomic ideal-gas cloud. We extracted 396
records in total, each containing 16 frames, where each frame has a shape of 64 × 64 × 64. We
use 370 for training, randomly masking out 85% of the points in each record to simulate irregular
sparse data. The remaining 26 records are reserved for testing.(https://polymathic-ai.org/
the_well/datasets/supernova_explosion_64/; (2) Ocean Sound Speed, sound speed field
measurements in the pacific ocean. We extracted 1000 records of shape 24 × 5 × 38 × 76, us-
ing 950 for training (with 90% of points randomly masked) and reserving 50 for testing. (https:
//ncss.hycom.org/thredds/ncss/grid/GLBy0.08/expt_93.0/ts3z/dataset.html). (3)
Active Matter, the dynamics of rod-like active particles in a stokes fluid simulated via a contin-
uum theory. We extracted 928 records, each of size 24 × 256 × 256, using 900 for training (with
90% of points randomly masked) and reserving 28 for testing.(https://polymathic-ai.org/
the_well/datasets/active_matter/)

Baselines and Settings: We compared SDIFT with state-of-the-art physical field reconstruction
methods and tensor-based methods: (1) Senseiver [18], an attention-based framework that encodes
sparse sensor measurements into a unified latent space for efficient multidimensional field recon-
struction; (2) CoNFiLD [5], a generative model that combines conditional neural field encoding
with latent diffusion to generate high-fidelity fields. (3) LRTFR [11], a low-rank functional Tucker
model employing factorized neural representations for tensor decomposition; (4) DEMOTE [38],
a neural diffusionreaction process model that learns dynamic factors within a tensor decomposition
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Figure 3: Reconstruction of Active Matter dynamics under observation setting 1 with ρ = 1%.
SDIFT guided by MPDPS produces notably robust reconstructions with fine-grained details.

framework; (5) NONFAT [27], a bi-level latent Gaussian process model that estimates time-varying
factors using Fourier bases; We evaluate our method against baselines on reconstructing temporal
physical fields under two observation settings with observation ratio ρ ∈ {1%, 3%}. In observa-
tion setting 1, Tobs = Ttar, so at each ti observations occur at ratio ρ. In observation setting 2,
Tobs ⊂ Ttar: for ti ∈ Tobs we retain observations at ratio ρ, whereas for ti ∈ Ttar \ Tobs no observa-
tions are available. We assume that Tobs is constructed by selecting every other element from Ttar so
that |Tobs| = 1

2 |Ttar|. We replace MPDPS with traditional DPS [9] to constitute an ablation study to
showcase the effectiveness of our proposed MPDPS. The performance metrics is the Variance-scaled
Root Mean Squared Error (VRMSE, see Appx. F.1 for definition), which offers a scale-independent
way to evaluate model performance. Each experiment was conducted 10 times and we reported
the average test errors with their standard deviations. We provided more implementation details in
Appx. F.
Main Evaluation Results: The quantitative results in Tab. 1 demonstrate that SDIFT consistently
outperforms all baselines by a substantial margin under both observation settings 1 and 2. We further
observe that tensor-based methods generally lag behind training-based approaches, since they cannot
exploit batches of historical data and must reconstruct the field from extremely sparse observations.
In particular, temporal tensor techniques that ignore the continuously indexed modesuch as NON-
FAT and DEMOTEperform poorly across all three datasets compared to LRTFR. The qualitative
comparisons in Fig. 3 indicate that SDIFT with MPDPS produces more faithful reconstructions.

Observation setting 2 presents a more challenging scenario, in which all baselines exhibit signifi-
cant performance degradation. CoNFiLD and SIDFT with DPS can still reconstruct via uncondi-
tional generation without any observations, whereas Senseiver cannot. As shown in Fig. 4, SDIFT
guided by DPS generates physical fields randomly at timesteps without observations, owing to the
absence of guidance in such cases. Similarly, Senseiver fails when observations are unavailable. In
contrast, MPDPS effectively overcomes these limitations and consistently produces accurate recon-
structions, highlighting the robustness of the proposed method. Additional unconditional genera-
tion results, conditional reconstruction results and detailed analysis on CoNFiLD are provided in
Appx. G.1G.2G.3, respectively. We also demonstrated the effectiveness of using GP noise as the
diffusion source in Appx. G.5. These results collectively demonstrate the effectiveness of SDIFT
with the MPDPS mechanism.

Sampling Speed: We compared the sampling speed of our method with CoNFiLD [5] on a NVIDIA
RTX 4090 GPU with 24 GB memory; the results are shown in Tab. 2. One can see that our proposed
method is significantly faster than CoNFiLD across all settings. This rapid inference speed stems
from two key factors. First, we formulated the reverse diffusion process as solving a deterministic
probability-flow ODE rather than a stochastic differential equation (SDE, as in CoNFiLD), which
largely reduces the number of neural network evaluations[2] during sampling. Second, by employ-
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Figure 4: Reconstruction of Supernova Explosion dynamics under observation setting 2 with
ρ = 3%. Since DPS does not provide guidance at timesteps without observations (i.e., frames #
3,9,15), SDIFT generates the corresponding physical fields randomly. In contrast, MPDPS effec-
tively addresses this limitation and yields smooth reconstructions.

Supernova Explosion Ocean Sound Speed Active Matter
Methods ρ = 1% ρ = 3% #Para. ρ = 1% ρ = 3% #Para. ρ = 1% ρ = 3% #Para.

CoNFiLD 31.3s 44.0s 23M 15.9s 20.3s 10M 27.6s 31.5s 10M
SDIFT w/ MPDPS 2.23s 5.43s 26M 0.84s 0.89s 15M 1.31s 1.42s 12M

Table 2: Average sampling speed for reconstruction with different observation ratios on observation
setting 1.

ing a functional Tucker model, we endowed the likelihood with a quadratic structure that enables
efficient computation of posterior gradients. In contrast, CoNFiLD defines its likelihood through a
conditional neural field and must compute gradients via automatic differentiation at each diffusion
step, significantly increasing the computation time.

Robustness against Noise: We evaluated SDIFT with DPS and MPDPS against three noise
types: Gaussian, Poisson and Laplacian, with different variance levels, and results are at Tab. 4
in Appx. G.4, which demonstrates the robustness introduced by proposed MSDPS module.

6 Conclusion and Future Work

We presented SDIFT, a generative model that efficiently captures the distribution of multidimen-
sional physical dynamics from irregular and limited training data. We also proposed a novel
message-passing diffusion posterior sampling mechanism for conditional generation with obser-
vations, achieving state-of-the-art reconstruction performance with significant computational effi-
ciency. A current limitation of our work is the lack of explicit incorporation of physical laws into
the modeling process. In future work, we plan to integrate SDIFT with domain-specific physical
knowledge, enabling more accurate long-range and wide-area physical field reconstructions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contribution in the abstract and introduction part of the
main paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the conclusion part of the main paper and Ap-
pendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We include the theoretical results with full assumptions and complete proofs
in Section 4 of the main paper and Appendix AC.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all implementation details for reproducibility in the Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the data and code in supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include implementation details of data and sampling in the experiment
section of main paper and Appendix FD.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation of the results in experiment part of main
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We talk about the compute resources in experiment part of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the broader impacts of our paper in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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APPEXNDIX

A Proof of Theorem 1

Here we show the preliminary lemmas and proofs for Theorem 1. We consider the general tensor
product between K Hilbert spaces.

Definition 1. {vαi
} is an orthonormal basis for Hilbert spaceHi, ∀i.

Lemma 1. {vα1 ⊗ vα2} is an orthonormal basis forH1 ⊗H2.

Proof. See Lemma 2. in the Appendix A of [39].

Lemma 2. {vα1
⊗ · · · ⊗ vαK

} is an orthonormal basis forH1 ⊗ · · · ⊗ HK .

Proof. By repeatedly applying Lemma 2., we can show that {vα1 ⊗ · · · ⊗ vαK
} is an orthonormal

basis forH1 ⊗ · · · ⊗ HK .

Theorem 1. (Universal Approximation Property) Let X1, · · · , XK be compact subsets of RK .
Choose u ∈ L2(X1 × · · · × XK). Then, for arbitrary ϵ > 0, we can find sufficiently large
{R1 > 0, · · · , RK > 0}, coefficients {ar1,··· ,rK}

R1,··· ,RK
r1,··· ,rK and neural networks {f1

r1 , · · · , f
K
rK}

such that ∥∥∥∥∥u−
R1∑
r1

· · ·
RK∑
rK

[ar1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

< ϵ. (13)

Proof. Let {ϕr1}, · · · , {ϕrK} be an orthonormal basis for L2(X1), · · · , L2(XK), respectively. Ac-
cording to Lemma 2, {ϕr1 · · ·ϕrK} forms an orthonormal basis for L2(X1×· · ·×XK). Therefore,
we can find sufficiently large set {R1 > 0, · · · , RK > 0} and arbitrary ϵ > 0 such that∥∥∥∥∥u−

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

<
ϵ

2
. (14)

Here, cr1,··· ,cK is defined as

cr1,··· ,cK =

∫
u(i1, · · · , iK)

K∏
k=1

ϕk
rk
(ik)

K∏
k=1

dik. (15)

Also, with the universal approximation theorem in [40], we can find neural networks {fk
rk
}Kk=1

satisfy ∥∥ϕk
rk
− fk

rk

∥∥
L2(Xk)

≤ ϵ

(1 + 4
∏K

k=2 Rk)
rk
2 K ∥u∥L2(X1×···×XK)

, ∀k. (16)
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First, we have∥∥∥∥∥u−
R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

=

∥∥∥∥∥u−
R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
] +

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
]−

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

≤

∥∥∥∥∥u−
R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
]

∥∥∥∥∥
L2(X1×···×XK)︸ ︷︷ ︸

A1

+

∥∥∥∥∥
R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
]−

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)︸ ︷︷ ︸

A2

.

(17)

The first term A1 can be determined by Eq.(14). We are to estimate the second term.

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

ϕk
rk
]−

R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

fk
rk
]

=

R1∑
r1

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=2

ϕk
rk
)(ϕ1

r1 − f1
r1)︸ ︷︷ ︸

B1

+

R1∑
r1

· · ·
RK∑
rK

cr1,··· ,rK (f1
r1

K∏
k=3

ϕk
rk
)(ϕ2

r2 − f2
r2)︸ ︷︷ ︸

B2

+ · · ·+

R1∑
r1

· · ·
RK∑
rK

cr1,··· ,rK (

K−1∏
k=1

fk
rk
)(ϕK

rK − fK
rK )︸ ︷︷ ︸

BK

.

(18)

Then, we have

A2 = ∥B1 + · · ·+Bk∥L2(X1×···×XK)

≤ ∥B1∥L2(X1×···×XK) + · · ·+ ∥BK∥L2(X1×···×XK)

(19)

Specifically, we have

∥B1∥2L2(X1×···×XK) =

∫ { R1∑
r1

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=2

ϕk
rk
)(ϕ1

r1 − f1
r1)

}2 K∏
k=1

dik

=

∫


R1∑
r1

[
R2∑
r2

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=2

ϕk
rk
)

]
︸ ︷︷ ︸

C1

(ϕ1
r1 − f1

r1)︸ ︷︷ ︸
C2



2

K∏
k=1

dik.

(20)

By applying Cauchy-Scharwz inequality, we have

∥B1∥2L2(X1×···×XK) ≤
∫ ( R1∑

r1

|C1|2
)(

R1∑
r1

|C2|2
)

K∏
k=1

dik

=

(∫ R1∑
r1

|C1|2
K∏

k=2

dik

)
︸ ︷︷ ︸

D1

(∫ R1∑
r1

|C2|2di1

)
︸ ︷︷ ︸

D2

.
(21)
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Thereafter, we have

D1 =

∫ R1∑
r1

|C1|2
K∏

k=2

dik =

R1∑
r1

∫
|C1|2

K∏
k=2

dik =

R1∑
r1

∥∥∥∥∥
R2∑
r2

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=2

ϕk
rk
)

∥∥∥∥∥
2

L2(X2×···XK)(22)

Since {ϕk
rk
}Kk=1 are all orthonormal basis, we have∥∥∥∥∥

R2∑
r2

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=2

ϕk
rk
)

∥∥∥∥∥
L2(X2×···XK)

=

∥∥∥∥∥
R2∑
r2

[
R3∑
r3

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=3

ϕk
rk
)

]
ϕ2
r2

∥∥∥∥∥
L2(X2×···XK)

≤
R2∑
r2

∥∥∥∥∥
R3∑
r3

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=3

ϕk
rk
)

∥∥∥∥∥
L2(X2×···XK)

∥∥ϕ2
r2

∥∥
L2(X2)

=

R2∑
r2

∥∥∥∥∥
R3∑
r3

· · ·
RK∑
rK

cr1,··· ,rK (

K∏
k=3

ϕk
rk
)

∥∥∥∥∥
L2(X2×···XK)

≤ · · · ≤
R2∑
r2

· · ·
K∑
rK

|cr1,··· ,cK |.

(23)

Substituting Eq.(23) into Eq.(22) and we can get

D1 =

∫ R1∑
r1

|C1|2
K∏

k=2

dik =

R1∑
r1

∫
|C1|2

K∏
k=2

dik

≤
R1∑
r1

[

R2∑
r2

· · ·
RK∑
rK

|cr1,··· ,cK |]2 ≤ (

K∏
k=2

Rk)

R1∑
r1

R2∑
r2

· · ·
RK∑
rK

|cr1,··· ,cK |2 < (

K∏
k=2

Rk) ∥u∥2L2(X1×···XK) .
(24)

Next, we have

D2 =

∫ R1∑
r1

|C2|2di1 =

R1∑
r1

∫
|ϕ1

r1 − f1
r1 |

2di1

=

R1∑
r1

∥∥ϕ1
r1 − f1

r1

∥∥2
L2(X1)

≤
R1∑

r1=1

[
ϵ

(1 + 4
∏K

k=2 Rk)
r1
2 K ∥u∥L2(X1×···×XK)

]2 <
ϵ2

(4
∏K

k=2 Rk)K2 ∥u∥2L2(X1×···×XK)

.

(25)

Therefore, we have

∥B1∥2L2(X1×···×XK) < D1D2 = (

K∏
k=2

Rk) ∥u∥2L2(X1×···XK)

ϵ2

(4
∏K

k=2 Rk)K2 ∥u∥2L2(X1×···×XK)

=
ϵ2

4K2
.

(26)

In the similar sense, we can also prove

∥Bk∥2L2(X1×···×XK) <
ϵ2

4K2
. (27)

Therefore,

A2 < K ×
√

ϵ2

4K2
=

ϵ

2
. (28)
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Substituting Eq.(14) and Eq.(28) into Eq.(17), we can derive∥∥∥∥∥u−
R1∑
r1

· · ·
RK∑
rK

[cr1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

≤ A1 +A2 < ϵ. (29)

Since ar1,···, rk are random coefficients that can take arbitrary values to approximate cr1,···, rk, we
have ∥∥∥∥∥u−

R1∑
r1

· · ·
RK∑
rK

[ar1,··· ,rK

K∏
k=1

fk
rk
]

∥∥∥∥∥
L2(X1×···×XK)

< ϵ. (30)

Thus, we complete the proof.

B Illustration of the architecture of the proposed temporally augmented
U-Net

t

s

… …
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Augmented 

U-Net

1 1 1( , , , )BT C H W

conv1d

conv2d

input size

reshape to
reshape to
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output size

2 2 2( , , , )BT C H W

Figure 5: Overview of the Temporally Augmented U-Net. We make a slight modification by adding
a Conv1D layer to capture temporal correlations among latent features (A special case of K = 3).

We propose a temporally augmented U-Net by incorporating a lightweight temporal enhancement
module. As illustrated in Fig. 5, we add Conv1D layers to capture temporal correlations among
latent features without altering their original dimensionality. The proposed module requires only
minor modifications and is straightforward to implement. Unlike video diffusion models that incur
high computational costs by modeling full sequences [41], our approach circumvents this issue by
enabling the modeling of frame sequences of arbitrary length and at any desired temporal resolution.

C Derivation of guidance gradient of log-likelihood

Here, we derive the guidance gradient of log-likelihood with respect to Ws
\tl :

∇Ws

\tl
log p(Otl |W

s
\tl) = ∇Ws

\tl
log

∫
p(Otl |W

0
tl
)︸ ︷︷ ︸

term 1

p(W0
tl
|Ws

\tl)︸ ︷︷ ︸
term 2

dW0
tl
, (31)

where Gs
tl,tm

= ∇Ws

tm

log p(Otl |W
s
\tl) is the likelihood gradient of Otl respect to Ws

tm , Ws
\tl

denotes perturbed W\tl at diffusion step s, ∇Ws

\tl
is the operator to compute the gradient respect

to each core in Ws
\tl , and W0

tl
is the estimated clean target core. Note that in previous step, the

latent functions of functional Tucker model are learned. Together with the observation index set
specified at tl, the proposed functional Tucker model reduces to a linear model. Therefore, term 1
which corresponding to the likelihood, can be directly expressed as:

p(Otl |W
0
tl
) ∼ N (ytl | Atlw

0
tl
, ε2I), (32)
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where ytl ∈ RNtl is vector containing Ntl entries in Otl . We collect the indexes of Ntl entries
in Otl and form the index matrix Itl ∈ RNtl

×K . Then, Atl ∈ RNtl
×
∏K

k=1 Rk is the factor matrix
obtained by evaluating the index matrix Itl on the Kronecker product of the learned latent functions,
f1
θ1
⊗ · · · ⊗ fK

θK
. w0

tl
∈ R

∏K
k=1 Rk is the vectorized form of W0

tl
.

To make the following derivation clearer, we vectorize each element in Ws
\tl and concatenate them

into a matrix, denoted as Ws
\tl ∈ RM−1×

∏K
k=1 Rk . As for term 2, we have

p(W0
tl
|Ws

\tl) = p(w0
tl
|W\tl

s ) =

∫
p(w0

tl
|W0

\tl)p(W
0
\tl |W

s
\tl)dW

0
\tl

= EW0
\tl

∼p(W0
\tl

|Ws
\tl

)[p(w
0
tl
|W0

\tl)].
(33)

We approximate the term 2 with

EW0
\tl

∼p(W0
\tl

|Ws
\tl

)[p(w
0
tl
|W0

\tl)] ≈ p(w0
tl
|W0

\tl = E[W0
\tl |W

s
\tl ]), (34)

which closely related to the Jensen’s inequality. The approximation error can be quantified with the
Jensen gap.

Note that in EDM[2], the denoiser Dθ(·) can direct approximate the clean cores:

Ŵ0
\tl = T (Ws

\tl), (35)

where T (Ws
\tl) with shape of M −1×

∏K
k=1 Rk is the concatenation of vectorized estimated clean

W0
tm ∈ W\tl from Dθ, which takes every Ws

tm ∈ Ws
\tl as input. Specifically, assume Ws

tm is
the i-th element of Ws

\tl , then:

T (Ws
\tl)(i, :) = vec(Dθ(Ws

tm ;σ(s))) = vec(Ŵ
0

tm). (36)

The term 2 now can be estimated using

p(w0
tl
|Ws

\tl) ≈ p(w0
tl
|T (Ws

\tl)). (37)

With similar rationale as in the training process of the GPSD, we impose an element-wise Gaussian
process prior over the estimated clean cores Ŵ\tl

0 . Under this prior, the conditional distribution in
(37) is given by:

p(w0
tl
| Ŵ0

\tl) ∼ N (µtl
,Σtl),

µtl
= kT

tl,T
\tl
tar

K−1

T \tl
tar ,T \tl

tar

Ŵ
\tl
0 ,

Σtl =

(
ktl,tl − kT

tl,T
\tl
tar

K−1

T \tl
tar ,T \tl

tar

kT \tl
tar ,tl

)
I,

(38)

where T \t′l
1 denotes the residual target time set, obtained by excluding tl from Ttar.

Until now, we have

∇Ws

\tl
log p(Otl |W

s
\tl) =

∫
p(ytl |w0

tl
;σ(s))p(w0

tl
|Ws

\tl)dw
0
tl

≈
∫

p(ytl |w0
tl
;σ(s))p(w0

tl
|Ŵ0

\tl)dw
0
tl
= E.

(39)

By combining (32) and (38), E also has a closed-form distribution:

E ∼ N (ytl |Atlµtl
, ε2I+AtlΣtlA

T
tl
) = N (ytl |BtlT (W

s
\tl), Σ̃tl), (40)

where Bt1 = Atlk
T

tl,T
\tl
tar

K−1

T \tl
tar ,T \tl

tar

and Σ̃tl = ε2I+AtlΣtlA
T
tl

for abbreviation.
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D Algorithm

D.1 Training phase

In our setting, the training data is irregular and sparse observations sampled from B batches of ho-
mogeneous physical dynamics at arbitrary timesteps. Given batches of training data, we first use the
FTM model to map these irregular points into a shared set of K latent functions and corresponding
core sequence batches. The K latent functions are then fixed, and GPSD is used to learn the distri-
bution of the core sequences. Our model is flexible and well-suited for handling irregular physical
field data.

E Detailed explaination of MPDPS

The primary goal of MPDPS is to exploit the temporal continuity of the core sequence to smoothly
propagate guidance from limited observations across the entire sequence. For simplicity, consider
the setup in Fig. 2, where we aim to generate the core tensors at three target timesteps: tl, t′, and
tl+1, denoted as Wtl , Wt′ , and Wtl+1

, respectively. In this example, observations are only avail-
able at tl and tl+1 (i.e., observation timesteps),denoted as Otl and Otl+1

. Standard DPS methods
cannot provide gradient guidance for generating the intermediate core Wt′ , due to the lack of direct
observations at t′.

MPDPS addresses this limitation by propagate the information of Otl to Wtl ,Wt′ ,Wtl+1
and the

information of Otl+1
to Wtl ,Wt′ ,Wtl+1

, which means each observation set will contribute to the
generation of all target core sequences. Next, we demonstrate how this can be achieved.

Without loss of generality, we take Otl as an example. At diffusion step s, we use Otl twice to
obtain gradient guidance for the three cores:

i) Gradient for Ws
tl

: This follows standard DPS. We directly compute the likelihood gradient with
respect to Ws

tl
as ∇Ws

tl

log p(Otl |W
s
tl
), as illustrated by the green & red arrows at tl in Fig. 2(a).

ii) Gradient for Ws
t′ and Ws

tl+1
:

• Compute denoised cores at t′ and tl+1: we first use Ws
t′ and Ws

tl+1
to estimate the

corrsponding denoised cores Ŵ
0

t′ = Dθ(Ws
t′) and Ŵ

0

tl+1
= Dθ(Ws

t+1) via the pre-
trained denoiser Dθ(·).

• Estimate pseudo cores at tl via GPR: With the temporal continuity assumption, we
use Gaussian Process Regression (GPR) to estimate the pseudo denoised core Ŵ

0

tl
=

GPR(Ŵ
0

t′ ,Ŵ
0

tl+1
) = GPR(Dθ(Ws

t′), Dθ(Ws
t+1)), which can be viewed as a regression-

based prediction using two denoised cores.

• Gradient computation: With pseudo core Ŵ
0

tl
, we compute an additional likelihood ofOtl .

Then we can then compute the gradient of the likelihood respect to Ws
t′ and Ws

tl+1
, as

they directly determine Ŵ
0

tl
via Dθ and GPR. We further derive a closed-form solution

in Appendix C for gradients with respect to Ws
t′ and Ws

tl+1
(i.e., ∇Ws

\tl
log p(Otl |Ws

\tl)

), which can be efficiently computed. The results are shown in Eq. 1011.

The process is illustrated by the green arrows pointing to Otl in Fig. 2(b).

Similarly, information from Otl+1
is propagated to Wtl , Wt′ and Wtl+1

in the same manner, and
we sum the gradients from all observations to obtain the final gradient guidance for each core, as
shown in Eq. 12.

In this way, each observation contributes to the generation of all target timesteps. In other words,
every target coreregardless of whether it has a corresponding observationreceives information from
all observed timesteps. To sample the entire core sequence, we simply add the gradients from all
observations to the posterior, as shown in Eq. 12. This mechanism encourages smooth and coherent
generation across the entire sequence.
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F Implementation details

All the methods are implemented with PyTorch [42] and trained using Adam [43] optimizer with the
learning rate tuned from {5e−4, 1e−3, 5e−3, 1e−2}.
For DEMOTE, we used two hidden layers for both the reaction process and entry value prediction,
with the layer width chosen from {128, 256, 512}. For LRTFR, we used two hidden layers with
layer width chosen from {128, 256, 512} to parameterize the latent function of each mode. We
varied R from {16, 32} for all baselines. For Senseiver, we used 128 channels in both the encoder
and decoder, a sequence size of 256 for the Qin array, and set the size of the linear layers in the
encoder and decoder to 128. For CoNFiLD, we used a Conditional Neural Field module with a latent
dimension of 256 for the Ocean Sound Speed and Active Matter datasets, and 1024 for the Supernova
Explosion dataset. The diffusion model module was configured with 100 sampling steps. For our
method, we first apply a functional Tucker model to decompose the tensor into factor functions and
a core sequence. Each factor function is parameterized by a three-layer MLP, where each layer
contains 1024 neurons and uses the sine activation function. The core sizes are set to 32× 32× 32,
3×12×12, and 48×48 for the Supernova Explosion, Ocean Sound Speed, and Active Matter datasets,
respectively. These hyperparameters are carefully selected to achieve optimal performance.

F.1 Defination of Variance-scaled Root Mean Squared Error

Let {ŷi}Ni=1 and {yi}Ni=1 denote the predicted and ground-truth entry, respectively. Assume that
there are N points in total. The Variance-scaled Root Mean Squared Error (VRMSE) is defined as

VRMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2√√√√ 1

N

N∑
i=1

(yi − ȳ)2

, (41)

where ȳ is the mean of all points.

F.2 Guided Sampling Details

Supernova Explosion Ocean Sound Speed Active Matter

ζSDIFT 1× 10−2 3× 10−2 1× 10−2

ζCoNFiLD 1× 10−1 1× 10−1 1.2× 10−1

Table 3: Weights assigned to posterior guidance by CoNFiLD and SDIFT.

For experiments conducted on three datasets with sparse observations, we use the weights ζ in Tab. 3.

G Additional experiment results

G.1 Unconditional generation

In this subsection, we present unconditional generation results on three datasets of SDIFT, demon-
strating its ability to generate physical fields from irregular and sparse training data. The uncondi-
tional generation results on Supernova Explosion are shown in Fig. 6; The unconditional generation
results on Ocean Sound Speed are shown in Fig. 7; The unconditional generation results on Active
Matter are shown in Fig. 8. One can see that the unconditional generations are of high quality
and smooth across frames, demonstrating the effectiveness of SDIFT in generating full-field
physical dynamics from irregular sparse observations.
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Figure 6: Unconditional generation results on Supernova Explosion by SDIFT.
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Figure 7: Unconditional generation results on Ocean Sound Speed by SDIFT.

G.2 More reconstruction results

More visual results of three datasets conducted on observation setting 1 are illustrated in Fig. 91011.

More visual results of three datasets conducted on observation setting 2 are illustrated in Fig. 121314.
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Figure 8: Unconditional generation results on Activate Matter by SDIFT.
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Figure 9: Visual reconstruction results of Supernova Explosion dynamics under observation setting
1 with ρ = 1%.

Figure 10: Visual reconstruction results of Ocean Sound Speed dynamics under observation setting
1 with ρ = 3%.
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Figure 11: Visual reconstruction results of Active Matter dynamics under observation setting 1
with ρ = 1%.

Figure 12: Visual reconstruction results of Supernova Explosion dynamics under observation set-
ting 2 with ρ = 3%.
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Figure 13: Visual reconstruction results of Ocean Sound Speed dynamics under observation setting
2 with ρ = 3%.
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Figure 14: Visual reconstruction results of Active Matter dynamics under observation setting 2
with ρ = 3%. Since DPS does not provide guidance at timesteps without observations (i.e., frame
# 3,9,15,21), SDIFT generates the corresponding physical fields randomly. In contrast, MPDPS
effectively overcomes this limitation and produces smooth reconstructions. This phenomenon high-
lights the significance of the proposed MPDPS.
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G.3 Analysis on the results of CoNFiLD

CoNFiLD [5] is closely related to our approach. It first uses conditional neural fields to learn latent
vectors for off-grid physical field data over time. Next, it simple concatenates the T latent vectors
extracted from a record into a latent matrix and treats this matrix as an image, applying a standard
diffusion model to learn its distribution. We present dimensionality reduction visualizations of the
latent vectors and core tensors extracted from Active Matter dataset using CNF and our FTM, re-
spectively, in Fig. 15(a)(b). We use points with the same color hue to represent representations from
the same record, and vary the color intensity to indicate different timesteps. We plot 9 records, with
each records containing 24 timesteps. One can see that both kinds of representation show strong
time continuity.

CoNFiLD use traditional UNet to learn the distribution of latent matrices (i.e., the sequence of scatter
points in Fig. 15(a)), which is hard to capture complex temporal dynamics (due to the inductive bias
of CNN[44]). Our experiments demonstrate that, although CNF produces accurate reconstructions
from its latent representations, the resulting latent matrices are difficult to model with standard
diffusion approachesespecially when the physical field changes rapidly, as in the Active Matter
datasetleading to poor posterior sampling performance. On the Ocean Sound Speed dataset,
where the field varies much more slowly and smoothly, the diffusion model performs significantly
better.

In contrast, we propose a temporally augmented U-Net that learns the distribution of each core
point (i.e., the individual points in Fig. 15(b)) while capturing temporal correlations through the
Conv1D module. This approach significantly simplifies modeling the full latent distribution, whether
it changes rapidly or slowly. Furthermore, our approach can flexibly generate sequences of arbitrary
length with arbitrary time intervals, whereas CoNFiLD cannot.

(a) Latents from CNF. (b) Cores from FTM.

Figure 15: Illustration of dimensionality reduction of the latent vectors and core tensors extracted
from Active Matter using CNF and our FTM, receptively.

G.4 Robustness against noise

We demonstrate the robustness of our method against different levels and different types of noise in
Table 4.

G.5 Ablation study on using GP noise as the diffusion source

We conduct an ablation study on the use of GP noise as the diffusion source by replacing it with i.i.d.
Gaussian noise, using the Active Matter dataset as an example.

Fig. 16 shows unconditional generations from our method when i.i.d. Gaussian noise is used as the
diffusion source. Compared to Fig. 8, this replacement significantly disrupts temporal continuity
and degrades generation quality.
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SDIFT w/ DPS SDIFT w/ MPDPS
Noise configurations ρ = 1% ρ = 1%

Gaussian noise (σ = 0.1) 0.207 ± 0.066 0.156 ± 0.052
Gaussian noise (σ = 0.3) 0.210 ± 0.069 0.164 ± 0.049
Laplacian noise (σ = 0.1) 0.200 ± 0.075 0.170 ± 0.054
Laplacian noise (σ = 0.3) 0.224 ± 0.054 0.177 ± 0.051
Poisson noise (σ = 0.1) 0.186 ± 0.081 0.168 ± 0.048
Poisson noise (σ = 0.3) 0.214 ± 0.070 0.171 ± 0.053

Table 4: VRMSE of reconstruction of our proposed method on Ocean Sound Speed datasets over varying noise
with observation setting 1 and ρ = 1%.

observation setting 1 observation setting 2
VRMSE ρ = 1% ρ = 1%

GP noise(γ = 50) 0.215 ± 0.068 0.296 ± 0.096
GP noise(γ = 100) 0.222 ± 0.077 0.304 ± 0.104
GP noise(γ = 200) 0.219 ± 0.084 0.298 ± 0.084
i.i.d Gaussian noise 0.257 ± 0.079 0.393 ± 0.109

Table 5: VRMSE on Active Matter dataset over different noise source using SDIFT guided by MPDPS.

We also report the VRMSE of reconstruction results in Table 5. Replacing GP noise with i.i.d.
Gaussian noise as the diffusion source markedly worsens performance. In contrast, GP noise yields
consistently low VRMSE and is robust to variations in the kernel hyperparameter γ, further demon-
strating its suitability as a diffusion source in our settings.

H Limitations

A current limitation of our work is the lack of explicit incorporation of physical laws into the mod-
eling process. In addition, the introduced Gaussian Process prior relies on the choice of kernel
functions; in this work, we only use the simple RBF kernel as an example and do not explore other
options in detail.

In future work, we plan to integrate SDIFT with domain-specific physical knowledge to enable more
accurate long-range and wide-area reconstructions of physical fields. We also intend to investigate
a broader range of kernel functions to enhance modeling flexibility and performance.

I Impact Statement

This paper focuses on advancing generative modeling techniques for physical fields. We are mindful
of the broader ethical implications associated with technological progress in this field. Although
immediate societal impacts may not be evident, we recognize the importance of maintaining ongoing
vigilance regarding the ethical use of these advancements. It is crucial to continuously evaluate
and address potential implications to ensure responsible development and application in diverse
scenarios.
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Figure 16: Ablation study: Unconditional generation results on Activate Matter by SDIFT using i.i.d
Gaussian noise as the diffusion source. Note that this replacement significantly disrupts temporal
continuity and degrades generation quality.
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