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Abstract

Counterfactuals answer questions of what would
have been observed under altered circumstances
and can therefore offer valuable insights. Whereas
the classical interventional interpretation of coun-
terfactuals has been studied extensively, backtrack-
ing constitutes a less studied alternative where all
causal laws are kept intact. In the present work,
we introduce a practical method called deep back-
tracking counterfactuals (DeepBC) for computing
backtracking counterfactuals in structural causal
models that consist of deep generative components.
We employ constrained optimization to generate
counterfactuals for high-dimensional data and con-
duct experiments on a modified version of MNIST.

1 INTRODUCTION

The classical literature in causality constructs counterfactu-
als by actively manipulating causal relationships (interven-
tional counterfactuals), which has been contested by some
psychologists and philosophers (Rips, 2010; Gerstenberg
et al., 2013; Lucas & Kemp, 2015). Instead, they have pro-
posed an account of counterfactuals where alternate worlds
are derived by tracing changes back to background con-
ditions while leaving all causal mechanisms intact. This
type of counterfactual is termed backtracking counterfac-
tual (Lewis, 1979; Khoo, 2017).

Recently, von Kügelgen et al. (2023) have formalized
backtracking counterfactuals within the structural causal
model (SCM; Pearl (2009)) framework. However, imple-
menting this formalization for deep SCMs (Pawlowski et al.,
2020) poses computational challenges due to steps such as
marginalizations and the evaluation of distributions that are
intractable. The present work addresses these challenges
and offers a computationally efficient implementation by
framing the generation of counterfactuals as a constrained

Figure 1: Visualization of DeepBC for Morpho-MNIST.
We generate a counterfactual (green) image img∗ and thick-
ness t∗ with antecedent intensity i∗ for the factual, observ-
able realizations (filled blue) img, t, i. Our approach finds
new latent variables u∗ that are close with respect to dis-
tances di to the factual latents u, subject to rendering the
antecedent i∗ true. The causal mechanisms in the factual
world remain unaltered in the counterfactual world. In this
specific distribution, thickness and intensity are positively
related, thus rendering the image both more intense and
thicker in the counterfactual. Dependence of fi on graphical
parents is omitted for simplifying visual appearance.

optimization problem by only computing a single, “most
likely” solution. A more comprehensive account that also in-
cludes a strategy for sampling backtacking counterfactuals
is presented by Kladny et al. (2023).

1.1 INVERTIBLE SCMS

Let X = (X1, X2, ..., Xn) be a collection of poten-
tially high-dimensional observable “endogenous” random
variables. For instance, these variables could be high-
dimensional objects such as images (e.g., the MNIST im-
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age in Fig. 1) or scalar feature variables (such as t and
i in Fig. 1). The causal relationships among the Xi are
specified by a directed acyclic graph G that is known. An
SCM (Pearl, 2009) is characterized by a collection of struc-
tural equations Xi ← fi(Xpa(i), Ui), for i = 1, 2, ..., n,
where Xpa(i) are the causal parents of Xi as specified by G
and U = (U1, U2, ..., Un) are exogenous latent variables.
The acyclicity of G ensures that for all i, we can recursively
solve for Xi to obtain a deterministic expression in terms
of U. Thus, there exists a unique function that maps U to
X, which we denote by F,

X = F(U), (1)

and which is known as the reduced-form expression. We see
that F induces a distribution over observables X, for any
given distribution over the latents U. For DeepBC, we con-
sider all structural equations fi as deep invertible generative
models like normalizing flows and variational autoencoders
that are learned from data.

1.2 DEEPBC OPTIMIZATION OBJECTIVE

We compute the mode of the backtracking distribution
p(x∗ |x∗

S ,x), i.e., a single “most likely” counterfactual x∗

for the factual realization x as a solution to the following
constrained optimization problem:

arg min
x′

n∑
i=1

di
(
F−1

i (x′), F−1
i (x)

)
(2)

subject to x′
S = x∗

S , (3)

where the di are differentiable distance functions. The vari-
able x∗

S is the so-called antecedent, which is the explicitly
altered counterfactual variable (filled green in Fig. 1).

2 EXPERIMENTS ON MORPHOMNIST

Setup. We use Morpho-MNIST, a modified version of
MNIST proposed by Castro et al. (2019), to showcase how
deep backtracking contrasts with its interventional counter-
part (Pawlowski et al., 2020). The data set consists of three
variables, two continuous scalars and an MNIST image of
a handwritten digit, which all correspond to the observable
variables (see § 1.1), depicted in Fig. 1. The first scalar vari-
able T describes the thickness and the second variable I
describes the intensity of the digit. They have a non-linear
relationship and are positively correlated, as can be seen in
Fig. 2 (i), where the observational density of thickness and
intensity is shown in blue. The known causal relationship
between thickness and intensity is depicted in Fig. 2 (left);
We train a normalizing flow for thickness and one for inten-
sity conditionally on thickness, and model the image given
T and I via a conditional β-VAE (Higgins et al., 2017). We
here use di(u

′
i, ui) = ∥u′

i − ui∥22 , ∀i as the distance func-
tion and note that the ui correspond to uT , uI and uimg.

Figure 2: Counterfactual Scalar Variables on Morpho-
MNIST. The blue shaded areas indicate the probability den-
sity of the data. (i) Interventional counterfactuals (green
dots), in contrast to backtracking counterfactuals, leave t∗

unchanged when the effect variable intensity is taken as an-
tecendent. (ii) When treating thickness as the antecedent,
counterfactual and backtracking counterfactuals yield iden-
tical solutions.

Results. Our results in Fig. 2 illustrate distinctive proper-
ties of the backtracking approach, in comparison to inter-
ventional counterfactuals. When choosing the effect vari-
able intensity as the antecedent, backtracking preserves the
causal laws and thus changes the upstream (cause) variable
thickness accordingly to match the change in intensity as
shown in Fig. 2 (i). This leads to counterfactuals that resem-
ble images from the original data set, where thickness and
intensity change simultaneously.

In contrast, the interventional approach breaks the causal
link from thickness to intensity when intensity is the an-
tecedent and thus always leaves thickness unchanged, see
the green dots in Fig. 2 (i). This can be considered a weak-
ness of the interventional approach, which does not yield
faithful insights into the causal relationship underlying the
data.

3 CONCLUSION

We presented DeepBC, a practical framework for computing
backtracking counterfactuals for deep SCMs. We compared
DeepBC to interventional counterfactuals. DeepBC is a gen-
eral method for computing counterfactuals that measures
distances between factual and counterfactual in the struc-
tured latent space of an underlying deep causal model, thus
preserving the causal mechanisms in the generated coun-
terfactuals. We hope that our approach will contribute to
future developments of deep explanation methods that pro-
vide more faithful insights into the data generating process.
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