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ABSTRACT

In this paper, we propose an efficient transformer architecture that uses reinforced
positional embedding to obtain superior performance with half the number of
encoder decoder layers. We demonstrate that concatenating positional encoding
with trainable token embeddings, normalizing across tokens in the token embed-
ding matrix, and using the normalized token embedding matrix as the value of
the attention layer improve the training and validation loss and the training time
in an encoder-decoder Transformer model for a Portuguese-English translation
task with 10 epochs or 12 hours of training across 10 trials. Our method, with
roughly a threefold parameter reduction compared to the baseline model, yields a
mean training loss of 1.21, a mean validation loss of 1.51, and an average train-
ing time of 1352.27 seconds per epoch, surpassing the baseline model with the
same embedding dimension that employs addition of positional encoding and to-
ken embeddings, which achieves a mean training loss of 1.96, a validation loss of
2.18, and an average training time of 4297.79 seconds per epoch. Additionally,
we evaluated our proposed architecture and the baseline across 14 diverse transla-
tion datasets from TensorFlow. The results indicate that our method consistently
achieves lower or comparable training and validation losses, suggesting enhanced
learning efficiency.

1 INTRODUCTION

In this study, we propose modifications to the encoder-decoder Transformer architecture from
Vaswani (2017) to enhance training performance on machine translation tasks using the dataset from
Ye et al. (2018). Previous work by Ke et al. Ke et al. (2021) demonstrated that employing separate
query and key projection matrices for token embeddings and absolute positional embeddings in the
self-attention layer accelerates convergence with respect to validation loss in BERT models Lee &
Toutanova (2018). They also indicated that the standard attention mechanism in Transformers might
be inefficient due to weak correlations between words and their absolute positions.

We present three modifications to enhance the efficiency and performance of the encoder-decoder
Transformer architecture. Firstly, we reason that the addition of the token and positional embedding
matrix may cause loss of information. To address this, we concatenate the token and positional
embedding matrices before the initial encoder and decoder blocks, as shown in Figure 1 (b). Second,
we normalize the token embedding matrix across tokens, as shown in Figure 1 (c). Third, we use
the normalized token embedding matrix as the value in the attention layer, as shown in Figure 1 (d).

Specifically, let m denote the token embedding dimension and n the sequence length. The input
to the first encoder or decoder block consists of the concatenated token and positional embedding
matrices, resulting in a matrix of dimension n×2m. Each column of the token embedding matrix is
normalized to have a mean of zero and a standard deviation of one. In the attention layer, the key and
query matrices are of dimension n× 2m, while the value matrix is the normalized token embedding
matrix, yielding an n×m dimension. The output of each attention layer is an n×2m matrix, which
allows for residual connections that maintain positional information across layers. The feedforward
layer processes an input matrix of dimension n × 2m and outputs a matrix of the same dimension.
The modified architecture is shown in Figure 2.

We compare our proposed model against a baseline architecture similar to that of Vaswani (2017)
but with double the number of layers and the same embedding dimension. Namely, in the baseline,
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Figure 1: (a) The matrix on the left-hand side is a token embedding matrix with the number of rows
the same as the number of tokens and with the number of columns the same as the number of token
features for the tokens. Each row in the token embedding matrix corresponds to the token feature
vector for the token at that row. The matrix at the right-hand side is a positional embedding matrix
with the number of rows the same as the number of tokens and with the number of columns the
same as the number of features at that position (row). Each row in the positional embedding matrix
is the feature vector correspond to that position (row). (b) We normalize each column of the token
embedding matrix to make each column having elements with zero mean and unit variance. (c) After
the token feature normalization, we concatenate the positional embedding matrix to the right of the
normalized token embedding matrix. (d) For the scaled dot-product attention in each attention layer,
the value is the normalized token embedding matrix from the input. Created with BioRender.com.

the token and positional embedding matrices, both of dimension n × 2m, are summed to form the
input matrix for the initial encoder or decoder block.

Using the Portuguese-English translation dataset from Ye et al. (2018) and training both models
for 10 epochs, our proposed model achieves a training loss of 1.22 and a validation loss of 1.53,
outperforming the baseline model, which recorded a training loss of 1.84 and a validation loss of
2.13. Additionally, our proposed model demonstrates an average training time of 1352 seconds per
epoch with 2,809,634 parameters, both of which are roughly three times lower than the baseline
model’s averages of 4298 seconds per epoch and 10,184,162 parameters.

These results indicate that our model not only achieves improved training and validation loss but also
demonstrates greater training efficiency compared to the baseline Transformer on the Portuguese-
English dataset Ye et al. (2018). To further validate the robustness of our findings across different
translation datasets, we applied both models to thirteen additional translation datasets from Ye et al.
(2018) training for 10 epochs or 12 hours. Both models successfully completed 10 epochs of train-
ing on seven datasets, where our proposed method showed lower training and validation loss in six
datasets. However, our method did not yield improved results for the Belarusian-to-English transla-
tion dataset, with our model showing a training loss of 4.60 and a validation loss of 4.35, compared
to the baseline’s training loss of 4.56 and validation loss of 4.30. Notably, our proposed method
achieved nearly a threefold reduction in training time compared to the baseline model.
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Figure 2: The proposed modified transformer architecture. We made three modification from the
transformer architecture in Vaswani (2017). Firstly, each column in the token embedding matrix is
normalized to have zero mean and unit variance for both the encoder and decoder. Secondly, The to-
ken embedding matrix and the positional embedding matrix is concatenated before the first encoder
block and the first decoder block. Lastly, each attention layer has the value without concatenation.
Created with BioRender.com.

2 MODIFIED TRANSFORMER ARCHITECTURE

Given a sequence x = [x1 x2 · · · xn] ∈ R with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Xe =
[
e(1) e(2) · · · e(n)

]T
W1, (1)

where W1 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.

Given a sequence y = [y1 y2 · · · yn] ∈ Rn with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Ye =
[
e(1) e(2) · · · e(n)

]T
W2, (2)

where W2 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.
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For the positional encoding, given the sequence length n and the embedding dimension m, the
output is P ∈ Rn×m, where

Pi,j =

{
sin(i/(100002j/m)) if 1 ≤ j ≤ m/2

cos(i/(100002j/m)) if m/2 + 1 ≤ j ≤ m
(3)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2.1 NORMALIZATION ACROSS TOKENS IN TOKEN EMBEDDING

Given a matrix X ∈ Rn×m, the output of a function for normalization across tokens can be written
as

TN(X) = [x1 x2 · · · xm] , (4)

where

xj =
X:,j − E[X:,j ]√

V ar[X:,j ]
, (5)

E[X:,j ] =
1

n

n∑
i=1

Xi,j , (6)

V ar[X:,j ] = E[(X:,j − E[X:,j ])
2], (7)

and X:,j is the j-th column of matrix X for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

First, we propose to normalize across tokens in the token embedding matrix Xe and Ye such that

X̄e = TN(Xe) (8)

and
Ȳe = TN(Ye). (9)

2.2 CONCATENATION BETWEEN TOKEN EMBEDDING AND POSITIONAL EMBEDDING

Second, we propose to concatenate the output of the token embedding and the output of the posi-
tional encoding such that

Xconcat
I =

[
X̄e P

]
(10)

and
Y concat
I =

[
Ȳe P

]
(11)

replace the XI and YI in (28) and (38) in the baseline model in Appendix A, respectively.

2.3 AVOID CONCATENATION IN VALUE IN ALL THE ATTENTION LAYERS

Third, we propose to use the normalized token embedding matrix in value in the multi-head atten-
tion, multi-head cross attention, and masked multi-head attention defined in (29), (41), and (39) in
the Appendix A, respectively.

Given three matrices Q,K ∈ Rn×2m and V ∈ Rn×m, the scaled dot-product attention is defined
as

Attention(Q,K,V ) = softmax(
QKT

√
m

)V , (12)

where softmax : Rn×s → [0, 1]n×s for s ∈ N+ is a Softmax function with softmax(A)i,j =
Ai,j∑s

j=1 eAi,j
for A ∈ Rn×s. The masked scaled dot-product attention is defined as

MaskedAttention(Q,K,V ) = softmax(M +
QKT

√
m

)V . (13)

where M ∈ Rn×n is a matrix with Mi,j =

{
∞ if j > i

0 otherwise
for 1 ≤ i ≤ n and 1 ≤ j ≤ n.
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For the proposed multi-head attention layer without concatenation in value in the u-th encoder block,
given three matrices Q1,K1 ∈ Rn×2m and V1 ∈ Rn×m, the output is computed by

PMHA(Q1,K1,V1, u) = [H1 H2 · · · Hp]W
Ou , (14)

where
Hk = Attention(Q1W

Q1

k ,K1W
K1

k ,V1W
V1

k ), (15)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu ∈ Rqp×2m, WQ1

k ∈ R2m×r, WK1

k ∈ R2m×r, W V1

k ∈ Rm×q , r is the dimension of the
query and key projection, q is the dimension of the value projection.

For the proposed masked multi-head attention layer without concatenation in value in the u-th de-
coder block, given three matrices Q2,K2 ∈ Rn×2m and V2 ∈ Rn×m, the output is computed
by

PMMHA(Q2,K2,V2, u) =
[
Hmasked1

Hmasked2
· · · Hmaskedp

]
WOu

masked, (16)

where
Hmaskedk

= MaskedAttention(Q2W
Q2

k ,K2W
K2

k ,V2W
V2

k ), (17)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu

masked ∈ Rqp×2m, WQ2

k ∈ R2m×r, WK2

k ∈ R2m×r, W V2

k ∈ Rm×q , r is the dimension of the
query and key projection, and q is the dimension of the value projection.

For the proposed multi-head cross attention layer without concatenation in value in the u-th decoder
block, given three matrices Q3,K3 ∈ Rn×2m and V3 ∈ Rn×m, the output is computed as

PMHCA(Q3,K3,V3, u) =
[
Hcross1 Hcross2 · · · Hcrossp

]
WOu

causal, (18)

where
Hcrossk = Attention(Q3W

Q3

k ,K3W
K3

k ,V3W
V3

k ), (19)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu ∈ Rqp×2m, WQ3

k ∈ R2m×r, WK3

k ∈ R2m×r, W V3

k ∈ Rm×q , r is the dimension of the
query and key projection, q is the dimension of the value projection.

2.4 THE OUTPUT OF EACH ENCODER AND DECODER BLOCK IN THE MODIFIED
TRANSFORMER MODEL

The resulting output for the first encoder block and the N stacks of encoder blocks are

Xconcat
E1

= LN(FFN(Xconcat
M1

) +Xconcat
M1

) (20)

and
Xconcat

EN
= LN(FFN(Xconcat

MN
) +Xconcat

MN
), (21)

respectively, where N > 1, Xconcat
M1

= LN(PMHA(Xconcat
I ,Xconcat

I , X̄e, 1) + Xconcat
I ),

Xconcat
MN

= LN(PMHA(Q,K,V , N) + XEconcat
N−1

), Q = K = XEconcat
N−1

, V = X̄e, LN and
FFN are the layer normalization and the feed forward network defined in (32), (31) in Appendix
A, respectively, and PMHA is the proposed multi-head attention defined in (14).

The resulting output for the first decoder block and the N stacks of decoder blocks becomes

Y concat
D1

= LN(FFN(Y concat
C1

) + Y concat
C1

) (22)

and
Y concat
DN

= LN(FFN(Y concat
CN

) + Y concat
CN

), (23)

respectively, where Y concat
C1

= LN(PMHCA(Y concat
M1

,Xconcat
EN

, X̄e, 1) +

Y concat
M1

), Y concat
M1

= LN(PMMHA(Y concat
I ,Y concat

I , Ȳe, 1) + Y concat
I ),

Y concat
CN

= LN(PMHCA(Y concat
MN

,Xconcat
EN

, X̄e, N) + Y concat
MN

), Y concat
MN

=

LN(PMMHA(Y concat
DN−1

,Y concat
DN−1

, Ȳe, N) + Y concat
DN−1

), and PMHCA and PMMHA are
the proposed multi-head cross attention and the proposed masked multi-head attention defined in
(18) and (16), respectively.
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2.5 THE OUTPUT LAYER OF THE MODIFIED TRANSFORMER MODEL

The output layer of the proposed transformer model composed of a feed forward network and a
softmax layer, which can be written as

T concat = softmax(Y concat
DN

W final), (24)

where W final ∈ R2m×|V ocab|. The i-th predicted token is the token corresponds to the j-th column
that has the maximum value among all the elements in the i-th row of T concat.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

We first evaluated our proposed model and the baseline model using the Portuguese-English trans-
lation dataset from TensorFlow Abadi et al. (2015) for 10 epochs or 12 hours of training across 10
trials. The dataset contains 51,785 training, 1,193 validation, and 1,803 test pairs of Portuguese and
English text. The encoder’s input is the Portuguese text, and the decoder’s input is the English text,
with both sequences capped at 128 tokens. The target labels are the decoder inputs shifted right by
one token. We applied wordpiece tokenization for the Portuguese-English translation dataset from
TensorFlow Abadi et al. (2015). For the second experiment, we evaluated our proposed model and
the baseline model using the Portuguese-English translation dataset from TensorFlow Abadi et al.
(2015) for 10 epochs of training or 12 hours in one trial. We applied wordpiece tokenization for
each dataset from TensorFlow Abadi et al. (2015).

The model was trained using the Adam optimizer from Vaswani (2017):

lr(Ns) = m−0.5min(N−0.5
s , NsN

−1.5
w ), (25)

where m is the embedding dimension, Ns ∈ Z is the current training step, and Nw = 4000 is called
the warm-up step. The loss function is a masked cross-entropy loss. The training epoch is 10. The
drop-out rate is 0.1. The batch size is 64.

For our proposed model (Section 2.2), we used 2 encoder and decoder blocks, the token embedding
dimension of m = 64, 256 hidden neurons in the feed-forward network, 4 attention heads, and
the projection dimension of 64 for query, key, and value. The proposed model contains 2,809,634
parameters.

For the baseline model, the number of encoder and decoder blocks is 4; the token embedding di-
mension is m = 128; the number of hidden neurons in the feed-forward network is 512; the number
of attention heads is p = 8; the projection dimension is 128 for query, key, and value. The baseline
model contains 10,184,162 parameters, which is roughly three times more than the proposed model.

3.2 EXPERIMENTAL RESULTS AND DISCUSSION

We trained both the baseline and proposed models for 10 epochs or 12 hours across 10 different
trials on two A100 40GB GPUs on the Portuguese to English translation dataset from Ye et al.
(2018). For the baseline model, the 10 epochs of training were completed for 4 trails; 9 epochs
of training is completed for 4 trails; and 8 epochs of training were completed for 2 trails. For the
proposed model, 10 epochs of training were completed for all the trials. The comparison of the
learning curves between the baseline and the proposed method are shown in Figure 3 (a). The mean
training losses of the baseline are roughly 6.60, 4.55, 3.82, 3.29, 2.89, 2.57, 2.30, 2.11, 1.96, and
1.84. The mean training losses of the model from the proposed method for each epoch are roughly
6.68, 4.55, 3.62, 2.89, 2.36, 1.97, 1.67, 1.46, 1.32, and 1.21, which are less than the mean training
losses of the baseline after 3 epochs. The mean validation losses of the baseline are roughly 5.04,
4.06, 3.46, 3.01, 2.77, 2.49, 2.35, 2.25, 2.18, and 2.14. The mean validation losses of the model
from the proposed method for each epoch are roughly 5.08, 3.93, 3.10, 2.51, 2.17, 1.88, 1.72, 1.63,
1.56, and 1.51, which are less than the mean validation losses of the baseline after 2 epochs. The
comparison from the learning curves shows that the improvement of the training loss and validation
loss of our model compared to the baseline is consistent for 10 different trials.
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Figure 3: (a) The transparent blue dashed lines and the transparent blue solid lines are the train-
ing loss and the validation loss of the baseline transformer model on the Portuguese to English
translation dataset from Ye et al. (2018), respectively. The transparent brown dashed lines and the
transparent brown solid lines are the training loss and the validation loss of the proposed transformer
model on the Portuguese to English translation dataset from Ye et al. (2018), respectively. Each line
represent the training or validation loss for one trial. Each model are trained for 10 epochs or 12
hours. The baseline model has 4 trials that finished 10 epochs of training; 4 trails finished 9 epochs
of training; 2 trials finished 8 epochs of training. The proposed model finished 10 epochs of train-
ing for all the trials. The training losses of the baseline have the mean of roughly 6.60, 4.55, 3.82,
3.29, 2.89, 2.57, 2.30, 2.11, 1.96, and 1.84 and the mean of the validation losses of the baseline are
roughly 5.04, 4.06, 3.46, 3.01, 2.77, 2.49, 2.35, 2.25, and 2.18 for 10 different trials. The training
losses of the proposed model have the mean of roughly 6.68, 4.55, 3.62, 2.89, 2.36, 1.97, 1.67, 1.46,
1.32, and 1.21 and the mean of the validation losses of the proposed model are roughly 5.08, 3.93,
3.10, 2.51, 2.17, 1.88, 1.72, 1.63, 1.56, and 1.51 for 10 different trials. The proposed model shows
a lower mean of training losses after 3 epochs and a lower mean of validation losses after 2 epochs.
(b) The bar plot shows the average training time per epoch for both the baseline and the proposed
model on the Portuguese to English translation dataset from Ye et al. (2018). The average training
time per epoch for the baseline is roughly 4297.79 seconds, which are higher than roughly 1352.27
seconds for the proposed model. In addition, The variance of the training time for the baseline is
roughly 675.79 seconds, which are higher than roughly 144.50 seconds for the proposed model.

The average training time for the baseline model and the proposed model for 10 epochs or 12 hours
and across 10 different trials is shown in Figure 3 (b). The average training time and the standard
deviation of the training time for the proposed model are roughly 1352.27 seconds and 144.50 sec-
onds, respectively, which are less than those in the baseline model with the average training time of
4297.79 seconds and the standard deviation of the training time of 675.79 seconds. The proposed
model shows roughly a threefold reduction in training time compared to the baseline. This may be
due to the approximately threefold reduction in the number of parameters in the proposed model,
which has 2,809,634 parameters, compared to the baseline with 10,184,162 parameters. In sum-
mary, the results from Figure 3 show that the proposed model improves the training and validation
loss while achieving a threefold reduction in training time.

To verify that the improvement of the training and validation loss and the improvement for the
training time are consistent for different translation task, we compared the baseline the the proposed
model after training of 10 epochs or 12 hours for one trial on fourteen different translation datasets
from Ye et al. (2018). The number of training data and validation data for each dataset are show
in the second and third column in Table 1, respectively. The results from the baseline are shown
from the fourth to the seventh column and the results from the proposed model are shown from
the eighth to eleventh column in Table 1. The fourth and the eighth columns show the number of
epoch the corresponding model has completed in 12 hours. The training and validation loss of the
baseline at the epoch indicated in the fourth column are shown in the fifth and the sixth column
in Table 1. The training and validation loss of the proposed model at the epoch indicated in the
fourth column are shown in the ninth and the tenth column in Table 1. The seventh and the the

7
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Table 1: Comparison of baseline and proposed transformer architectures

Dataset Data (No.) Baseline Proposed method

Train. Val. Ep. Train.
loss

Val.
loss

Comp.
Time (s) Ep. Train.

loss
Val.
loss

Comp.
Time (s)

az to en 5946 671 10 4.34 4.23 702 10 4.32 4.22 164
aztr to en 188396 671 2 3.59 3.47 15629 6 1.69 1.79 5628
be to en 4509 248 10 4.56 4.30 573 10 4.60 4.35 114
beru to en 212614 248 1 4.89 3.88 22045 6 1.64 1.68 6856
es to pt 44938 1016 10 2.15 2.41 3341 10 1.46 1.75 1157
fr to pt 43873 1131 10 2.33 2.80 3360 10 1.62 2.05 1139
gl to en 10017 682 10 3.77 3.75 1089 10 3.69 3.67 256
glpt to en 61802 682 9 1.92 2.48 4502 10 1.17 1.80 1644
he to pt 48511 1145 10 2.57 3.00 2970 10 1.68 2.07 1263
it to pt 46259 1162 9 2.45 2.66 4335 10 1.54 1.80 1258
pt to en 51785 1193 10 1.84 2.13 4049 10 1.22 1.53 1345
ru to en 208106 4805 3 2.94 2.70 11055 7 1.55 1.51 6122
ru to pt 47278 1184 8 3.22 3.43 5004 10 1.87 2.23 845
tr to en 182450 4045 2 3.60 3.03 19445 6 1.66 1.57 4971

Abbreviations: No.: Number; Train.: Training; Val.: Validation; Ep.: Epochs; Comp. Time (s): Com-
putational Time (seconds); az: Azerbaijani; en: English; tr: Turkish; be: Belarusian; ru: Russian; es:
Spanish; pt: Portuguese; fr: French; gl: Galician; he: Hebrew; it: Italian; tr: Turkish.

eleventh columns show the average computational time per epoch in seconds for the baseline and
the proposed model in Table 1. The result in Table 1 shows that the proposed model achieved an
improved training and validation loss compared to the baseline for 13 different translation datasets
except for the Belarusian to English translation dataset (be to en). For the Belarusian to English
translation dataset, the baseline shows a training loss of 4.56 and a validation loss of 4.30, which are
lower than those in the proposed model with a training loss of 4.60 and 4.35. However, it is important
to note that the proposed model outperformed the baseline in the majority of other thirteen datasets,
achieving a reduction in training and validation loss. In addition, the training time for the proposed
method is roughly a two to four times reduction from the training time of the baseline model for all
the fourteen datasets.

4 CONCLUSION

The proposed Transformer architecture, which normalizes the token embedding matrix to have zero
mean and unit variance, concatenates token embeddings with positional embeddings before the first
encoder and decoder blocks, and uses the normalized token embedding matrix as the value in the
attention layer, demonstrates improvements in training loss, validation loss, and computational time
across thirteen translation datasets from Ye et al. (2018) compared to the baseline model with the
same embedding dimension but with double the number of encoder and decoder blocks. The pro-
posed model achieves a training loss with a mean of roughly 1.21, a validation loss with a mean
of roughly 1.51, an average training time of 1352.27 seconds per epoch for 10 epochs of training
across 10 trials, which are all lower than those from the baseline which have a training loss with a
mean of roughly 1.96, a validation loss with a mean of roughly 2.18, an average training time of
4297.79 seconds per epoch for 10 epochs or 12 hours of training across 10 trials on the Portuguese
to English translation dataset from Ye et al. (2018). The proposed model shows a lower training
and validation loss compared to the baseline on thirteen out of fourteen different translation datasets
from Ye et al. (2018) and shows around two to four times reduction on the training time on all the
fourteen datasets from Ye et al. (2018). The proposed model shows promising improvements on
thirteen out of fourteen datasets, suggesting that its improvements over the baseline may be robust
across a range of translation tasks.
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A BASELINE TRANSFORMER ARCHITECTURE

We introduce the architecture of the baseline Transformer we used for showing the improvement of
our proposed model. The baseline model architecture is similar to the Transformer architecture in
the ”Neural machine translation with a Transformer and Keras” tutorial from the TensorFlow Abadi
et al. (2015) website.

A.1 ENCODER ARCHITECTURE IN THE BASELINE TRANSFORMER

Given a sequence x = [x1 x2 · · · xn] ∈ R with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Xe =
[
e(1) e(2) · · · e(n)

]T
W1, (26)

where W1 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.

For the positional encoding, given the sequence length n and the embedding dimension m, the
output is P ∈ Rn×m, where

Pi,j =

{
sin(i/(100002j/m)) if 1 ≤ j ≤ m/2

cos(i/(100002j/m)) if m/2 + 1 ≤ j ≤ m
(27)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The input for the first encoder block is

XI =
1√
m
Xe + P . (28)

For each encoder block, it contains a multi-head attention layer and a feed forward network layer.
For the multi-head attention layer in the u-th encoder block, given three matrices Q1,K1,V1 ∈
Rn×m, the output is computed by

MHA(Q1,K1,V1, u) = [H1 H2 · · · Hp]W
Ou , (29)
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where

Hk = softmax(
Q1W

Q1

k (K1W
K1

k )T√
m

)V1W
V1

k , (30)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu ∈ Rqp×m, WQ1

k ∈ Rm×r, WK1

k ∈ Rm×r, W V1

k ∈ Rm×q , r is the dimension of the query
and key projection, q is the dimension of the value projection, and softmax : Rn×s → [0, 1]n×s

for s ∈ N+ is a Softmax function with softmax(A)i,j =
Ai,j∑s

j=1 eAi,j
for A ∈ Rn×s.

For the feed forward layer in the u-th encoder block, given a matrix Xf ∈ Rn×m, the output of the
feed forward layer is

FFN(Xf , u) = ReLU(XfW2u +B1u)W3u +B2u , (31)

where ReLU is an element-wise rectified linear unit (ReLU) activation function ReLU(Ai,j) =
max(0,Ai,j) for A ∈ Rn×m, W2u ∈ Rm×s, W3u ∈ Rs×m, B1u ∈ Rn×s, and B2u ∈ Rn×m.

Given a matrix X ∈ Rn×m, the output of a function for layer normalization can be written as

LN(X) = [x1 x2 · · · xn]
T
, (32)

where

xi = (
Xi,: − E[Xi,:]√

V ar[Xi,:]
)T , (33)

E[Xi,:] =
1

m

m∑
j=1

Xi,j , (34)

V ar[Xi,:] = E[(Xi,: − E[Xi,:])
2], (35)

and Xi,: is the i-th row of matrix X for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The output of the first encoder block can be written as

XE1
= LN(FFN(XM1

) +XM1
), (36)

where XM1
= LN(MHA(XI ,XI ,XI , 1) +XI).

The output of the N stacks of encoder blocks can be written as

XEN
= LN(FFN(XMN

) +XMN
), (37)

where XMN
= LN(MHA(K,Q, V,N) +XEN−1

) and K = Q = V = XEN−1
for N > 1.

A.2 DECODER ARCHITECTURE IN THE BASELINE TRANSFORMER

Given a sequence y = [y1 y2 · · · yn] ∈ Rn with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Ye =
[
e(1) e(2) · · · e(n)

]T
W4,

where W4 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere. The input for the first decoder block is

YI =
1√
m
Ye + P . (38)

For each decoder block, it contains a masked multi-head attention layer, a multi-head cross attention,
and a feed forward network layer. For the masked multi-head attention layer in the u-th decoder
block, given three matrices Q2,K2,V2 ∈ Rn×m, the output is computed by

MMHA(Q2,K2,V2, u) =
[
Hmasked1

Hmasked2
· · · Hmaskedp

]
WOu

masked, (39)

where

Hmaskedk
= softmax(M +

Q2W
Q2

k (K2W
K2

k )T√
m

)V2W
V2

k (40)
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u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu

masked ∈ Rqp×m, WQ2

k ∈ Rm×r, WK2

k ∈ Rm×r, W V2

k ∈ Rm×q , M ∈ Rn×n is a matrix with

Mi,j =

{
∞ if j > i

0 otherwise
for 1 ≤ i ≤ n and 1 ≤ j ≤ n, r is the dimension of the query and key

projection, q is the dimension of the value projection, k = 1, 2, · · · , p, and softmax : Rn×s →
[0, 1]n×s for s ∈ N+ is a Softmax function with softmax(A)i,j =

Ai,j∑s
j=1 eAi,j

for A ∈ Rn×s.

For the multi-head cross attention layer in the u-th decoder block, given three matrices Q3,K3,V3 ∈
Rn×m, the output is computed as

MHCA(Q3,K3,V3, u) = [H1 H2 · · · Hp]W
Ou

causal, (41)

where

Hk = softmax(
Q3W

Q3

k (K3W
K3

k )T√
m

)V3W
V3

k , (42)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu

causal ∈ Rqp×m, WQ3

k ∈ Rm×r, WK3

k ∈ Rm×r, W V3

k ∈ Rm×q , r is the dimension of the query
and key projection, and q is the dimension of the value projection.

The output of the first decoder block can be written as

YD1
= LN(FFN(YC1

) + YC1
), (43)

where YC1
= LN(MHCA(YM1

,XEN
,XEN

, 1)+YM1
), YM1

= LN(MMHA(YI ,YI ,YI , 1)+
YI), and XEN

is the output of the last encoder block defined in (37).

The output of the N stacks of decoder blocks can be written as

YDN
= LN(FFN(YCN

) + YCN
), (44)

where YCN
= LN(MHCA(YMN

,XEN
,XEN

, N) + YMN
), and YMN

=
LN(MMHA(YDN−1

,YDN−1
,YDN−1

, N) + YDN−1
).
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