
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT TRANSFORMER WITH REINFORCED POSI-
TION EMBEDDING FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose an efficient transformer architecture that uses reinforced
positional embedding to obtain superior performance with half the number of
encoder decoder layers. We demonstrate that concatenating positional encoding
with trainable token embeddings, normalizing across tokens in the token embed-
ding matrix, and using the normalized token embedding matrix as the value of
the attention layer improve the training and validation loss and the training time
in an encoder-decoder Transformer model for a Portuguese-English translation
task with 10 epochs or 12 hours of training across 10 trials. Our method, with
roughly a threefold parameter reduction compared to the baseline model, yields a
mean training loss of 1.21, a mean validation loss of 1.51, and an average train-
ing time of 1352.27 seconds per epoch, surpassing the baseline model with the
same embedding dimension that employs addition of positional encoding and to-
ken embeddings, which achieves a mean training loss of 1.96, a validation loss of
2.18, and an average training time of 4297.79 seconds per epoch. Additionally,
we evaluated our proposed architecture and the baseline across 14 diverse transla-
tion datasets from TensorFlow. The results indicate that our method consistently
achieves lower or comparable training and validation losses, suggesting enhanced
learning efficiency.

1 INTRODUCTION

In this study, we propose modifications to the encoder-decoder Transformer architecture from
Vaswani (2017) to enhance training performance on machine translation tasks using the dataset from
Ye et al. (2018). Previous work by Ke et al. Ke et al. (2021) demonstrated that employing separate
query and key projection matrices for token embeddings and absolute positional embeddings in the
self-attention layer accelerates convergence with respect to validation loss in BERT models Lee &
Toutanova (2018). They also indicated that the standard attention mechanism in Transformers might
be inefficient due to weak correlations between words and their absolute positions.

We present three modifications to enhance the efficiency and performance of the encoder-decoder
Transformer architecture. Firstly, we reason that the addition of the token and positional embedding
matrix may cause loss of information. To address this, we concatenate the token and positional
embedding matrices before the initial encoder and decoder blocks, as shown in Figure 1 (b). Second,
we normalize the token embedding matrix across tokens, as shown in Figure 1 (c). Third, we use
the normalized token embedding matrix as the value in the attention layer, as shown in Figure 1 (d).

Specifically, let m denote the token embedding dimension and n the sequence length. The input
to the first encoder or decoder block consists of the concatenated token and positional embedding
matrices, resulting in a matrix of dimension n×2m. Each column of the token embedding matrix is
normalized to have a mean of zero and a standard deviation of one. In the attention layer, the key and
query matrices are of dimension n× 2m, while the value matrix is the normalized token embedding
matrix, yielding an n×m dimension. The output of each attention layer is an n×2m matrix, which
allows for residual connections that maintain positional information across layers. The feedforward
layer processes an input matrix of dimension n × 2m and outputs a matrix of the same dimension.
The modified architecture is shown in Figure 2.

We compare our proposed model against a baseline architecture similar to that of Vaswani (2017)
but with double the number of layers and the same embedding dimension. Namely, in the baseline,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (a) The matrix on the left-hand side is a token embedding matrix with the number of rows
the same as the number of tokens and with the number of columns the same as the number of token
features for the tokens. Each row in the token embedding matrix corresponds to the token feature
vector for the token at that row. The matrix at the right-hand side is a positional embedding matrix
with the number of rows the same as the number of tokens and with the number of columns the
same as the number of features at that position (row). Each row in the positional embedding matrix
is the feature vector correspond to that position (row). (b) We normalize each column of the token
embedding matrix to make each column having elements with zero mean and unit variance. (c) After
the token feature normalization, we concatenate the positional embedding matrix to the right of the
normalized token embedding matrix. (d) For the scaled dot-product attention in each attention layer,
the value is the normalized token embedding matrix from the input. Created with BioRender.com.

the token and positional embedding matrices, both of dimension n × 2m, are summed to form the
input matrix for the initial encoder or decoder block.

Using the Portuguese-English translation dataset from Ye et al. (2018) and training both models
for 10 epochs, our proposed model achieves a training loss of 1.22 and a validation loss of 1.53,
outperforming the baseline model, which recorded a training loss of 1.84 and a validation loss of
2.13. Additionally, our proposed model demonstrates an average training time of 1352 seconds per
epoch with 2,809,634 parameters, both of which are roughly three times lower than the baseline
model’s averages of 4298 seconds per epoch and 10,184,162 parameters.

These results indicate that our model not only achieves improved training and validation loss but also
demonstrates greater training efficiency compared to the baseline Transformer on the Portuguese-
English dataset Ye et al. (2018). To further validate the robustness of our findings across different
translation datasets, we applied both models to thirteen additional translation datasets from Ye et al.
(2018) training for 10 epochs or 12 hours. Both models successfully completed 10 epochs of train-
ing on seven datasets, where our proposed method showed lower training and validation loss in six
datasets. However, our method did not yield improved results for the Belarusian-to-English transla-
tion dataset, with our model showing a training loss of 4.60 and a validation loss of 4.35, compared
to the baseline’s training loss of 4.56 and validation loss of 4.30. Notably, our proposed method
achieved nearly a threefold reduction in training time compared to the baseline model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: The proposed modified transformer architecture. We made three modification from the
transformer architecture in Vaswani (2017). Firstly, each column in the token embedding matrix is
normalized to have zero mean and unit variance for both the encoder and decoder. Secondly, The to-
ken embedding matrix and the positional embedding matrix is concatenated before the first encoder
block and the first decoder block. Lastly, each attention layer has the value without concatenation.
Created with BioRender.com.

2 MODIFIED TRANSFORMER ARCHITECTURE

Given a sequence x = [x1 x2 · · · xn] ∈ R with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Xe =
[
e(1) e(2) · · · e(n)

]T
W1, (1)

where W1 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.

Given a sequence y = [y1 y2 · · · yn] ∈ Rn with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Ye =
[
e(1) e(2) · · · e(n)

]T
W2, (2)

where W2 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For the positional encoding, given the sequence length n and the embedding dimension m, the
output is P ∈ Rn×m, where

Pi,j =

{
sin(i/(100002j/m)) if 1 ≤ j ≤ m/2

cos(i/(100002j/m)) if m/2 + 1 ≤ j ≤ m
(3)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2.1 NORMALIZATION ACROSS TOKENS IN TOKEN EMBEDDING

Given a matrix X ∈ Rn×m, the output of a function for normalization across tokens can be written
as

TN(X) = [x1 x2 · · · xm] , (4)

where

xj =
X:,j − E[X:,j]√

V ar[X:,j]
, (5)

E[X:,j] =
1

n

n∑
i=1

Xi,j , (6)

V ar[X:,j] = E[(X:,j − E[X:,j])
2], (7)

and X:,j is the j-th column of matrix X for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

First, we propose to normalize across tokens in the token embedding matrix Xe and Ye such that

X̄e = TN(Xe) (8)

and
Ȳe = TN(Ye). (9)

2.2 CONCATENATION BETWEEN TOKEN EMBEDDING AND POSITIONAL EMBEDDING

Second, we propose to concatenate the output of the token embedding and the output of the posi-
tional encoding such that

Xconcat
I =

[
X̄e P

]
(10)

and
Y concat
I =

[
Ȳe P

]
(11)

replace the XI and YI in (28) and (38) in the baseline model in Appendix A, respectively.

2.3 AVOID CONCATENATION IN VALUE IN ALL THE ATTENTION LAYERS

Third, we propose to use the normalized token embedding matrix in value in the multi-head atten-
tion, multi-head cross attention, and masked multi-head attention defined in (29), (41), and (39) in
the Appendix A, respectively.

Given three matrices Q,K ∈ Rn×2m and V ∈ Rn×m, the scaled dot-product attention is defined
as

Attention(Q,K,V) = softmax(
QKT

√
m

)V , (12)

where softmax : Rn×s → [0, 1]n×s for s ∈ N+ is a Softmax function with softmax(A)i,j =
Ai,j∑s

j=1 eAi,j
for A ∈ Rn×s. The masked scaled dot-product attention is defined as

MaskedAttention(Q,K,V) = softmax(M +
QKT

√
m

)V . (13)

where M ∈ Rn×n is a matrix with Mi,j =

{
∞ if j > i

0 otherwise
for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For the proposed multi-head attention layer without concatenation in value in the u-th encoder block,
given three matrices Q1,K1 ∈ Rn×2m and V1 ∈ Rn×m, the output is computed by

PMHA(Q1,K1,V1, u) = [H1 H2 · · · Hp]W
Ou , (14)

where
Hk = Attention(Q1W

Q1

k ,K1W
K1

k ,V1W
V1

k), (15)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu ∈ Rqp×2m, WQ1

k ∈ R2m×r, WK1

k ∈ R2m×r, W V1

k ∈ Rm×q , r is the dimension of the
query and key projection, q is the dimension of the value projection.

For the proposed masked multi-head attention layer without concatenation in value in the u-th de-
coder block, given three matrices Q2,K2 ∈ Rn×2m and V2 ∈ Rn×m, the output is computed
by

PMMHA(Q2,K2,V2, u) =
[
Hmasked1

Hmasked2
· · · Hmaskedp

]
WOu

masked, (16)

where
Hmaskedk

= MaskedAttention(Q2W
Q2

k ,K2W
K2

k ,V2W
V2

k), (17)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu

masked ∈ Rqp×2m, WQ2

k ∈ R2m×r, WK2

k ∈ R2m×r, W V2

k ∈ Rm×q , r is the dimension of the
query and key projection, and q is the dimension of the value projection.

For the proposed multi-head cross attention layer without concatenation in value in the u-th decoder
block, given three matrices Q3,K3 ∈ Rn×2m and V3 ∈ Rn×m, the output is computed as

PMHCA(Q3,K3,V3, u) =
[
Hcross1 Hcross2 · · · Hcrossp

]
WOu

causal, (18)

where
Hcrossk = Attention(Q3W

Q3

k ,K3W
K3

k ,V3W
V3

k), (19)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu ∈ Rqp×2m, WQ3

k ∈ R2m×r, WK3

k ∈ R2m×r, W V3

k ∈ Rm×q , r is the dimension of the
query and key projection, q is the dimension of the value projection.

2.4 THE OUTPUT OF EACH ENCODER AND DECODER BLOCK IN THE MODIFIED
TRANSFORMER MODEL

The resulting output for the first encoder block and the N stacks of encoder blocks are

Xconcat
E1

= LN(FFN(Xconcat
M1

) +Xconcat
M1

) (20)

and
Xconcat

EN
= LN(FFN(Xconcat

MN
) +Xconcat

MN
), (21)

respectively, where N > 1, Xconcat
M1

= LN(PMHA(Xconcat
I ,Xconcat

I , X̄e, 1) + Xconcat
I),

Xconcat
MN

= LN(PMHA(Q,K,V , N) + XEconcat
N−1

), Q = K = XEconcat
N−1

, V = X̄e, LN and
FFN are the layer normalization and the feed forward network defined in (32), (31) in Appendix
A, respectively, and PMHA is the proposed multi-head attention defined in (14).

The resulting output for the first decoder block and the N stacks of decoder blocks becomes

Y concat
D1

= LN(FFN(Y concat
C1

) + Y concat
C1

) (22)

and
Y concat
DN

= LN(FFN(Y concat
CN

) + Y concat
CN

), (23)

respectively, where Y concat
C1

= LN(PMHCA(Y concat
M1

,Xconcat
EN

, X̄e, 1) +

Y concat
M1

), Y concat
M1

= LN(PMMHA(Y concat
I ,Y concat

I , Ȳe, 1) + Y concat
I),

Y concat
CN

= LN(PMHCA(Y concat
MN

,Xconcat
EN

, X̄e, N) + Y concat
MN

), Y concat
MN

=

LN(PMMHA(Y concat
DN−1

,Y concat
DN−1

, Ȳe, N) + Y concat
DN−1

), and PMHCA and PMMHA are
the proposed multi-head cross attention and the proposed masked multi-head attention defined in
(18) and (16), respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.5 THE OUTPUT LAYER OF THE MODIFIED TRANSFORMER MODEL

The output layer of the proposed transformer model composed of a feed forward network and a
softmax layer, which can be written as

T concat = softmax(Y concat
DN

W final), (24)

where W final ∈ R2m×|V ocab|. The i-th predicted token is the token corresponds to the j-th column
that has the maximum value among all the elements in the i-th row of T concat.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTAL SETUP

We first evaluated our proposed model and the baseline model using the Portuguese-English trans-
lation dataset from TensorFlow Abadi et al. (2015) for 10 epochs or 12 hours of training across 10
trials. The dataset contains 51,785 training, 1,193 validation, and 1,803 test pairs of Portuguese and
English text. The encoder’s input is the Portuguese text, and the decoder’s input is the English text,
with both sequences capped at 128 tokens. The target labels are the decoder inputs shifted right by
one token. We applied wordpiece tokenization for the Portuguese-English translation dataset from
TensorFlow Abadi et al. (2015). For the second experiment, we evaluated our proposed model and
the baseline model using the Portuguese-English translation dataset from TensorFlow Abadi et al.
(2015) for 10 epochs of training or 12 hours in one trial. We applied wordpiece tokenization for
each dataset from TensorFlow Abadi et al. (2015).

The model was trained using the Adam optimizer from Vaswani (2017):

lr(Ns) = m−0.5min(N−0.5
s , NsN

−1.5
w), (25)

where m is the embedding dimension, Ns ∈ Z is the current training step, and Nw = 4000 is called
the warm-up step. The loss function is a masked cross-entropy loss. The training epoch is 10. The
drop-out rate is 0.1. The batch size is 64.

For our proposed model (Section 2.2), we used 2 encoder and decoder blocks, the token embedding
dimension of m = 64, 256 hidden neurons in the feed-forward network, 4 attention heads, and
the projection dimension of 64 for query, key, and value. The proposed model contains 2,809,634
parameters.

For the baseline model, the number of encoder and decoder blocks is 4; the token embedding di-
mension is m = 128; the number of hidden neurons in the feed-forward network is 512; the number
of attention heads is p = 8; the projection dimension is 128 for query, key, and value. The baseline
model contains 10,184,162 parameters, which is roughly three times more than the proposed model.

3.2 EXPERIMENTAL RESULTS AND DISCUSSION

We trained both the baseline and proposed models for 10 epochs or 12 hours across 10 different
trials on two A100 40GB GPUs on the Portuguese to English translation dataset from Ye et al.
(2018). For the baseline model, the 10 epochs of training were completed for 4 trails; 9 epochs
of training is completed for 4 trails; and 8 epochs of training were completed for 2 trails. For the
proposed model, 10 epochs of training were completed for all the trials. The comparison of the
learning curves between the baseline and the proposed method are shown in Figure 3 (a). The mean
training losses of the baseline are roughly 6.60, 4.55, 3.82, 3.29, 2.89, 2.57, 2.30, 2.11, 1.96, and
1.84. The mean training losses of the model from the proposed method for each epoch are roughly
6.68, 4.55, 3.62, 2.89, 2.36, 1.97, 1.67, 1.46, 1.32, and 1.21, which are less than the mean training
losses of the baseline after 3 epochs. The mean validation losses of the baseline are roughly 5.04,
4.06, 3.46, 3.01, 2.77, 2.49, 2.35, 2.25, 2.18, and 2.14. The mean validation losses of the model
from the proposed method for each epoch are roughly 5.08, 3.93, 3.10, 2.51, 2.17, 1.88, 1.72, 1.63,
1.56, and 1.51, which are less than the mean validation losses of the baseline after 2 epochs. The
comparison from the learning curves shows that the improvement of the training loss and validation
loss of our model compared to the baseline is consistent for 10 different trials.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: (a) The transparent blue dashed lines and the transparent blue solid lines are the train-
ing loss and the validation loss of the baseline transformer model on the Portuguese to English
translation dataset from Ye et al. (2018), respectively. The transparent brown dashed lines and the
transparent brown solid lines are the training loss and the validation loss of the proposed transformer
model on the Portuguese to English translation dataset from Ye et al. (2018), respectively. Each line
represent the training or validation loss for one trial. Each model are trained for 10 epochs or 12
hours. The baseline model has 4 trials that finished 10 epochs of training; 4 trails finished 9 epochs
of training; 2 trials finished 8 epochs of training. The proposed model finished 10 epochs of train-
ing for all the trials. The training losses of the baseline have the mean of roughly 6.60, 4.55, 3.82,
3.29, 2.89, 2.57, 2.30, 2.11, 1.96, and 1.84 and the mean of the validation losses of the baseline are
roughly 5.04, 4.06, 3.46, 3.01, 2.77, 2.49, 2.35, 2.25, and 2.18 for 10 different trials. The training
losses of the proposed model have the mean of roughly 6.68, 4.55, 3.62, 2.89, 2.36, 1.97, 1.67, 1.46,
1.32, and 1.21 and the mean of the validation losses of the proposed model are roughly 5.08, 3.93,
3.10, 2.51, 2.17, 1.88, 1.72, 1.63, 1.56, and 1.51 for 10 different trials. The proposed model shows
a lower mean of training losses after 3 epochs and a lower mean of validation losses after 2 epochs.
(b) The bar plot shows the average training time per epoch for both the baseline and the proposed
model on the Portuguese to English translation dataset from Ye et al. (2018). The average training
time per epoch for the baseline is roughly 4297.79 seconds, which are higher than roughly 1352.27
seconds for the proposed model. In addition, The variance of the training time for the baseline is
roughly 675.79 seconds, which are higher than roughly 144.50 seconds for the proposed model.

The average training time for the baseline model and the proposed model for 10 epochs or 12 hours
and across 10 different trials is shown in Figure 3 (b). The average training time and the standard
deviation of the training time for the proposed model are roughly 1352.27 seconds and 144.50 sec-
onds, respectively, which are less than those in the baseline model with the average training time of
4297.79 seconds and the standard deviation of the training time of 675.79 seconds. The proposed
model shows roughly a threefold reduction in training time compared to the baseline. This may be
due to the approximately threefold reduction in the number of parameters in the proposed model,
which has 2,809,634 parameters, compared to the baseline with 10,184,162 parameters. In sum-
mary, the results from Figure 3 show that the proposed model improves the training and validation
loss while achieving a threefold reduction in training time.

To verify that the improvement of the training and validation loss and the improvement for the
training time are consistent for different translation task, we compared the baseline the the proposed
model after training of 10 epochs or 12 hours for one trial on fourteen different translation datasets
from Ye et al. (2018). The number of training data and validation data for each dataset are show
in the second and third column in Table 1, respectively. The results from the baseline are shown
from the fourth to the seventh column and the results from the proposed model are shown from
the eighth to eleventh column in Table 1. The fourth and the eighth columns show the number of
epoch the corresponding model has completed in 12 hours. The training and validation loss of the
baseline at the epoch indicated in the fourth column are shown in the fifth and the sixth column
in Table 1. The training and validation loss of the proposed model at the epoch indicated in the
fourth column are shown in the ninth and the tenth column in Table 1. The seventh and the the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of baseline and proposed transformer architectures

Dataset Data (No.) Baseline Proposed method

Train. Val. Ep. Train.
loss

Val.
loss

Comp.
Time (s) Ep. Train.

loss
Val.
loss

Comp.
Time (s)

az to en 5946 671 10 4.34 4.23 702 10 4.32 4.22 164
aztr to en 188396 671 2 3.59 3.47 15629 6 1.69 1.79 5628
be to en 4509 248 10 4.56 4.30 573 10 4.60 4.35 114
beru to en 212614 248 1 4.89 3.88 22045 6 1.64 1.68 6856
es to pt 44938 1016 10 2.15 2.41 3341 10 1.46 1.75 1157
fr to pt 43873 1131 10 2.33 2.80 3360 10 1.62 2.05 1139
gl to en 10017 682 10 3.77 3.75 1089 10 3.69 3.67 256
glpt to en 61802 682 9 1.92 2.48 4502 10 1.17 1.80 1644
he to pt 48511 1145 10 2.57 3.00 2970 10 1.68 2.07 1263
it to pt 46259 1162 9 2.45 2.66 4335 10 1.54 1.80 1258
pt to en 51785 1193 10 1.84 2.13 4049 10 1.22 1.53 1345
ru to en 208106 4805 3 2.94 2.70 11055 7 1.55 1.51 6122
ru to pt 47278 1184 8 3.22 3.43 5004 10 1.87 2.23 845
tr to en 182450 4045 2 3.60 3.03 19445 6 1.66 1.57 4971

Abbreviations: No.: Number; Train.: Training; Val.: Validation; Ep.: Epochs; Comp. Time (s): Com-
putational Time (seconds); az: Azerbaijani; en: English; tr: Turkish; be: Belarusian; ru: Russian; es:
Spanish; pt: Portuguese; fr: French; gl: Galician; he: Hebrew; it: Italian; tr: Turkish.

eleventh columns show the average computational time per epoch in seconds for the baseline and
the proposed model in Table 1. The result in Table 1 shows that the proposed model achieved an
improved training and validation loss compared to the baseline for 13 different translation datasets
except for the Belarusian to English translation dataset (be to en). For the Belarusian to English
translation dataset, the baseline shows a training loss of 4.56 and a validation loss of 4.30, which are
lower than those in the proposed model with a training loss of 4.60 and 4.35. However, it is important
to note that the proposed model outperformed the baseline in the majority of other thirteen datasets,
achieving a reduction in training and validation loss. In addition, the training time for the proposed
method is roughly a two to four times reduction from the training time of the baseline model for all
the fourteen datasets.

4 CONCLUSION

The proposed Transformer architecture, which normalizes the token embedding matrix to have zero
mean and unit variance, concatenates token embeddings with positional embeddings before the first
encoder and decoder blocks, and uses the normalized token embedding matrix as the value in the
attention layer, demonstrates improvements in training loss, validation loss, and computational time
across thirteen translation datasets from Ye et al. (2018) compared to the baseline model with the
same embedding dimension but with double the number of encoder and decoder blocks. The pro-
posed model achieves a training loss with a mean of roughly 1.21, a validation loss with a mean
of roughly 1.51, an average training time of 1352.27 seconds per epoch for 10 epochs of training
across 10 trials, which are all lower than those from the baseline which have a training loss with a
mean of roughly 1.96, a validation loss with a mean of roughly 2.18, an average training time of
4297.79 seconds per epoch for 10 epochs or 12 hours of training across 10 trials on the Portuguese
to English translation dataset from Ye et al. (2018). The proposed model shows a lower training
and validation loss compared to the baseline on thirteen out of fourteen different translation datasets
from Ye et al. (2018) and shows around two to four times reduction on the training time on all the
fourteen datasets from Ye et al. (2018). The proposed model shows promising improvements on
thirteen out of fourteen datasets, suggesting that its improvements over the baseline may be robust
across a range of translation tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=09-528y2Fgf.

JDMCK Lee and K Toutanova. Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 3(8), 2018.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Qi Ye, Sachan Devendra, Felix Matthieu, Padmanabhan Sarguna, and Neubig Graham. When and
why are pre-trained word embeddings useful for neural machine translation. In HLT-NAACL,
2018.

A BASELINE TRANSFORMER ARCHITECTURE

We introduce the architecture of the baseline Transformer we used for showing the improvement of
our proposed model. The baseline model architecture is similar to the Transformer architecture in
the ”Neural machine translation with a Transformer and Keras” tutorial from the TensorFlow Abadi
et al. (2015) website.

A.1 ENCODER ARCHITECTURE IN THE BASELINE TRANSFORMER

Given a sequence x = [x1 x2 · · · xn] ∈ R with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Xe =
[
e(1) e(2) · · · e(n)

]T
W1, (26)

where W1 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere.

For the positional encoding, given the sequence length n and the embedding dimension m, the
output is P ∈ Rn×m, where

Pi,j =

{
sin(i/(100002j/m)) if 1 ≤ j ≤ m/2

cos(i/(100002j/m)) if m/2 + 1 ≤ j ≤ m
(27)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The input for the first encoder block is

XI =
1√
m
Xe + P . (28)

For each encoder block, it contains a multi-head attention layer and a feed forward network layer.
For the multi-head attention layer in the u-th encoder block, given three matrices Q1,K1,V1 ∈
Rn×m, the output is computed by

MHA(Q1,K1,V1, u) = [H1 H2 · · · Hp]W
Ou , (29)

9

https://www.tensorflow.org/
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where

Hk = softmax(
Q1W

Q1

k (K1W
K1

k)T√
m

)V1W
V1

k , (30)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu ∈ Rqp×m, WQ1

k ∈ Rm×r, WK1

k ∈ Rm×r, W V1

k ∈ Rm×q , r is the dimension of the query
and key projection, q is the dimension of the value projection, and softmax : Rn×s → [0, 1]n×s

for s ∈ N+ is a Softmax function with softmax(A)i,j =
Ai,j∑s

j=1 eAi,j
for A ∈ Rn×s.

For the feed forward layer in the u-th encoder block, given a matrix Xf ∈ Rn×m, the output of the
feed forward layer is

FFN(Xf , u) = ReLU(XfW2u +B1u)W3u +B2u , (31)

where ReLU is an element-wise rectified linear unit (ReLU) activation function ReLU(Ai,j) =
max(0,Ai,j) for A ∈ Rn×m, W2u ∈ Rm×s, W3u ∈ Rs×m, B1u ∈ Rn×s, and B2u ∈ Rn×m.

Given a matrix X ∈ Rn×m, the output of a function for layer normalization can be written as

LN(X) = [x1 x2 · · · xn]
T
, (32)

where

xi = (
Xi,: − E[Xi,:]√

V ar[Xi,:]
)T , (33)

E[Xi,:] =
1

m

m∑
j=1

Xi,j , (34)

V ar[Xi,:] = E[(Xi,: − E[Xi,:])
2], (35)

and Xi,: is the i-th row of matrix X for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The output of the first encoder block can be written as

XE1
= LN(FFN(XM1

) +XM1
), (36)

where XM1
= LN(MHA(XI ,XI ,XI , 1) +XI).

The output of the N stacks of encoder blocks can be written as

XEN
= LN(FFN(XMN

) +XMN
), (37)

where XMN
= LN(MHA(K,Q, V,N) +XEN−1

) and K = Q = V = XEN−1
for N > 1.

A.2 DECODER ARCHITECTURE IN THE BASELINE TRANSFORMER

Given a sequence y = [y1 y2 · · · yn] ∈ Rn with n elements, the output of a token embedding
is a n×m matrix and it can be written as

Ye =
[
e(1) e(2) · · · e(n)

]T
W4,

where W4 ∈ R|V ocab|×m is an embedding matrix, |V ocab| is the number of tokens in the vocabulary
set, m is the dimension of an embedding vector, and e(i) ∈ Rm×1 is a unit column vector with a 1
at position i and 0 elsewhere. The input for the first decoder block is

YI =
1√
m
Ye + P . (38)

For each decoder block, it contains a masked multi-head attention layer, a multi-head cross attention,
and a feed forward network layer. For the masked multi-head attention layer in the u-th decoder
block, given three matrices Q2,K2,V2 ∈ Rn×m, the output is computed by

MMHA(Q2,K2,V2, u) =
[
Hmasked1

Hmasked2
· · · Hmaskedp

]
WOu

masked, (39)

where

Hmaskedk
= softmax(M +

Q2W
Q2

k (K2W
K2

k)T√
m

)V2W
V2

k (40)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of decoders, p is the number of heads,
WOu

masked ∈ Rqp×m, WQ2

k ∈ Rm×r, WK2

k ∈ Rm×r, W V2

k ∈ Rm×q , M ∈ Rn×n is a matrix with

Mi,j =

{
∞ if j > i

0 otherwise
for 1 ≤ i ≤ n and 1 ≤ j ≤ n, r is the dimension of the query and key

projection, q is the dimension of the value projection, k = 1, 2, · · · , p, and softmax : Rn×s →
[0, 1]n×s for s ∈ N+ is a Softmax function with softmax(A)i,j =

Ai,j∑s
j=1 eAi,j

for A ∈ Rn×s.

For the multi-head cross attention layer in the u-th decoder block, given three matrices Q3,K3,V3 ∈
Rn×m, the output is computed as

MHCA(Q3,K3,V3, u) = [H1 H2 · · · Hp]W
Ou

causal, (41)

where

Hk = softmax(
Q3W

Q3

k (K3W
K3

k)T√
m

)V3W
V3

k , (42)

u = 1, 2, · · · , N , k = 1, 2, · · · , p, N is the total number of encoders, p is the number of heads,
WOu

causal ∈ Rqp×m, WQ3

k ∈ Rm×r, WK3

k ∈ Rm×r, W V3

k ∈ Rm×q , r is the dimension of the query
and key projection, and q is the dimension of the value projection.

The output of the first decoder block can be written as

YD1
= LN(FFN(YC1

) + YC1
), (43)

where YC1
= LN(MHCA(YM1

,XEN
,XEN

, 1)+YM1
), YM1

= LN(MMHA(YI ,YI ,YI , 1)+
YI), and XEN

is the output of the last encoder block defined in (37).

The output of the N stacks of decoder blocks can be written as

YDN
= LN(FFN(YCN

) + YCN
), (44)

where YCN
= LN(MHCA(YMN

,XEN
,XEN

, N) + YMN
), and YMN

=
LN(MMHA(YDN−1

,YDN−1
,YDN−1

, N) + YDN−1
).

11

	Introduction
	Modified Transformer Architecture
	Normalization across tokens in token embedding
	Concatenation between token embedding and positional embedding
	Avoid concatenation in value in all the attention layers
	The output of each encoder and decoder block in the modified transformer model
	The output layer of the modified transformer model

	Experiments and results
	Experimental setup
	Experimental results and discussion

	Conclusion
	Baseline transformer architecture
	Encoder architecture in the baseline transformer
	Decoder architecture in the baseline transformer

