
Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking
Language Model

Kaiwen Tang 1 Zhanglu Yan 1 Weng-Fai Wong 1

Abstract
For reasons such as privacy, there are use cases for
language models at the edge. This has given rise
to small language models targeted for deployment
in resource-constrained devices where energy effi-
ciency is critical. Spiking neural networks (SNNs)
offer a promising solution due to their energy effi-
ciency, and there are already works on realizing
transformer-based models on SNNs. However,
key operations like softmax and layer normal-
ization (LN) are difficult to implement on neu-
romorphic hardware, and many of these early
works sidestepped them. To address these chal-
lenges, we introduce Sorbet, a transformer-based
spiking language model that is more neuromor-
phic hardware-compatible. Sorbet incorporates
a novel shifting-based softmax called PTsoftmax
and a Bit Shifting PowerNorm (BSPN), both de-
signed to replace the respective energy-intensive
operations. By leveraging knowledge distilla-
tion and model quantization, Sorbet achieved a
highly compressed binary weight model that main-
tains competitive performance while achieving
27.16× energy savings compared to BERT. We
validate Sorbet through extensive testing on the
GLUE benchmark and a series of ablation studies,
demonstrating its potential as an energy-efficient
solution for language model inference. Our code
is publicly available at https://github.com/Kaiwen-
Tang/Sorbet

1. Introduction
The phenomenal success of large language models
(LLMs) (Devlin et al., 2019; Brown et al., 2020; Raffel
et al., 2020; Touvron et al., 2023; Lewis et al., 2020; Taylor
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et al., 2022) has prompted research into distilling small lan-
guage models (SLMs) (Sun et al., 2020; Eldan & Li, 2023;
Zhang et al., 2024) from LLMs that can run on the resource-
constrained edge devices. Local inference on the device is
critical in situations where data privacy is essential or when
connectivity to powerful remote computing resources is un-
feasible (Sun et al., 2020; Sanh, 2019). The high demand
for energy efficiency drives research to simplify SLM infer-
ence, making it better suited for devices with low energy
consumption while maintaining adequate performance.

In parallel, spiking neural networks (SNNs) have gained sig-
nificant attention due to their remarkable energy efficiency.
SNNs closely mimic biological neural networks and are
multiplication-free, resulting in much lower energy con-
sumption compared to artificial neural networks (ANNs).
Developing SNNs on neuromorphic hardware significantly
improves energy efficiency while preserving impressive per-
formance compared to advanced ANNs (Guo et al., 2023;
Shi et al., 2024). For example, the SNN based on the ViT-
base architecture (Dosovitskiy et al., 2020) achieves com-
petitive accuracy levels (e.g., up to 81.10% on ImageNet)
to its ANN counterpart, but with only one-tenth of energy
consumption (Zhou et al., 2024).

However, developing transformer (Vaswani et al., 2017)-
based spiking language models is challenging, particularly
in encoding spikes and handling the incompatible operations
of neuromorphic hardware. Previous works have focused
on replacing matrix multiplications with encoding methods,
like SpikFormer (Zhou et al., 2024), SpikeBERT (Lv et al.,
2023), SpikeLM (Xing et al.), and SpikingBERT (Bal &
Sengupta, 2024). However, the transformer architecture also
includes softmax and layer normalization (LN) operations,
which are energy-intensive and incompatible with neuromor-
phic hardware. Models like SpikeLM and SpikingBERT,
which target natural language processing (NLP) tasks, still
rely on softmax and LN operations, limiting their compati-
bility with neuromorphic hardware. SpikFormer addresses
this issue by adopting features from convolutional networks
and batch normalization, avoiding the use of these opera-
tions. While effective for vision tasks, their applicability to
language tasks, which rely more heavily on operations like
LN, remains unproven. Thus, there is no transformer-based
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spiking language model that is both hardware-compatible
and performs well to date.

Table 1. Comparison with other models. The ‘+’ in the NLP row
indicates the capability to perform language tasks, while the ‘+’ in
the softmax row denotes the inclusion of softmax operations.

BERT Spikformer SpikeLM Sorbet

NLP + - + +

softmax + - + -
Norm LN BN LN BSPN

Weight 32-bits 32-bits 1-bit 1-bit

In this work, we introduce an SNN-compatible normaliza-
tion technique called Bit Shifting PowerNorm (BSPN) and a
novel shifting-based softmax called Power-of-Two softmax
(PTsoftmax). Based on these operations, we propose Sor-
bet, a novel language model that operates without relying
on complex operations. A comparison between Sorbet and
previous works is shown in Table 1. To our knowledge,
Sorbet is the first model designed for language tasks that
overcomes the challenge of deploying transformer-based
language models on neuromorphic hardware, which does
not support complex operations like division and square
roots. In the training process, we apply knowledge distil-
lation techniques to constrain the Sorbet model to binary
weights, significantly compressing its size and reducing in-
ference energy consumption. As a result, Sorbet is a highly
practical model for resource-constrained devices.

Our tests on the General Language Understanding Evalu-
ation (GLUE) benchmark (Wang et al.) demonstrate that
Sorbet maintains stable performance while achieving energy
savings of 27.16× compared to BERT and 3.16× compared
to SpikeLM. Our contributions are summarized as follows:

• We are the first to explore the neuromorphic hardware-
compatible operators in transformer-based models,
identifying the challenge of transferring ANNs with
transformer structures into SNNs, which lies in op-
erations like softmax and LN. Solving this challenge
would complete the last step in enabling SNNs for
natural language processing.

• We propose PTsoftmax and BSPN, two operators that
replace softmax and layer normalization. These opera-
tors rely on bit-shifting instead of expensive operations,
making them compatible with neuromorphic hardware
and further reducing the model’s computational cost.

• We present Sorbet, a transformer-based binary spiking
language model derived from BERT. In addition to
using these two operators, Sorbet incorporates other
design innovations and a refined training process to

achieve full quantization. Sorbet is designed for neuro-
morphic hardware, enabling energy-efficient inference
with comparable performance to ANN counterparts.

2. Related Work
Transformer-based SNNs Transformed-based SNNs
leverage the energy efficiency of SNN architectures. Several
transformer-based SNNs have been proposed for computer
vision tasks, like Spikformer (Zhou et al.), Spikeformer (Li
et al., 2024), Spike-driven Transformer (Yao et al., 2024)
and STCA-SNN (Wu et al., 2023). To overcome the limi-
tations of SNNs in handling complex operations, recent de-
velopments like Spikformer and Spike-driven Transformer
leverage task-specific characteristics and integrate convolu-
tional layers into the architectures. Meanwhile, transformer-
based SNNs for NLP tasks have progressed more slowly.
The importance of LN in NLP tasks underscores the chal-
lenges faced when adapting SNNs for such applications. Re-
cently models include SpikeBERT (Lv et al., 2023), Spiking-
BERT (Bal & Sengupta, 2024) and SpikeGPT (Zhu et al.).
Among them, SpikeBERT employed even more layer nor-
malization than the original BERT (Devlin et al., 2019),
while SpikeGPT and spikingBERT used complicated opera-
tions like exponential operation and softmax. In conclusion,
none of these works can be practically deployed to neuro-
morphic hardware.

Quantized BERT Model quantization reduces the preci-
sion of model weights and activations, such as converting
32-bit floating-point numbers to 8-bit or 4-bit integers. Mod-
els like BinaryBERT (Bai et al., 2021) and BiT (Liu et al.,
2022) have applied quantization to BERT, achieving notable
improvements in model compression and energy efficiency.
However, these quantization methods do not align with the
requirements of SNNs, as they retain complex operations.

Simplified Architecture Several approaches aim to sim-
plify the transformer architecture, such as linear complex-
ity attention mechanisms or hardware-efficient alternatives
that offer potential pathways for adaptation (Han et al.,
2023; Dao et al., 2022; Lu et al., 2021; Katharopoulos
et al., 2020). Additionally, methods have been proposed
to simplify computationally-intensive operations within the
transformer. For example, I-BERT (Kim et al., 2021) and
I-ViT (Li & Gu, 2023) simplify activation functions, nor-
malization functions, and softmax operations with approx-
imation methods. However, these designs are difficult to
realize with neuromorphic hardware that do not support
multiplications and divisions.
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3. Preliminary
Spiking Neural Networks SNNs, inspired by biological
neural systems, use discrete events (spikes) for communica-
tion. Unlike traditional neural networks, SNNs emulate the
spike-based communication of neurons, making them more
biologically plausible. This mechanism allows efficient pro-
cessing of temporal data and offers high energy efficiency,
making SNNs ideal for applications like robotics, signal
processing, and pattern recognition (Kasabov et al., 2013;
Kim et al., 2018; Lobov et al., 2020). However, their non-
differentiable nature makes training challenging. Current
approaches typically involve surrogate gradients or ANN-
to-SNN conversion after training an ANN with a similar
architecture. In either case, these methods leverage ad-
vanced ANN structures to construct analogous SNN models.
Surrogate gradients approximate the gradients during back-
propagation, enabling SNN training despite their discrete
nature. These gradients smooth out non-differentiable spike
events. ANN-to-SNN conversion involves transforming a
trained ANN model into an SNN by mimicking ANN neuron
behavior with the spikes. In Sorbet, we use ANN-to-SNN
conversion.

Spike Neuron Model The integrate and fire (IF) model is
the most popular spike neuron model for generating spike
trains (Bu et al.). It offers a simple representation of how
SNN neurons accumulate membrane potentials and output
spikes. In the IF model, the membrane potential V of a
neuron is treated as a capacitor that accumulates the input
currents over time, a process that the following differential
equation can describe:

dV

dt
= Isyn(t) (1)

Here, Isyn(t) represents the synaptic input current. When
the membrane potential V exceeds a certain threshold θ,
the neuron generates a spike. In this paper, we adopt an
enhanced IF model known as average IF spike generation
(ASG) (Yan et al., 2025). One advantage of ASG over the
basic IF model is the reduction of memory access energy.
Unlike the IF model, which accesses weights at each time
step, ASG accumulates input spikes and calculates mem-
brane potential in a single pass, requiring only one access
to the weights. The algorithm for ASG can be found in Ap-
pendix A Algorithm 4.

Challenges of Adapting Transformers to SNNs While
SNNs are recognized for their energy efficiency and ex-
plainability, adapting transformer models to spike neurons
presents a significant challenge. Spike neurons cannot di-
rectly perform essential operations such as multiplication
and division, which are fundamental to traditional ANN-
based transformers. Consequently, transformer layers in
SNNs must be replaced with simpler operations, such as

bit-shifting and addition, to ensure compatibility with neu-
romorphic hardware. This requires substituting ANN trans-
former layers with SNN-compatible counterparts that avoid
complex operations but still maintain the functionality of
the original architecture.

4. Methods
In this work, we design Sorbet, a spiking language model ca-
pable of handling NLP tasks and being practically deployed
on neuromorphic hardware platforms. To achieve this, we
base the model architecture on transformers due to their
proven effectiveness in NLP. As previously discussed in Sec-
tion 3, neuromorphic hardware does not support standard
ANN operations. So we first introduce BSPN (Section 4.1)
and PTsoftmax (Section 4.2), which are fully compatible
with neuromorphic hardware and provide high-quality re-
sults for replacing traditional LN and softmax. We then
describe the Sorbet architecture (Section 4.3) and the train-
ing process (Section 4.4).

4.1. Bit Shifting PowerNorm

Transformer-based language models like BERT typically
employ LN. LN calculates the mean and variance across all
features for each data point in a layer’s input, normalizes the
inputs, and applies a learnable scale and shift. Due to hard-
ware limitations discussed earlier, LN cannot be directly
adopted in our model. On the other hand, batch normaliza-
tion (BN) is favored in SNNs because its learnable param-
eters can be merged into the weights during the inference
stage, hence becomes SNN-hardware-friendly. However,
the relatively poor performance of BN makes it unsuitable
for our model.

To improve BN’s performance, PowerNorm (Shen et al.,
2020) introduced a relaxed zero mean BN. However, Power-
Norm incorporates root-mean-square layer normalization
(RMSLN):

RMSLN(x) =
x√

1
n

∑n
i=1 x

2
i

(2)

This is too resource-intensive and hence is not fully compat-
ible with neuromorphic hardware.

To address the issue with PowerNorm, we define a novel
normalization layer called Bit Shifting PowerNorm (BSPN),
which replaces RMSLN and avoid complex square and
square root operations. We begin by grouping the input.
Within each group, denote the vector as x ∈ Rn, we calcu-
late the L1 norm.

Then the L1 norm is approximated by the next power of
two for hardware efficiency. This allows the “dividing by
L1 norm” step to be implemented via bit shifting. The
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approximation can be achieved either by taking log2 and
then exponentiating it back, or more efficiently via a lookup
table. We then perform the relaxed zero-mean BN as in the
PowerNorm. To optimize hardware efficiency, the scaling
factor γ

ψ can be further quantized to a power of two. The
complete BSPN algorithm is outlined in Algorithm 1, where
y ⊙X is denoted as [y1, X1 :, ..., yd, Xd :].

Algorithm 1 Bit Shifting PowerNorm (BSPN)
1: Input: X ∈ Rh×n; Number of attention heads h;
2: Output: Y;
3: Step 1: Group Scaling
4: Group channels into h groups.
5: S ← 1

n

∑n
i=1 |Xi|

6: k ← ⌈log2(S)⌉ {Can be done by using a look-up table}
7: X← X≫ k
8: Step 2: Normalization as PowerNorm
9: For Training:

10: ψ2
B ← 1

B

∑B
i=1 X

2
i

11: X̂← X
ψ

12: Y ← γ ⊙ X̂+ β
13: ψ2 ← αψ2+(1−α)ψB2 {Exponential moving average

update for ψ2}
14: For Inference:
15: Y ← γ ⊙ X

ψ + β

The two advantages of BSPN are that it uses only SNN-
compatible operations and significantly simplifies the com-
putation process. Firstly, like PowerNorm, BSPN incorpo-
rates the computation of runtime variance, which is then
used during inference. Compared to LN, this eliminates the
need for redundant calculations during inference.

Secondly, BSPN avoids RMSLN by using the L1 norm
and approximating the divisor as a power of two. These
features make BSPN a practical design for SNN models
and significantly reduce energy consumption, as shown in
Section 4.3 and Section 5.2.

Next, we show that the BSPN is not only deployable on neu-
romorphic hardware but also possesses desirable properties
that make it a suitable replacement for LN in transformer
models.

Definition 4.1. Let Φ: Rn → Rn be defined by

Φ(X) =
X

2

⌈
log2

(
S(X)

)⌉ , where S(X) =
1

n

n∑
i=1

|Xi|.

(3)

Since bounded gradients are necessary for convergence, we
first analyze how the proposed bit-shifting-based step Φ(X)
maintains PowerNorm’s gradient boundedness.

Theorem 4.2 (BSPN Preserves Bounded Gradient). The

loss LPN under PowerNorm is bounded by a constant, de-
noted as C. We define the BSPN loss by

LBSPN(X) = LPN

(
Φ(X)

)
, (4)

LBSPN also has a bounded gradient w.r.t. X:,i, specifically∥∥∥∥∥∂LBSPN

∂X̃:,i

∥∥∥∥∥ ≤ C for all X̃. (5)

The detailed proof is provided in Appendix B.1.

To ensure stable training and effective generalization, it
is important to control the Lipschitz constant of the loss
function. In (Shen et al., 2020), the author proved that ap-
plying PowerNorm can lead to a smaller Lipschitz constant
of the loss compared to BN under a mild assumption. BSPN
exhibits similar behavior, as outlined below:

Lemma 4.3 (1-Lipschitz Property of Φ(X)). For any
X, Y ∈ Rn, under mild assumption, we have∥∥Φ(X)− Φ(Y )

∥∥ ≤ ∥∥X − Y ∥∥. (6)

The assumption and detailed proof are provided in the Ap-
pendix B.1. For the loss function LBSPN, for convenience
in comparison, we use ψB instead of ψ. Since Φ(X) is
1-Lipschitz, BSPN does not increase the overall Lipschitz
constant of loss compared to PowerNorm.

Lemma 4.4 (Effect of BSPN on the Lipschitz Constant of
the Loss). With lemma 4.3 and lemma 2 in (Shen et al.,
2020), we further have:∥∥∥∥∂LBSPN

∂X:,i

∥∥∥∥2 ≤ ∥∥∥∥∂LPN

∂X:,i

∥∥∥∥2 ≤ γ2i

(ψB)
2
i

∥∥∥∥∂LBN

∂X·,i

∥∥∥∥2 . (7)

From (Shen et al., 2020), the empirical result supports that
γi

(ψB)i
is typically smaller than 1. Therefore, the Lipschitz

constant of LBSPN is also smaller than that of LBN in prac-
tice. These properties of BSPN imply that it enhances train-
ing stability by preventing gradient explosion or vanishing,
ensuring controlled updates. This makes BSPN a robust and
efficient alternative to LN.

4.2. Power-of-Two Softmax

In transformer-based models, the softmax function plays a
crucial role, especially in the attention mechanisms where
it is used to calculate the distribution of attention weights
across different inputs. For a vector z = [z1, z2, ..., zn],
softmax can be calculated as follows:

softmax(zi) =
ezi∑n
j=1 e

zj
(8)
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Due to the complexity of the exponential and division opera-
tions involved in the softmax function, it is too sophisticated
for neuromorphic hardware, making direct utilization of soft-
max in SNNs impractical. We propose a softmax alternative
aligned with SNN computational conventions, enabling a
more streamlined attention mechanism suitable for SNNs.

To approximate the softmax function, we first replace the
exponential operation with powers of two, thus defining a
base-2 softmax:

Base-2 softmax(zi) =
2zi∑n
j=1 2

zj
(9)

Since the base-2 softmax still involves division, we further
approximate

∑n
j=1 2

zj as the nearest power of two Z̃:

k =

u

v

log2

 n∑
j=1

2⌈zj⌉

}

~ , Z̃ = 2k (10)

Here, k is the integer logarithm base 2 of the sum, rounded
up, ensuring Z̃ is the nearest power of two approximating
the softmax denominator. To facilitate bit-shifting, we also
round up zi. Our proposed purely power-of-two softmax
(PTsoftmax) can then be defined as:

PTsoftmax(zi) =
2⌈zi⌉∑n
j=1 2

⌈zj⌉
≈ 2⌈zi⌉−k (11)

Given zi and k, the operation 2zi−k can be efficiently com-
puted via a left shift operation. The complete PTsoftmax
computation is detailed in Algorithm 2.

Algorithm 2 Power-of-two Softmax (PTsoftmax)
1: Input: Attention scores matrix S ∈ Rb×s×h
2: Output: Attention probabilities matrix P ∈ Rb×s×h
3: S ′ ← ⌈S⌉ −max(⌈S⌉) {Normalize S}
4: A ← 2S

′

5: Z ←
∑

(2S
′
) {Compute the sum of exponentials}

6: k ← Jlog2(Z))K
7: P ← A ≫ k {Use right shift to divide by Z̃ = 2k}
8: return P

To analyze the approximation error of PTsoftmax relative
to the original softmax, we followed (Zhang et al., 2022),
and used the generalized base-β softmax function, Fβ(xi),
defined as:

Fβ(xi) =
βxi∑N
j=1 β

xj

(12)

Here, the traditional softmax corresponds to Fe(xi), and the
base-2 softmax is F2(xi). According to (Zhang et al., 2022),
both Fe(xi) and F2(xi) exhibit similar behavior and can be

used interchangeably. In particular, F2(xi) is well suited to
representing a probability distribution in (0, 1]such that the
probabilities sum to 1. We then examine the approximation
between F2(xi) and PTsoftmax.

Lemma 4.5. For all i ∈ 0, 1, ..., n, we have 1
2
√
2
F2(xi) ≤

PTsoftmax(xi) ≤ 2
√
2F2(xi).

A detailed proof is given in Appendix B.2. Lemma 4.5
shows that the approximation error of PTsoftmax remains
within a constant factor of the traditional softmax, con-
firming its practical applicability. Unlike classic softmax,
PTsoftmax does not strictly sum to 1, but theoretical analy-
sis and experimental results (Section 5.3) indicate that this
discrepancy has a minor impact on performance.

4.3. Sorbet Architecture

We now present Sorbet, our spiking language model. At a
high level, Sorbet resembles a standard transformer design
but is customized for the SNN platform by replacing various
layers with SNN-compatible ones, including BSPN (Sec-
tion 4.1), PTsoftmax (Section 4.2), and ReLU, equipped
with additional spike neurons and avoiding multiplication
with accumulation operations. Figure 1 shows the archi-
tecture of Sorbet along with the current ANN design (e.g.,
BERT).

Each activation is encoded using spike neurons to generate
spike trains. Our spiking self-attention mechanism is then
defined as:

SpikingAttn(x) =

SN (PTsoftmax(α ∗ SN (Q)KT ))V
(13)

where Q,K, V are derived from a quantized binary-weight
linear function, and α is a constant that can be merged into
the weights. SN denotes the spike neuron used to generate
spike trains. In Sorbet, at the position of matrix multiplica-
tion in the ANN, one of the multiplicands is encoded into a
spike train. Matrix multiplications involving SN are sim-
plified to accumulations over the indices corresponding to
spike events (1s in the spike train).

In sub-layers originally defined as LayerNorm(x +
Sublayer(x)), we instead use BSPN(SN (x) +
BinaryLayer(SN (x))). To preserve performance af-
ter quantization, we also adjust the training process.
Notably, existing neuromorphic chips such as Loihi, IBM
TrueNorth, and NeuroGrid (Davies et al., 2018; Akopyan
et al., 2015; Benjamin et al., 2014) already support spiking
and bit-shifting operations, making them well suited for
these innovations.
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Figure 1. Comparison of the architecture of BERT and Sorbet. (a) The multi-head self-attention block of BERT; (b) The feed-forward
network of BERT; (c) The spiking multi-head self-attention of Sorbet; (d) The spiking feed-forward network of Sorbet. All the outputs of
SN are spike trains to ensure Sorbet is multiplication-free. The red-bordered box highlights our proposed operations.

4.4. Training Process

Firstly, to enhance the energy efficiency of our model and
enable the encoding of all activations into spike trains, we
quantize all weights to 1 bit and activations to 4 bits. For
model quantization, (Liu et al., 2022) introduced an elastic
binarization function with a scale factor α and threshold β:

Xi
B = αX̂i

B = α⌊Clip(
Xi
R − β
α

, 0, 1)⌋ (14)

However, dividing the input by α is impractical for SNN in-
ference. Hence, following the same rationale as PTsoftmax,
we approximate α with the nearest power of two, Z = 2kα .
Accordingly, the elastic binarization function becomes:

Xi
B =

⌊
Clip

(
(Xi

R − β)≫ kα, 0, 1
)⌋
≪ kα (15)

Inspired by (Liu et al., 2022), we adopt a hybrid training
strategy that combines standard knowledge distillation with
the distillation of intermediate activations. The overall loss
function is L = Llogits + Lreps, where Llogits employs the
Kullback-Leibler (KL) divergence to facilitate learning from
the teacher model to the student model while Lreps is used
to accelerate convergence and improve transfer and general-
ization capabilities (Aguilar et al., 2020). Concretely,

Llogits = KL(p, q), Lreps =
∑
i

∥rsi − rti∥2 (16)

where p denotes the output distribution of the teacher model,
and q represents the output of the student model. rsi and rti
are the corresponding transformer block output activations

from the student and teacher models, respectively. The
backpropagation can be calculated as:

∂L

∂w
=

∑
i

(
∂L

∂pi

∂pi
∂w

+
∂L

∂qi

∂qi
∂w

+
∂L

∂rsi

∂rsi
∂w

+
∂L

∂rti

∂rti
∂w

)
=

∑
i

((
log

(
pi
qi

)
+ 1

)
∂pi
∂w
− pi
qi

∂qi
∂w

)
+

∑
i

(
2(rsi − rti)

∂rsi
∂w
− 2(rsi − rti)

∂rti
∂w

)
(17)

Then we integrate BSPN and PTsoftmax step by step into the
model. For each step, we perform model distillation. Finally,
the quantized model with these energy-efficient components
is transformed into the Sorbet model by passing it through
spiking neurons. This entire procedure is summarized in
Algorithm 3.

Algorithm 3 Multi-step distillation
1: Input: Full-precision model M0, dataset D
2: Output: Sorbet S
3: M1 ← Quantize(M0) {Quantize M0 to 1-bit weight

4-bit activation}
4: M2 ←M1 with PTsoftmax replacing softmax
5: M3 ←M2 with BSPN replacing LN
6: for i = 1→ 3 do
7: Mteacher ←Mi−1, Mstudent ←Mi

8: ModelDistill(Mstudent,Mteacher,D)
9: end for

10: Convert M3 to SNN and obtain Sorbet S
11: return S
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The distillation process yields a quantized model with higher
accuracy. Furthermore, as shown in Table 3, our proposed
PTsoftmax and BSPN can also be applied and trained di-
rectly.

5. Result
In this section, we present the performance of Sorbet on
seven datasets from the GLUE benchmark, a standard eval-
uation suite used by plenty of language models. Because
SNNs are relatively limited when applied to NLP tasks, there
are few existing SNNs evaluated on GLUE, so we compare
Sorbet against both SNN and quantized ANN baselines. Our
experiments use BERT-base as the initial teacher model for
distillation. We also provide a comprehensive analysis of
the model’s energy and power efficiency. All experiments
were conducted on three Nvidia RTX A100 GPUs, each
with 80GB of memory. The number of timesteps used for
all results in this section is 16.

5.1. Comparing with the Baseline

Table 2 shows Sorbet’s performance on the GLUE bench-
mark, indicating that it maintains competitive results overall.
It achieves state-of-the-art performance on four datasets and
attains comparable results on the rest. Compared to binary
neural networks such as BiT, Sorbet has the same model
size and comparable performance but offers better energy
efficiency and compatibility with neuromorphic hardware.

Additionally, we also evaluated two existing SNNs, namely,
SpikeLM and SpikingBERT, on GLUE with 1-bit weight
quantization. Although they claim to be SNN architectures
with spike-generation methods, both depend heavily on LN
and softmax operations, which are incompatible with SNN
hardware. By contrast, Sorbet avoids these constraints and
is consequently more suitable for neuromorphic devices.

5.2. Energy Saving Analysis

Sorbet achieves substantial energy efficiency in three ways.
Firstly, SNN reduces overall energy consumption due to its
event-driven nature, activating neurons only when necessary.
Secondly, PTsoftmax and BSPN replace traditional func-
tions with lower-cost operations, further reducing energy
use. Finally, the use of model quantization further reduces
computational load and power requirements.

Compared to ANNs, the key energy-saving advantage of
SNNs lies in replacing multiplications with additions. The
numbers of addition needed in Sorbet(NSorbet) to substitute
matrix multiplication in BERT(NBERT) can be expressed as:

NSorbet = T · r ·NBERT (18)

where T is the timestep and r is the spike rate. From Eq. 18,

Figure 2. Energy cost of different operations. Each value repre-
sents a single execution with an input dimension of 128. Based
on 45nm technology, a FIX8 division requires 0.59 pJ, whereas a
bit-shift operation requires only 0.024 pJ.

0 50 100 150 200 250 300
Energy Consumption (pJ)
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Figure 3. Spike firing rate for the output of each block on SST-2
and STS-B datasets.

1 2 3 4 5 6 7 8 9 10 11 12
Block Index

0.1

0.2

0.3

0.4

Sp
ik

e 
R

at
e

SST-2
STS-B
Mean of SST-2: 0.13
Mean of STS-B: 0.15

NSorbet is highly related to the spike rate r. For example,
on the SST-2 and STS-B datasets, the observed average
spike rates are 0.13 and 0.15, respectively, as illustrated
in Figure 3. Notably, spike rates can be higher when using
symmetric quantization. With these observed spike rates,
we calculated Sorbet’s energy consumption and compared
it with other baselines in Table 4. Sorbet reduces energy
consumption by 27.16× compared to BERT and by 3.16×
compared to SpikeLM.

The simplification operations we propose also substantially
reduce the computational load of these functions. Using
the reported energy costs of DIV, EXP, and SHIFT opera-
tions (You et al., 2020; Nadh et al., 2023; Wu et al., 2019),
we calculated the energy consumption of our PTsoftmax and
BSPN compared to the standard softmax and LN in Figure 2.
The results show that PTsoftmax achieves approximately
27.62× better energy efficiency than conventional softmax,
while BSPN achieves 12.4× better energy efficiency than
LN. Detailed calculations are provided in Appendix E.

5.3. Ablation Study

To evaluate the contribution of our proposed components,
we conducted a series of ablation experiments. Specifically,
we focused on the effectiveness of the PTsoftmax and BSPN
modules. We conducted two ablation studies to evaluate the
impact of our proposed modifications. First, we replaced

7
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Model Size QQP MNLI-m SST-2 QNLI RTE MRPC STS-B

BERTbase (Devlin et al., 2019) 418M 91.3 84.7 93.3 91.7 72.6 88.2 89.4
DistilBERT (Sanh, 2019) 207M 88.5 82.2 91.3 89.2 59.9 87.5 86.9
TinyBERT6 (Jiao et al., 2020) 207M - 84.6 93.1 90.4 70.0 87.3 83.7
Q2BERT (Zhang et al., 2020) 43.0M 67.0 47.2 80.6 61.3 52.7 68.4 4.4
BiT (Liu et al., 2022) 13.4M 82.9 77.1 87.7 85.7 58.8 79.7 71.1
SpikingFormer (Zhou et al., 2023) * 83.8 67.8 82.7 74.6 58.8 74.0 72.3
SpikingBERT (Bal & Sengupta, 2024) 50M 86.8 78.1 88.2 85.2 66.1 79.2 82.2
SpikeLM (Xing et al.) * 87.9 76.0 86.5 84.9 65.3 78.7 84.3

1-bit SpikingBERT (Bal & Sengupta, 2024) * 83.8 75.4 86.7 80.5 - 75.8 -
1-bit SpikeLM (Xing et al.) * 87.2 74.9 86.6 84.5 65.7 78.9 83.9
Sorbet ‡ 13.4M 83.4 75.8 89.6 84.6 59.2 78.4 73.6
Sorbet 13.4M 86.5 77.3 90.4 86.1 60.3 79.9 78.1

Table 2. Comparison with the baseline on the GLUE benchmark. * denotes that the size is not reported in the original work. We report
Spearman correlations for the STS-B dataset and accuracy for all other datasets. ‡ denotes further quantizing BSPN’s scaling factor γ

ψ
to a

power of two.

Table 3. Ablation study on PTsoftmax and BSPN in full precision ANNs

Model QQP MNLI-m SST-2 QNLI RTE MRPC STS-B Avg.

BERT-softmax-LN 91.3 84.7 93.3 91.7 72.6 88.2 89.4 87.3
BERT-PTsoftmax-LN 90.8 83.9 91.4 90.8 71.5 85.3 87.6 85.9
BERT-PTsoftmax-BSPN 89.7 80.9 91.7 87.4 69.0 81.9 84.4 83.6

Table 4. Energy cost comparison with various baselines. Sorbet is
first evaluated on the STS-B dataset, while * denotes usage on the
SST-2 dataset.

Model BERT LIF-BERT SpikeLM

FP32 51.41 7.98 3.98
FP16 15.21 3.55 1.77

Ours
1-Bit 0.65 / 0.56 *

the softmax and LN components in the full-precision BERT
model with our PTsoftmax and BSPN, respectively. The per-
formance results of this replacement are detailed in Table 3.
The impact caused by the two components is equivalent to
the model performance. Compared to our main result on
Sorbet in Table 2, the accuracy drop from full precision
BERT to Sorbet is mainly caused by the quantization of
weight and spike generation process, not by the replacement
of softmax and normalization. Exploring more accurate
ways to perform model quantization and spike generation
can be a potential future work.

Second, we tested the effectiveness of our components in
highly quantized BERT models on the SST-2 datasets. The
results are presented in Table 5. Our proposed PTsoftmax
and BSPN can maintain a good performance on full pre-
cision and highly quantized models. We also performed

Table 5. Ablation study on the impact of PTsoftmax and BSPN.
δ is the accuracy drop compared to a model using Softmax and
LayerNorm at the same precision. All models use 1-bit weights;
‘Bits’ in this table denotes the activation quantization bit-width.

PTsoftmax BSPN Accuracy (%) δ

Bits = 4
× × 91.5 -
✓ × 90.8 0.7
× ✓ 91.2 0.3
✓ ✓ 90.9 0.6

Bit = 1
× × 81.2 -
✓ × 80.0 1.2
× ✓ 79.9 1.3
✓ ✓ 79.8 1.4

ablation study on quantization level and timestep with the
conversion loss on SST-2 dataset in Appendix D.2.

6. Discussion
Although we do not have access to physical neuromorphic
chips, to demonstrate the neuromorphic hardware compat-
ibility of our proposed model, we have implemented and
validated the PTsoftmax and BSPN layers using the Lava
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framework, targeting Intel’s Loihi architecture. We further
synthesized PTsoftmax and BSPN layers in Verilog for a
commercial 22 nm process to estimate power consumption
as in Appendix E. While these methods demonstrate sub-
stantial energy-efficiency gains, they cannot fully capture
real hardware effects. Future work will prioritize deploy-
ment on actual neuromorphic platforms to obtain empirical
power and latency measurements, validate our simulation
fidelity, and guide hardware-aware refinements.

7. Conclusion
In this paper, we presented Sorbet, the first fully neuro-
morphic hardware-compatible, transformer-based spiking
language model. Sorbet addresses the challenge of adapting
transformer-based models for energy-efficient computation
by replacing traditional energy-intensive operations like soft-
max and layer normalization with our novel PTsoftmax and
BSPN. This challenge has been largely overlooked in previ-
ous works in this field. Furthermore, by using techniques
such as knowledge distillation and model quantization, we
achieved a highly compressed binary weight model, fur-
ther optimizing the model for real-world deployment on
neuromorphic hardware. When evaluated on the GLUE
benchmark, Sorbet achieved performance comparable to
state-of-the-art models with substantial energy savings.

At the time of writing this paper, DeepSeek has become a
global phenomenon. DeepSeek-V3 (DeepSeek-AI, 2024)
uses quantization to FP8 on Nvidia GPUs and standard
floating point softmax and normalization operations, while
DeepSeek-R1 (DeepSeek-AI, 2025) innovates in the train-
ing and distillation processes to achieve energy and resource-
efficient models. We believe that the techniques of Sorbet
can be adapted to make them even more so, especially for
inference on customized embedded architectures. This shall
be the focus of our future work.
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A. Spike Generation
We provide the detailed spike generation method we adopted in algorithm 4, where wlij is the weight of layer l from neuron i
to neuron j, bli is the bias of the neuron i in layer l, sli is the input spike train of the neuron i, and T is the time window size.

Algorithm 4 Average IF model
1: Input: Weight wlij , bias bli, input spike train sli, threshold θ, membrane potential U li (t) at timestep t, time window size
T ;

2: Output: Spike train sj ;
3: U li (t)←

∑
j(w

l
ij · sli(t) + bli)

4: Ali ←
∑T
t=1 U

l
i (t)/T

5: sli(0)← 0, V li (0)← 0;
6: for t← 1 to T do
7: V li (t)← V li (t− 1) +Ali

8: sl+1
j (t)←

{
1, V li (t) ≥ θ
0, otherwise

;

9: V li (t)←

{
V li (t)− θ, V li (t) ≥ θ
V li (t), otherwise

.

10: end for
11: return sl+1

j {Output the ASG spike train of neuron i}

B. Theoretical Results
B.1. Proof of BSPN

Assumption B.1 (Power-of-Two Condition on Normalization Input). For a Transformer-based SNN, the input to the
normalization layer X satisfies ⌈

log2
(
S(X)

)⌉
≥ 0,

where

S(X) =
1

n

n∑
i=1

|Xi|.

This condition is mild and consistent with our empirical observations in Transformer-based SNNs. The empirical results are
shown in Appendix D.1.

Based on these results, we have the following proof of Theorem 4.2 and Lemma 4.3.

Proof of Theorem 4.2. Since LBSPN(X) = LPN(Φ(X)), based on chain rule, we have:

∂LBSPN(X)

∂X
=
∂LPN(Φ(X))

∂Φ(X)
· ∂Φ(X)

∂X
. (19)

∂Φ(X)

∂X
=

∂X
∂X · 2

⌈log2(S(X))⌉ −X · ∂
∂X2⌈log2(S(X))⌉(

2⌈log2(S(X))⌉
)2 . (20)

Since
∂X

∂X
= I, and

∂

∂X
2⌈log2(S(X))⌉ = 0 (almost everywhere), (21)

we obtain
∂Φ(X)

∂X
=

In
2⌈log2(S(X))⌉ . (22)
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Thus, the gradient of LBSPN(X) can be expressed as:

∂LBSPN(X)

∂X
=

I

2⌈log2(S(X))⌉ ·
∂LPN(Φ(X))

∂Φ(X)
. (23)

As the gradient of any X is bounded for LPN(see section 4.2 in (Shen et al., 2020)):∥∥∥∥∂LBSPN(X)

∂X

∥∥∥∥
2

≤ 1

2⌈log2(S(X))⌉ · C (24)

Now, under the mild Assumption B.1, we have:

⌈log2(S(X))⌉ ≥ 0. (25)

Thus,

2⌈log2(S(X))⌉ ≥ 1 ⇒ 1

2⌈log2(S(X))⌉ ≤ 1. (26)

Therefore, we conclude: ∥∥∥∥∂LBSPN(X)

∂X

∥∥∥∥
2

≤ C. (27)

This establishes the gradient bound.

Proof of Lemma 4.3. Let kX = ⌈log2
(
S(X)

)
⌉ and kY = ⌈log2

(
S(Y )

)
⌉, under Assumption B.1, we have kX , kY ≥ 0,

hence
1

2kX
,

1

2kY
≤ 1. (28)

Therefore, we have: ∥∥Φ(X)− Φ(Y )
∥∥ =

∥∥ X

2kX
− Y

2kY

∥∥ =
∥∥2kY X − 2kXY

2kY 2kX

∥∥ ≤ ∥∥2kY X − 2kXY
∥∥ (29)

≤ max(2kY , 2kX )
∥∥X − Y ∥∥ ≤ ∥∥X − Y ∥∥. (30)

B.2. Proof of PTsoftmax

In this section, we provide detailed proof of the approximation error of PTsoftmax and base-2 softmax.

Proof of Lemma 4.5. Let ai = F2(xi), bi = F2(⌈xi⌉), ci = 2⌈xi⌉−k, where k =
[
log2

(∑n
j=1 2

xj

)]
, We claim the

following inequalities:

1. 1
2bi ≤ ai < 2bi.

2. 1√
2
ci ≤ bi ≤

√
2ci.

Proof of 1: Since xi ≤ ⌈xi⌉ < xi + 1, we consider the worst-case scenarios. For the right side, the worst case occurs
when xi = ⌊xi⌋+ ϵ, where ϵ is an arbitrarily small value, no greater than 1, and ⌈xj⌉ = xj for all j. Denote ⌊xi⌋ as ni ∈ Z.
Then ⌈xi⌉ = ni + 1, so we have:

bi =
2ni+1∑N

j=1 2
xj − 2ni+ϵ + 2ni+1

=
2 · 2ni∑N

j=1 2
xj − ϵ+ 1

(31)

≥ 2 · 2ni∑N
j=1 2

xj

≥ 2 · 2ni+ϵ∑N
j=1 2

xj

= 2ai. (32)
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For the left side, the worst case occurs when ⌈xi⌉ = xi and xj = nj + ϵ for some j, where nj = ⌊xj⌋. Then ⌈xj⌉ = nj +1,
and we have:

bi =
2xi∑N

j=1 2
nj+1 − 2xi+1 + 2xi

=
2xi

2 ·
∑N
j=1 2

nj − 2xi

(33)

<
2xi

2 ·
∑N
j=1 2

nj

≤ 2xi

2 ·
∑N
j=1 2

nj+ϵ
=

1

2
ai (34)

Proof of 2: Given that k =
[
log2

(∑n
j=1 2

xj

)]
, we have the following bounds:

k − 0.5 ≤ log2

 n∑
j=1

2⌈xj⌉

 ≤ k + 0.5. (35)

Thus, the ratio
bi
ci

=
2k∑N

j=1 2
⌈xj⌉

. (36)

satisfies
1√
2
=

2k

2k+0.5
≤ bi
ci
≤ 2k

2k−0.5
=
√
2 (37)

C. Evaluation Benchmark
We evaluate our Sorbet on 7 distinct datasets in the GLUE benchmark as follows:

• MNLI: The MNLI (Multi-Genre Natural Language Inference Corpus) is involved in natural language inference tasks.
It consists of a collection of sentence pairs annotated for textual entailment through crowdsourcing.

• QQP: The QQP (Quora Question Pairs) pertains to tasks involving similarity and paraphrase identification, focusing on
pairs of questions from the community Q&A website, Quora. The primary objective of this task is to ascertain whether
a pair of questions are semantically equivalent.

• QNLI: The QNLI (Question-answering Natural Language Inference) is a task in natural language inference. QNLI is
derived from another dataset, the Stanford Question Answering Dataset (SQuAD 1.0), which is a question-paragraph
pair question-answering dataset where the paragraphs are sourced from Wikipedia.

• SST-2: The SST-2 (Stanford Sentiment Treebank) is a single-sentence classification task that involves sentences from
movie reviews and their sentiment annotations by humans. This task requires classifying the sentiment of a given
sentence into positive and negative sentiment.

• STS-B: The STS-B (Semantic Textual Similarity Benchmark) comprises a collection of sentence pairs extracted from
sources such as news headlines, video titles, image captions, and natural language inference data. It is a regression task.

• RTE: The RTE (Recognizing Textual Entailment datasets) are from natural language inference tasks. It consolidates
datasets from a series of annual textual entailment challenges, with data samples constructed from news sources and
Wikipedia.

• MRPC: The MRPC (Microsoft Research Paraphrase Corpus) is involved in similarity and paraphrase tasks. It consists
of sentence pairs automatically extracted from online news sources, with human annotations to determine if the
sentences are semantically equivalent. The categories are not balanced, with 68% of the samples being positive
instances.
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D. Extra Results
D.1. Empirical Results

We present the empirical results for
⌈
log2

(
S(X)

)⌉
collected from different layers of Sorbet in Figure 4. These results

confirm that Assumption B.1 holds, as all values are greater than zero.

Figure 4. Distribution of S(X) measured from various Sorbet layers. The strictly positive values support the assumption made in
Assumption B.1.

D.2. Ablation on Quantization Levels

We provide additional results for different quantization levels and timesteps as a supplement to our ablation study on the
SST-2 dataset, shown in Table 6.
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Table 6. Accuracy comparison between quantized ANNs and SNNs under different activation bits and timesteps. δ is the accuracy drop
when converting quantized ANNs into SNNs.

Activation Bits / Timestep 1 / 2 2 / 4 3 / 8 4 / 16

Accuracy(%) Quantized ANN 79.8 87.9 90.1 90.9
SNN 78.7 87.4 89.3 90.4

δ 1.1 0.5 0.8 0.5

E. Energy Analysis
E.1. Computational cost for whole model

For assessment of the energy consumption of the whole model, we calculate based on the energy usage of multiplications
and additions. For sorbet, the weights are binary while the timestep is 16, so the maximum accumulation can be represented
with 1-bit FIX and 4-bit FIX. We tested on 22nm technology 0.01215pJ. As all the baselines are under a 45nm process
technology, to make it a fair comparison, we approximate 1 accumulation in Sorbet as EACC = 0.0243pJ.

Note that for original ANN BERT, we use EMAC = 4.6pJ (Horowitz, 2014) for 1 multiplication. Thus, with the spike
firing rate r and the total number of time steps T , the energy cost of Sorbet can be calculated as:

ESorbet = T · r · EBERT ·
EACC
EMAC

. (38)

E.2. Computational cost for operations

In Table 7, we list for a input with dimension d, the needed operations for different softmax and normalization:

Table 7. Computational cost comparison of the PTsoftmax and BSPN with their equivalents.

+ - × ÷ ex x2
√
x ≫ LUT

softmax n− 1 - - n n - - - -
PTsoftmax n− 1 n - - - - - n 1
LayerNorm 3n− 2 2n 2n n+ 2 - n 1 - -
BSPN 2n− 1 - - - - - - 2n 1

For our energy calculation in Figure 2, we count the major operations as 0.03pJ for addition, 0.2pJ for multiplication,
0.024pJ for shifting (You et al., 2020), 0.59pJ for division (Nadh et al., 2023) and 1.7pJ for exponential (Wu et al., 2019). To
make it a fair comparison, we use 8-bit integers for all these operations. For the results in Figure 2, we take d = 128. For
example, the energy cost of applying softmax once can be calculated as:

Esoftmax = d · (EADD + EDIV + EEXP) = 128× (0.03 + 0.59 + 1.7) = 296.96pJ. (39)
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