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ABSTRACT

Recent advancements in multivariate time series forecasting (MTSF) have increas-
ingly focused on the core challenge of learning dependencies within sequences,
specifically intra-series (temporal), inter-series (spatial), and cross-series dependen-
cies. While extracting multiple types of dependencies can theoretically enhance
the richness of learned correlations, it also increases computational complexity and
may introduce additional noise. The trade-off between the variety of dependen-
cies extracted and the potential interference has not yet been fully explored. To
address this challenge, we propose GRAPHSTAGE, a purely graph neural network
(GNN)-based model that decouples the learning of intra-series and inter-series
dependencies. GRAPHSTAGE features a minimal architecture with a specially
designed embedding and patching layer, along with the STAGE (Spatial-Temporal
Aggregation Graph Encoder) blocks. Unlike channel-mixing approaches, GRAPH-
STAGE is a channel-preserving method that maintains the shape of the input data
throughout training, thereby avoiding the interference and noise typically caused
by channel blending. Extensive experiments conducted on 13 real-world datasets
demonstrate that our model achieves performance comparable to or surpassing
state-of-the-art methods. Moreover, comparative experiments between our channel-
preserving framework and channel-mixing designs show that excessive dependency
extraction and channel blending can introduce noise and interference. As a purely
GNN-based model, GRAPHSTAGE generates learnable graphs in both temporal
and spatial dimensions, enabling the visualization of data periodicity and node
correlations to enhance model interpretability.

Resources: https://anonymous.4open.science/r/GraphSTAGE

1 INTRODUCTION

Multivariate time series forecasting (MTSF) is piv-
otal in various domains such as traffic flow predic-
tion and energy consumption forecasting. A key
consideration in MTSF is effectively modeling the
dependencies within the sequences—specifically
the intra-series (temporal), inter-series (spatial),
and potentially cross-series dependencies (Liu et al.,
20244, as shown in Figure[2] Capturing these de-
pendencies is crucial for understanding the under-
lying spatial and temporal relationships in the data,
which directly impacts the accuracy of predictions.

% Weather

= GraphSTAGE = iTransformer —— PatchTST -~ TimesNet = SCINet
However, many existing models focus on only one
type of dependency. Common approaches employ
channel-mixing techniques that project the original
time series data X;, € RV*T (where N is the
number of nodes and 7' is the length of time series) into different representations. For instance, some
methods transform Xj, into Hg € RV*P (Liu et al.| [2024c), which captures spatial dependencies
among nodes, while others project it into Hy &€ RT*D (Zhou et all 2022} [Li et all [2021; [Wu
et al.l |2021), emphasizing on temporal dependencies across time steps. These transformations

Figure 1: Performance of GRAPHSTAGE on
average results (MSE).
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Figure 2: Dependencies between two sub- Figure 3: Performance of GRAPHSTAGE
series in a multivariate time series. Variants on ETTm1 and ECL Datasets.

often overlook at least one kind of dependency and fail to learn the underlying spatial or temporal
graph structures (Yu et al.| [2024)), limiting the models’ ability to extract inter-series or intra-series
correlations effectively.

Recent models such as UniTST (Liu et al.,2024a)) and FourierGNN (Y1 et al.,2024) attempt to capture
multiple types of dependencies, including cross-series dependencies, by blending the temporal and
spatial dimensions. They reshape the input data X, from RY*7 into a RNT*1 structure. While this
approach theoretically allows for the simultaneous modeling of all dependencies, it also presents
two significant challenges: (1) increased computational complexity and (2) a heightened risk of
introducing additional noise.

First, mixing the channels may increases computational complexity. The complexity of weight
multiplication operations escalates from O(N?) to O((NT)?) (Liu et al., 2024a; |Yi et al., 2024),
leading to exponentially higher computational costs. Consequently, these models often implement
some compression mechanisms, such as router mechanism (Zhang & Yan| 2023), to mitigate the
computational burden. Despite these efforts, a trade-off between model size and performance
persists. Achieving better performance frequently requires larger models, indicating that compression
techniques may not fully address the efficiency concerns. To further illustrate this point, we conducted
model variants experiments in Section4.3] As shown in Table[d} our model outperforms VarC — a
channel-mixing model similar to UniTST (L1u et al., [2024a) and FourierGNN (Y1 et al.} 2024)), as
depicted in Figure[7] while also reducing memory usage by 83%.

Second, while blending channels allows these models to account for cross-series dependencies, it
may introduce additional noise into the modeling process. Existing studies have often emphasized the
benefits of capturing cross-series dependencies without fully considering the potential downsides of
added noise. As shown in Figure 3] aggregating all dependencies may enhance predictive accuracy to
some extent (as demonstrated by the improvement of performance on the ETTm1 dataset). However,
it can also lead to overly complex models that struggle to compensate for the interference caused by
the introduced noise, resulting in a sharp reduction in performance on the ECL dataset. This raises a
crucial question: Is it truly necessary to model all these dependencies?

We argue that modeling either a single type of dependency or multiple dependencies in a coupled
manner is inefficient. Recently, channel-preserving approaches have demonstrated efficiency and
effectiveness (Liu et al., 2024b; |Wang et al,2024)). To address the challenges of computational inef-
ficiency and noise introduced by channel-mixing, we propose GRAPHSTAGE, a purely GNN-based
model that decouples the learning of inter-series and intra-series dependencies while preserving the
original channel structures. Unlike existing channel-mixing approaches, GRAPHSTAGE maintains
the shape of the input data throughout the training process, thereby avoiding the interference caused
by channel blending. To our knowledge, GRAPHSTAGE is the first purely graph-based, channel-
preserving model. This design not only enhances computational efficiency but also reduces the noise
associated with channel blending. Our contributions are threefold:

* We reflect on the extraction of dependencies in current time series models and emphasize
that existing methods tend to overlook certain dependencies. Furthermore, we highlight that
channel blending and excessive correlation extraction can introduce noise, and propose a
channel-preserving framework to enable more accurate and robust dependencies modeling.
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* We propose GRAPHSTAGE, a fully GNN-based method to effectively capture intra-series
and inter-series dependencies, respectively, while generating interpretable correlation graphs.
Moreover, its decoupled design allows for the independent extraction of specific dependen-
cies as required.

* Experimentally, despite GRAPHSTAGE is structurally simple, it performs comparably to or
surpasses state-of-the-art models across 13 MTSF benchmark datasets, as shown in Figure|[T}]

By preserving the original data channels and decoupling dependencies learning, GRAPHSTAGE
overcomes the key limitations of existing methods, providing a more efficient and interpretable
solution for MTSF.

2 RELATED WORKS

Single Dependency Modeling. Traditional multivariate time series forecasting methods often focus
on capturing a single type of dependency—either temporal (intra-series) or spatial (inter-series).
Deep learning models such as CNNs, RNNs, GRUs and Formers (Hochreiter, |1997; |Chung et al.|
2014; Rangapuram et al., 2018 |Wu et al., [2021} |Li et al., 2021} [Zhou et al., 2022} |Liu et al., [2021}
Zhang et al.,[2024) excel at modeling sequential data by capturing temporal dynamics within each
series. However, these models typically treat each spatial node independently, failing to account for
inter-series dependency. On the other hand, models that focus solely on inter-series dependency, such
as GNNs (Bai et al., [2020) and Formers (Kitaev et al., 2020; |Liu et al., 2024c; |Cai et al., 2024), while
effective at capturing spatial correlations, may not adequately model the temporal correlations within
each series. Consequently, methods that concentrate on one type of dependency may fail to fully
capture the complex correlations inherent in multivariate time series data.

Modeling Combined Dependencies.

Recent approaches have explored to capture
multiple types of dependencies simultaneously by blending the temporal and spatial dimensions.
FourierGNN (Yi et al., 2024) and UniTST (Liu et al.| 2024a)) construct hypervariate graph as input
embeddings to represent time series with a unified view of spatial and temporal dynamics but overlook
the potential interference caused by channel-mixing. Recognizing this issue, DGCformer (Liu et al.,
2024b) identifies irrelevant nodes in channel-mixing and adopts a grouping mechanism to focus
attention on relevant nodes. Crossformer (Zhang & Yan, 2023 and CARD (Wang et al.}|[2024)) propose
a two-stage framework to extract inter-series and intra-series dependencies, applying attention across
both dimensions and then fuses the results. Building on these insights, we propose GRAPHSTAGE, a
purely GNN-based model that decouples the learning of inter-series and intra-series dependencies
while preserving the original input channels to avoid the interference introduced by channel blending.

3 GRAPHSTAGE

Problem Definition. Given the historical data X = {x1,...,x7} € R¥*T with N nodes and
T time steps, the multivariate time series forecasting task is to predict the future K time steps
Y = {x741,..., X7+ } € RV*E_ This process can be given by:

Y = Fy(X) = Fy, 4.(X), (1

where Y are the predictions corresponding to the ground truth Y. The forecasting function is denoted
as Fy parameterized by 6. In practice, the channel-preserving model will be decoupled leverage a
temporal network (parameterized by 0;) to learn the intra-series dependency and a spatial network
(parameterized by 6,) to learn the inter-series dependency, respectively (Wang et al., 2024).

Overall Structure. Based on the motivation of using channel-preserving strategy to avoid interfer-
ence introduced by channel-mixing, we propose GRAPHSTAGE—a purely GNN-based model with
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Figure 4: Overall Structure of GRAPHSTAGE. The model is composed of an Embedding & Patching
layer followed by L stacked STAGE blocks. Each STAGE block employs a decoupled yet unified
architecture integrating two key modules: the Intra-GrAG (Intra-series Pruned-Graph Aggregation),
which captures temporal dependency and generates the temporal learnable graph Ap; the Inter-GrAG
(Inter-series Pruned-Graph Aggregation), which captures spatial dependency and generates the spatial
learnable graph Ag.

an architecture that decouples the learning of intra-series and inter-series dependencies, as illustrated
in Figure 4| Our model comprises two key components: (1) a specially designed embedding and
patching layer; and (2) the Spatial-Temporal Aggregation Graph Encoder (STAGE) block. In the
embedding and patching layer, we introduce a more fine-grained time embedding to fully utilize the
relative positions of data points within an hour as prior knowledge. In the STAGE block, we design a
decoupled framework to respectively extract temporal and spatial dependencies, with corresponding
learnable graphs that can be visualized to enhance interpretability.

3.1 TOKENIZATION VIA EMBEDDING AND PATCHING

Channel-preserving Embedding Strategy. Most signal intra-series dependency modeling models
regard multiple nodes of the same time as the (temporal) token. As a result, they project the input
data shaped as X, € RV*7 into RT*P where D is the hidden dimension, and the original spatial
dimension N is not preserved. Inspired by inter-series oriented models (Liu et al.,[2024c)) in MTSF, we
preserve the nodes dimension throughout the model, which proven competent by previous works (Cai
et al.L[2024). Given a time series with NV nodes, X € RY¥*T we divide each univariate time series T;
into patches x; € RP*$, with stride s and number of patches P (Nie et al., 2023). A projection layer

is then applied to map all the series into X,, € RV*F*P where D is the embedding dimension.

Refined Time Embedding to Enhance Relative Positioning. The effectiveness of static covariates
that are available in advance has been validated in several MTSF models (Lim et al.,[2021; [Jiang
et al., |2023; |Huang & Xiao, 2024)). However, for datasets with a fixed sampling frequency below
one hour (e.g., five minutes or fifteen minutes), previous models only embedded the ‘Hour of Day’
and ‘Day of Week’ information (Cai et al., |2024), which is insufficient to reflect the relative position
within an hour. To address this limitation, we modify existing embedding methods by replacing the
‘Hour of Day’ embedding with a ‘Timestamp of Day’ embedding. This allows the embedding layer
to adapt to the sample frequency, providing a more fine-grained time embedding that fully utilize the
relative positions of data points within an hour as prior knowledge. Additionally, we introduce an
learnable embedding to adaptively capture underlying dependencies. The process is presented below:

H= Embedding(Xp) = Xp + €tod + €dow + ead 2)

'The process utilizes the broadcasting mechanism in PyTorch.
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where H € RN*PXD contains N embedded tokens of dimension D, e;,q € RP*P and ey, €
RP*D are learnable embeddings for ‘“Timestamp of Day’ and ‘Day of Week’, respectively. €qdp €

RP*P is generated using a random tensor method.

3.2 SPATIAL-TEMPORAL AGGREGATION GRAPH ENCODER

Our proposed STAGE block is illustrated in Figure [ STAGE employs a decoupled yet unified archi-
tecture to aggregate information learned by Temporal Learnable Graph (A7) and Spatial Learnable
Graph (Ag). The Intra-series Pruned-Graph AGgregation module (Intra-GrAG) is responsible for
extracting intra-series (temporal) dependencies and generating the A7. Similarly, the Inter-series
Pruned-Graph AGgregation module (Inter-GrAG) extracts inter-series (spatial) dependencies and
generates the Ag.

Decoupled Spatial-Temporal Extraction with Unified Aggregation. STAGE is capable of learn-
ing intra-series and inter-series dependencies separately within a single block by utilizing a decoupled
architecture composed of Intra-GrAG and Inter-GrAG modules. In STAGE block, the input tensor
has dimensions H € RV*P*D where N is the number of nodes, P is the number of patches, and
D is the embedding dimension. To learn intra-series dependencies, we first transpose the input
tensor to shape RT*N*P swapping the spatial and temporal dimensions. This restructure allows
the model to focus on temporal relationships within each node across different time steps. After
learning the intra-dependencies, we transpose the tensor back to its original shape RY*?*D to learn
inter-series dependencies, concentrating on the relationships between different nodes at each time
step. By adopting this approach, we can employ a unified architecture for both intra-dependency and
inter-dependency learning, simply by changing the order of the input dimensions.

Furthermore, since STAGE is a purely GNN-based method, the correlations among nodes or patches
(time steps) learned by the model can be directly visualized, enhancing interpretability and providing
insights into the data periodicity and node correlations.

Learnable Graph Generator for Temporal and Spatial Dimensions. Learnable Graphs are
essential for characterizing both temporal and spatial similarities. STAGE adaptively learns the graph
structures by generating separate adjacency matrices: Ap for patches (temporal dimension) and Ag
for nodes (spatial dimension).

Since STAGE employs a unified aggregation mechanism, the principles of the Inter-GrAG and
Intra-GrAG modules are analogous. Therefore, to avoid redundancy, the subsequent discussion will
focus only on the components of the Inter-GrAG module. First, a Pooling layer downsamples the
extracted temporal information. We can choose any pooling mechanisms in the temporal dimension
as the Pool operation, such as max-pooling and mean-pooling. To capture directed similarities among
nodes, we apply two Linear mappings to each node:

Egre = L2Norm(Hpooi Whp1), Ergt = L2Norm(HpootWp2), Hpoot = Pool(Hiy ), 3)

where Hpoo € RN*P . Here, H;,, € RV*FP*P js obtained by transposing the output of intra-GrAG
module, which originally has the shape RE*N*D_1¥,; € RP*¢ W, € RP*¢ are two trainable
matrices, and Ey,.. € RYV*¢ and E;,, € RV € are the source and target embedding matrices of all
nodes, respectively. The L2 normalization ensures that each embedding matrices has a unit norm,
facilitating stable training and enhancing model performance.

Ag = SoftMax(ReLU(Eq,. - Ef,)). “4)

The ReLU activation is used to avoid negative values. SoftMax function is employed to normalize
values in the matrix. In this way, we obtain the spatial learnable graph Ag € RV X" which serves
as a global similarities matrix. It should be noted that the parameters of this similarity matrix are
derived for each individual sample. Consequently, when the sample changes, the similarity weights
among different nodes also change.

Pruned-Graph Aggregation Mechanism. In the Intra-GrAG module, this mechanism performs
graph convolutions on the learned graph A7. In the Inter-GrAG module, it performs graph convolu-
tions on the learned graph Ag, aggregating information from global nodes while pruning irrelevant or
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weak connections. The pruning operation reduces noise and enhances the model’s ability to focus on
the most significant correlations. To avoid redundancy and for simplicity, the subsequent discussion
will focus only on the components of the Inter-GrAG module.

Graph attention network (GAT) (Velickovic et al.,|2017) is a powerful model for extracting spatial
dependencies, allocating different weights to neighbor nodes. Pruned-Graph Aggregation (PGA)
can be regarded as a Special GAT with three specific improvements: 1) input embeddings are the
extracted temporal embeddings rather than the original features; 2) the input nodes learnable graph
will be pruned to make the model concentrate on the most significant connections; 3) the spatial
dependencies among nodes is global rather than localized in neighborhoods. In this way, PGA
incorporates spatial information effectively and aggregates global information without any prior
knowledge, such as pre-defined static graph. The whole process can be formulated as below:

H,, = Hiyy Wy + Prune(Ag)H;,,Wa + Prune(Ag)” H;,, W, )

where Wy, Wa, W3 € RP*D are trainable matrices and H,, € RY*P*P The Prune operation
retains the top-k values to focus on the most significant connections, where k = N x « for Inter-GrAG
module and £ = P X « for Intra-GrAG module, with a coefficient « between 0 and 1 (e.g., 0.7). After
that, a Feed-Forward Network (FFN) and Gate is employed to obtain the output of Encoders Hp.
The FFN processes the aggregated features to capture nonlinear transformations, while the gating
mechanism controls the flow of information. This gating enhances the model’s capacity to capture
complex dependencies by adaptively weighing the importance of different features. The detailed
implement about the FFN and Gate layer can be found in Appendix [A]

In summary, STAGE decouples intra-series and inter-series dependencies within a unified pruned-
graph aggregation mechanism, avoiding computational overhead and potential noise introduced by
channel blending. Its fully graph-based mechanism enhances interpretability. Further discussion
about the variants of STAGE will be delivered in the Section

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To validate the performance of GRAPHSTAGE, we conduct extensive benchmarks on
13 real-world datasets, including ETT (4 subsets), ECL, Exchange, Traffic, Weather, Solar-Energy
datasets proposed in LSTNet (Lai et al., | 2018a), and PEMS (4 subsets) collected by the Performance
Measurement System (PeMS) (Choe et al., |2002) and proposed in ASTGCN (Guo et al., 2019).
Detailed dataset descriptions are provided in Appendix [B] and the hyperparameters and settings can
be found in Appendix

Baselines. We have selected seven well-known forecasting models as our benchmarks, including (1)
Transformer-based methods: iTransformer (Liu et al., 2024c)), Crossformer (Zhang & Yanl [2023)),
PatchTST (Nie et al., [2023)); (2) Linear-based methods: DLinear (Zeng et al., |2023)), RLinear (L1
et al.,[2023)); and (3) TCN-based methods: SCINet (Liu et al., 2022), TimesNet (Wu et al., [2023]).

4.2 MAIN RESULTS

Comprehensive forecasting results are presented in Table[I] with the best
performances in red and the second in blue. Full forecasting results are provided in Appendix
Lower MSE/MAE values indicate better prediction performance. The quantitative results reveal that
GRAPHSTAGE demonstrates outstanding performance across all datasets, including node-based
multivariate time series datasets (e.g., PEMS, Solar-Energy) and attribute-based multivariate time
series datasets (e.g., ETT, Weather, ECL). GRAPHSTAGE achieves the best performance in 22 out of
30 cases, significantly outperforming the recent state-of-the-art (SOTA) iTransformer, which ranks
first in only 4 instances. Compared to iTransformer, the MSE on the ECL, ETT (AVG), Weather,
Solar-Energy, and PEMS (AVG) datasets is significantly reduced by 6.7%, 2.1%, 5.8%, 17.6%,
and 14.3%, respectively. Specifically, on the PEMSO07 dataset, which has the largest number of
nodes, GRAPHSTAGE outperforms the recent SOTA iTransformer by 20.8%, indicating its potential
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Table 1: Multivariate forecasting results with prediction lengths K € {12, 24, 48,96} for PEMS and
K € {96,192, 336, 720} for others and fixed lookback length T = 96. Results are averaged from all
prediction lengths. AVG means further averaged by subsets. Full results are listed in Appendix [D]

Models ‘ Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric  |MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE

ECL  |0.166 0.263[0.178 0.270 |0.219 0.298]0.205 0.290|0.244 0.334 |0.192 0.295|0.212 0.300]0.268 0.365
ETTml  ]0.391 0.394]0.407 0.410 |0.414 0.407|0.387 0.400]0.513 0.496 [0.400 0.406]0.403 0.407|0.485 0.481
ETTm2  [0.278 0.325[0.288 0.332 |0.286 0.327|0.281 0.326|0.757 0.610 |0.291 0.333]|0.350 0.401]0.571 0.537

ETThl  |0.445 0.430]0.454 0.447 |0.446 0.434]0.469 0.454]0.529 0.522 |0.458 0.450|0.456 0.4520.747 0.647
ETTh2  [0.387 0.407]0.383 0.407 |0.374 0.398|0.387 0.407|0.942 0.684 |0.414 0.427]0.559 0.515]0.954 0.723
ETT (AVG) |0.375 0.388]0.383 0.399 |0.380 0.392]|0.381 0.397[0.685 0.578 |0.391 0.404|0.442 0.444|0.689 0.597
Exchange [0.376 0.409|0.360 0.403 |0.378 0.417|0.367 0.404|0.940 0.707 |0.416 0.443|0.354 0.4140.750 0.626
Traffic  [0.462 0.294]0.428 0.282 |0.626 0.378]0.481 0.304]|0.550 0.304 [0.620 0.336|0.625 0.383|0.804 0.509
Weather  [0.243 0.274]0.258 0.278 |0.272 0.291[0.259 0.281]0.259 0.315 |0.259 0.287]0.265 0.317]0.292 0.363
Solar-Energy |0.192 0.267[0.233 0.262 0.369 0.356]0.270 0.307]0.641 0.639 [0.301 0.319]0.330 0.401]0.282 0.375
PEMSO03  {0.097 0.210]0.113 0.221 |0.495 0.472]|0.180 0.291]|0.169 0.281 |0.147 0.248|0.278 0.375]0.114 0.224
PEMS04  [0.090 0.200[0.111 0.221 ]0.526 0.491]0.195 0.307|0.209 0.314]0.129 0.241|0.295 0.388]0.092 0.202
PEMS07 [0.080 0.179|0.101 0.204 |0.504 0.478]0.211 0.303|0.235 0.315]0.124 0.225|0.329 0.395]0.119 0.234
PEMSO08  [0.139 0.220]0.150 0.226 |0.529 0.487]|0.280 0.321]|0.268 0.307 [0.193 0.271]0.379 0.416]0.158 0.244
PEMS (AVG)|0.102 0.203]0.119 0.218 |0.514 0.482]|0.217 0.305]|0.220 0.304 |0.148 0.246]0.320 0.394]0.121 0.222
1%t Count | 22 | 4 | 2 | 1 \ 0 \ 0 | 1 | 0

for application to larger-scale MTSF tasks, such as extensive grid management. Moreover, the
recent SOTA iTransformer performs poorly on attribute-based multivariate time series datasets
(e.g., ETT) because it is a single-dependency learning model that focuses solely on inter-series
(spatial) dependencies. In attribute-based datasets, there is generally no strong direct interaction or
correlation between the attributes (e.g., temperature, wind speed), which makes it more necessary
to extract intra-series (temporal) dependencies. This observation further validates the effectiveness
of GRAPHSTAGE in capturing both intra-series and inter-series dependencies, leading to superior
forecasting accuracy across diverse types of multivariate time series data.

Model Efficiency and Increasing lookback length. We conducted a comprehensive comparison
of the performance, training speed, and memory usage of GRAPHSTAGE against other models on
the ECL dataset, as shown in Figure 5] While GRAPHSTAGE may not achieve the best results
in terms of training speed and memory usage, it delivers the best predictive performance. To

ECL Increasing Lookback Length
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Figure 5: Model efficiency comparison on Figure 6: Forecasting results with output
ECL dataset with input length 96 and output length 96 and input length in {48, 96, 192,
length 96. 336, 512} across four datasets.
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ensure a fair comparison, we followed the settings in (Cai et al.| [2024)) and set the batch size of
GRAPHSTAGE to 32. Compared with Crossformer (Zhang & Yan, [2023), the only baseline model
that learns multiple dependencies, GRAPHSTAGE’s memory usage decreased by 47.0%, training
time decreased by 60.9%, and predictive performance improved by 36.5%. This significant reduction
in computational resources, combined with an improvement in accuracy, highlights GRAPHSTAGE’s
efficiency. Therefore, GRAPHSTAGE effectively balances model size, computational speed, and
predictive accuracy. Our model achieves superior performance at an acceptable computational cost,
demonstrating its practicality for real-world MTSF tasks.

Additionally, to evaluate the ability of GRAPHSTAGE to leverage increasing lookback length, we
conducted experiments on the ETTm1, PEMSO04, Solar-Energy, and ECL datasets. The input lengths
were varied from shorter to longer as 48, 96, 192, 336, 512, while the forecasting horizon was fixed at
the next 96 time steps. As shown in Figure[6] the model’s performance steadily improves as the input
length increases. Notably, when the input length expands from 48 to 96, the MSE decreases most
significantly. This demonstrates that the Intra-GrAG module of GRAPHSTAGE effectively captures
intra-series dependencies, enabling it to learn more temporal correlations from longer input series.

4.3 MODEL ANALYSIS

Ablation on Correlation Learning Mechanism. To verify the effectiveness of GRAPHSTAGE
components, we provide detailed ablation studies covering both removing components (w/o0) and
replacing components (Replace) experiments. The averaged results are listed in Table 2| In the
replacement experiments, we use the attention from Crossformer (Zhang & Yanl [2023)), which has
been proved more accurate than vanilla Transformer (Vaswani et al.,2017). Removing any component
from GRAPHSTAGE results in performance degradation. GRAPHSTAGE utilizes Inter-GrAG
module on the spatial dimension and Intra-GrAG module on the time dimension, generally achieving
better performance than when replaced by the specially designed attention from Crossformer.

Table 2: Ablations on the Correlation Learning Mechanism. We remove or replace components along
spatial and temporal dimensions to learn multivariate correlations. The average results of all predicted
lengths are listed here, with full results provided in Appendix [G]

. | . | | ETTml | ECL | Traffic |Solar-Energy
Design Spatial Temporal
| |MSE MAE | MSE MAE |MSE MAE |MSE MAE
GRAPHSTAGE | Inter-GrAG | Intra-GrAG | 0.391 0.394 | 0.166 0.263 | 0.462 0.294 | 0.192 0.267

wlo Inter-GrAG w/o 0.398 0.400 | 0.185 0.277 | 0.478 0.312]0.225 0.292
w/o Intra-GrAG | 0.399 0.400 | 0.186 0.276 | 0.509 0.320 | 0.239 0.294

Inter-GrAG | Attention |0.395 0.401|0.168 0.265|0.478 0.303 |0.206 0.270

Replace Attention | Intra-GrAG |0.403 0.406 | 0.171 0.268 | 0.459 0.305|0.206 0.276
Attention Attention | 0.395 0.404 |0.171 0.269 | 0.453 0.300 | 0.204 0.264

Ablation on Embedding&Patching Mechanism. As shown in Table|3| we test the components of
the Embedding&Patching module through three ablation studies: w/o Patching, w/o Time Embedding,
and w/o Adaptive Embedding. The performance of GRAPHSTAGE consistently surpasses all of the
ablation variants, indicating that accurate prediction relies not only on the dependency extraction
module but also importantly on the use of prior knowledge. Full results are provided in Appendix [G|

Table 3: Ablations on the Embedding&Patching Mechanism. The average results are listed here.

| PEMSO3 | PEMS04 | PEMS07 |  PEMSOS
| MSE MAE | MSE MAE | MSE MAE | MSE MAE

GRAPHSTAGE 0.097 0.210 0.090 0.200 0.080 0.179 0.139 0.220
w/o Patching 0.110 0.222 0.100 0.215 0.096 0.199 0.176 0.253
w/o Time Emb. 0.114 0.223 0.099 0.211 0.091 0.193 0.199 0.264
w/o Adaptive Emb. 0.121 0.257 0.098 0.211 0.116 0.221 0.203 0.260

Design
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Variants Comparison. We designed three model variants to validate the effectiveness of our
framework. As illustrated in Figure[7] the proposed GRAPHSTAGE model is referred to as Orig.

Output Output Output Output
[NxPxD] [NxPxD] [NxPxD] [NxPxD]
D
| Inter-GrAG | | Intra-GrAG | |
T T | Intra-GrAG | | Inter-GrAG |
A

| Intra-GrAG | | Inter-GrAG | T

[NxPxD] [NxPxD] [NxPxD] [NxPxD]

lnput—_»T—)S Input-S-T Input-S+T Input-S+T+C
Orig VarA VarB VarC

Figure 7: Model Variants. Orig (GRAPHSTAGE) follows an input—T—S structure, sequentially
extracting temporal and then spatial dependencies. VarA uses input—S—T, reversing the order but
remaining sequential. VarB employs input—S+-T, a parallel structure that decouples temporal and
spatial extraction before fusion. VarC utilizes input—S+T+C (C represents cross-series dependency
as shown in Figure [2), incorporating channel-mixing with a unified architecture similar to Fouri-
erGNN (Y1 et al.l 2024)), extracting all three types of dependencies within a unified framework.

In Variant VarA, we swapped the positions of the Inter-GrAG and Intra-GrAG modules. The Inter-
GrAG module now processes the original features, rather than the temporal embeddings extracted
by the Intra-GrAG module. The swap aims to validate the rationale of the proposed sequential
architecture. VarA’s performance in Table[d] shows that the original sequence—inputting the extracted
temporal embeddings into the Inter-GrAG—contributes positively to the model’s effectiveness.

In Variant VarB, the Inter-GrAG and Intra-GrAG modules are connected in parallel rather than
sequentially. This configuration investigates whether simultaneous processing of inter-series and
intra-series dependencies impacts model performance compared to the original sequential architecture.
VarB’s performance in Table | confirms the sequential structure is more effective than the parallel.

In Variant VarC, we adopt the same channel-mixing architecture as UniTST (Liu et al. 2024a)
and FourierGNN (Yi et al., 2024), which reshapes the input data Xj, from RY*7 to a RNVTx1
structure. This reshaping enables the coupled learning of three types of dependencies within a unified
structure. By comparing Orig with VarC, we are able to evaluate the effectiveness of our proposed
channel-preserving framework. From the results in Table ] we observe that although channel-mixing
demonstrates stronger results in some cases—e.g., on the ETTm1 dataset with an input length of
96 and forecast length of 720, it outperforms Orig by 5.8%—this improvement comes at the cost
of increased memory usage. Moreover, on larger datasets like ECL, channel blending leads to an
exponential increase in parameters and a sharp decrease in prediction accuracy. By treating the
original multivariate time series as a univariate time series of length NV x T, the coupled dependencies
learning introduces more interference and noise compared to the proposed decoupled framework.
This highlights the advantages of our channel-preserving strategy, which maintains computational
efficiency and reduces noise while effectively capturing the essential dependencies.

The comparisons among these variants validate the design of GRAPHSTAGE. The sequential struc-
ture in Orig (GRAPHSTAGE) proves to be more effective than altering the module order (VarA)
or processing dependencies in parallel (VarB). Additionally, our channel-preserving framework
demonstrates superior scalability and efficiency compared to the channel-mixing strategy in VarC,
especially on larger datasets. This underscores the importance of preserving the original data structure
and decoupling the learning of inter-series and intra-series dependencies in MTSF models.

Visualization of Learned Dependencies. We conducted heatmap visualizations of dependencies
on three datasets with different sampling frequencies: ETTm1, ECL, and PEMS04. For ETTm1, the
input length is set to 288, corresponding to 3 days of data, as the sampling frequency is 15 minutes
(288 x 15 minutes = 3 days). For ECL, the input length is 96, meaning each sample contains 4 days
of data, given the sampling frequency of 1 hour (96 x 1 hour = 4 days). For PEMS04 with 5-minute
intervals, the input length is set to 576, meaning each sample contains 2 days of input data.
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Table 4: Model variants. All models are evaluated on 4 different predication lengths. The best results
are in red, the second results are in blue, and the highest memory usage is in bold.

Models |Orig (GRAPHSTAGE) VarA VarB VarC

Metric |MSE MAE Mem (GB)|[MSE MAE Mem (GB)|MSE MAE Mem (GB)| MSE MAE Mem (GB)

96 [0.319 0.356  0.522 [0.326 0.361  0.522 [0.316 0.357 0.522 |0.325 0.361  0.558
192 10.367 0.381  0.522  |0.365 0.383  0.522 [0.373 0.390 0.522 |0.370 0.387  0.578
336 {0.394 0.400  0.522 |0.403 0.413  0.522 |0.401 0409 0.522 |0.402 0.410  0.578
720 10.482 0.441  0.544 ]0.456 0.444  0.544 ]0.476 0.450 0.544 |0.458 0.443  0.597
AVG|0.391 0.394 0.528 |0.388 0.400 0.528 |0.392 0.402  0.528 |0.389 0.400 0.578

96 10.139 0.237  4.066 [0.166 0.257 3.920 |0.156 0.250  4.110 |0.170 0.265 23.703
192 {0.155 0.251  4.080 |0.172 0.265 3.920 [0.169 0.262  4.124 |0.175 0.267  23.725
336 10.175 0.272  4.086 |0.193 0.285 4.100 |0.184 0.277 4.186 |0.192 0.285 23.749
720 {0.196 0.292  4.144 |0.2350.319 4.120 [0.225 0.313 4200 [0.231 0.317 23.794
AVG|0.166 0.263  4.094 |0.192 0.282 4.015 [0.184 0.276  4.155 |0.192 0.284 23.743

ETTml

ECL

In experiments, we set the patch stride to 2 and randomly selected one Temporal Learnable Graph
(Ar) for each dataset, as shown in Figure In ETTml’s A(l), peaks occur every 48 patches,
corresponding to 24 hours. Similarly, ECL’s Ag? ) shows peak every 12 patches (24 hours), and

PEMS04’s Ag’ ) peaks every 144 patches (24 hours). These visualizations demonstrate that the
periodicity extracted by the Inter-GrAG module matches the inherent daily periodicity of each dataset.
This match confirms our method effectively captures and visualizes the daily patterns in the data.
Appendix [H] provides additional A visualizations and the analysis of Spatial Learnable Graph (Ag).

AY: ETTm1 AY): PEMS04

3
¢
2
3

Patch Index
Patch Index

S 024 6 81012141618202224 26283032 343638404244
Patch Index Patch Index

Figure 8: Visualization of Temporal Learnable Graphs (Ar) across different datasets (ETTm1, ECL,
PEMS04). Each column represents a randomly selected A7 from the results of GRAPHSTAGE.

5 CONCLUSION

Current models primarily focus on the advantages of channel-mixing methods for extracting multiple
dependencies, often neglecting the noise these approaches can introduce. GRAPHSTAGE is the first
model to directly address this issue. Through the model variants experiments in Section 3] we
validated the presence of such interference, underscoring the limitations of excessive dependency
extraction. To mitigate these challenges, GRAPHSTAGE utilizes a decoupled architecture that
independently extracts inter-series and intra-series dependencies. As a fully graph-based, channel-
preserving framework, GRAPHSTAGE maintains the integrity of the original channel structures,
effectively avoiding the interference and noise associated with channel blending. Extensive experi-
ments conducted on 13 real-world datasets demonstrate that GRAPHS TAGE achieves performance on
par with, or surpassing, state-of-the-art methods. Future research could explore decoupled extraction
of cross-series dependencies and develop inductive models that maintain channel preservation.
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6 ETHICS STATEMENT

Our work focuses solely on scientific challenges and does not involve human subjects, animals, or
environmentally sensitive materials. We foresee no ethical risks or conflicts of interest. We are
committed to upholding the highest standards of scientific integrity and ethical conduct to ensure the
validity and reliability of our findings.

7 REPRODUCIBILITY STATEMENT

We provide detailed implementation information in Appendix [Al [B] and|[C] including additional model
details, descriptions of the datasets, hyperparameters, and experiment settings. For reproducibility,
the source code is made available through an anonymous link: https://anonymous.4open,
science/r/GraphSTAGE.

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. Advances in neural information processing systems, 33:17804—
17815, 2020.

Wanlin Cai, Kun Wang, Hao Wu, Xiaoxu Chen, and Yuankai Wu. Forecastgrapher: Redefining
multivariate time series forecasting with graph neural networks. arXiv preprint arXiv:2405.18036,
2024.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. Advances in neural information processing systems, 33:17766—17778, 2020.

Tom Choe, Alexander Skabardonis, and Pravin Varaiya. Freeway performance measurement system:
Operational analysis tool. Transportation Research Record, 1811, 01 2002. doi: 10.3141/1811-08.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. Units: A unified multi-task time series model, 2024.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 922-929, 2019.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36:46885-46902, 2023.

Yuanpei Huang and Nanfeng Xiao. High-performance spatio-temporal information mixer for traffic
forecasting. In 2024 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE,
2024.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In AAAI. AAAI Press, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. /CLR, 2015.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688-2697.
PMLR, 2018.

11


https://anonymous.4open.science/r/GraphSTAGE
https://anonymous.4open.science/r/GraphSTAGE

Under review as a conference paper at ICLR 2025

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. SIGIR, 2018a.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95-104, 2018b.

Jianxin Li, Xiong Hui, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence
time-series forecasting. arXiv: 2012.07436, 2021.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748-1764, 2021.

Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, and Doyen
Sahoo. Unitst: Effectively modeling inter-series and intra-series dependencies for multivariate
time series forecasting. arXiv preprint arXiv:2406.04975, 2024a.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
time series modeling and forecasting with sample convolution and interaction. NeurIPS, 2022.

Qinshuo Liu, Yanwen Fang, Pengtao Jiang, and Guodong Li. Dgcformer: Deep graph clustering
transformer for multivariate time series forecasting. arXiv preprint arXiv:2405.08440, 2024b.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024c.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. ICLR, 2023.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and
Tim Januschowski. Deep state space models for time series forecasting. Advances in neural
information processing systems, 31, 2018.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. In International Conference on Learning Representations, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. staz, 1050(20):10-48550, 2017.

Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. Card: Channel aligned
robust blend transformer for time series forecasting. In The Twelfth International Conference on
Learning Representations, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. NeurlPS, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. ICLR, 2023.

12



Under review as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’ 19, pp. 1907-1913. AAAI Press, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 753-763,
2020.

Nancy Xu, Chrysoula Kosma, and Michalis Vazirgiannis. Timegnn: Temporal dynamic graph
learning for time series forecasting. In International Conference on Complex Networks and Their
Applications, pp. 87-99. Springer, 2023.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
perspective. Advances in Neural Information Processing Systems, 36, 2024.

Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
multivariate time series forecasting: Learnable decomposition with inter-series dependencies and
intra-series variations modeling. In Forty-first International Conference on Machine Learning,
2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? AAAI 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. ICLR, 2023.

Yunhao Zhang, Minghao Liu, Shengyang Zhou, and Junchi Yan. UP2ME: Univariate pre-training to
multivariate fine-tuning as a general-purpose framework for multivariate time series analysis. In
Forty-first International Conference on Machine Learning, 2024.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. /CML, 2022.

13



Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

The detailed implementation for the Feed-Forward Network (FFN) and Gate layers are presented
below. Since the Spatial-Temporal Aggregation Graph Encoder (STAGE) block employs a unified
aggregation mechanism, the principles of the Inter-GrAG and Intra-GrAG modules are analogous.
Therefore, to avoid redundancy, we focus on the components of the Inter-GrAG module. The
transposed input to the Inter-GrAG module is H;,, € RV*P*P ‘and the output of the Pruned-Graph
Aggregation (PGA) is H,, € RV*P*P_ The module employs a FFN and a Gate layer to generate
the encoder output Hg.

Feed-Forward Network (FFN). The FFN is responsible for processing the aggregated features to
capture nonlinear transformations. It introduces nonlinearity and enhances the model’s capacity to
learn complex representations. As formulated in Equation [6} the FFN consists of two linear layers
with ReLU activation functions. To facilitate better gradient flow and mitigate the vanishing gradient
problem, residual connections are employed. Specifically, after the FFN processes the features,
a residual connection adds the dropped Hrrn back to the original input H;,,, followed by layer
normalization.

H,.s = LayerNorm (Dropout(HrrN) + Hin) (6a)
Hppn = ReLU (Linear (ReLU (Linear(Hyy)))) - (6b)

Gate Layer. We use the same Gate layer as UniTS (Gao et al.,2024)). The Gate layer is placed at the
output of each Inter-GrAG and Intra-GrAG module within the STAGE blocks to regulate the flow of
information. Specifically, given an input Hys € RY*P*D 4 linear layer maps the input to a scaling
factor H; € RV*PX1 along the embedding dimension. This is followed by a Sigmoid function to
ensure the scaling factor lies between 0 and 1. The final gating operation involves element-wise
multiplication of the input with the Sigmoid-activated scaling factor, as formulated in Equation[7]

Hp = Sigmoid(H;) ® H,es, H; = Linear(H,.s). @)

This gating mechanism enhances the model’s ability to capture complex dependencies by adaptively
weighing the importance of different features.

[

B DATASETS DETAILS FOR MULTIVARIATE TIME SERIES FORECASTING

We conduct experiments on 13 real-world datasets, covering a diverse range of application scenarios
and facilitating a comprehensive evaluation of the model. The details of the datasets are as follows:
(1) ETT (L1 et al., [2021)) records 7 features of electricity transformer at two time scales: hourly and
every 15 minutes. The data are sourced from two regions, resulting in four subsets: ETTh1, ETTh2,
ETTml, and ETTm?2. (2) ECL (Wu et al, |2021) records the hourly electricity consumption data
of 321 customers. (3) Exchange (Lai et al.,|2018b)) collects the data of daily exchange rates for 8
countries from 1990 to 2016. (4) Traffic (Wu et al., 2023) contains hourly road occupancy rates
measured by 862 sensors on San Francisco Bay area freeways in two years. (5) Weather (Liu et al.|
2024c) records 21 meteorological indicators at 10-minute intervals. (6) Solar-Energy (Lai et al.,
2018a) includes solar power production data from 137 photovoltaic plants in 2006, with recording
taken every 10 minutes. (7) PEMS (Choe et al., 2002) collects traffic network data in California
through multiple detection instruments. We adopt four subsets—PEMS03, PEMS04, PEMS07, and
PEMSO08 used by ASTGCN (Guo et al.,|2019). The details of datasets are provided in Table E}

14



Under review as a conference paper at ICLR 2025

Table 5: Detailed dataset descriptions. Nodes denote the node numbers of each dataset. Prediction
Length denotes the future time points to be predicted and four prediction settings are included in
each dataset. Dataset Size refers to the total number of time points in (Train, Validation, Test) split
respectively. Frequency denotes the sampling frequency of time points.

Dataset | Nodes | Prediction Length | Dataset Size | Frequency
ETThl | 7 | {96.192,336,720} | (8545,2881,2881) | Hourly
ETTh2 | 7 | {96.192.336,720} | (8545,2881,2881) | Hourly
ETTml | 7 | {96.192,336,720} | (34465, 11521, 11521) |  15min
ETTm2 | 7 | {96.192,336,720} | (34465, 11521,11521) |  15min
Exchange | 8 | {96.192.336,720} | (5120,665,1422) | Daily
Weather | 21 | {96,192,336,720} | (36792,5271,10540) | 10min
ECL | 321 | {96,192,336,720} | (18317,2633,5261) | Hourly
Traffic | 862 | {96.192.336,720} | (12185,1757,3509) | Hourly
Solar-Energy | 137 | {96,192,336,720} | (36601,5161,10417) |  10min
PEMSO03 | 358 | {12, 24, 48,96} | (15617, 5135,5135) | Smin
PEMS04 | 307 | {12.24.489} | (10172,3375,3375) | Smin
PEMSO7 | 883 | {1224489)} | (16911,5622,5622) |  Smin
PEMS08 | 170 | {12.24.4896} | (10690,3548,3548) |  Smin

Algorithm 1

Require: Input historical time series X € RY*T; input length T'; prediction length K; nodes

—

AR A A U R ol

e e e e

number N; patches number P; patch stride s;embedding dimension D; STAGE block number L.

Base = Mean(X) > Base € RV*!
X = Patching(X) > X € RVxPxs
> Projecton works on the last dimension to map series into embedding dimension D.
Xp = Projecton(X) > X, € RVXPxD
> Refined time embedding to enhance relative positioning.
H® = Embedding(X,) > HO € RVxPxD
for lin {1,...,L}: > Run through stacked STAGE blocks.
> Intra-GrAG module to capture temporal dependency.
H,' ' = IntraGraG(H' '.transpose) > H! ™! e RPXNXD
> Inter-GrAG module to capture spatial dependency.
H' = InterGrAG(H,' '.transpose) > H! ¢ RVxPxD
: End for
: Y = Projecton(HF) > Project tokens back to predicted series, Y € RN *K
: ¥ =Y + Base >Y e RVXK
: Return Y > Return the prediction result Y

15
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C HYPERPARAMETERS AND SETTINGS

All experiments are conducted on a single RTX 4090 24GB GPU, and we utilize the Adam (Kingma
& Ba, 2015)) optimizer to optimize the training process.

The batch size is consistently set to 16, and the number of
training epochs is fixed to 10. We conduct a grid search to determine the best configuration. We
consistently set the embedding dimension D to 64, and the number of STAGE layers between 1 and
2. Normalization is skipped before the embedding process for the PEMS and Solar-Energy datasets,
and performed in advance for all other datasets. Table [6]outlines the specific hyperparameters used
for each dataset.

We partition the dataset for train-validation-test following the methodology established in Times-
Net (Wu et al.,|2023), to ensure the comparability of subsequent experiments. For the forecasting
settings, the lookback length for all datasets is set to 96. The prediction horizon varies across
{12,24,48,96} for the PEMS datasets and {96, 192, 336, 720} for the other datasets.

Table 6: Hyperparameters of GRAPHSTAGE on different datasets.

Dataset ‘ETTml ETTm2 ETThl ETTh2 ECL Exchange Weather Traffic Solar-Energy PEMS03 PEMS04 PEMS07 PEMS08

Epochs ‘ 10
Bach | 16
Loss | MSE
Learning Rate| le-3 |2e-3| 2e-4 | Sed | 5e3 |  Sed | 2e-3
Layers ‘ 1 ‘ 2 ‘ 1
Use Norm ‘ 1 ‘ 0
D | 64
c | 12
Optimizer ‘ Adam

D FULL RESULT ACROSS 13 REAL-WORLD DATASETS

In this section, we provide detailed multivariate prediction results across 13 real-world datasets.

Table [7] summarizes the results for various prediction lengths across 9 benchmark datasets. The
results indicate that GRAPHSTAGE consistently compares to or outperforms other models across all
datasets, securing the highest rank in MSE and MAE 26 and 25 times, respectively.

Table [§] presents the forecasting results for the four subsets of the PEMS dataset. Notably, GRAPH-
STAGE achieves the best MSE in 20 out of 21 comparisons and the best MAE in 19 out of 21
comparisons across the PEMS datasets. Specifically on PEMS07, the model achieves a significant
improvement over the recent state-of-the-art iTransformer, with a margin of 20.8%.

O
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Table 7: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of iTransformer (Liu et al.,|2024c). The input
sequence length is set to 96 for all baselines. AVG means the average results from all four prediction
lengths: {96,192, 336, 720}.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear  SCINet

Metric MSE MAE‘MSE MAE |MSE MAE |MSE MAE MSE MAE [MSE MAE|MSE MAE|MSE MAE

96 10.319 0.356(0.334 0.368 [0.355 0.376(0.329 0.367|0.404 0.426 [0.338 0.375[0.345 0.372|0.418 0.438
192 0.367 0.381]0.377 0.391 |0.391 0.392{0.367 0.385(0.450 0.451 |0.374 0.387{0.380 0.389|0.439 0.450
336 (0.394 0.400(0.426 0.420 |0.424 0.415(0.399 0.410{0.532 0.515 [{0.410 0.411|0.413 0.413]0.490 0.485
720 0.482 0.441]0.491 0.459 |0.487 0.450(0.454 0.439(0.666 0.589 |0.478 0.450|0.474 0.453]0.595 0.550
AVG|0.391 0.394/0.407 0.410 [0.414 0.407|0.387 0.400|0.513 0.496 |0.400 0.406|0.403 0.407|0.485 0.481

96 10.174 0.259(0.180 0.264 |0.182 0.2650.175 0.259(0.287 0.366 [0.187 0.267|0.193 0.292]0.286 0.377
192 10.241 0.304(0.250 0.309 |0.246 0.304|0.241 0.302(0.414 0.492 (0.249 0.309{0.284 0.362(0.399 0.445
336 (0.301 0.341{0.311 0.348 |0.307 0.342(0.305 0.343]0.597 0.542 [0.321 0.351|0.369 0.427|0.637 0.591
720 (0.397 0.398]0.412 0.407 |0.407 0.398(0.402 0.400{1.730 1.042 [0.408 0.403|0.554 0.522]0.960 0.735
AVG|0.278 0.325]0.288 0.332 |0.286 0.327|0.281 0.326|0.757 0.610 [0.291 0.333]0.350 0.401|0.571 0.537

ETTml

ETTm?2

96 10.384 0.395(0.386 0.405 |0.386 0.395/0.414 0.419(0.423 0.448 [0.384 0.402|0.386 0.400|0.654 0.599
192 (0.435 0.426(0.441 0.436 |0.437 0.424|0.460 0.445|0.471 0.474 |0.436 0.429]0.437 0.432(0.719 0.631
336 0.476 0.441]0.487 0.458 [0.479 0.446(0.501 0.466(0.570 0.546 |0.491 0.469|0.481 0.459|0.778 0.659
720 (0.487 0.460(0.503 0.491 |0.481 0.470(0.500 0.488]0.653 0.621 [0.521 0.500{0.519 0.516|0.836 0.699
AVG|0.445 0.430(0.454 0.447 |0.446 0.434|0.469 0.454/0.529 0.522 |0.458 0.450|0.456 0.452|0.747 0.647

ETThl

96 10.292 0.341(0.297 0.349 |0.288 0.338|0.302 0.348(0.745 0.584 [0.340 0.374|0.333 0.387|0.707 0.621
192 (0.380 0.395[0.380 0.400 |0.374 0.390(0.388 0.400{0.877 0.656 [0.402 0.414|0.477 0.476|0.860 0.689
336 (0.424 0.431]0.428 0.432 |0.415 0.426(0.426 0.433[1.043 0.731 [0.452 0.452{0.594 0.541|1.000 0.744
720 (0.453 0.459(0.427 0.445 |0.420 0.440(0.431 0.446(1.104 0.763 [0.462 0.468|0.831 0.657|1.249 0.838
AVG|0.387 0.407(0.383 0.407 |0.374 0.398|0.387 0.407|0.942 0.684 [0.414 0.427|0.559 0.515|0.954 0.723

ETTh2

96 [0.139 0.237(0.148 0.240 [0.201 0.2810.181 0.270|0.219 0.314 |0.168 0.272{0.197 0.282|0.247 0.345
192 (0.155 0.251]0.162 0.253 |0.201 0.283(0.188 0.274]0.231 0.322 |0.184 0.289|0.196 0.285]0.257 0.355
336 (0.175 0.272]0.178 0.269 |0.215 0.298(0.204 0.293]0.246 0.337 [0.198 0.300{0.209 0.301]0.269 0.369
720 0.196 0.292]0.225 0.317 |0.257 0.331]0.246 0.324(0.280 0.363 |0.220 0.320{0.245 0.333]0.299 0.390
AVG|0.166 0.263|0.178 0.270 |0.219 0.298|0.205 0.290(0.244 0.334 |0.192 0.295|0.212 0.300|0.268 0.365

ECL

96 10.084 0.203(0.086 0.206 [0.093 0.217|0.088 0.205|0.256 0.367 [0.107 0.234]0.088 0.218|0.267 0.396
192 (0.186 0.306(0.177 0.299 |0.184 0.307(0.176 0.299[0.470 0.509 [0.226 0.344|0.176 0.315|0.351 0.459
336 (0.339 0.420(0.331 0.417 |0.351 0.432(0.301 0.397{1.268 0.883 [0.367 0.448|0.313 0.427|1.324 0.853
720 |0.898 0.710{0.847 0.691 |0.886 0.714]0.901 0.714(1.767 1.068 |0.964 0.746|0.839 0.695|1.058 0.797
AVG|0.376 0.409(0.360 0.403 |0.378 0.417|0.367 0.404|0.940 0.707 |0.416 0.443|0.354 0.414|0.750 0.626

Exchange

96 10.438 0.281(0.395 0.268 |0.649 0.3890.462 0.295(0.522 0.290 [0.593 0.321]0.650 0.396|0.788 0.499
192 0.442 0.282(0.417 0.276 |0.601 0.366]0.466 0.296(0.530 0.293 |0.617 0.336{0.598 0.370(0.789 0.505
336 (0.461 0.292]0.433 0.283 |0.609 0.369(0.482 0.304[0.558 0.305 [0.629 0.336|0.605 0.373]0.797 0.508
720 (0.509 0.322]0.467 0.302 |0.647 0.387(0.514 0.322]0.589 0.328 [0.640 0.350|0.645 0.394|0.841 0.523
AVG|0.462 0.294/0.428 0.282 |0.626 0.378|0.481 0.304|0.550 0.304 |0.620 0.336|0.625 0.383|0.804 0.509

96 10.159 0.208(0.174 0.214 |0.192 0.2320.177 0.218{0.158 0.230 [0.172 0.220|0.196 0.255|0.221 0.306
19210.207 0.251(0.221 0.254 |0.240 0.271]0.225 0.259(0.206 0.277 |0.219 0.261{0.237 0.296|0.261 0.340
336 (0.263 0.292]0.278 0.296 |0.292 0.307(0.278 0.297(0.272 0.335 [0.280 0.306|0.283 0.335|0.309 0.378
720 (0.344 0.345]0.358 0.347 |0.364 0.353(0.354 0.348]0.398 0.418 [0.365 0.359|0.345 0.381]0.377 0.427
AVG|0.243 0.274|0.258 0.278 |0.272 0.291|0.259 0.281|0.259 0.315 |0.259 0.287|0.265 0.317|0.292 0.363

Traffic

Weather

96 10.172 0.258(0.203 0.237 |0.322 0.3390.234 0.286(0.310 0.331 [0.250 0.292|0.290 0.378|0.237 0.344
192 (0.183 0.259]0.233 0.261 |0.359 0.356(0.267 0.310{0.734 0.725 [0.296 0.318|0.320 0.398]0.280 0.380
336 (0.205 0.278]0.248 0.273 |0.397 0.369(0.290 0.315(0.750 0.735 |0.319 0.330{0.353 0.415|0.304 0.389
720 (0.211 0.273]0.249 0.275 |0.397 0.356(0.289 0.317]0.769 0.765 [0.338 0.337|0.356 0.413]0.308 0.388
AVG|0.192 0.267|0.233  0.262 |0.369 0.356|0.270 0.307|0.641 0.639 |0.301 0.319]0.330 0.401|0.282 0.375

Solar-Energy

Average [0.327 0.340]0.332  0.343 |0.376 0.367|0.345 0.353]|0.597 0.512 [0.372 0.366(0.395 0.399(0.573 0.514

1* Count |26 25| 5 1|6 6|5 4|2 o]0 0]2 o]0 o0
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Table 8: Full results of the PEMS forecasting task. We compare extensive competitive models under
different prediction lengths following the setting of SCINet (Liu et al.,[2022). The input length is set to
96 for all baselines. AVG means the average results from all four prediction lengths: {12, 24, 48,96}.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric  MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE

12 {0.065 0.170{0.071 0.174 {0.126 0.236{0.099 0.216{0.090 0.203 |0.085 0.192{0.122 0.243|0.066 0.172
24 10.082 0.193]0.093 0.201 |0.246 0.3340.142 0.259(0.121 0.240 [0.118 0.223]0.201 0.317{0.085 0.198
48 10.106 0.219(0.125 0.236 |0.551 0.529(0.211 0.319]0.202 0.317 [0.155 0.260{0.333 0.425|0.127 0.238
96 |0.136 0.253|0.164 0.275 [1.057 0.787{0.269 0.370{0.262 0.367 |0.228 0.317|0.457 0.515[0.178 0.287
AVG|0.097 0.210]0.113 0.221 |0.495 0.472|0.180 0.291]0.169 0.281 |0.147 0.248|0.278 0.375|0.114 0.224

PEMS03

12 [0.070 0.174{0.078 0.183 |0.138 0.252(0.105 0.224]0.098 0.218 [0.087 0.195|0.148 0.272{0.073 0.177
24 10.082 0.190{0.095 0.205 |0.258 0.348(0.153 0.275[0.131 0.256 [0.103 0.215|0.224 0.340{0.084 0.193
48 10.096 0.207[0.120 0.233 |0.572 0.544|0.229 0.339]0.205 0.326 [0.136 0.250|0.355 0.437{0.099 0.211
96 |0.113 0.228|0.150 0.262 |1.137 0.820(0.291 0.389(0.402 0.457 {0.190 0.303{0.452 0.504|0.114 0.227
AVG|0.090 0.200{0.111 0.221 |0.526 0.491|0.195 0.307|0.209 0.314 |0.129 0.241|0.295 0.388|0.092 0.202

PEMS04

12 10.056 0.152{0.067 0.165 |0.118 0.235(0.095 0.207{0.094 0.200 [0.082 0.181]0.115 0.242|0.068 0.171
24 10.072 0.175{0.088 0.190 |0.242 0.341(0.150 0.262{0.139 0.247 (0.101 0.204|0.210 0.329{0.119 0.225
48 10.087 0.179|0.110 0.215 [0.562 0.541{0.253 0.340{0.311 0.369 |0.134 0.238|0.398 0.458(0.149 0.237
96 (0.105 0.209(0.139 0.245 |1.096 0.795|0.346 0.404|0.396 0.442 (0.181 0.279|0.594 0.553|0.141 0.234
AVG|0.080 0.179]0.101 0.204 |0.504 0.478|0.211 0.303|0.235 0.315 |0.124 0.225]|0.329 0.395|0.119 0.234

PEMSO07

12 (0.085 0.175{0.079 0.182 |0.133 0.247(0.168 0.232]0.165 0.214 [0.112 0.212{0.154 0.276{0.087 0.184
24 10.111 0.205|0.115 0.219 {0.249 0.343{0.224 0.281{0.215 0.260 |0.141 0.238|0.248 0.353(0.122 0.221
48 10.155 0.230|0.186 0.235 |0.569 0.544|0.321 0.354|0.315 0.355 |{0.198 0.283]0.440 0.4700.189 0.270
96 (0.207 0.270(0.221 0.267 |1.166 0.814|0.408 0.417]0.377 0.397 [0.320 0.351|0.674 0.565|0.236 0.300
AVG|0.139 0.220]0.150 0.226 [0.529 0.487|0.280 0.321]0.268 0.307 {0.193 0.271|0.379 0.416|0.158 0.244

Average  [0.102 0.203|0.119 0.218 [0.514 0.482]0.217 0.305]0.220 0.304 |0.148 0.246[0.320 0.3940.121 0.222

PEMSO08

1 Count | 20 19 | 1 L ]J]o oo o]Jo o]0 oO0]o0o o0]o0 1

Table 9:
Models Ours FourierGNN CrossGNN StemGNN MTGNN
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.319 0356 | 0.389 0409 | 0335 0373 | 0470 0491 | 0379 0.446
ErTmg 192 | 0367 0381 | 0427 0429 | 0372 0390 | 0497 0504 | 0470 0428
336 | 0394  0.400 | 0.459 0451 | 0403 0411 | 0.578 0557 | 0473  0.430
720 | 0482 0441 | 0535 0502 | 0461 0442 | 0.653 0.596 | 0.553 0.479
AVG | 0.391 0394 | 0453 0.448 | 0393 0404 | 0.550 0.537 | 0.469 0.446
96 | 0292 0.341 | 0398 0432 | 0.309 0359 | 0.599 0571 | 0.354 0.454
ErThe 192 | 0380 0395 [ 0556 0518 | 0390 0406 | 1296 0886 | 0.457 0464
336 | 0424 0431 | 0.630 0566 | 0426 0.444 | 1.189 0.843 | 0.515  0.540
720 | 0453 0459 | 0.587 0551 | 0445 0.464 | 1.549 0.946 | 0.532 0.576
AVG | 0.387 0.407 | 0543 0517 | 0.393 0418 | 1.158 0.812 | 0.465 0.509
96 | 0.159 0.208 | 0.189 0248 | 0.159 0.218 | 0.188 0.261 | 0.230 0.329
Weath 192 | 0207 0.251 | 0226 0283 | 0.211 0.266 | 0.239 0.306 | 0.263 0.322
cather 336 | 0.263 0292 | 0274 0320 | 0267 0310 | 0315 0.367 | 0.354 0.396
720 | 0.344 0.345 | 0.339 0369 | 0352 0362 | 0412 0.432 | 0409 0.371
AVG | 0243 0274 | 0257 0305 | 0.247 0.289 | 0.289 0.342 | 0.314 0.355
96 | 0.139 0.237 | 0202 0299 | 0.173 0.275 | 0.188 0.288 | 0.217 0.318
ECL 192 | 0.155 0.251 | 0207 0305 | 0.195 0.288 | 0.194 0296 | 0.238 0.352
336 | 0.175 0272 | 0220 0319 | 0206 0300 | 0224 0.326 | 0.260 0.348
720 | 0.196 0.292 | 0254 0349 | 0.231 0335 | 0.255 0.352 | 0.290 0.369
AVG | 0.166 0263 | 0221 0318 | 0.201 0.300 | 0.215 0.316 | 0251 0.347

Average | 0.297 0.335 | 0369 0397 | 0309 0353 | 0.553 0.502 | 0.375 0.414
Mcount | 18 21 | 1 0o | 2 0o | o 0 | o 0
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E VISUALIZATION OF 96-T0O-96 FORECASTING ACROSS DATASETS

In order to better compare the models, we present supplementary prediction results for four repre-
generated by the following models: GRAPHSTAGE,

sentative datasets in Figures [0} [T0] [T1] and
iTransformer (Liu et al.} [2024¢), PatchTST

TimesNet (Wu et al., [2023), DLinear (Zeng et al., |20

ie et al.

[2023)), Crossformer (Zhang & Yanl, [2023)),

23) and SCINet (Liu et al., 2022). For all

baselines, the input length is set to 96, with a forecasting horizon of 96 time steps.

GraphSTAGE

iTransformer PatchTST

== Prediction

—— GroundTruth

== Prediction
—— GroundTruth

0 0
-1 -1
0 25 50 75 100 125 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Crossformer TimesNet DLinear
4 == Prediction 4 == Prediction
—— GroundTruth —— GroundTruth
3 3
2 2
1 1
0 0
1 -1
0 25 50 75 100 125 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Figure 9: Sample visualization across models on ECL dataset, with forecast horizon 96.

GraphSTAGE iTransformer PatchTST
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Figure 10: Sample visualization across models on ETTm1 dataset, with forecast horizon 96.
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In Figure 0] GRAPHSTAGE predicts the values for time steps 125 to 150 more accurately than
the other models. In Figure[I0} only GRAPHSTAGE’s predictions closely follow the trend of the
GroundTruth, while the other models deviate significantly. In Figure|l 1} our model is the only one to
accurately predict the peak at the 160th time step. Finally, in Figu% our predictions perfectly
match the trend of the GroundTruth, with Crossformer (Zhang & Yan} [2023) coming in as the second
best.

Overall, GRAPHSTAGE consistently delivers the most accurate predictions of future series variations,
demonstrating outstanding performance across all datasets.

GraphSTAGE iTransformer PatchTST
25 2.5 2.5
== Prediction == Prediction = Prediction
2.0{ — GroundTruth 2.0] — GroundTruth 50| — GroundTruth
15 15 1.5
1.0
1.0 1.0
0.5 0.5
0.5
0.0 0.0
0.0
-0.5 05
-0.5
-1.0 1.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Crossformer TimesNet DLinear
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2.0 2.0
15 15
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Figure 11: Sample visualization across models on Solar-Energy dataset, with forecast horizon 96.
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Figure 12: Sample visualization across models on PEMS07 dataset, with forecast horizon 96.
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F ROBUSTNESS EXPERIMENTS

1] [T

[[3] Experiments were performed on the ETTmI and ECL
datasets, with each configuration run 10 times to assess whether the results remained stable within a
consistent range. Furthermore, as the model is able to leverage longer historical input data, both the
MSE and MAE consistently decreased. The reductions in MSE and MAE are most significant when
the input length increases from 48 to 96. These findings highlight the model’s strong robustness and
its effective capability in extracting intra-series (temporal) correlations.

ETTm1 96:MSE 0424 ETTm1 96:MAE
0.44 4 @
0.40 4
0.40 4
a S
0.384
= 0.36 4 =
0.32 <= 0.36+ x> :
0284 0.344
48 96 192 336 512 48 96 192 336 512
Input Length Input Length
(a) Robustness on ETTm1 dataset (MSE and MAE)
0.27
0.18 4 ECL 96:MSE : ECL 96:MAE
0174 <> 0.26
0.16 4 0.25
a <
0.15
> = 0.24-
0.14 4
0.234
0.3 < 4r
0.12 0.224
48 96 192 336 512 48 96 192 336 512
Input Length Input Length

(b) Robustness on ECL dataset (MSE and MAE)

Figure 13: Robustness Experiments with increasing input lengths: {48, 96, 192, 336,512}, and fixed
output length: 96.
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Table 10:

Dataset | ETTml ETTm2 ETThl

Horizon ‘ MSE MAE ‘ MSE MAE MSE MAE
96 0.319+0.004 0.356+0.003 0.174+0.002 0.259+0.001 0.38440.003 0.395+0.007
192 0.367+0.002  0.381+0.002 0.241+0.007 0.304+0.006 0.435+0.007 0.42640.005
336 0.39440.003 0.400+0.002 0.30140.001 0.341+0.000 0.47640.005 0.441+0.001
720 0.482+0.005 0.441+0.002 0.397+0.005 0.398+0.002 0.487+0.003 0.460+0.003
Dataset | ETTh2 ECL Exchange
Horizon MSE MAE MSE MAE MSE MAE
96 0.292+0.002 0.341+0.002 0.139+0.001 0.23740.001 0.084+0.003 0.203+0.004
192 0.380+0.008 0.395+0.004 0.155+0.004 0.251+0.002 0.186+0.002 0.306+0.002
336 0.424+0.006 0.431+0.007 0.17540.003 0.272+0.002 0.33940.003 0.420+0.002
720 0.453+0.004 0.459+0.002 0.19640.005 0.292+0.004 0.898+0.014 0.710+0.012
Dataset | Traffic Weather Solar-Energy
Horizon MSE MAE MSE MAE MSE MAE
96 0.438+0.005 0.281+0.007 0.159+0.001 0.208+0.001 0.172+0.003 0.258+0.004
192 0.442+0.005 0.282+0.002 0.207+0.001 0.25140.001 0.183+0.002 0.25940.001
336 0.461+0.004 0.29240.004 0.263+0.001 0.292+0.001 0.205+0.003 0.278+0.005
720 0.509+0.006 0.322+0.007 0.344+0.001 0.345+0.001 0.211+0.001 0.273+0.001

Table 11:

Dataset | PEMS03 PEMS04 PEMS07 PEMS08
Horizon | MSE MAE | MSE MAE | MSE MAE | MSE MAE
12 0.065£0.002  0.170£0.002 | 0.070£0001  0.174-£0.002 | 0.056:£0.001  0.152+0.001 | 0.085+0.007  0.175+0.006
24 0.082£0.004  0.193£0004 | 0.08240001  0.190+£0.001 | 0.072+£0.001  0.175+0.003 | 0.111£0.002  0.205+0.003
48 0.106£0.005  0.21940.005 | 0.096£0.005 0.207+£0.005 | 0.087+£0.007 0.17940.004 | 0.155£0.010  0.230+0.009
96 0.136£0.007  0.253+0.005 | 0.113£0.004  0.228+0.003 | 0.10540.005  0.209+£0.006 | 0.207+£0.006 0.270+0.007
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G FULL RESULTS OF ABLATION STUDY

In this section, we provide the detail results of our ablation studies to offer deeper insights into the
effectiveness of each component in GRAPHSTAGE. Table [I2]displays the full results of the ablation
study on the Correlation Learning Mechanism for each prediction length. The experiments include
both component removal (w/0) and component replacement (Replace) using the attention mechanism
from Crossformer (Zhang & Yan,|2023). Detailed results of the ablation study on the Embedding &
Patching mechanism are presented in Table[I3] We investigate the impact of removing the Patching
module (w/o Patching), the Time Embedding (w/o Time Embedding), and the Adaptive Embedding
(w/o Adaptive Embedding) individually.

The performance degradation observed in all ablated variants across different prediction lengths
underscores the significant role of the components in GRAPHSTAGE. Our comprehensive ablation
studies confirm that each component contributes to the model’s overall performance. The Inter-
GrAG and Intra-GrAG modules are essential for learning spatial and temporal dependencies, while
the Embedding & Patching mechanism effectively incorporates prior knowledge. These findings
underscore the importance of each design in GRAPHSTAGE, collectively leading to its superior
performance in MTSF tasks.

Table 12: Full Results of Ablation Study on Correlation Learning Mechanism. The input sequence
length is set to 96. AVG means the average results from all four prediction lengths.

Design | Spatial ‘Temporal [Prediction] ETTml | ECL | Traffic [Solar-Energy
| | | Lengths |[MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 0.319 0.356|0.139 0.237(0.438 0.281]0.172 0.258
192 |0.367 0.381|0.155 0.251|0.442 0.282]0.183 0.259
GRAPHSTAGE Inter-GrAG|Intra-GrAG| 336  |0.394 0.400(0.175 0.272]0.461 0.292|0.205 0.278
720  |0.482 0.441|0.196 0.292|0.509 0.322]0.211 0.273

| | | AVG |0.391 0.394] 0.166 0.263| 0.462 0.294| 0.192 0.267

96 0.319 0.360(|0.160 0.253(0.455 0.308|0.177 0.268
192 |0.377 0.389|0.168 0.260(0.452 0.292]0.223 0.297
Inter-GrAG w/o 336 |0.410 0.410|0.183 0.276|0.475 0.307|0.226 0.301
720  ]0.486 0.441|0.230 0.318|0.529 0.340{0.274 0.300

| | | AVG  |0.398 0.400|0.185 0.277]0.478 0.312]0.225 0.292

wlo 96 0.328 0.364|0.167 0.257|0.488 0.307|0.241 0.305
192 |0.374 0.386|0.169 0.259(0.515 0.320|0.226 0.282
w/o Intra-GrAG 336 |0.398 0.404|0.190 0.279|0.495 0.308|0.245 0.299
720 |0.496 0.448|0.219 0.307|0.536 0.343|0.243 0.291

| | | AVG ]0.399 0.400|0.186 0.276]0.509 0.320[0.239 0.294

96 0.323 0.363|0.143 0.240(0.448 0.286|0.183 0.259
192 |0.374 0.388|0.165 0.258(0.462 0.297|0.210 0.276
Inter-GrAG | Attention 336 0.401 0.410{0.170 0.267|0.468 0.299]0.208 0.272
720  ]0.481 0.443|0.195 0.296|0.533 0.329]0.221 0.274

| | | AVG  [0.395 0.401]0.168 0.265]0.478 0.303|0.206 0.270

96 0.339 0.373|0.144 0.242(0.436 0.305|0.177 0.256
192 |0.375 0.389|0.161 0.257(0.445 0.291|0.206 0.278
Replace Attention | Inter-GrAG 336 |0.414 0.413|0.176 0.274|0.461 0.298|0.225 0.288
720 |0.486 0.449|0.202 0.297|0.494 0.325|0.214 0.280

| | | AVG  [0.403 0.406/0.171 0.268] 0.459 0.305/0.206 0.276

96 0.316 0.361|0.144 0.243|0.414 0.284|0.181 0.253
192 |0.385 0.398|0.160 0.257|0.444 0.292]0.205 0.265
Attention | Attention 336 ]0.393 0.410{0.177 0.276|0.461 0.298]0.210 0.268
720 0.486 0.447/0.203 0.299(0.494 0.325|0.218 0.270

| | | AVG  [0.395 0.404/0.171 0.269]0.453 0.300] 0.204 0.264
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Table 13: Full Results of Ablation Study on Embedding&Patching Mechanism. The input sequence
length is set to 96. AVG means the average results from all four prediction lengths.

Design | Prediction | PEMS03 | PEMS04 | PEMS07 | PEMSO8
| Lengths | MSE MAE | MSE MAE | MSE MAE | MSE MAE
12 0.065 0.170 | 0.070 0.174 | 0.056 0.152 | 0.085 0.175
24 0.082  0.193 | 0.082 0.190 | 0.072 0.175 | 0.111  0.205
GRAPHSTAGE 48 0.106 0219 | 0.096 0207 | 0.087 0.179 | 0.155 0.230
96 0136 0.253 | 0.113 0228 | 0.105 0.209 | 0.207 0.270
| AVG | 0.097 0210 | 0.090 0.200 | 0.080 0.179 | 0.139 0.220
12 0.071  0.179 | 0.075 0.183 | 0.058 0.157 | 0.105 0.191
24 0.091 0.205 | 0.089 0202 | 0.078 0.181 | 0.127 0216
w/o Patching 48 0.118 0231 | 0.103 0217 | 0.101 0.203 | 0.175 0.258
96 0.160 0272 | 0.134 0259 | 0.146 0.257 | 0.295 0.348
| AVG | 0.110 0222 | 0.100 0215 | 0.096 0.199 | 0.176 0.253
12 0.070  0.177 | 0.071 0.176 | 0.063 0.162 | 0.108 0.199
24 0.093 0.203 | 0.088 0.198 | 0.077 0.179 | 0.179  0.254
w/o Time Emb. 48 0132 0242 | 0.115 0231 | 0.095 0201 | 0.195 0.269
96 0162 0269 | 0.122 0239 | 0.128 0231 | 0315 0335
| AVG | 0.114 0223 | 0.099 0211 | 0.091 0.193 | 0.199 0.264
12 0.071  0.180 | 0.076 0.185 | 0.060 0.161 | 0.100 0.188
24 0.089  0.304 | 0.086 0.196 | 0.079 0.184 | 0.116 0.206
w/o Adaptive Emb. 48 0122 0239 | 0.107 0220 | 0.131 0.239 | 0.166 0.250
96 0202 0306 | 0.125 0242 | 0.194 0299 | 0.429 0.395

| AVG | 0.121 0257 | 0.098 0211 | 0.116 0.221 | 0.203 0.260

H VISUALIZATION OF TEMPORAL AND SPATIAL LEARNABLE GRAPHS.

GRAPHSTAGE is a fully graph-based model that decouples the learning of inter-series (spatial)
and intra-series (temporal) dependencies. Consequently, it can generate two learnable graphs in the
spatial and temporal dimensions, respectively.

Figure[T4] presents additional visualizations of the Temporal Learnable Graphs (Ar). Each column
displays a randomly selected A from the results of GRAPHSTAGE, with experiments conducted on
the ETTm1, ECL, and PEMS04 datasets.
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Figure 14: Supplementary visualization of Temporal Learnable Graphs (A7) across datasets (ETTm1,
ECL, PEMSO04). Each column represents a randomly selected A from the results of GRAPHSTAGE.
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Spatial Learnable Graph GroundTrue of Nodes 184, 282, 83
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Figure 15: A randomly selected sample of the Spatial Learnable Graph (Ag) on the PEMS04 dataset
(left), along with the corresponding GroundTruth of the nodes (right).
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