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ABSTRACT

Recent advancements in multivariate time series forecasting (MTSF) have increas-
ingly focused on the core challenge of learning dependencies within sequences,
specifically intra-series (temporal), inter-series (spatial), and cross-series dependen-
cies. While extracting multiple types of dependencies can theoretically enhance
the richness of learned correlations, it also increases computational complexity and
may introduce additional noise. The trade-off between the variety of dependen-
cies extracted and the potential interference has not yet been fully explored. To
address this challenge, we propose GRAPHSTAGE, a purely graph neural network
(GNN)-based model that decouples the learning of intra-series and inter-series
dependencies. GRAPHSTAGE features a minimal architecture with a specially
designed embedding and patching layer, along with the STAGE (Spatial-Temporal
Aggregation Graph Encoder) blocks. Unlike channel-mixing approaches, GRAPH-
STAGE is a channel-preserving method that maintains the shape of the input data
throughout training, thereby avoiding the interference and noise typically caused
by channel blending. Extensive experiments conducted on 13 real-world datasets
demonstrate that our model achieves performance comparable to or surpassing
state-of-the-art methods. Moreover, comparative experiments between our channel-
preserving framework and channel-mixing designs show that excessive dependency
extraction and channel blending can introduce noise and interference. As a purely
GNN-based model, GRAPHSTAGE generates learnable graphs in both temporal
and spatial dimensions, enabling the visualization of data periodicity and node
correlations to enhance model interpretability.

Resources: https://anonymous.4open.science/r/GraphSTAGE

1 INTRODUCTION
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Figure 1: Performance of GRAPHSTAGE on
average results (MSE).

Multivariate time series forecasting (MTSF) is piv-
otal in various domains such as traffic flow predic-
tion and energy consumption forecasting. A key
consideration in MTSF is effectively modeling the
dependencies within the sequences—specifically
the intra-series (temporal), inter-series (spatial),
and potentially cross-series dependencies (Liu et al.,
2024a), as shown in Figure 2. Capturing these de-
pendencies is crucial for understanding the under-
lying spatial and temporal relationships in the data,
which directly impacts the accuracy of predictions.

However, many existing models focus on only one
type of dependency. Common approaches employ
channel-mixing techniques that project the original
time series data Xin ∈ RN×T (where N is the
number of nodes and T is the length of time series) into different representations. For instance, some
methods transform Xin into HS ∈ RN×D (Liu et al., 2024c), which captures spatial dependencies
among nodes, while others project it into HT ∈ RT×D (Zhou et al., 2022; Li et al., 2021; Wu
et al., 2021), emphasizing on temporal dependencies across time steps. These transformations
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Overall Structure of TsGrapher
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Figure 3: Performance of GRAPHSTAGE
Variants on ETTm1 and ECL Datasets.

often overlook at least one kind of dependency and fail to learn the underlying spatial or temporal
graph structures (Yu et al., 2024), limiting the models’ ability to extract inter-series or intra-series
correlations effectively.

Recent models such as UniTST (Liu et al., 2024a) and FourierGNN (Yi et al., 2024) attempt to capture
multiple types of dependencies, including cross-series dependencies, by blending the temporal and
spatial dimensions. They reshape the input data Xin from RN×T into a RNT×1 structure. While this
approach theoretically allows for the simultaneous modeling of all dependencies, it also presents
two significant challenges: (1) increased computational complexity and (2) a heightened risk of
introducing additional noise.

First, mixing the channels may increases computational complexity. The complexity of weight
multiplication operations escalates from O(N2) to O((NT )2) (Liu et al., 2024a; Yi et al., 2024),
leading to exponentially higher computational costs. Consequently, these models often implement
some compression mechanisms, such as router mechanism (Zhang & Yan, 2023), to mitigate the
computational burden. Despite these efforts, a trade-off between model size and performance
persists. Achieving better performance frequently requires larger models, indicating that compression
techniques may not fully address the efficiency concerns. To further illustrate this point, we conducted
model variants experiments in Section 4.3. As shown in Table 4, our model outperforms VarC — a
channel-mixing model similar to UniTST (Liu et al., 2024a) and FourierGNN (Yi et al., 2024), as
depicted in Figure 7, while also reducing memory usage by 83%.

Second, while blending channels allows these models to account for cross-series dependencies, it
may introduce additional noise into the modeling process. Existing studies have often emphasized the
benefits of capturing cross-series dependencies without fully considering the potential downsides of
added noise. As shown in Figure 3, aggregating all dependencies may enhance predictive accuracy to
some extent (as demonstrated by the improvement of performance on the ETTm1 dataset). However,
it can also lead to overly complex models that struggle to compensate for the interference caused by
the introduced noise, resulting in a sharp reduction in performance on the ECL dataset. This raises a
crucial question: Is it truly necessary to model all these dependencies?

We argue that modeling either a single type of dependency or multiple dependencies in a coupled
manner is inefficient. Recently, channel-preserving approaches have demonstrated efficiency and
effectiveness (Liu et al., 2024b; Wang et al., 2024). To address the challenges of computational inef-
ficiency and noise introduced by channel-mixing, we propose GRAPHSTAGE, a purely GNN-based
model that decouples the learning of inter-series and intra-series dependencies while preserving the
original channel structures. Unlike existing channel-mixing approaches, GRAPHSTAGE maintains
the shape of the input data throughout the training process, thereby avoiding the interference caused
by channel blending. To our knowledge, GRAPHSTAGE is the first purely graph-based, channel-
preserving model. This design not only enhances computational efficiency but also reduces the noise
associated with channel blending. Our contributions are threefold:

• We reflect on the extraction of dependencies in current time series models and emphasize
that existing methods tend to overlook certain dependencies. Furthermore, we highlight that
channel blending and excessive correlation extraction can introduce noise, and propose a
channel-preserving framework to enable more accurate and robust dependencies modeling.
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• We propose GRAPHSTAGE, a fully GNN-based method to effectively capture intra-series
and inter-series dependencies, respectively, while generating interpretable correlation graphs.
Moreover, its decoupled design allows for the independent extraction of specific dependen-
cies as required.

• Experimentally, despite GRAPHSTAGE is structurally simple, it performs comparably to or
surpasses state-of-the-art models across 13 MTSF benchmark datasets, as shown in Figure 1.
Notably, GRAPHSTAGE ranks top-1 among 8 advanced models in 22 out of 30 comparisons,
with results averaged across various prediction lengths.

By preserving the original data channels and decoupling dependencies learning, GRAPHSTAGE
overcomes the key limitations of existing methods, providing a more efficient and interpretable
solution for MTSF.

2 RELATED WORKS

Single Dependency Modeling. Traditional multivariate time series forecasting methods often focus
on capturing a single type of dependency—either temporal (intra-series) or spatial (inter-series).
Deep learning models such as CNNs, RNNs, GRUs and Formers (Hochreiter, 1997; Chung et al.,
2014; Rangapuram et al., 2018; Wu et al., 2021; Li et al., 2021; Zhou et al., 2022; Liu et al., 2021;
Zhang et al., 2024) excel at modeling sequential data by capturing temporal dynamics within each
series. However, these models typically treat each spatial node independently, failing to account for
inter-series dependency. On the other hand, models that focus solely on inter-series dependency, such
as GNNs (Bai et al., 2020) and Formers (Kitaev et al., 2020; Liu et al., 2024c; Cai et al., 2024), while
effective at capturing spatial correlations, may not adequately model the temporal correlations within
each series. Consequently, methods that concentrate on one type of dependency may fail to fully
capture the complex correlations inherent in multivariate time series data.

Modeling Combined Dependencies. To address the limitations of single-dependency extracting
models, several GNNs (Kipf et al., 2018; Wu et al., 2019; 2020; Shang et al., 2021; Xu et al.,
2023) have attempted to extract dependencies in both the temporal and spatial domains. However,
these models often ignore global information extraction in either the spatial or temporal domain,
focusing instead on local neighborhood information. Recent approaches have explored to capture
multiple types of dependencies simultaneously by blending the temporal and spatial dimensions.
FourierGNN (Yi et al., 2024) and UniTST (Liu et al., 2024a) construct hypervariate graph as input
embeddings to represent time series with a unified view of spatial and temporal dynamics but overlook
the potential interference caused by channel-mixing. Recognizing this issue, DGCformer (Liu et al.,
2024b) identifies irrelevant nodes in channel-mixing and adopts a grouping mechanism to focus
attention on relevant nodes. Crossformer (Zhang & Yan, 2023) and CARD (Wang et al., 2024) propose
a two-stage framework to extract inter-series and intra-series dependencies, applying attention across
both dimensions and then fuses the results. Building on these insights, we propose GRAPHSTAGE, a
purely GNN-based model that decouples the learning of inter-series and intra-series dependencies
while preserving the original input channels to avoid the interference introduced by channel blending.

3 GRAPHSTAGE

Problem Definition. Given the historical data X = {x1, . . . ,xT } ∈ RN×T with N nodes and
T time steps, the multivariate time series forecasting task is to predict the future K time steps
Y = {xT+1, . . . ,xT+K} ∈ RN×K . This process can be given by:

Ŷ = Fθ(X) = Fθt,θs(X), (1)

where Ŷ are the predictions corresponding to the ground truth Y. The forecasting function is denoted
as Fθ parameterized by θ. In practice, the channel-preserving model will be decoupled leverage a
temporal network (parameterized by θt) to learn the intra-series dependency and a spatial network
(parameterized by θs) to learn the inter-series dependency, respectively (Wang et al., 2024).

Overall Structure. Based on the motivation of using channel-preserving strategy to avoid interfer-
ence introduced by channel-mixing, we propose GRAPHSTAGE—a purely GNN-based model with
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Overall Structure of TsGrapher
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Figure 4: Overall Structure of GRAPHSTAGE. The model is composed of an Embedding & Patching
layer followed by L stacked STAGE blocks. Each STAGE block employs a decoupled yet unified
architecture integrating two key modules: the Intra-GrAG (Intra-series Pruned-Graph Aggregation),
which captures temporal dependency and generates the temporal learnable graph AT ; the Inter-GrAG
(Inter-series Pruned-Graph Aggregation), which captures spatial dependency and generates the spatial
learnable graph AS . The pseudo-code of GRAPHSTAGE can be found in Algorithm 1.

an architecture that decouples the learning of intra-series and inter-series dependencies, as illustrated
in Figure 4. Our model comprises two key components: (1) a specially designed embedding and
patching layer; and (2) the Spatial-Temporal Aggregation Graph Encoder (STAGE) block. In the
embedding and patching layer, we introduce a more fine-grained time embedding to fully utilize the
relative positions of data points within an hour as prior knowledge. In the STAGE block, we design a
decoupled framework to respectively extract temporal and spatial dependencies, with corresponding
learnable graphs that can be visualized to enhance interpretability.

3.1 TOKENIZATION VIA EMBEDDING AND PATCHING

Channel-preserving Embedding Strategy. Most signal intra-series dependency modeling models
regard multiple nodes of the same time as the (temporal) token. As a result, they project the input
data shaped as Xin ∈ RN×T into RT×D, where D is the hidden dimension, and the original spatial
dimension N is not preserved. Inspired by inter-series oriented models (Liu et al., 2024c) in MTSF, we
preserve the nodes dimension throughout the model, which proven competent by previous works (Cai
et al., 2024). Given a time series with N nodes, X ∈ RN×T , we divide each univariate time series xi

into patches xi
p ∈ RP×s, with stride s and number of patches P (Nie et al., 2023). A projection layer

is then applied to map all the series into Xp ∈ RN×P×D, where D is the embedding dimension.

Refined Time Embedding to Enhance Relative Positioning. The effectiveness of static covariates
that are available in advance has been validated in several MTSF models (Lim et al., 2021; Jiang
et al., 2023; Huang & Xiao, 2024). However, for datasets with a fixed sampling frequency below
one hour (e.g., five minutes or fifteen minutes), previous models only embedded the ‘Hour of Day’
and ‘Day of Week’ information (Cai et al., 2024), which is insufficient to reflect the relative position
within an hour. To address this limitation, we modify existing embedding methods by replacing the
‘Hour of Day’ embedding with a ‘Timestamp of Day’ embedding. This allows the embedding layer
to adapt to the sample frequency, providing a more fine-grained time embedding that fully utilize the
relative positions of data points within an hour as prior knowledge. Additionally, we introduce an
learnable embedding to adaptively capture underlying dependencies. The process is presented below:

H = Embedding(Xp) = Xp + etod + edow + eadp1, (2)

1The process utilizes the broadcasting mechanism in PyTorch.
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where H ∈ RN×P×D contains N embedded tokens of dimension D, etod ∈ RP×D and edow ∈
RP×D are learnable embeddings for ‘Timestamp of Day’ and ‘Day of Week’, respectively. eadp ∈
RP×D is generated using a random tensor method.

3.2 SPATIAL-TEMPORAL AGGREGATION GRAPH ENCODER

Our proposed STAGE block is illustrated in Figure 4. STAGE employs a decoupled yet unified archi-
tecture to aggregate information learned by Temporal Learnable Graph (AT ) and Spatial Learnable
Graph (AS). The Intra-series Pruned-Graph AGgregation module (Intra-GrAG) is responsible for
extracting intra-series (temporal) dependencies and generating the AT . Similarly, the Inter-series
Pruned-Graph AGgregation module (Inter-GrAG) extracts inter-series (spatial) dependencies and
generates the AS .

Decoupled Spatial-Temporal Extraction with Unified Aggregation. STAGE is capable of learn-
ing intra-series and inter-series dependencies separately within a single block by utilizing a decoupled
architecture composed of Intra-GrAG and Inter-GrAG modules. In STAGE block, the input tensor
has dimensions H ∈ RN×P×D, where N is the number of nodes, P is the number of patches, and
D is the embedding dimension. To learn intra-series dependencies, we first transpose the input
tensor to shape RP×N×D, swapping the spatial and temporal dimensions. This restructure allows
the model to focus on temporal relationships within each node across different time steps. After
learning the intra-dependencies, we transpose the tensor back to its original shape RN×P×D to learn
inter-series dependencies, concentrating on the relationships between different nodes at each time
step. By adopting this approach, we can employ a unified architecture for both intra-dependency and
inter-dependency learning, simply by changing the order of the input dimensions.

Furthermore, since STAGE is a purely GNN-based method, the correlations among nodes or patches
(time steps) learned by the model can be directly visualized, enhancing interpretability and providing
insights into the data periodicity and node correlations.

Learnable Graph Generator for Temporal and Spatial Dimensions. Learnable Graphs are
essential for characterizing both temporal and spatial similarities. STAGE adaptively learns the graph
structures by generating separate adjacency matrices: AT for patches (temporal dimension) and AS

for nodes (spatial dimension).

Since STAGE employs a unified aggregation mechanism, the principles of the Inter-GrAG and
Intra-GrAG modules are analogous. Therefore, to avoid redundancy, the subsequent discussion will
focus only on the components of the Inter-GrAG module. First, a Pooling layer downsamples the
extracted temporal information. We can choose any pooling mechanisms in the temporal dimension
as the Pool operation, such as max-pooling and mean-pooling. To capture directed similarities among
nodes, we apply two Linear mappings to each node:

Esrc = L2Norm(HpoolWp1), Etgt = L2Norm(HpoolWp2), Hpool = Pool(Hin), (3)

where Hpool ∈ RN×D. Here, Hin ∈ RN×P×D is obtained by transposing the output of intra-GrAG
module, which originally has the shape RP×N×D. Wp1 ∈ RD×c,Wp2 ∈ RD×c are two trainable
matrices, and Esrc ∈ RN×c and Etgt ∈ RN×c are the source and target embedding matrices of all
nodes, respectively. The L2 normalization ensures that each embedding matrices has a unit norm,
facilitating stable training and enhancing model performance.

The directed similarities between each pair of nodes can be extracted as follows (Wu et al., 2020):

AS = SoftMax(ReLU(Esrc · ET
tgt)). (4)

The ReLU activation is used to avoid negative values. SoftMax function is employed to normalize
values in the matrix. In this way, we obtain the spatial learnable graph AS ∈ RN×N , which serves
as a global similarities matrix. It should be noted that the parameters of this similarity matrix are
derived for each individual sample. Consequently, when the sample changes, the similarity weights
among different nodes also change.

Pruned-Graph Aggregation Mechanism. In the Intra-GrAG module, this mechanism performs
graph convolutions on the learned graph AT . In the Inter-GrAG module, it performs graph convolu-
tions on the learned graph AS , aggregating information from global nodes while pruning irrelevant or

5
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weak connections. The pruning operation reduces noise and enhances the model’s ability to focus on
the most significant correlations. To avoid redundancy and for simplicity, the subsequent discussion
will focus only on the components of the Inter-GrAG module.

Graph attention network (GAT) (Velickovic et al., 2017) is a powerful model for extracting spatial
dependencies, allocating different weights to neighbor nodes. Pruned-Graph Aggregation (PGA)
can be regarded as a Special GAT with three specific improvements: 1) input embeddings are the
extracted temporal embeddings rather than the original features; 2) the input nodes learnable graph
will be pruned to make the model concentrate on the most significant connections; 3) the spatial
dependencies among nodes is global rather than localized in neighborhoods. In this way, PGA
incorporates spatial information effectively and aggregates global information without any prior
knowledge, such as pre-defined static graph. The whole process can be formulated as below:

Hag = HinW1 + Prune(AS)HinW2 + Prune(AS)
THinW3, (5)

where W1,W2,W3 ∈ RD×D are trainable matrices and Hag ∈ RN×P×D. The Prune operation
retains the top-k values to focus on the most significant connections, where k = N×α for Inter-GrAG
module and k = P ×α for Intra-GrAG module, with a coefficient α between 0 and 1 (e.g., 0.7). After
that, a Feed-Forward Network (FFN) and Gate is employed to obtain the output of Encoders HE .
The FFN processes the aggregated features to capture nonlinear transformations, while the gating
mechanism controls the flow of information. This gating enhances the model’s capacity to capture
complex dependencies by adaptively weighing the importance of different features. The detailed
implement about the FFN and Gate layer can be found in Appendix A.

In summary, STAGE decouples intra-series and inter-series dependencies within a unified pruned-
graph aggregation mechanism, avoiding computational overhead and potential noise introduced by
channel blending. Its fully graph-based mechanism enhances interpretability. Further discussion
about the variants of STAGE will be delivered in the Section 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To validate the performance of GRAPHSTAGE, we conduct extensive benchmarks on
13 real-world datasets, including ETT (4 subsets), ECL, Exchange, Traffic, Weather, Solar-Energy
datasets proposed in LSTNet (Lai et al., 2018a), and PEMS (4 subsets) collected by the Performance
Measurement System (PeMS) (Choe et al., 2002) and proposed in ASTGCN (Guo et al., 2019).
Detailed dataset descriptions are provided in Appendix B, and the hyperparameters and settings can
be found in Appendix C.

Baselines. We have selected seven well-known forecasting models as our benchmarks, including (1)
Transformer-based methods: iTransformer (Liu et al., 2024c), Crossformer (Zhang & Yan, 2023),
PatchTST (Nie et al., 2023); (2) Linear-based methods: DLinear (Zeng et al., 2023), RLinear (Li
et al., 2023); and (3) TCN-based methods: SCINet (Liu et al., 2022), TimesNet (Wu et al., 2023).
Additional comparisons with four advanced GNNs are provided in Table 9 of Appendix D.

4.2 MAIN RESULTS

Outstanding Performance of GRAPHSTAGE Across 13 Datasets: Ranking First in 22 out
of 30 Comparisons. Comprehensive forecasting results are presented in Table 1, with the best
performances in red and the second in blue. Full forecasting results are provided in Appendix D.
Lower MSE/MAE values indicate better prediction performance. The quantitative results reveal that
GRAPHSTAGE demonstrates outstanding performance across all datasets, including node-based
multivariate time series datasets (e.g., PEMS, Solar-Energy) and attribute-based multivariate time
series datasets (e.g., ETT, Weather, ECL). GRAPHSTAGE achieves the best performance in 22 out of
30 cases, significantly outperforming the recent state-of-the-art (SOTA) iTransformer, which ranks
first in only 4 instances. Compared to iTransformer, the MSE on the ECL, ETT (AVG), Weather,
Solar-Energy, and PEMS (AVG) datasets is significantly reduced by 6.7%, 2.1%, 5.8%, 17.6%,
and 14.3%, respectively. Specifically, on the PEMS07 dataset, which has the largest number of
nodes, GRAPHSTAGE outperforms the recent SOTA iTransformer by 20.8%, indicating its potential

6
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Table 1: Multivariate forecasting results with prediction lengths K ∈ {12, 24, 48, 96} for PEMS and
K ∈ {96, 192, 336, 720} for others and fixed lookback length T = 96. Results are averaged from all
prediction lengths. AVG means further averaged by subsets. Full results are listed in Appendix D.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.166 0.263 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.192 0.295 0.212 0.300 0.268 0.365

ETTm1 0.391 0.394 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.400 0.406 0.403 0.407 0.485 0.481

ETTm2 0.278 0.325 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.291 0.333 0.350 0.401 0.571 0.537

ETTh1 0.445 0.430 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.458 0.450 0.456 0.452 0.747 0.647

ETTh2 0.387 0.407 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.954 0.723

ETT (AVG) 0.375 0.388 0.383 0.399 0.380 0.392 0.381 0.397 0.685 0.578 0.391 0.404 0.442 0.444 0.689 0.597

Exchange 0.376 0.409 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.750 0.626

Traffic 0.462 0.294 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.620 0.336 0.625 0.383 0.804 0.509

Weather 0.243 0.274 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.292 0.363

Solar-Energy 0.192 0.267 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.301 0.319 0.330 0.401 0.282 0.375

PEMS03 0.097 0.210 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.147 0.248 0.278 0.375 0.114 0.224

PEMS04 0.090 0.200 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.129 0.241 0.295 0.388 0.092 0.202

PEMS07 0.080 0.179 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.124 0.225 0.329 0.395 0.119 0.234

PEMS08 0.139 0.220 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.193 0.271 0.379 0.416 0.158 0.244

PEMS (AVG) 0.102 0.203 0.119 0.218 0.514 0.482 0.217 0.305 0.220 0.304 0.148 0.246 0.320 0.394 0.121 0.222

1st Count 22 4 2 1 0 0 1 0

for application to larger-scale MTSF tasks, such as extensive grid management. Moreover, the
recent SOTA iTransformer performs poorly on attribute-based multivariate time series datasets
(e.g., ETT) because it is a single-dependency learning model that focuses solely on inter-series
(spatial) dependencies. In attribute-based datasets, there is generally no strong direct interaction or
correlation between the attributes (e.g., temperature, wind speed), which makes it more necessary
to extract intra-series (temporal) dependencies. This observation further validates the effectiveness
of GRAPHSTAGE in capturing both intra-series and inter-series dependencies, leading to superior
forecasting accuracy across diverse types of multivariate time series data.

Model Efficiency and Increasing lookback length. We conducted a comprehensive comparison
of the performance, training speed, and memory usage of GRAPHSTAGE against other models on
the ECL dataset, as shown in Figure 5. While GRAPHSTAGE may not achieve the best results
in terms of training speed and memory usage, it delivers the best predictive performance. To

100 200 300 400 500
Training Time(ms/iter)

0.14

0.15

0.16
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0.20

0.21

0.22

M
SE

GraphSTAGE
7.45GB, 84ms

iTransformer
3.51GB, 58ms

PatchTST
13.79GB, 356ms

DLinear
1.38GB, 15ms

Crossformer
14.01GB, 215ms

TimesNet
5.81GB, 532ms

ECL

Figure 5: Model efficiency comparison on
ECL dataset with input length 96 and output
length 96.
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Figure 6: Forecasting results with output
length 96 and input length in {48, 96, 192,
336, 512} across four datasets.
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ensure a fair comparison, we followed the settings in (Cai et al., 2024) and set the batch size of
GRAPHSTAGE to 32. Compared with Crossformer (Zhang & Yan, 2023), the only baseline model
that learns multiple dependencies, GRAPHSTAGE’s memory usage decreased by 47.0%, training
time decreased by 60.9%, and predictive performance improved by 36.5%. This significant reduction
in computational resources, combined with an improvement in accuracy, highlights GRAPHSTAGE’s
efficiency. Therefore, GRAPHSTAGE effectively balances model size, computational speed, and
predictive accuracy. Our model achieves superior performance at an acceptable computational cost,
demonstrating its practicality for real-world MTSF tasks.

Additionally, to evaluate the ability of GRAPHSTAGE to leverage increasing lookback length, we
conducted experiments on the ETTm1, PEMS04, Solar-Energy, and ECL datasets. The input lengths
were varied from shorter to longer as 48, 96, 192, 336, 512, while the forecasting horizon was fixed at
the next 96 time steps. As shown in Figure 6, the model’s performance steadily improves as the input
length increases. Notably, when the input length expands from 48 to 96, the MSE decreases most
significantly. This demonstrates that the Intra-GrAG module of GRAPHSTAGE effectively captures
intra-series dependencies, enabling it to learn more temporal correlations from longer input series.

4.3 MODEL ANALYSIS

Ablation on Correlation Learning Mechanism. To verify the effectiveness of GRAPHSTAGE
components, we provide detailed ablation studies covering both removing components (w/o) and
replacing components (Replace) experiments. The averaged results are listed in Table 2. In the
replacement experiments, we use the attention from Crossformer (Zhang & Yan, 2023), which has
been proved more accurate than vanilla Transformer (Vaswani et al., 2017). Removing any component
from GRAPHSTAGE results in performance degradation. GRAPHSTAGE utilizes Inter-GrAG
module on the spatial dimension and Intra-GrAG module on the time dimension, generally achieving
better performance than when replaced by the specially designed attention from Crossformer.

Table 2: Ablations on the Correlation Learning Mechanism. We remove or replace components along
spatial and temporal dimensions to learn multivariate correlations. The average results of all predicted
lengths are listed here, with full results provided in Appendix G.

Design Spatial Temporal ETTm1 ECL Traffic Solar-Energy

MSE MAE MSE MAE MSE MAE MSE MAE

GRAPHSTAGE Inter-GrAG Intra-GrAG 0.391 0.394 0.166 0.263 0.462 0.294 0.192 0.267

w/o Inter-GrAG w/o 0.398 0.400 0.185 0.277 0.478 0.312 0.225 0.292
w/o Intra-GrAG 0.399 0.400 0.186 0.276 0.509 0.320 0.239 0.294

Replace
Inter-GrAG Attention 0.395 0.401 0.168 0.265 0.478 0.303 0.206 0.270
Attention Intra-GrAG 0.403 0.406 0.171 0.268 0.459 0.305 0.206 0.276
Attention Attention 0.395 0.404 0.171 0.269 0.453 0.300 0.204 0.264

Ablation on Embedding&Patching Mechanism. As shown in Table 3, we test the components of
the Embedding&Patching module through three ablation studies: w/o Patching, w/o Time Embedding,
and w/o Adaptive Embedding. The performance of GRAPHSTAGE consistently surpasses all of the
ablation variants, indicating that accurate prediction relies not only on the dependency extraction
module but also importantly on the use of prior knowledge. Full results are provided in Appendix G.

Table 3: Ablations on the Embedding&Patching Mechanism. The average results are listed here.

Design PEMS03 PEMS04 PEMS07 PEMS08

MSE MAE MSE MAE MSE MAE MSE MAE

GRAPHSTAGE 0.097 0.210 0.090 0.200 0.080 0.179 0.139 0.220
w/o Patching 0.110 0.222 0.100 0.215 0.096 0.199 0.176 0.253

w/o Time Emb. 0.114 0.223 0.099 0.211 0.091 0.193 0.199 0.264
w/o Adaptive Emb. 0.121 0.257 0.098 0.211 0.116 0.221 0.203 0.260
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Variants Comparison. We designed three model variants to validate the effectiveness of our
framework. As illustrated in Figure 7, the proposed GRAPHSTAGE model is referred to as Orig.

Overall Structure of TsGrapher

Intra-GrAG

Inter-GrAG Intra-GrAG

Inter-GrAG

Intra-GrAG Inter-GrAG

Input→T→S Input→S→T Input→S+T

Inter-GrAG

Input→S+T+C

Channel Mixing

[N×P×D]

[N×P×D]

[N×P×D]

[N×P×D]

[N×P×D]

[N×P×D]

[N×P×D]

[NP×1×D]

Output Output Output Output

Reshape

[NP×1×D]

[N×P×D]

Orig VarA VarB VarC

Figure 7: Model Variants. Orig (GRAPHSTAGE) follows an input→T→S structure, sequentially
extracting temporal and then spatial dependencies. VarA uses input→S→T, reversing the order but
remaining sequential. VarB employs input→S+T, a parallel structure that decouples temporal and
spatial extraction before fusion. VarC utilizes input→S+T+C (C represents cross-series dependency
as shown in Figure 2), incorporating channel-mixing with a unified architecture similar to Fouri-
erGNN (Yi et al., 2024), extracting all three types of dependencies within a unified framework.

In Variant VarA, we swapped the positions of the Inter-GrAG and Intra-GrAG modules. The Inter-
GrAG module now processes the original features, rather than the temporal embeddings extracted
by the Intra-GrAG module. The swap aims to validate the rationale of the proposed sequential
architecture. VarA’s performance in Table 4, shows that the original sequence—inputting the extracted
temporal embeddings into the Inter-GrAG—contributes positively to the model’s effectiveness.

In Variant VarB, the Inter-GrAG and Intra-GrAG modules are connected in parallel rather than
sequentially. This configuration investigates whether simultaneous processing of inter-series and
intra-series dependencies impacts model performance compared to the original sequential architecture.
VarB’s performance in Table 4 confirms the sequential structure is more effective than the parallel.

In Variant VarC, we adopt the same channel-mixing architecture as UniTST (Liu et al., 2024a)
and FourierGNN (Yi et al., 2024), which reshapes the input data Xin from RN×T to a RNT×1

structure. This reshaping enables the coupled learning of three types of dependencies within a unified
structure. By comparing Orig with VarC, we are able to evaluate the effectiveness of our proposed
channel-preserving framework. From the results in Table 4, we observe that although channel-mixing
demonstrates stronger results in some cases—e.g., on the ETTm1 dataset with an input length of
96 and forecast length of 720, it outperforms Orig by 5.8%—this improvement comes at the cost
of increased memory usage. Moreover, on larger datasets like ECL, channel blending leads to an
exponential increase in parameters and a sharp decrease in prediction accuracy. By treating the
original multivariate time series as a univariate time series of length N ×T , the coupled dependencies
learning introduces more interference and noise compared to the proposed decoupled framework.
This highlights the advantages of our channel-preserving strategy, which maintains computational
efficiency and reduces noise while effectively capturing the essential dependencies.

The comparisons among these variants validate the design of GRAPHSTAGE. The sequential struc-
ture in Orig (GRAPHSTAGE) proves to be more effective than altering the module order (VarA)
or processing dependencies in parallel (VarB). Additionally, our channel-preserving framework
demonstrates superior scalability and efficiency compared to the channel-mixing strategy in VarC,
especially on larger datasets. This underscores the importance of preserving the original data structure
and decoupling the learning of inter-series and intra-series dependencies in MTSF models.

Visualization of Learned Dependencies. We conducted heatmap visualizations of dependencies
on three datasets with different sampling frequencies: ETTm1, ECL, and PEMS04. For ETTm1, the
input length is set to 288, corresponding to 3 days of data, as the sampling frequency is 15 minutes
(288× 15 minutes = 3 days). For ECL, the input length is 96, meaning each sample contains 4 days
of data, given the sampling frequency of 1 hour (96× 1 hour = 4 days). For PEMS04 with 5-minute
intervals, the input length is set to 576, meaning each sample contains 2 days of input data.
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Table 4: Model variants. All models are evaluated on 4 different predication lengths. The best results
are in red, the second results are in blue, and the highest memory usage is in bold.

Models Orig (GRAPHSTAGE) VarA VarB VarC

Metric MSE MAE Mem (GB) MSE MAE Mem (GB) MSE MAE Mem (GB) MSE MAE Mem (GB)

ETTm1
96 0.319 0.356 0.522 0.326 0.361 0.522 0.316 0.357 0.522 0.325 0.361 0.558

192 0.367 0.381 0.522 0.365 0.383 0.522 0.373 0.390 0.522 0.370 0.387 0.578
336 0.394 0.400 0.522 0.403 0.413 0.522 0.401 0.409 0.522 0.402 0.410 0.578
720 0.482 0.441 0.544 0.456 0.444 0.544 0.476 0.450 0.544 0.458 0.443 0.597

AVG 0.391 0.394 0.528 0.388 0.400 0.528 0.392 0.402 0.528 0.389 0.400 0.578

ECL
96 0.139 0.237 4.066 0.166 0.257 3.920 0.156 0.250 4.110 0.170 0.265 23.703

192 0.155 0.251 4.080 0.172 0.265 3.920 0.169 0.262 4.124 0.175 0.267 23.725
336 0.175 0.272 4.086 0.193 0.285 4.100 0.184 0.277 4.186 0.192 0.285 23.749
720 0.196 0.292 4.144 0.235 0.319 4.120 0.225 0.313 4.200 0.231 0.317 23.794

AVG 0.166 0.263 4.094 0.192 0.282 4.015 0.184 0.276 4.155 0.192 0.284 23.743

In experiments, we set the patch stride to 2 and randomly selected one Temporal Learnable Graph
(AT ) for each dataset, as shown in Figure 8. In ETTm1’s A

(1)
T , peaks occur every 48 patches,

corresponding to 24 hours. Similarly, ECL’s A
(2)
T shows peak every 12 patches (24 hours), and

PEMS04’s A
(3)
T peaks every 144 patches (24 hours). These visualizations demonstrate that the

periodicity extracted by the Inter-GrAG module matches the inherent daily periodicity of each dataset.
This match confirms our method effectively captures and visualizes the daily patterns in the data.
Appendix H provides additional AT visualizations and the analysis of Spatial Learnable Graph (AS).
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Figure 8: Visualization of Temporal Learnable Graphs (AT ) across different datasets (ETTm1, ECL,
PEMS04). Each column represents a randomly selected AT from the results of GRAPHSTAGE.

5 CONCLUSION

Current models primarily focus on the advantages of channel-mixing methods for extracting multiple
dependencies, often neglecting the noise these approaches can introduce. GRAPHSTAGE is the first
model to directly address this issue. Through the model variants experiments in Section 4.3, we
validated the presence of such interference, underscoring the limitations of excessive dependency
extraction. To mitigate these challenges, GRAPHSTAGE utilizes a decoupled architecture that
independently extracts inter-series and intra-series dependencies. As a fully graph-based, channel-
preserving framework, GRAPHSTAGE maintains the integrity of the original channel structures,
effectively avoiding the interference and noise associated with channel blending. Extensive experi-
ments conducted on 13 real-world datasets demonstrate that GRAPHSTAGE achieves performance on
par with, or surpassing, state-of-the-art methods. Future research could explore decoupled extraction
of cross-series dependencies and develop inductive models that maintain channel preservation.
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7 REPRODUCIBILITY STATEMENT

We provide detailed implementation information in Appendix A, B, and C, including additional model
details, descriptions of the datasets, hyperparameters, and experiment settings. For reproducibility,
the source code is made available through an anonymous link: https://anonymous.4open.
science/r/GraphSTAGE.
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A IMPLEMENTATION DETAILS

The detailed implementation for the Feed-Forward Network (FFN) and Gate layers are presented
below. Since the Spatial-Temporal Aggregation Graph Encoder (STAGE) block employs a unified
aggregation mechanism, the principles of the Inter-GrAG and Intra-GrAG modules are analogous.
Therefore, to avoid redundancy, we focus on the components of the Inter-GrAG module. The
transposed input to the Inter-GrAG module is Hin ∈ RN×P×D, and the output of the Pruned-Graph
Aggregation (PGA) is Hag ∈ RN×P×D. The module employs a FFN and a Gate layer to generate
the encoder output HE .

Feed-Forward Network (FFN). The FFN is responsible for processing the aggregated features to
capture nonlinear transformations. It introduces nonlinearity and enhances the model’s capacity to
learn complex representations. As formulated in Equation 6, the FFN consists of two linear layers
with ReLU activation functions. To facilitate better gradient flow and mitigate the vanishing gradient
problem, residual connections are employed. Specifically, after the FFN processes the features,
a residual connection adds the dropped HFFN back to the original input Hin, followed by layer
normalization.

Hres = LayerNorm (Dropout(HFFN) +Hin) , (6a)
HFFN = ReLU (Linear (ReLU (Linear(Hag)))) . (6b)

Gate Layer. We use the same Gate layer as UniTS (Gao et al., 2024). The Gate layer is placed at the
output of each Inter-GrAG and Intra-GrAG module within the STAGE blocks to regulate the flow of
information. Specifically, given an input Hres ∈ RN×P×D, a linear layer maps the input to a scaling
factor Hl ∈ RN×P×1 along the embedding dimension. This is followed by a Sigmoid function to
ensure the scaling factor lies between 0 and 1. The final gating operation involves element-wise
multiplication of the input with the Sigmoid-activated scaling factor, as formulated in Equation 7.

HE = Sigmoid(Hl)⊙Hres, Hl = Linear(Hres). (7)

This gating mechanism enhances the model’s ability to capture complex dependencies by adaptively
weighing the importance of different features.

Additionally, the pseudocode of GRAPHSTAGE, which outlines the key steps and components, is
provided in Algorithm 1. This serves as a comprehensive guide to understanding the implementation
details of our proposed model.

B DATASETS DETAILS FOR MULTIVARIATE TIME SERIES FORECASTING

We conduct experiments on 13 real-world datasets, covering a diverse range of application scenarios
and facilitating a comprehensive evaluation of the model. The details of the datasets are as follows:
(1) ETT (Li et al., 2021) records 7 features of electricity transformer at two time scales: hourly and
every 15 minutes. The data are sourced from two regions, resulting in four subsets: ETTh1, ETTh2,
ETTm1, and ETTm2. (2) ECL (Wu et al., 2021) records the hourly electricity consumption data
of 321 customers. (3) Exchange (Lai et al., 2018b) collects the data of daily exchange rates for 8
countries from 1990 to 2016. (4) Traffic (Wu et al., 2023) contains hourly road occupancy rates
measured by 862 sensors on San Francisco Bay area freeways in two years. (5) Weather (Liu et al.,
2024c) records 21 meteorological indicators at 10-minute intervals. (6) Solar-Energy (Lai et al.,
2018a) includes solar power production data from 137 photovoltaic plants in 2006, with recording
taken every 10 minutes. (7) PEMS (Choe et al., 2002) collects traffic network data in California
through multiple detection instruments. We adopt four subsets—PEMS03, PEMS04, PEMS07, and
PEMS08 used by ASTGCN (Guo et al., 2019). The details of datasets are provided in Table 5.
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Table 5: Detailed dataset descriptions. Nodes denote the node numbers of each dataset. Prediction
Length denotes the future time points to be predicted and four prediction settings are included in
each dataset. Dataset Size refers to the total number of time points in (Train, Validation, Test) split
respectively. Frequency denotes the sampling frequency of time points.

Dataset Nodes Prediction Length Dataset Size Frequency
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min

PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min

PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min

PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min

Algorithm 1 The learning algorithm of GRAPHSTAGE.
Require: Input historical time series X ∈ RN×T ; input length T ; prediction length K; nodes

number N ; patches number P ; patch stride s;embedding dimension D; STAGE block number L.

1: Base = Mean(X) ▷ Base ∈ RN×1

2: X = Patching(X) ▷ X ∈ RN×P×s

3: ▷ Projecton works on the last dimension to map series into embedding dimension D.

4: Xp = Projecton(X) ▷ Xp ∈ RN×P×D

5: ▷ Refined time embedding to enhance relative positioning.

6: H0 = Embedding(Xp) ▷ H0 ∈ RN×P×D

7: for l in {1, . . . , L}: ▷ Run through stacked STAGE blocks.

8: for ▷ Intra-GrAG module to capture temporal dependency.

9: for Ht
l−1 = IntraGrAG(Hl−1.transpose) ▷ Ht

l−1 ∈ RP×N×D

10: for ▷ Inter-GrAG module to capture spatial dependency.

11: for Hl = InterGrAG(Ht
l−1.transpose) ▷ Hl ∈ RN×P×D

12: End for

13: Ŷ = Projecton(HL) ▷ Project tokens back to predicted series, Ŷ ∈ RN×K

14: Ŷ = Ŷ +Base ▷ Ŷ ∈ RN×K

15: Return Ŷ ▷ Return the prediction result Ŷ
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C HYPERPARAMETERS AND SETTINGS

All experiments are conducted on a single RTX 4090 24GB GPU, and we utilize the Adam (Kingma
& Ba, 2015) optimizer to optimize the training process. All experiments are repeated five times
and we report the averaged results. The batch size is consistently set to 16, and the number of
training epochs is fixed to 10. We conduct a grid search to determine the best configuration. We
consistently set the embedding dimension D to 64, and the number of STAGE layers between 1 and
2. Normalization is skipped before the embedding process for the PEMS and Solar-Energy datasets,
and performed in advance for all other datasets. Table 6 outlines the specific hyperparameters used
for each dataset.

We partition the dataset for train-validation-test following the methodology established in Times-
Net (Wu et al., 2023), to ensure the comparability of subsequent experiments. For the forecasting
settings, the lookback length for all datasets is set to 96. The prediction horizon varies across
{12, 24, 48, 96} for the PEMS datasets and {96, 192, 336, 720} for the other datasets.

Table 6: Hyperparameters of GRAPHSTAGE on different datasets.

Dataset ETTm1 ETTm2 ETTh1 ETTh2 ECL Exchange Weather Traffic Solar-Energy PEMS03 PEMS04 PEMS07 PEMS08

Epochs 10

Batch 16

Loss MSE

Learning Rate 1e-3 2e-3 2e-4 5e-4 5e-3 5e-4 2e-3

Layers 1 2 1

Use Norm 1 0

D 64

c 12

Optimizer Adam

D FULL RESULT ACROSS 13 REAL-WORLD DATASETS

In this section, we provide detailed multivariate prediction results across 13 real-world datasets.

Table 7 summarizes the results for various prediction lengths across 9 benchmark datasets. The
results indicate that GRAPHSTAGE consistently compares to or outperforms other models across all
datasets, securing the highest rank in MSE and MAE 26 and 25 times, respectively.

Table 8 presents the forecasting results for the four subsets of the PEMS dataset. Notably, GRAPH-
STAGE achieves the best MSE in 20 out of 21 comparisons and the best MAE in 19 out of 21
comparisons across the PEMS datasets. Specifically on PEMS07, the model achieves a significant
improvement over the recent state-of-the-art iTransformer, with a margin of 20.8%.

Table 9 contains comparison results with advanced GNNs, including four well-known models:
FourierGNN (Yi et al., 2024), CrossGNN (Huang et al., 2023), StemGNN (Cao et al., 2020),
and MTGNN (Wu et al., 2020). We reproduce the result of FourierGNN (Yi et al., 2024) and
StemGNN (Cao et al., 2020), while collecting the other baseline results from TimesNet (Wu et al.,
2023). All experiments are repeated five times and we report the averaged results. The results indicate
that GRAPHSTAGE achieves top-1 performance in most cases. Notably, on the largest-scale dataset
(ECL with 321 nodes), it outperforms the second-best model (CrossGNN) by significant margins,
with reductions in MSE and MAE exceeding 17.4% and 12.3%, respectively.
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Table 7: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of iTransformer (Liu et al., 2024c). The input
sequence length is set to 96 for all baselines. AVG means the average results from all four prediction
lengths: {96, 192, 336, 720}.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1
96 0.319 0.356 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.338 0.375 0.345 0.372 0.418 0.438
192 0.367 0.381 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.374 0.387 0.380 0.389 0.439 0.450
336 0.394 0.400 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.410 0.411 0.413 0.413 0.490 0.485
720 0.482 0.441 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.478 0.450 0.474 0.453 0.595 0.550

AVG 0.391 0.394 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.400 0.406 0.403 0.407 0.485 0.481

ETTm2
96 0.174 0.259 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.187 0.267 0.193 0.292 0.286 0.377
192 0.241 0.304 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.249 0.309 0.284 0.362 0.399 0.445
336 0.301 0.341 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.321 0.351 0.369 0.427 0.637 0.591
720 0.397 0.398 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.408 0.403 0.554 0.522 0.960 0.735

AVG 0.278 0.325 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.291 0.333 0.350 0.401 0.571 0.537

ETTh1
96 0.384 0.395 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.384 0.402 0.386 0.400 0.654 0.599
192 0.435 0.426 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.436 0.429 0.437 0.432 0.719 0.631
336 0.476 0.441 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.491 0.469 0.481 0.459 0.778 0.659
720 0.487 0.460 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.521 0.500 0.519 0.516 0.836 0.699

AVG 0.445 0.430 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.458 0.450 0.456 0.452 0.747 0.647

ETTh2
96 0.292 0.341 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.340 0.374 0.333 0.387 0.707 0.621
192 0.380 0.395 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.402 0.414 0.477 0.476 0.860 0.689
336 0.424 0.431 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.452 0.452 0.594 0.541 1.000 0.744
720 0.453 0.459 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.462 0.468 0.831 0.657 1.249 0.838

AVG 0.387 0.407 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.954 0.723

ECL
96 0.139 0.237 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.168 0.272 0.197 0.282 0.247 0.345
192 0.155 0.251 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.184 0.289 0.196 0.285 0.257 0.355
336 0.175 0.272 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.198 0.300 0.209 0.301 0.269 0.369
720 0.196 0.292 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.220 0.320 0.245 0.333 0.299 0.390

AVG 0.166 0.263 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.192 0.295 0.212 0.300 0.268 0.365

Exchange
96 0.084 0.203 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.107 0.234 0.088 0.218 0.267 0.396
192 0.186 0.306 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.226 0.344 0.176 0.315 0.351 0.459
336 0.339 0.420 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.367 0.448 0.313 0.427 1.324 0.853
720 0.898 0.710 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.964 0.746 0.839 0.695 1.058 0.797

AVG 0.376 0.409 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.750 0.626

Traffic
96 0.438 0.281 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.593 0.321 0.650 0.396 0.788 0.499
192 0.442 0.282 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.617 0.336 0.598 0.370 0.789 0.505
336 0.461 0.292 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.629 0.336 0.605 0.373 0.797 0.508
720 0.509 0.322 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.640 0.350 0.645 0.394 0.841 0.523

AVG 0.462 0.294 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.620 0.336 0.625 0.383 0.804 0.509

Weather
96 0.159 0.208 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.172 0.220 0.196 0.255 0.221 0.306
192 0.207 0.251 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.219 0.261 0.237 0.296 0.261 0.340
336 0.263 0.292 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.280 0.306 0.283 0.335 0.309 0.378
720 0.344 0.345 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.365 0.359 0.345 0.381 0.377 0.427

AVG 0.243 0.274 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.292 0.363

Solar-Energy
96 0.172 0.258 0.203 0.237 0.322 0.339 0.234 0.286 0.310 0.331 0.250 0.292 0.290 0.378 0.237 0.344
192 0.183 0.259 0.233 0.261 0.359 0.356 0.267 0.310 0.734 0.725 0.296 0.318 0.320 0.398 0.280 0.380
336 0.205 0.278 0.248 0.273 0.397 0.369 0.290 0.315 0.750 0.735 0.319 0.330 0.353 0.415 0.304 0.389
720 0.211 0.273 0.249 0.275 0.397 0.356 0.289 0.317 0.769 0.765 0.338 0.337 0.356 0.413 0.308 0.388

AVG 0.192 0.267 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.301 0.319 0.330 0.401 0.282 0.375

Average 0.327 0.340 0.332 0.343 0.376 0.367 0.345 0.353 0.597 0.512 0.372 0.366 0.395 0.399 0.573 0.514

1st Count 26 25 5 11 6 6 5 4 2 0 0 0 2 0 0 0
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Table 8: Full results of the PEMS forecasting task. We compare extensive competitive models under
different prediction lengths following the setting of SCINet (Liu et al., 2022). The input length is set to
96 for all baselines. AVG means the average results from all four prediction lengths: {12, 24, 48, 96}.

Models Ours iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03
12 0.065 0.170 0.071 0.174 0.126 0.236 0.099 0.216 0.090 0.203 0.085 0.192 0.122 0.243 0.066 0.172
24 0.082 0.193 0.093 0.201 0.246 0.334 0.142 0.259 0.121 0.240 0.118 0.223 0.201 0.317 0.085 0.198
48 0.106 0.219 0.125 0.236 0.551 0.529 0.211 0.319 0.202 0.317 0.155 0.260 0.333 0.425 0.127 0.238
96 0.136 0.253 0.164 0.275 1.057 0.787 0.269 0.370 0.262 0.367 0.228 0.317 0.457 0.515 0.178 0.287

AVG 0.097 0.210 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.147 0.248 0.278 0.375 0.114 0.224

PEMS04
12 0.070 0.174 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.218 0.087 0.195 0.148 0.272 0.073 0.177
24 0.082 0.190 0.095 0.205 0.258 0.348 0.153 0.275 0.131 0.256 0.103 0.215 0.224 0.340 0.084 0.193
48 0.096 0.207 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.326 0.136 0.250 0.355 0.437 0.099 0.211
96 0.113 0.228 0.150 0.262 1.137 0.820 0.291 0.389 0.402 0.457 0.190 0.303 0.452 0.504 0.114 0.227

AVG 0.090 0.200 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.129 0.241 0.295 0.388 0.092 0.202

PEMS07
12 0.056 0.152 0.067 0.165 0.118 0.235 0.095 0.207 0.094 0.200 0.082 0.181 0.115 0.242 0.068 0.171
24 0.072 0.175 0.088 0.190 0.242 0.341 0.150 0.262 0.139 0.247 0.101 0.204 0.210 0.329 0.119 0.225
48 0.087 0.179 0.110 0.215 0.562 0.541 0.253 0.340 0.311 0.369 0.134 0.238 0.398 0.458 0.149 0.237
96 0.105 0.209 0.139 0.245 1.096 0.795 0.346 0.404 0.396 0.442 0.181 0.279 0.594 0.553 0.141 0.234

AVG 0.080 0.179 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.124 0.225 0.329 0.395 0.119 0.234

PEMS08
12 0.085 0.175 0.079 0.182 0.133 0.247 0.168 0.232 0.165 0.214 0.112 0.212 0.154 0.276 0.087 0.184
24 0.111 0.205 0.115 0.219 0.249 0.343 0.224 0.281 0.215 0.260 0.141 0.238 0.248 0.353 0.122 0.221
48 0.155 0.230 0.186 0.235 0.569 0.544 0.321 0.354 0.315 0.355 0.198 0.283 0.440 0.470 0.189 0.270
96 0.207 0.270 0.221 0.267 1.166 0.814 0.408 0.417 0.377 0.397 0.320 0.351 0.674 0.565 0.236 0.300

AVG 0.139 0.220 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.193 0.271 0.379 0.416 0.158 0.244

Average 0.102 0.203 0.119 0.218 0.514 0.482 0.217 0.305 0.220 0.304 0.148 0.246 0.320 0.394 0.121 0.222

1st Count 20 19 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Table 9: Additional comparison with advanced GNNs on long-term forecasting tasks, following the
setting of TimesNet (Wu et al., 2023). The input sequence length is set to 96 for all baselines. AVG
means the average results from all four prediction lengths: {96, 192, 336, 720}.

Models Ours FourierGNN CrossGNN StemGNN MTGNN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.319 0.356 0.389 0.409 0.335 0.373 0.470 0.491 0.379 0.446
192 0.367 0.381 0.427 0.429 0.372 0.390 0.497 0.504 0.470 0.428
336 0.394 0.400 0.459 0.451 0.403 0.411 0.578 0.557 0.473 0.430
720 0.482 0.441 0.535 0.502 0.461 0.442 0.653 0.596 0.553 0.479

AVG 0.391 0.394 0.453 0.448 0.393 0.404 0.550 0.537 0.469 0.446

ETTh2

96 0.292 0.341 0.398 0.432 0.309 0.359 0.599 0.571 0.354 0.454
192 0.380 0.395 0.556 0.518 0.390 0.406 1.296 0.886 0.457 0.464
336 0.424 0.431 0.630 0.566 0.426 0.444 1.189 0.843 0.515 0.540
720 0.453 0.459 0.587 0.551 0.445 0.464 1.549 0.946 0.532 0.576

AVG 0.387 0.407 0.543 0.517 0.393 0.418 1.158 0.812 0.465 0.509

Weather

96 0.159 0.208 0.189 0.248 0.159 0.218 0.188 0.261 0.230 0.329
192 0.207 0.251 0.226 0.283 0.211 0.266 0.239 0.306 0.263 0.322
336 0.263 0.292 0.274 0.320 0.267 0.310 0.315 0.367 0.354 0.396
720 0.344 0.345 0.339 0.369 0.352 0.362 0.412 0.432 0.409 0.371

AVG 0.243 0.274 0.257 0.305 0.247 0.289 0.289 0.342 0.314 0.355

ECL

96 0.139 0.237 0.202 0.299 0.173 0.275 0.188 0.288 0.217 0.318
192 0.155 0.251 0.207 0.305 0.195 0.288 0.194 0.296 0.238 0.352
336 0.175 0.272 0.220 0.319 0.206 0.300 0.224 0.326 0.260 0.348
720 0.196 0.292 0.254 0.349 0.231 0.335 0.255 0.352 0.290 0.369

AVG 0.166 0.263 0.221 0.318 0.201 0.300 0.215 0.316 0.251 0.347

Average 0.297 0.335 0.369 0.397 0.309 0.353 0.553 0.502 0.375 0.414

1st Count 18 21 1 0 2 0 0 0 0 0
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E VISUALIZATION OF 96-TO-96 FORECASTING ACROSS DATASETS

In order to better compare the models, we present supplementary prediction results for four repre-
sentative datasets in Figures 9, 10, 11, and 12, generated by the following models: GRAPHSTAGE,
iTransformer (Liu et al., 2024c), PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023),
TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2023) and SCINet (Liu et al., 2022). For all
baselines, the input length is set to 96, with a forecasting horizon of 96 time steps.
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Figure 9: Sample visualization across models on ECL dataset, with forecast horizon 96.
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Figure 10: Sample visualization across models on ETTm1 dataset, with forecast horizon 96.
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In Figure 9, GRAPHSTAGE predicts the values for time steps 125 to 150 more accurately than
the other models. In Figure 10, only GRAPHSTAGE’s predictions closely follow the trend of the
GroundTruth, while the other models deviate significantly. In Figure 11, our model is the only one to
accurately predict the peak at the 160th time step. Finally, in Figure 12, our predictions perfectly
match the trend of the GroundTruth, with Crossformer (Zhang & Yan, 2023) coming in as the second
best.

Overall, GRAPHSTAGE consistently delivers the most accurate predictions of future series variations,
demonstrating outstanding performance across all datasets.
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Figure 11: Sample visualization across models on Solar-Energy dataset, with forecast horizon 96.
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Figure 12: Sample visualization across models on PEMS07 dataset, with forecast horizon 96.
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F ROBUSTNESS EXPERIMENTS

In this section, we present the standard deviations of GRAPHSTAGE across all multivariate time
series forecasting tasks, as shown in Table 11 and Table 10. These results were obtained using five
random seeds.

Additionally, we conducted a separate set of robustness tests with varying input lengths. The results of
these experiments are presented in Figure 13. Experiments were performed on the ETTm1 and ECL
datasets, with each configuration run 10 times to assess whether the results remained stable within a
consistent range. Furthermore, as the model is able to leverage longer historical input data, both the
MSE and MAE consistently decreased. The reductions in MSE and MAE are most significant when
the input length increases from 48 to 96. These findings highlight the model’s strong robustness and
its effective capability in extracting intra-series (temporal) correlations.
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Figure 13: Robustness Experiments with increasing input lengths: {48, 96, 192, 336, 512}, and fixed
output length: 96.
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Table 10: Standard deviations of GRAPHSTAGE on 9 time series datasets for long-term forecasting
tasks. The results are obtained from five random seeds.

Dataset ETTm1 ETTm2 ETTh1

Horizon MSE MAE MSE MAE MSE MAE

96 0.319±0.004 0.356±0.003 0.174±0.002 0.259±0.001 0.384±0.003 0.395±0.007
192 0.367±0.002 0.381±0.002 0.241±0.007 0.304±0.006 0.435±0.007 0.426±0.005
336 0.394±0.003 0.400±0.002 0.301±0.001 0.341±0.000 0.476±0.005 0.441±0.001
720 0.482±0.005 0.441±0.002 0.397±0.005 0.398±0.002 0.487±0.003 0.460±0.003

Dataset ETTh2 ECL Exchange

Horizon MSE MAE MSE MAE MSE MAE
96 0.292±0.002 0.341±0.002 0.139±0.001 0.237±0.001 0.084±0.003 0.203±0.004
192 0.380±0.008 0.395±0.004 0.155±0.004 0.251±0.002 0.186±0.002 0.306±0.002
336 0.424±0.006 0.431±0.007 0.175±0.003 0.272±0.002 0.339±0.003 0.420±0.002
720 0.453±0.004 0.459±0.002 0.196±0.005 0.292±0.004 0.898±0.014 0.710±0.012

Dataset Traffic Weather Solar-Energy

Horizon MSE MAE MSE MAE MSE MAE
96 0.438±0.005 0.281±0.007 0.159±0.001 0.208±0.001 0.172±0.003 0.258±0.004
192 0.442±0.005 0.282±0.002 0.207±0.001 0.251±0.001 0.183±0.002 0.259±0.001
336 0.461±0.004 0.292±0.004 0.263±0.001 0.292±0.001 0.205±0.003 0.278±0.005
720 0.509±0.006 0.322±0.007 0.344±0.001 0.345±0.001 0.211±0.001 0.273±0.001

Table 11: Standard deviations of GRAPHSTAGE on the PEMS forecasting tasks. The results are
obtained from five random seeds.

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Horizon MSE MAE MSE MAE MSE MAE MSE MAE

12 0.065±0.002 0.170±0.002 0.070±0.001 0.174±0.002 0.056±0.001 0.152±0.001 0.085±0.007 0.175±0.006
24 0.082±0.004 0.193±0.004 0.082±0.001 0.190±0.001 0.072±0.001 0.175±0.003 0.111±0.002 0.205±0.003
48 0.106±0.005 0.219±0.005 0.096±0.005 0.207±0.005 0.087±0.007 0.179±0.004 0.155±0.010 0.230±0.009
96 0.136±0.007 0.253±0.005 0.113±0.004 0.228±0.003 0.105±0.005 0.209±0.006 0.207±0.006 0.270±0.007
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G FULL RESULTS OF ABLATION STUDY

In this section, we provide the detail results of our ablation studies to offer deeper insights into the
effectiveness of each component in GRAPHSTAGE. Table 12 displays the full results of the ablation
study on the Correlation Learning Mechanism for each prediction length. The experiments include
both component removal (w/o) and component replacement (Replace) using the attention mechanism
from Crossformer (Zhang & Yan, 2023). Detailed results of the ablation study on the Embedding &
Patching mechanism are presented in Table 13. We investigate the impact of removing the Patching
module (w/o Patching), the Time Embedding (w/o Time Embedding), and the Adaptive Embedding
(w/o Adaptive Embedding) individually.

The performance degradation observed in all ablated variants across different prediction lengths
underscores the significant role of the components in GRAPHSTAGE. Our comprehensive ablation
studies confirm that each component contributes to the model’s overall performance. The Inter-
GrAG and Intra-GrAG modules are essential for learning spatial and temporal dependencies, while
the Embedding & Patching mechanism effectively incorporates prior knowledge. These findings
underscore the importance of each design in GRAPHSTAGE, collectively leading to its superior
performance in MTSF tasks.

Table 12: Full Results of Ablation Study on Correlation Learning Mechanism. The input sequence
length is set to 96. AVG means the average results from all four prediction lengths.

Design Spatial Temporal Prediction ETTm1 ECL Traffic Solar-Energy

Lengths MSE MAE MSE MAE MSE MAE MSE MAE

GRAPHSTAGE Inter-GrAG Intra-GrAG

96 0.319 0.356 0.139 0.237 0.438 0.281 0.172 0.258
192 0.367 0.381 0.155 0.251 0.442 0.282 0.183 0.259
336 0.394 0.400 0.175 0.272 0.461 0.292 0.205 0.278
720 0.482 0.441 0.196 0.292 0.509 0.322 0.211 0.273

AVG 0.391 0.394 0.166 0.263 0.462 0.294 0.192 0.267

w/o

Inter-GrAG w/o

96 0.319 0.360 0.160 0.253 0.455 0.308 0.177 0.268
192 0.377 0.389 0.168 0.260 0.452 0.292 0.223 0.297
336 0.410 0.410 0.183 0.276 0.475 0.307 0.226 0.301
720 0.486 0.441 0.230 0.318 0.529 0.340 0.274 0.300

AVG 0.398 0.400 0.185 0.277 0.478 0.312 0.225 0.292

w/o Intra-GrAG

96 0.328 0.364 0.167 0.257 0.488 0.307 0.241 0.305
192 0.374 0.386 0.169 0.259 0.515 0.320 0.226 0.282
336 0.398 0.404 0.190 0.279 0.495 0.308 0.245 0.299
720 0.496 0.448 0.219 0.307 0.536 0.343 0.243 0.291

AVG 0.399 0.400 0.186 0.276 0.509 0.320 0.239 0.294

Replace

Inter-GrAG Attention

96 0.323 0.363 0.143 0.240 0.448 0.286 0.183 0.259
192 0.374 0.388 0.165 0.258 0.462 0.297 0.210 0.276
336 0.401 0.410 0.170 0.267 0.468 0.299 0.208 0.272
720 0.481 0.443 0.195 0.296 0.533 0.329 0.221 0.274

AVG 0.395 0.401 0.168 0.265 0.478 0.303 0.206 0.270

Attention Inter-GrAG

96 0.339 0.373 0.144 0.242 0.436 0.305 0.177 0.256
192 0.375 0.389 0.161 0.257 0.445 0.291 0.206 0.278
336 0.414 0.413 0.176 0.274 0.461 0.298 0.225 0.288
720 0.486 0.449 0.202 0.297 0.494 0.325 0.214 0.280

AVG 0.403 0.406 0.171 0.268 0.459 0.305 0.206 0.276

Attention Attention

96 0.316 0.361 0.144 0.243 0.414 0.284 0.181 0.253
192 0.385 0.398 0.160 0.257 0.444 0.292 0.205 0.265
336 0.393 0.410 0.177 0.276 0.461 0.298 0.210 0.268
720 0.486 0.447 0.203 0.299 0.494 0.325 0.218 0.270

AVG 0.395 0.404 0.171 0.269 0.453 0.300 0.204 0.264
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Table 13: Full Results of Ablation Study on Embedding&Patching Mechanism. The input sequence
length is set to 96. AVG means the average results from all four prediction lengths.

Design Prediction PEMS03 PEMS04 PEMS07 PEMS08

Lengths MSE MAE MSE MAE MSE MAE MSE MAE

GRAPHSTAGE

12 0.065 0.170 0.070 0.174 0.056 0.152 0.085 0.175
24 0.082 0.193 0.082 0.190 0.072 0.175 0.111 0.205
48 0.106 0.219 0.096 0.207 0.087 0.179 0.155 0.230
96 0.136 0.253 0.113 0.228 0.105 0.209 0.207 0.270

AVG 0.097 0.210 0.090 0.200 0.080 0.179 0.139 0.220

w/o Patching

12 0.071 0.179 0.075 0.183 0.058 0.157 0.105 0.191
24 0.091 0.205 0.089 0.202 0.078 0.181 0.127 0.216
48 0.118 0.231 0.103 0.217 0.101 0.203 0.175 0.258
96 0.160 0.272 0.134 0.259 0.146 0.257 0.295 0.348

AVG 0.110 0.222 0.100 0.215 0.096 0.199 0.176 0.253

w/o Time Emb.

12 0.070 0.177 0.071 0.176 0.063 0.162 0.108 0.199
24 0.093 0.203 0.088 0.198 0.077 0.179 0.179 0.254
48 0.132 0.242 0.115 0.231 0.095 0.201 0.195 0.269
96 0.162 0.269 0.122 0.239 0.128 0.231 0.315 0.335

AVG 0.114 0.223 0.099 0.211 0.091 0.193 0.199 0.264

w/o Adaptive Emb.

12 0.071 0.180 0.076 0.185 0.060 0.161 0.100 0.188
24 0.089 0.304 0.086 0.196 0.079 0.184 0.116 0.206
48 0.122 0.239 0.107 0.220 0.131 0.239 0.166 0.250
96 0.202 0.306 0.125 0.242 0.194 0.299 0.429 0.395

AVG 0.121 0.257 0.098 0.211 0.116 0.221 0.203 0.260

H VISUALIZATION OF TEMPORAL AND SPATIAL LEARNABLE GRAPHS.

GRAPHSTAGE is a fully graph-based model that decouples the learning of inter-series (spatial)
and intra-series (temporal) dependencies. Consequently, it can generate two learnable graphs in the
spatial and temporal dimensions, respectively.

Figure 14 presents additional visualizations of the Temporal Learnable Graphs (AT ). Each column
displays a randomly selected AT from the results of GRAPHSTAGE, with experiments conducted on
the ETTm1, ECL, and PEMS04 datasets.
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Figure 14: Supplementary visualization of Temporal Learnable Graphs (AT ) across datasets (ETTm1,
ECL, PEMS04). Each column represents a randomly selected AT from the results of GRAPHSTAGE.
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Figure 15: A randomly selected sample of the Spatial Learnable Graph (AS) on the PEMS04 dataset
(left), along with the corresponding GroundTruth of the nodes (right).

Figure 15 presents a randomly selected sample of the Spatial Learnable Graph (AS) along with the
corresponding ground truth of the nodes.

In AS , we observe that nodes 184 and 282 exhibit a high correlation—as indicated by a bright
spot within the green square in Figure 15 (left), representing a correlation coefficient close to 1.
Conversely, nodes 184 and 83 show almost zero correlation—there is no bright spot within the orange
square in Figure 15 (left), indicating a correlation coefficient close to 0. Correspondingly, as shown
in Figure 15 (right), the ground truth for nodes 184 and 282 behaves very similarly, whereas node 83
displays completely different trends.

This randomly selected visualization demonstrates that the correlations among nodes in AS learned
by the Intra-GrAG module match the ground truth, confirming the effectiveness of GRAPHSTAGE in
capturing inter-series dependencies.
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