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Abstract001

Artificial intelligence has demonstrated im-002
mense potential in scientific research. Within003
molecular science, it is revolutionizing the tra-004
ditional computer-aided paradigm, ushering005
in a new era of deep learning. With recent006
progress in multimodal learning and natural007
language processing, an emerging trend has tar-008
geted at building multimodal frameworks to009
jointly model molecules with textual domain010
knowledge, known as language-molecule mod-011
els. In this paper, we present the first systematic012
survey on language-molecule models. Specifi-013
cally, we begin with the development of molec-014
ular deep learning and point out the necessity015
to involve textual modality. Next, we focus016
on recent advances in text-molecule alignment017
methods, categorizing current models based018
on their architectures and listing relevant pre-019
training tasks. Furthermore, we delves into020
the utilization of large language models and021
prompting techniques for molecular tasks and022
present significant applications in drug discov-023
ery. Finally, we discuss the limitations in this024
field and highlight several promising directions025
for future research.026

1 Introduction027

Accurately modeling molecules and extracting028

meaningful features is a primary goal of molecular029

deep learning. Initially, manual descriptors, such030

as molecular fingerprints and SMILES, are pro-031

posed to describe molecules in strings or sequences.032

These descriptors can naturally be encoded by033

language models for feature extraction. Subse-034

quently, graph structures gradually show their su-035

periority in modeling the topology structure within036

molecules. Graph neural networks (GNNs) are037

used to learn from molecular graphs by aggregat-038

ing and propagating information within atoms and039

chemical bonds (Kipf and Welling, 2017). Simulta-040

neously, numerous works integrate self-supervised041

pre-training in this process to generate generalized042

representations. Despite the success in molecular 043

deep learning, two key challenges persistently exist. 044

First, owing to the complexity of chemical space 045

and chemical rules, current deep learning frame- 046

works lack a deep comprehension of chemical do- 047

main knowledge (e.g. quantum mechanics rules). 048

Furthermore, both supervised and self-supervised 049

models need to be trained or fine-tuned on labeled 050

molecules, which are typically scarce in real appli- 051

cations due to the high experimental cost. These 052

notorious problems decelerate progress in related 053

areas. 054

Recently, multimodal learning and Large Lan- 055

guage Models (LLMs) have shown impressive com- 056

petence in modeling and inference. Inspired by 057

the success of vision-language models, it is natu- 058

ral to associate molecules with text description to 059

build language-molecule models (Edwards et al., 060

2024). Following this idea, a line of works treats 061

molecules as languages with special grammar, and 062

cross-language frameworks, such as T5 (Raffel 063

et al., 2020), are chosen as the backbone to jointly 064

model text and molecules (Edwards et al., 2022; 065

Taylor et al., 2022; Pei et al., 2023, 2024b,a; Jin 066

et al., 2024). At the same time, another line of work 067

explores the alignment of the latent space between 068

text and structured molecular data (Su et al., 2022; 069

Liu et al., 2023a; Xiao et al., 2024a; Huo et al., 070

2024; Flöge et al., 2024; Su et al., 2024; Liu et al., 071

2024e), and attempts to integrate LLMs into multi- 072

modal frameworks as predictors for cross-modal 073

molecular tasks. Furthermore, prompting tech- 074

niques are also introduced in the fine-tuning pro- 075

cess and yield competitive results in many molec- 076

ular tasks without large-scale pre-training (Liang 077

et al., 2023; Cao et al., 2023; Zhang et al., 2023; 078

Yu et al., 2024; Jin et al., 2024; Gruver et al., 2024). 079

Recently, some insightful work has attempted to 080

build autonomous agents for chemistry and biology 081

(Boiko et al., 2023; Liu et al., 2024d), bringing a 082

new paradigm for future scientific research. 083
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However, as a prosperous subject, there still084

lacks a systematic review to summarize recent085

progress and propose promising outlooks. In this086

regard, we present the first survey of language-087

molecule models. We summarize our contributions088

as follows: (1) We provide an overview of this field089

with a structured taxonomy that categorizes the090

framework based on their basic architecture. (2)091

Our systematic review provides a detailed analysis092

of training strategies, dataset construction methods093

and corresponding applications. (3) We analyze the094

limitations in this field and provide several promis-095

ing research directions.096

2 Molecular Descriptors and Encoding097

Molecules need to be transformed into descriptors098

for the recognition of the model. In this section,099

we briefly summarize the mainstream descriptors100

of small molecules and proteins along with their101

corresponding encoder architectures. Generally,102

both small molecules and proteins can be described103

by sequences and graphs.104

2.1 1D Molecule Sequence105

Small-molecule Sequence Molecules are com-106

posed of atoms and connected bonds, allowing the107

representation of molecules as sequences that de-108

scribe their components. The Simplified Molec-109

ular Input Line Entry System (SMILES) is the110

most commonly used sequential descriptor, map-111

ping atoms, bonds, and special structures using112

ASCII symbols. Self-referencing embedded strings113

(SELFIES) (Krenn et al., 2020) is another string-114

based descriptor which is recently popular for its115

robustness and superiority in tokenization. Interna-116

tional Union of Pure and Applied Chemistry (IU-117

PAC) is the official name of molecules in the human118

language, which can serve as a connector for lan-119

guage models to understand chemical expressions.120

Molecular Fingerprints (Axen et al., 2017; Rogers121

and Hahn, 2010) are class of binary codes with122

each position representing a predefined chemical123

structure. Because of their simplicity and capability124

to encode structure information, molecular finger-125

prints have been widely used in chemoinformatics126

research.127

Protein Sequence A protein can be viewed as128

a combination of 20 types of amino acids, which129

allows it to be expressed as amino acid sequences130

in a manner similar to molecules. The amino acid131

sequence captures the co-evolutionary information132

and plays a vital role in protein folding and func- 133

tion. Usually, protein sequences are encoded by 134

Protein Language Models (PLMs) and represented 135

as PLM tokens for further processing. 136

2.2 2D Molecule Structures 137

2D Graph The topology structure of molecules 138

can be naturally modeled by graph, with atoms 139

as nodes and bonds as edges. The chemical and 140

physical properties of atoms and bonds can also be 141

featurized by molecular graphs. GNNs (Kipf and 142

Welling, 2017) can be used to learn local and global 143

representations of molecules and have shown com- 144

petitive results in various downstream tasks (Liu 145

et al., 2022). 146

2.3 3D Molecule Structures 147

3D Geometric Graph 2D molecular graphs have 148

limitations in capturing spatial information within 149

molecules. For example, chiral molecules cannot 150

be distinguished through most of the 2D graph. 151

The geometry information of the conformers (e.g., 152

torsional angles and bond length) is in direct re- 153

lation to molecular properties. In 3D geometry, 154

atoms are associated with their coordinates with 155

features expressed in high-order tensors to ensure 156

geometric symmetries and expressiveness. Many 157

studies concentrate on designing equivariant GNNs 158

to accurately model the interaction between atoms 159

(Batzner et al., 2022). 160

Protein Graph Protein functions are mainly de- 161

termined by their folded structures (Jumper et al., 162

2021). To better capture structural information, 163

proteins can be represented as a residue-level re- 164

lation graph, where nodes are residues with posi- 165

tions of Cα and edges encoding their connectivity 166

or relative distance. GVP (Jing et al., 2020) or 167

EGNN (Satorras et al., 2021) are popular GNNs 168

for protein structure encoding. 169

3 Latent Space Alignment between Text 170

and Molecule 171

The encoding stage featurizes text and molecules 172

into a single modality, while these representations 173

still inhabit diverse semantic spaces and cannot in- 174

teract with each other. To facilitate downstream 175

tasks, different architectures are designed for text- 176

molecule fusion and latent space alignment. In 177

this section, we classify model architectures by the 178

fusion scheme and summarize the corresponding 179
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Figure 1: Pipeline of language-molecule models and downstream molecular tasks (a-c). (a) Latent space alignment
and adaptation of downstream tasks. The single-stream framework jointly models text and molecules with the same
encoder. The downstream tasks are realized with task-specific prompts described in section 4.1; The multi-stream
framework involves cross-modal alignment between text and molecules. Features from latent space can be directly
used for tasks or be used in instruction-tuning. (b) Building a semi-autonomous agent for molecular research
with instructions and in-context examples. (c) Building autonomous agent for chemistry with instructions and
chain-of-thought prompting. Equipping agent with external tools and memory largely expand the autonomous level
and capabilities.

pre-training tasks. We present a summary of repre-180

sentative works in Table 1.181

3.1 Model Architecture182

Drawing inspiration from previous works in vision-183

language pre-training (Du et al., 2022), we catego-184

rize models into single-stream, and multi-stream185

architecture. The two types of models differ mainly186

in their understanding of molecular latent space.187

Single-Stream Architecture A single-stream188

architecture assumes that the latent space of189

molecules and text shares similar semantic mean-190

ing. In this circumstance, molecules are treated as191

a specialized language and expressed by sequential192

descriptors. Different tokenization strategies are193

adopted to encode molecules and text, and these194

tokens will be fed into a language model, such as195

T5 (Raffel et al., 2020), for multi-language pre-196

training. As a widely used tokenization method197

in LLMs, byte-pair encoding (BPE) (Gage, 1994)198

can also be used to encode molecule sequences199

(Zeng et al., 2022; Liu et al., 2023b). BioT5 (Pei200

et al., 2023) optimize this strategy by using separate201

vocabularies for molecules, proteins, and texts to202

avoid misunderstanding of tokens that may have the203

same expression but originate from different seman-204

tic spaces. Gruver et al. (2024); Pei et al. (2024a)205

adopt same numerical tokenization for LLaMA-2 206

models (Touvron et al., 2023) to improve model per- 207

formance on arithmetic tasks (Liu and Low, 2023). 208

Multi-Stream Architecture Models with a 209

multi-stream architecture utilize intra-modality en- 210

coding for both text and molecular data. To 211

align multimodal embeddings, approaches such 212

as projection layers (Liang et al., 2023; Cao et al., 213

2023; Wang et al., 2024a), or pre-training tasks 214

(Tang et al., 2024; Liu et al., 2023a; Flöge et al., 215

2024; Zhang et al., 2024b) are employed. An- 216

other method involves fusing the embeddings into 217

a unified latent space, facilitating integrated repre- 218

sentation between modalities(Xu et al., 2023; Liu 219

et al., 2024a; Nguyen et al., 2024; Luo et al., 2024b, 220

2023a). 221

A representative architecture for cross modal 222

alignment is Q-Former (Li et al., 2023), which has 223

been widely used in vision-language models. Sim- 224

ilarly, Li et al. (2024b); Liu et al. (2023c); Zhang 225

et al. (2023); Luo et al. (2024c) adopt Q-Former to 226

align molecular graph with text embeddings. While 227

Liu et al. (2024e); Wang et al. (2024a) adopt the Q- 228

Former architecture to align text and PLM tokens. 229

Zhang et al. (2024a) introduce causal masks into 230

the Q-Former queries, ensuring that the queries 231

possess the same causal dependency as the text 232
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sequences.233

3.2 Pre-training Tasks234

The fused representations need to be aligned in a235

unified latent space to maintain consistent semantic236

meaning for downstream tasks. In this section, we237

review the commonly used pre-training tasks for238

alignment between text and molecules.239

Molecule-Text Contrastive Learning The con-240

trastive learning (CL) task between molecules241

and text aims to align multimodal representations242

by enhancing the correlation between matched243

molecule-text pairs. The contrastive learning ob-244

jective pushes the embeddings of matched text245

and molecules closer in latent space while en-246

larging the distance between pairs from different247

molecules. The CL task will enhance the model248

with cross-modal retrieval and matching ability.249

Here, we present the expression of commonly used250

InfoNCE (van den Oord et al., 2019) loss:251

LNCE = −
∑
i

log
exp(zMi · zTi /τ)∑N
j=1 exp(z

M
i · zTj /τ)

(1)252

where τ is the temperature coefficient. In order to253

facilitate convergence, a trainable linear projector254

can be used to minimize the modality gap before255

the contrastive learning (Liu et al., 2023a).256

Although contrastive learning is an effective ap-257

proach for cross-modal molecule-text alignment,258

the limited number of molecule-text pairs brings259

negative impacts on the alignment result. Moti-260

vated by molecular graph augmentation methods261

(You et al., 2020), MoMu (Su et al., 2022) in-262

troduces two augmented graphs with node drop263

and sub-graph extraction to extend the number264

of matched pairs. MolLM (Luo et al., 2024a) in-265

troduces two additional augmentations, which are266

chemical transformation and motif removal, mak-267

ing the alignment process more robust.268

Molecule-Text Matching Molecule-text match-269

ing (MTM) aims to predict whether a molecule-text270

pair is matched or not. It is defined as a binary clas-271

sification task with the following loss function:272

LMTM = Lmatch − Lunmatch (2)273

where Lmatch denotes the cross-entropy loss of274

matched molecule and text pair (mi, ti) and275

Lunmatch denotes the loss of unmatched pairs276

(mi, tj) and (mj , ti). The MTM task enables the277

model to have retrieval ability and refines the align- 278

ment between text and molecule, usually used in 279

the pre-training stage of Q-former architecture. 280

Conditional Generation Conditional generation 281

(CG) aims to generate tokens based on given con- 282

ditions or constraints. Tasks such as molecule cap- 283

tioning and text-based molecule generation all fall 284

into this category. Conditional generation enables 285

models to learn complex mapping rules between 286

text and molecules. It is adaptable for the T5 archi- 287

tecture, where all molecular tasks are transformed 288

into a text-to-text generation format. The objective 289

function can be written as: 290

LCG = −
ni∑
i

logP (ui|C; θ) (3) 291

where ui is the i-th token and C denotes the gen- 292

eration condition which may be referred to as a 293

molecule graph or text description depending on 294

the task. 295

Masked Language Modeling As discussed in 296

Section 3, modeling languages and molecules may 297

share similarities. Under this assumption, masked 298

language modeling as a popular pre-training task 299

for LLMs can also be used for training molecule 300

sequences or wrapped sequences. During the pre- 301

training stage, the models are trained to predict the 302

masked components using the remaining context. 303

The training objective is defined by cross-entropy 304

LMLM = −ET∈D
∑
m̃∈M

log p(m̃|T\M) (4) 305

where M, T\M, T represent the masked tokens, 306

unmasked tokens, tokenized text and molecules 307

separately. This self-supervised pre-training task 308

can enhance the contextual comprehension of the 309

model, improving performance in many down- 310

stream tasks. For MLM, there are two types 311

of masking: token masking represented by 312

BERT (Devlin, 2018) and its variants, and span 313

masking introduced in T5 (Raffel et al., 2020), 314

which has been shown to be more efficient. Ed- 315

wards et al. (2022); Pei et al. (2023); Rubungo 316

et al. (2023); Qian et al. (2023) adopt span masking 317

to enhance downstream translation tasks between 318

molecules and text. Xu et al. (2023) introduce 319

MLM to recover fused residue tokens, enhancing 320

the fine-grained connection between descriptions 321

and corresponding residues. 322
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Casual Language Modeling Different from the323

autoencoder (AE) language models such as BERT324

and T5, the autoregressive models represented by325

GPT (Yenduri et al., 2024) are trained with Casual326

Language Modeling (CLM). The objective of CLM327

is to predict the next token in a sequence in a left-328

to-right direction. The objective function can be329

written as330

LCLM = −
ni∑
i

logP (ui|ui−k, ..., ui−1; θ) (5)331

where ni and k represent the number of tokens and332

context length. CLM can seamlessly bridge the pre-333

training and instruction-tuning stage (Liang et al.,334

2023; Cao et al., 2023; Zhang et al., 2023). We335

will discuss the details of instruction-tuning and336

adaptation of tasks in the following section.337

4 Bridging LLMs and Molecular Tasks338

with Prompting Techniques339

With the advancement of multimodal large lan-340

guage models (MLLMs), the cross-modal infer-341

ence ability of LLMs could be extended to biolog-342

ical research. Compared with traditional cross-343

modal learning that focuses on modality align-344

ment, MLLMs leverage powerful LLM to pro-345

cess multi-modal information and utilize prompt-346

ing techniques such as instruction-tuning (IT), in-347

context learning (ICL) and chain-of-thought (CoT)348

to realize downstream tasks (Li et al., 2023). As349

shown in Figure 1, LLMs could conduct multiple350

molecular tasks with instructions and cross-modal351

input. In this section, we discuss the prompting352

techniques in cross-modal molecular research and353

show the application in building intelligent agents354

for chemistry.355

4.1 Prompt-based Fine-tuning356

To bridge the gap between pre-training and down-357

stream tasks, Raffel et al. (2020) transfer all down-358

stream tasks into text-to-text generation format359

with task-specific prefix. Based on this work, Gao360

et al. (2021) propose prompt-based fine-tuning that361

unifies different tasks with task-specific prompts.362

This strategy can also be applied to cross-modal363

molecular tasks. For example, the prompt for the364

property prediction task in MoleculeNet (Wu et al.,365

2018) can be designed as: “We can conclude that366

the property of <SMILES> is <tag>" where <tag>367

is the predicted “true” or “false” label (Liu et al.,368

2023b). In this way, we unify all tasks into a text369

generation format and models are fine-tuned and 370

evaluated with fixed pre-training parameters. Pei 371

et al. (2023) enrich the above-mentioned template 372

with detailed task explanations, which improves the 373

accuracy of property prediction. Liu et al. (2023c) 374

integrate fused feature as a soft prompt and use 375

LoRA (Hu et al., 2022) to improve the efficiency of 376

adaptation. Compared with traditional fine-tuning, 377

prompt-based fine-tuning shows impressive perfor- 378

mance in few-shot datasets. 379

4.2 Instruction Tuning on LLM for Zero-shot 380

Learning Ability 381

Unlike prompt-based tuning, instruction-tuning 382

(Wei et al., 2022) aims to adapt the model to vari- 383

ous tasks. In the tuning process, models are trained 384

in multiple tasks that have been unified through 385

task-specific instructions. This multi-task learning 386

strategy enables models to comprehend instructions 387

and seamlessly adapt to few-shot or zero-shot tasks 388

(Zhao et al., 2023a). A standard instruction entry 389

is typically composed of three main parts: an <in- 390

struction> that clarifies the task, an <input> which 391

is usually the molecular feature, and an <output> 392

that embodies the expected outcome (Fang et al., 393

2024). Liang et al. (2023); Luo et al. (2023b); Cao 394

et al. (2023); Li et al. (2024b); Zhang et al. (2023) 395

use fused feature as a soft prompt to enrich the 396

instructions. During the tuning process, the fusion 397

architecture is fine-tuned solely and LoRA (Hu 398

et al., 2022) can be used to improve efficiency (Li 399

et al., 2024b; Cao et al., 2023). 400

4.3 In-Context Learning and 401

Chain-of-Thought 402

Recently, various attempts have been made to in- 403

tegrate LLMs into scientific research as intelli- 404

gent agents, with applications in autonomous ex- 405

periment planning (M. Bran et al., 2024; Boiko 406

et al., 2023), conversational drug editing (Liu et al., 407

2024d), chemical reaction prediction (Shi et al., 408

2023), etc. These models leverage in-context 409

learning (ICL) or chain-of-thought (CoT) prompt- 410

ing (Wei et al., 2024) which enable LLMs to reason 411

step by step and interact with human experts. In- 412

context learning for molecular tasks usually com- 413

bines instruction-based prompts with a few molecu- 414

lar Question-Answer examples. Chen et al. (2024); 415

Li et al. (2024a) design few-shot prompts with 416

role definitions, task descriptions, in-context ex- 417

amples and output control to guide the prediction 418

of LLMs. Differently, ReLM (Shi et al., 2023) in- 419
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tegrates LLM as a decision-maker to enhance the420

reaction prediction results from external model.421

The autonomous reasoning of LLM agents can422

be achieved by chain-of-thought prompting. The423

CoT method directly demonstrates the reasoning424

steps in one or a few prompts, and the agent425

can leverage the emergent ability of LLMs to426

imitate similar reasoning in the same types of427

tasks. With effective CoT and access to ex-428

ternal knowledge, LLM agents can work semi-429

autonomously to support experts in scientific re-430

search. In StructChem (Ouyang et al., 2025), GPT-431

4 is guided to solve chemistry problems through432

formula generation and step-by-step reasoning and433

self-refinement. ChemCrow (M. Bran et al., 2024)434

adopts least-to-most prompting (Zhou et al., 2023)435

(LtM), which can be seen as CoT in an autoregres-436

sive manner. The reasoning loop in ChemCrow437

integrates the decomposition of the task, the selec-438

tion and use of external tools, and the analysis of439

the result. The input of the next reasoning loop is440

built upon the current results until they satisfy the441

expected format. It is the first LLM agent capable442

of automatically completing complex planning and443

synthesis tasks.444

5 Dataset Construction445

The quality of the training data is crucial for cross-446

modal alignment and training, significantly influ-447

encing the performance of language-molecule mod-448

els. In this section, we focus on summarizing some449

common dataset construction methods.450

Data Processing To facilitate alignment, pairs451

of textual and non-textual molecular data are col-452

lected from public datasets. However, the content453

of descriptions in databases is not balanced. Taking454

PubChem (Kim et al., 2022) as an example, it is455

very often that some molecules only have a few456

basic records and lack some detailed properties.457

To address this issue, many researchers construct458

training data from multiple datasets or retrieve rel-459

evant text from scientific corpus such as S2orc (Lo460

et al., 2020). Meanwhile, the pre-processing meth-461

ods are also important. For example, Liu et al.462

(2023a); Zhang et al. (2023); Cao et al. (2023) first463

replace all the molecule names in the annotation464

of PubChem with token ‘∼’ to simplify the com-465

prehension of name in training. Then they remove466

redundant information in the molecule description,467

such as origins, sources, and some geographic no-468

tation that has no relation to the target tasks. Xu469

et al. (2023) select four types of key properties from 470

Swiss-Prot (Bairoch and Apweiler, 2000) and use 471

fixed templates to rearrange descriptions, ensuring 472

the consistency of the training data format. 473

Integrating Generative AI Recent advances in 474

generative AI provide an innovative approach to 475

mitigate the data scarcity challenge. For instance, 476

Li et al. (2024b) use GPT-3.5 to enrich the sparse 477

molecular descriptions in PubChem. Fang et al. 478

(2024); Xiao et al. (2024b) leverage GPT to diver- 479

sify prompt templates and use them to generate QA 480

pairs for instruction-tuning. Additionally, Sakhi- 481

nana and Runkana (2023) uses GPT-4 to gener- 482

ate molecule captions for fine-tuning. Chen et al. 483

(2024) fabricate an “artificially-real” dataset for do- 484

main adaptation, where molecule descriptions are 485

generated through ChatGPT with retrieval-based 486

few-shot prompting. 487

6 Applications 488

This section will showcase applications of the afore- 489

mentioned methods in drug discovery and chem- 490

istry research. Beyond the introduction of tasks, 491

we also emphasize the adaptation between base 492

models and tasks. 493

6.1 Text-molecule Retrieval 494

The text-molecule retrieval task is first proposed by 495

Edwards et al. (2021), which aims to retrieve the 496

corresponding molecule from a given text query. 497

This molecule retrieval can be applied in the early 498

stages of drug discovery, where experts need to 499

select potential molecules from the compound 500

database for further design and optimization. The 501

retrieval task can be accomplished by the aligned la- 502

tent space, from which we can acquire the encoded 503

text descriptions with implicit connection of target 504

molecules. Then we can use the similarity score to 505

evaluate the distance between text and molecules to 506

find the best-matched pair. In KV-PLM (Zeng et al., 507

2022), descriptions and molecules are encoded by 508

a shared transformer encoder. While MoMu (Su 509

et al., 2022) and MoleculeSTM (Liu et al., 2023a) 510

use separate encoders to extract multimodal fea- 511

tures and align the latent space with contrastive 512

learning. 513

6.2 Property Prediction 514

One of the important goals of drug discovery is 515

to search for small molecules and proteins with 516
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desired structures and properties. The descrip-517

tion of molecules in the scientific literature and518

databases can serve as knowledge repositories that519

contain properties, interactions, and structures that520

can hardly be inferred from current models (Pei521

et al., 2023). Through molecule-text alignment,522

text information can act as an additional modality523

to enhance molecular representation and improve524

performance in property prediction tasks (Seidl525

et al., 2023; Xu et al., 2023). The property predic-526

tion task is usually in binary classification format527

and is achieved by fused molecular features and a528

prediction head. An alternative approach is to lever-529

age powerful generative LLMs with instructions530

to predict properties in QA format (Zhang et al.,531

2023; Liu et al., 2024b). As shown in 4.1, property532

prediction is achieved by the probabilities of “true”533

or “false” tokens in the generated answer.534

6.3 Molecule Design535

De novo Generation De novo generation in536

molecule design includes molecule captioning that537

generates a description of given molecules and538

text-guided de novo generation which generates539

molecules from scratch with textual guidance.540

Models with single-stream architecture have the541

privilege of performing translation between text542

and molecule, owing to the encoder-decoder struc-543

ture and text-to-text task format (Raffel et al., 2020).544

Apart from the translation-based methods. Liu et al.545

(2024c) propose a protein design framework with546

a multi-stream encoder. In text-guided protein gen-547

eration task, the description is first encoded by the548

aligned text encoder. Then a facilitator module549

which is parameterized by a multi-layer perception550

is used to learn the transformation from encoded551

text to protein representation. The resulting protein552

representation is then fed into a trained generative553

decoder to generate protein sequences.554

Molecule Editing Molecule editing seeks to555

optimize current molecules with desired proper-556

ties. Within the drug discovery pipeline, text-557

guided editing finds application in lead optimiza-558

tion tasks and proves valuable for decompos-559

ing multi-objective lead optimization (Liu et al.,560

2024c). Drawing inspiration from the success of561

few-shot text-to-image generation, text description562

can simplify the complexity of the target chemical563

space in the generation process. Simultaneously,564

diversified generation enhances drug editing by in-565

troducing high flexibility. As mentioned above, the566

latent space alignment establishes a unified latent 567

space where features possess semantic meaning 568

in both structure and text. Building upon this ap- 569

proach, Liu et al. (2023a, 2024c); Tang et al. (2024) 570

use latent optimization methods to sample a latent 571

representation close to both text and molecule in 572

latent space. Then, this latent code is fed into a 573

decoder which is usually a trained molecule gener- 574

ation model to produce optimized molecules. Kim 575

et al. (2025) proposes hierarchical textual inversion 576

that introduces intermediate and detail tokens to 577

represent SMILES, with the aim of capturing clus- 578

ter and molecule-level characteristics. The interpo- 579

lation sampling can benefit from this hierarchical 580

design with high generation diversity. 581

6.4 Other Applications 582

Reaction Prediction Reaction prediction is a 583

challenging but fundamental task in chemistry. The 584

chemical reaction process can be seen as a map- 585

ping between a set of reactants and a set of products 586

with specific reaction conditions. Under this frame- 587

work, there are three main reaction prediction tasks, 588

which are product prediction, reaction condition 589

prediction, and most importantly, retrosynthesis 590

prediction. Text can help to understand complex 591

reaction mechanisms and supply information about 592

reaction templates that GNN-based methods often 593

fail to capture. Qian et al. (2023) retrieve reaction- 594

related text and concatenate with input SIMILES 595

to enhance retrosynthesis prediction. As described 596

in 4.3, we can also involve LLMs in reaction pre- 597

diction via prompt engineering. For example, Shi 598

et al. (2023) use GPT-4 to predict reaction products 599

with the aid of in-context reaction examples and 600

candidate products from external model. 601

Intelligent Agent for Scientific Research Ac- 602

cording to M. Bran et al. (2024), the automation 603

level in chemistry is relatively low compared to 604

other domains. Although LLMs may have dif- 605

ficulties in comprehending chemistry principles, 606

they have demonstrated significant capability in 607

understanding human instructions and organizing 608

information based on extensive training corpora 609

(AI4Science and Quantum, 2023). Consequently, 610

LLMs have the potential to become intelligent as- 611

sistants to automatically arrange research with the 612

help of professional tools and software. Liu et al. 613

(2024d) design a drug editing agent with conver- 614

sational interaction. The agent can receive human 615

feedback to retrieve candidate drug molecules from 616

7



the database with desired properties. Similarly to617

ChemCrow (M. Bran et al., 2024), Boiko et al.618

(2023) develop a “Co-scientist” based on GPT-4619

that can independently design and execute chemi-620

cal research.621

7 Conclusions and Future Outlooks622

In this paper, we provide a comprehensive review623

of language-molecule models. After a brief intro-624

duction to the background and molecule descrip-625

tors, we introduce the model architectures and pre-626

training tasks for latent space alignment. Then,627

we summarize the prompting techniques in multi-628

modal large language models which serve as bridge629

between LLMs and downstream molecular tasks.630

As an application-oriented domain, we combine631

the aforementioned methods to exhibit applications632

in drug discovery and chemistry. Although text-633

molecule models have made impressive progress,634

there exist several challenges which appeal to fu-635

ture research.636

7.1 Appealing for High-Quality Data and637

Reliable Benchmarks638

According to the neural scaling law, the emergent639

abilities of LLM in complex molecular tasks have640

not been shown. The data scarcity challenge still641

exists for both molecular structures and textual de-642

scriptions. In addition to collecting descriptions643

from databases, many works also automatically re-644

trieve relative text from scientific corpus or using645

generative tools, while the authenticity and corre-646

lation of the retrieved or generated text cannot be647

guaranteed (Xu et al., 2023; Tang et al., 2024). For648

the progress of the community, a larger and more649

qualified molecule-text database is significant. Al-650

though language-molecule models exhibit great po-651

tential in various molecular tasks, there remains a652

question of how to fairly evaluate the performance653

among different models. To address this concern,654

new benchmarks are necessary to standardize eval-655

uation metrics and settings, providing more reliable656

and realistic test data (Guo et al., 2024; Fang et al.,657

2024; Yu et al., 2024).658

7.2 Extending the Interpretability of Model659

The lack of interpretability prohibits many appli-660

cations of deep molecular models, since numerical661

predictions alone may not be convincing enough662

compared to computational and experimental re-663

sults. Text-involved frameworks provide an oppor-664

tunity to enhance the interpretability of the results.665

By leveraging in-context learning and chain-of- 666

thought prompting in LLMs, models can reasoning 667

and inference, like the human brain, to produce 668

explainable results. Follow-up research can also 669

try to develop interpretable tools to bridge the re- 670

lation between textural description and molecular 671

structure in latent space (Su et al., 2022). 672

7.3 Improving the Reasoning Ability 673

The application of prompting techniques can sig- 674

nificantly improve the reasoning ability of LLM- 675

based frameworks. However, it is observed that in 676

some cases, models may generate unrealistic pre- 677

dictions or even replicate the values in examples as 678

prediction (Zhao et al., 2023c). This serves as evi- 679

dence that LLMs may rely on memorization with- 680

out truly understanding the molecules and chemical 681

problems. Future studies may integrate success- 682

ful GNNs into language model architecture (Zhao 683

et al., 2023b), other than simply using GNNs as en- 684

coders (Zachares et al., 2023). Designing effective 685

prompts for molecular tasks can also be taken into 686

consideration. 687

7.4 Integration with Foundation Models 688

Foundation models (FMs) in the biomedical do- 689

main have shown promising performance. For ex- 690

ample, AlphaFold (Jumper et al., 2021) can ac- 691

curately predict protein structures when only pro- 692

tein sequence is available. It is possible to in- 693

tegrate FMs within LLM agents or specially de- 694

signed frameworks (Wang et al., 2024d). We be- 695

lieve that effective frameworks could unlock the 696

additive power of FMs. 697

7.5 Learning from Human/AI Feedback 698

Recent progress in reinforcement learning from hu- 699

man/AI feedback (i.e., RLHF (Ouyang et al., 2024) 700

and RLAIF (Lee et al., 2023)) has achieved promis- 701

ing results in aligning LLMs with human prefer- 702

ence. RLHF fits a reward model to human prefer- 703

ence dataset and uses RL to optimize LLMs to pro- 704

duce responses assigned with high rewards. This 705

paradigm may pave the way for utilizing LLMs 706

for biomedical applications, especially in scenarios 707

where molecular simulation software can be used 708

as a reward model. Exploring how to fully utilize 709

the power of RLHF at the interaction of text and 710

molecules is an appealing research direction. 711
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Limitations712

This work primarily focuses on language-molecule713

models that connect human language with molec-714

ular data. Although other studies integrate addi-715

tional modalities, such as molecular structures and716

images (Sanchez-Fernandez et al., 2023), we do717

not cover these due to space limitations and leave718

their survey for future work. Similarly, knowledge719

graphs designed for molecular research or drug dis-720

covery may incorporate textual data, but our empha-721

sis is on cross-modal training and the integration722

of language models. Given the success of LLMs723

across various domains, we consider this to be a724

more promising direction. Additionally, dataset725

sources are not included in this study due to the726

complexity of data collection and pre-processing,727

as well as space constraints. Instead, we outline728

common data processing strategies that are useful729

for dataset construction.730
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A Summary Table of Language-molecule Models 1279

Table 1 summarizes molecule descriptors, backbone architectures and pre-training tasks of language- 1280

molecule models. We categorize these models by their architectures: single-stream architecture, multi- 1281

stream architecture and intelligent agent.

Model Molecule descriptors Backbone architecture Pre-Training task

MolT5 (Edwards et al., 2022) SMILES T5 MLM
Galactica (Taylor et al., 2022) Bio-Sequence Transformer Decoder CLM
KV-PLM (Zeng et al., 2022) SMILES SciBERT (Beltagy et al., 2019) MLM
MolXPT (Liu et al., 2023b) SMILES GPT CLM
Text + Chem T5 (Christofidellis et al., 2023) SMILES T5 CG
TextReact (Qian et al., 2023) SMILES SciBERT CL + MLM + CG
GIMLET (Zhao et al., 2023a) Graph T5 CG
BioT5 (Pei et al., 2023) SELFIES + Protein Sequence T5 MLM + CG
3D-MolT5 (Pei et al., 2024b) SELFIES + Fingerprints T5 CG+ MLM
BIOT5+ (Pei et al., 2024a) SELFIES + IUPAC + Protein Sequence T5 CG+ MLM
ProLLM (Jin et al., 2024) Protein Sequence T5 MLM
ProLLaMA (Lv et al., 2024) Protein Sequence Llama-2 CLM
LLM-Prop (Rubungo et al., 2023) Crystal String T5 MLM
Gruver et al. (2024) Crystal String LLaMA-2 MLM

Text2Mol (Edwards et al., 2021) Graph Multi-stream + Transformer CL
MoMu (Su et al., 2022) Graph Multi-stream CL
DrugChat (Liang et al., 2023) Graph Multi-stream + Vicuna-13b CLM
MoleculeSTM (Liu et al., 2023a) Graph Multi-stream + Decoder CL
Graph2Token (Wang et al., 2024b) Graph Multi-stream + Vicuna-7B CG
MV-Mol (Luo et al., 2024c) Graph Q-Former+ BioT5 CL + MTM + CLM
3M-Diffusion (Zhu et al., 2024) Graph Multi-stream CL
MolFM (Luo et al., 2023a) Graph Multi-stream CL + MTM + MLM
BioMedGPT (Luo et al., 2023b) Graph + Protein Sequence Multi-stream + LLaMA 2 CLM
MOLBIND (Xiao et al., 2024a) Graph + Geometry + Protein Graph Multi-stream CL
GIT-Mol (Liu et al., 2024b) SMILES + Graph + Image Q-Former + T5 MTM + CL
MolLM (Tang et al., 2024) SMILES + Graph + Geometry Multi-stream CL
MolCA (Liu et al., 2023c) SMILES + Graph Q-Former + Llama 2 MTM + CL + MC + CLM
3D-MoLM (Li et al., 2024b) SMILES + Geometry Q-Former + Llama 2 MTM + CL + MC + CLM
MoleculeGPT (Zhang et al., 2023) SMILES + Graph Q-Former + Vicuna-7b CL+CLM
BioBridge (Wang et al., 2024d) SMILES + Protein Sequence Knowledge Graph CL
Nguyen et al. (2024) SMILES + Geometry Multi-stream CLM
UniMoT (Zhang et al., 2024a) SMILES + Graph Q-Former + Llama 2 MTM + CL + CG + CLM
InstructMol (Cao et al., 2023) SELFIES + Graph Multi-stream + Vicuna-7b CLM
CLAMP (Seidl et al., 2023) Fingerprints Multi-stream CL
Proteinchat (Huo et al., 2024) Protein Sequence Multi-stream + Vicuna-13B CLM
MutaPLM (Luo et al., 2024b) Protein Sequence Multi-stream + LLaMA2-7B CLM + MLM + CG
ProtST (Xu et al., 2023) Protein Sequence Multi-stream CL + MLM
ProtDT (Liu et al., 2024c) Protein Sequence Multi-stream + Decoder CL
InstructProtein (Wang et al., 2024c) Protein Sequence Knowledge Graph + LLMs CLM
ProteinCLIP (Wu et al., 2024a) Protein Sequence Multi-stream CL
PROTLLM (Zhuo et al., 2024) Protein Sequence Multi-stream CLM
ProtT3 (Liu et al., 2024e) Protein Sequence Q-Former + LLMs MTM + CL + CG
SEPIT (Wu et al., 2024b) Protein Sequence Multi-stream + LLMs CLM
Pinal (Dai et al., 2024) Protein Sequence Multi-stream CLM
OneProt (Flöge et al., 2024) Protein Sequence + Protein Graph Multi-stream CL
EVOLLAMA (Liu et al., 2024a) Protein Sequence + Protein Graph Multi-stream + Llama-3 CL
Prot2Text (Abdine et al., 2024) Protein Sequence + Protein Graph Multi-stream + Transformer CLM
ProtChatGPT (Wang et al., 2024a) Protein Sequence + Protein Graph Q-Former + Vicuna-13b MTM + CG + CL + CLM
ProteinAligner (Zhang et al., 2024b) Protein Sequence + Protein Graph Multi-stream CL
ProteinGPT (Xiao et al., 2024b) Protein Sequence + Protein Graph Multi-stream + Llama-3 CLM
ProTrek (Su et al., 2024) Protein Sequence + Protein Graph Multi-stream CL + MLM

ReLM (Shi et al., 2023) SMILES + IUPAC + Graph ICL + LLMs -
ChatDrug (Liu et al., 2024d) SMILES LLMs -
MolReGPT (Li et al., 2024a) SMILES ICL + GPT-3.5 -
ChemCrow (M. Bran et al., 2024) - CoT + LLMs -
Jang et al. (2024) - LLMs + RL -

Table 1: Summary of representative language-molecule models. “Graph” and “Geometry” denote 2D graph and 3D
geometric graph for small molecule respectively.

1282

15


	Introduction
	Molecular Descriptors and Encoding
	1D Molecule Sequence
	2D Molecule Structures
	3D Molecule Structures

	Latent Space Alignment between Text and Molecule
	Model Architecture
	Pre-training Tasks

	Bridging LLMs and Molecular Tasks with Prompting Techniques
	Prompt-based Fine-tuning
	Instruction Tuning on LLM for Zero-shot Learning Ability
	In-Context Learning and Chain-of-Thought

	Dataset Construction
	Applications
	Text-molecule Retrieval
	Property Prediction
	Molecule Design
	Other Applications

	Conclusions and Future Outlooks
	Appealing for High-Quality Data and Reliable Benchmarks
	Extending the Interpretability of Model
	Improving the Reasoning Ability
	Integration with Foundation Models
	Learning from Human/AI Feedback

	Summary Table of Language-molecule Models

