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Abstract

Artificial intelligence has demonstrated im-
mense potential in scientific research. Within
molecular science, it is revolutionizing the tra-
ditional computer-aided paradigm, ushering
in a new era of deep learning. With recent
progress in multimodal learning and natural
language processing, an emerging trend has tar-
geted at building multimodal frameworks to
jointly model molecules with textual domain
knowledge, known as language-molecule mod-
els. In this paper, we present the first systematic
survey on language-molecule models. Specifi-
cally, we begin with the development of molec-
ular deep learning and point out the necessity
to involve textual modality. Next, we focus
on recent advances in text-molecule alignment
methods, categorizing current models based
on their architectures and listing relevant pre-
training tasks. Furthermore, we delves into
the utilization of large language models and
prompting techniques for molecular tasks and
present significant applications in drug discov-
ery. Finally, we discuss the limitations in this
field and highlight several promising directions
for future research.

1 Introduction

Accurately modeling molecules and extracting
meaningful features is a primary goal of molecular
deep learning. Initially, manual descriptors, such
as molecular fingerprints and SMILES, are pro-
posed to describe molecules in strings or sequences.
These descriptors can naturally be encoded by
language models for feature extraction. Subse-
quently, graph structures gradually show their su-
periority in modeling the topology structure within
molecules. Graph neural networks (GNNs) are
used to learn from molecular graphs by aggregat-
ing and propagating information within atoms and
chemical bonds (Kipf and Welling, 2017). Simulta-
neously, numerous works integrate self-supervised
pre-training in this process to generate generalized

representations. Despite the success in molecular
deep learning, two key challenges persistently exist.
First, owing to the complexity of chemical space
and chemical rules, current deep learning frame-
works lack a deep comprehension of chemical do-
main knowledge (e.g. quantum mechanics rules).
Furthermore, both supervised and self-supervised
models need to be trained or fine-tuned on labeled
molecules, which are typically scarce in real appli-
cations due to the high experimental cost. These
notorious problems decelerate progress in related
areas.

Recently, multimodal learning and Large Lan-
guage Models (LLMs) have shown impressive com-
petence in modeling and inference. Inspired by
the success of vision-language models, it is natu-
ral to associate molecules with text description to
build language-molecule models (Edwards et al.,
2024). Following this idea, a line of works treats
molecules as languages with special grammar, and
cross-language frameworks, such as T5 (Raffel
et al., 2020), are chosen as the backbone to jointly
model text and molecules (Edwards et al., 2022;
Taylor et al., 2022; Pei et al., 2023, 2024b,a; Jin
etal., 2024). At the same time, another line of work
explores the alignment of the latent space between
text and structured molecular data (Su et al., 2022;
Liu et al., 2023a; Xiao et al., 2024a; Huo et al.,
2024; Floge et al., 2024; Su et al., 2024; Liu et al.,
2024e), and attempts to integrate LLMs into multi-
modal frameworks as predictors for cross-modal
molecular tasks. Furthermore, prompting tech-
niques are also introduced in the fine-tuning pro-
cess and yield competitive results in many molec-
ular tasks without large-scale pre-training (Liang
et al., 2023; Cao et al., 2023; Zhang et al., 2023;
Yu et al., 2024; Jin et al., 2024; Gruver et al., 2024).
Recently, some insightful work has attempted to
build autonomous agents for chemistry and biology
(Boiko et al., 2023; Liu et al., 2024d), bringing a
new paradigm for future scientific research.



However, as a prosperous subject, there still
lacks a systematic review to summarize recent
progress and propose promising outlooks. In this
regard, we present the first survey of language-
molecule models. We summarize our contributions
as follows: (1) We provide an overview of this field
with a structured taxonomy that categorizes the
framework based on their basic architecture. (2)
Our systematic review provides a detailed analysis
of training strategies, dataset construction methods
and corresponding applications. (3) We analyze the
limitations in this field and provide several promis-
ing research directions.

2 Molecular Descriptors and Encoding

Molecules need to be transformed into descriptors
for the recognition of the model. In this section,
we briefly summarize the mainstream descriptors
of small molecules and proteins along with their
corresponding encoder architectures. Generally,
both small molecules and proteins can be described
by sequences and graphs.

2.1 1D Molecule Sequence

Small-molecule Sequence Molecules are com-
posed of atoms and connected bonds, allowing the
representation of molecules as sequences that de-
scribe their components. The Simplified Molec-
ular Input Line Entry System (SMILES) is the
most commonly used sequential descriptor, map-
ping atoms, bonds, and special structures using
ASCII symbols. Self-referencing embedded strings
(SELFIES) (Krenn et al., 2020) is another string-
based descriptor which is recently popular for its
robustness and superiority in tokenization. Interna-
tional Union of Pure and Applied Chemistry (IU-
PAC) is the official name of molecules in the human
language, which can serve as a connector for lan-
guage models to understand chemical expressions.
Molecular Fingerprints (Axen et al., 2017; Rogers
and Hahn, 2010) are class of binary codes with
each position representing a predefined chemical
structure. Because of their simplicity and capability
to encode structure information, molecular finger-
prints have been widely used in chemoinformatics
research.

Protein Sequence A protein can be viewed as
a combination of 20 types of amino acids, which
allows it to be expressed as amino acid sequences
in a manner similar to molecules. The amino acid
sequence captures the co-evolutionary information

and plays a vital role in protein folding and func-
tion. Usually, protein sequences are encoded by
Protein Language Models (PLMs) and represented
as PLM tokens for further processing.

2.2 2D Molecule Structures

2D Graph The topology structure of molecules
can be naturally modeled by graph, with atoms
as nodes and bonds as edges. The chemical and
physical properties of atoms and bonds can also be
featurized by molecular graphs. GNNs (Kipf and
Welling, 2017) can be used to learn local and global
representations of molecules and have shown com-
petitive results in various downstream tasks (Liu
et al., 2022).

2.3 3D Molecule Structures

3D Geometric Graph 2D molecular graphs have
limitations in capturing spatial information within
molecules. For example, chiral molecules cannot
be distinguished through most of the 2D graph.
The geometry information of the conformers (e.g.,
torsional angles and bond length) is in direct re-
lation to molecular properties. In 3D geometry,
atoms are associated with their coordinates with
features expressed in high-order tensors to ensure
geometric symmetries and expressiveness. Many
studies concentrate on designing equivariant GNNs
to accurately model the interaction between atoms
(Batzner et al., 2022).

Protein Graph Protein functions are mainly de-
termined by their folded structures (Jumper et al.,
2021). To better capture structural information,
proteins can be represented as a residue-level re-
lation graph, where nodes are residues with posi-
tions of C,, and edges encoding their connectivity
or relative distance. GVP (Jing et al., 2020) or
EGNN (Satorras et al., 2021) are popular GNNs
for protein structure encoding.

3 Latent Space Alignment between Text
and Molecule

The encoding stage featurizes text and molecules
into a single modality, while these representations
still inhabit diverse semantic spaces and cannot in-
teract with each other. To facilitate downstream
tasks, different architectures are designed for text-
molecule fusion and latent space alignment. In
this section, we classify model architectures by the
fusion scheme and summarize the corresponding
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Figure 1: Pipeline of language-molecule models and downstream molecular tasks (a-c). (a) Latent space alignment
and adaptation of downstream tasks. The single-stream framework jointly models text and molecules with the same
encoder. The downstream tasks are realized with task-specific prompts described in section 4.1; The multi-stream
framework involves cross-modal alignment between text and molecules. Features from latent space can be directly
used for tasks or be used in instruction-tuning. (b) Building a semi-autonomous agent for molecular research
with instructions and in-context examples. (c) Building autonomous agent for chemistry with instructions and
chain-of-thought prompting. Equipping agent with external tools and memory largely expand the autonomous level

and capabilities.

pre-training tasks. We present a summary of repre-
sentative works in Table 1.

3.1 Model Architecture

Drawing inspiration from previous works in vision-
language pre-training (Du et al., 2022), we catego-
rize models into single-stream, and multi-stream
architecture. The two types of models differ mainly
in their understanding of molecular latent space.

Single-Stream Architecture A single-stream
architecture assumes that the latent space of
molecules and text shares similar semantic mean-
ing. In this circumstance, molecules are treated as
a specialized language and expressed by sequential
descriptors. Different tokenization strategies are
adopted to encode molecules and text, and these
tokens will be fed into a language model, such as
TS5 (Raffel et al., 2020), for multi-language pre-
training. As a widely used tokenization method
in LLMs, byte-pair encoding (BPE) (Gage, 1994)
can also be used to encode molecule sequences
(Zeng et al., 2022; Liu et al., 2023b). BioT5 (Pei
etal., 2023) optimize this strategy by using separate
vocabularies for molecules, proteins, and texts to
avoid misunderstanding of tokens that may have the
same expression but originate from different seman-
tic spaces. Gruver et al. (2024); Pei et al. (2024a)

adopt same numerical tokenization for LLaMA-2
models (Touvron et al., 2023) to improve model per-
formance on arithmetic tasks (Liu and Low, 2023).

Multi-Stream Architecture Models with a
multi-stream architecture utilize intra-modality en-
coding for both text and molecular data. To
align multimodal embeddings, approaches such
as projection layers (Liang et al., 2023; Cao et al.,
2023; Wang et al., 2024a), or pre-training tasks
(Tang et al., 2024; Liu et al., 2023a; Floge et al.,
2024; Zhang et al., 2024b) are employed. An-
other method involves fusing the embeddings into
a unified latent space, facilitating integrated repre-
sentation between modalities(Xu et al., 2023; Liu
et al., 2024a; Nguyen et al., 2024; Luo et al., 2024b,
2023a).

A representative architecture for cross modal
alignment is Q-Former (Li et al., 2023), which has
been widely used in vision-language models. Sim-
ilarly, Li et al. (2024b); Liu et al. (2023c¢); Zhang
et al. (2023); Luo et al. (2024c) adopt Q-Former to
align molecular graph with text embeddings. While
Liu et al. (2024e); Wang et al. (2024a) adopt the Q-
Former architecture to align text and PLM tokens.
Zhang et al. (2024a) introduce causal masks into
the Q-Former queries, ensuring that the queries
possess the same causal dependency as the text



sequences.

3.2 Pre-training Tasks

The fused representations need to be aligned in a
unified latent space to maintain consistent semantic
meaning for downstream tasks. In this section, we
review the commonly used pre-training tasks for
alignment between text and molecules.

Molecule-Text Contrastive Learning The con-
trastive learning (CL) task between molecules
and text aims to align multimodal representations
by enhancing the correlation between matched
molecule-text pairs. The contrastive learning ob-
jective pushes the embeddings of matched text
and molecules closer in latent space while en-
larging the distance between pairs from different
molecules. The CL task will enhance the model
with cross-modal retrieval and matching ability.
Here, we present the expression of commonly used
InfoNCE (van den Oord et al., 2019) loss:

T/ 7)
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where 7 is the temperature coefficient. In order to
facilitate convergence, a trainable linear projector
can be used to minimize the modality gap before
the contrastive learning (Liu et al., 2023a).

Although contrastive learning is an effective ap-
proach for cross-modal molecule-text alignment,
the limited number of molecule-text pairs brings
negative impacts on the alignment result. Moti-
vated by molecular graph augmentation methods
(You et al., 2020), MoMu (Su et al., 2022) in-
troduces two augmented graphs with node drop
and sub-graph extraction to extend the number
of matched pairs. MolLM (Luo et al., 2024a) in-
troduces two additional augmentations, which are
chemical transformation and motif removal, mak-
ing the alignment process more robust.
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Molecule-Text Matching Molecule-text match-
ing (MTM) aims to predict whether a molecule-text
pair is matched or not. It is defined as a binary clas-
sification task with the following loss function:

£MTM = L‘match - ﬁunmatch (2)

where Lpach denotes the cross-entropy loss of
matched molecule and text pair (m;,t;) and
Lunmatch denotes the loss of unmatched pairs
(my,tj) and (mj,t;). The MTM task enables the

model to have retrieval ability and refines the align-
ment between text and molecule, usually used in
the pre-training stage of Q-former architecture.

Conditional Generation Conditional generation
(CG) aims to generate tokens based on given con-
ditions or constraints. Tasks such as molecule cap-
tioning and text-based molecule generation all fall
into this category. Conditional generation enables
models to learn complex mapping rules between
text and molecules. It is adaptable for the TS archi-
tecture, where all molecular tasks are transformed
into a text-to-text generation format. The objective
function can be written as:

Lcg = — Zlogp(%'w; ) 3)

where u; is the i-th token and C' denotes the gen-
eration condition which may be referred to as a
molecule graph or text description depending on
the task.

Masked Language Modeling As discussed in
Section 3, modeling languages and molecules may
share similarities. Under this assumption, masked
language modeling as a popular pre-training task
for LLMs can also be used for training molecule
sequences or wrapped sequences. During the pre-
training stage, the models are trained to predict the
masked components using the remaining context.
The training objective is defined by cross-entropy

Lvim = —Erep Z log p(m|T\M) (4
meM

where M, T\ M, T represent the masked tokens,
unmasked tokens, tokenized text and molecules
separately. This self-supervised pre-training task
can enhance the contextual comprehension of the
model, improving performance in many down-
stream tasks. For MLM, there are two types
of masking: token masking represented by
BERT (Devlin, 2018) and its variants, and span
masking introduced in T5 (Raffel et al., 2020),
which has been shown to be more efficient. Ed-
wards et al. (2022); Pei et al. (2023); Rubungo
et al. (2023); Qian et al. (2023) adopt span masking
to enhance downstream translation tasks between
molecules and text. Xu et al. (2023) introduce
MLM to recover fused residue tokens, enhancing
the fine-grained connection between descriptions
and corresponding residues.



Casual Language Modeling Different from the
autoencoder (AE) language models such as BERT
and TS5, the autoregressive models represented by
GPT (Yenduri et al., 2024) are trained with Casual
Language Modeling (CLM). The objective of CLM
is to predict the next token in a sequence in a left-
to-right direction. The objective function can be
written as

Loim = — Zlog P(ui|ui—g, ...;ui—1:6)  (5)

where n; and k represent the number of tokens and
context length. CLM can seamlessly bridge the pre-
training and instruction-tuning stage (Liang et al.,
2023; Cao et al., 2023; Zhang et al., 2023). We
will discuss the details of instruction-tuning and
adaptation of tasks in the following section.

4 Bridging LLLMs and Molecular Tasks
with Prompting Techniques

With the advancement of multimodal large lan-
guage models (MLLMs), the cross-modal infer-
ence ability of LLMs could be extended to biolog-
ical research. Compared with traditional cross-
modal learning that focuses on modality align-
ment, MLLMs leverage powerful LLM to pro-
cess multi-modal information and utilize prompt-
ing techniques such as instruction-tuning (IT), in-
context learning (ICL) and chain-of-thought (CoT)
to realize downstream tasks (Li et al., 2023). As
shown in Figure 1, LLMs could conduct multiple
molecular tasks with instructions and cross-modal
input. In this section, we discuss the prompting
techniques in cross-modal molecular research and
show the application in building intelligent agents
for chemistry.

4.1 Prompt-based Fine-tuning

To bridge the gap between pre-training and down-
stream tasks, Raffel et al. (2020) transfer all down-
stream tasks into text-to-text generation format
with task-specific prefix. Based on this work, Gao
et al. (2021) propose prompt-based fine-tuning that
unifies different tasks with task-specific prompts.
This strategy can also be applied to cross-modal
molecular tasks. For example, the prompt for the
property prediction task in MoleculeNet (Wu et al.,
2018) can be designed as: “We can conclude that
the property of <SMILES> is <tag>" where <tag>
is the predicted “true” or “false” label (Liu et al.,
2023b). In this way, we unify all tasks into a text

generation format and models are fine-tuned and
evaluated with fixed pre-training parameters. Pei
et al. (2023) enrich the above-mentioned template
with detailed task explanations, which improves the
accuracy of property prediction. Liu et al. (2023c)
integrate fused feature as a soft prompt and use
LoRA (Hu et al., 2022) to improve the efficiency of
adaptation. Compared with traditional fine-tuning,
prompt-based fine-tuning shows impressive perfor-
mance in few-shot datasets.

4.2 Instruction Tuning on LLM for Zero-shot
Learning Ability

Unlike prompt-based tuning, instruction-tuning
(Wei et al., 2022) aims to adapt the model to vari-
ous tasks. In the tuning process, models are trained
in multiple tasks that have been unified through
task-specific instructions. This multi-task learning
strategy enables models to comprehend instructions
and seamlessly adapt to few-shot or zero-shot tasks
(Zhao et al., 2023a). A standard instruction entry
is typically composed of three main parts: an <in-
struction> that clarifies the task, an <input> which
is usually the molecular feature, and an <output>
that embodies the expected outcome (Fang et al.,
2024). Liang et al. (2023); Luo et al. (2023b); Cao
et al. (2023); Li et al. (2024b); Zhang et al. (2023)
use fused feature as a soft prompt to enrich the
instructions. During the tuning process, the fusion
architecture is fine-tuned solely and LoRA (Hu
et al., 2022) can be used to improve efficiency (Li
et al., 2024b; Cao et al., 2023).

4.3 In-Context Learning and
Chain-of-Thought

Recently, various attempts have been made to in-
tegrate LLMs into scientific research as intelli-
gent agents, with applications in autonomous ex-
periment planning (M. Bran et al., 2024; Boiko
et al., 2023), conversational drug editing (Liu et al.,
2024d), chemical reaction prediction (Shi et al.,
2023), etc. These models leverage in-context
learning (ICL) or chain-of-thought (CoT) prompt-
ing (Wei et al., 2024) which enable LLMs to reason
step by step and interact with human experts. In-
context learning for molecular tasks usually com-
bines instruction-based prompts with a few molecu-
lar Question-Answer examples. Chen et al. (2024);
Li et al. (2024a) design few-shot prompts with
role definitions, task descriptions, in-context ex-
amples and output control to guide the prediction
of LLMs. Differently, ReLM (Shi et al., 2023) in-



tegrates LLM as a decision-maker to enhance the
reaction prediction results from external model.

The autonomous reasoning of LLLM agents can
be achieved by chain-of-thought prompting. The
CoT method directly demonstrates the reasoning
steps in one or a few prompts, and the agent
can leverage the emergent ability of LLMs to
imitate similar reasoning in the same types of
tasks. With effective CoT and access to ex-
ternal knowledge, LLM agents can work semi-
autonomously to support experts in scientific re-
search. In StructChem (Ouyang et al., 2025), GPT-
4 is guided to solve chemistry problems through
formula generation and step-by-step reasoning and
self-refinement. ChemCrow (M. Bran et al., 2024)
adopts least-to-most prompting (Zhou et al., 2023)
(LtM), which can be seen as CoT in an autoregres-
sive manner. The reasoning loop in ChemCrow
integrates the decomposition of the task, the selec-
tion and use of external tools, and the analysis of
the result. The input of the next reasoning loop is
built upon the current results until they satisfy the
expected format. It is the first LLM agent capable
of automatically completing complex planning and
synthesis tasks.

5 Dataset Construction

The quality of the training data is crucial for cross-
modal alignment and training, significantly influ-
encing the performance of language-molecule mod-
els. In this section, we focus on summarizing some
common dataset construction methods.

Data Processing To facilitate alignment, pairs
of textual and non-textual molecular data are col-
lected from public datasets. However, the content
of descriptions in databases is not balanced. Taking
PubChem (Kim et al., 2022) as an example, it is
very often that some molecules only have a few
basic records and lack some detailed properties.
To address this issue, many researchers construct
training data from multiple datasets or retrieve rel-
evant text from scientific corpus such as S2orc (Lo
et al., 2020). Meanwhile, the pre-processing meth-
ods are also important. For example, Liu et al.
(2023a); Zhang et al. (2023); Cao et al. (2023) first
replace all the molecule names in the annotation
of PubChem with token ‘~’ to simplify the com-
prehension of name in training. Then they remove
redundant information in the molecule description,
such as origins, sources, and some geographic no-
tation that has no relation to the target tasks. Xu

et al. (2023) select four types of key properties from
Swiss-Prot (Bairoch and Apweiler, 2000) and use
fixed templates to rearrange descriptions, ensuring
the consistency of the training data format.

Integrating Generative AI Recent advances in
generative Al provide an innovative approach to
mitigate the data scarcity challenge. For instance,
Li et al. (2024b) use GPT-3.5 to enrich the sparse
molecular descriptions in PubChem. Fang et al.
(2024); Xiao et al. (2024b) leverage GPT to diver-
sify prompt templates and use them to generate QA
pairs for instruction-tuning. Additionally, Sakhi-
nana and Runkana (2023) uses GPT-4 to gener-
ate molecule captions for fine-tuning. Chen et al.
(2024) fabricate an “artificially-real” dataset for do-
main adaptation, where molecule descriptions are
generated through ChatGPT with retrieval-based
few-shot prompting.

6 Applications

This section will showcase applications of the afore-
mentioned methods in drug discovery and chem-
istry research. Beyond the introduction of tasks,
we also emphasize the adaptation between base
models and tasks.

6.1 Text-molecule Retrieval

The text-molecule retrieval task is first proposed by
Edwards et al. (2021), which aims to retrieve the
corresponding molecule from a given text query.
This molecule retrieval can be applied in the early
stages of drug discovery, where experts need to
select potential molecules from the compound
database for further design and optimization. The
retrieval task can be accomplished by the aligned la-
tent space, from which we can acquire the encoded
text descriptions with implicit connection of target
molecules. Then we can use the similarity score to
evaluate the distance between text and molecules to
find the best-matched pair. In KV-PLM (Zeng et al.,
2022), descriptions and molecules are encoded by
a shared transformer encoder. While MoMu (Su
et al., 2022) and MoleculeSTM (Liu et al., 2023a)
use separate encoders to extract multimodal fea-
tures and align the latent space with contrastive
learning.

6.2 Property Prediction

One of the important goals of drug discovery is
to search for small molecules and proteins with



desired structures and properties. The descrip-
tion of molecules in the scientific literature and
databases can serve as knowledge repositories that
contain properties, interactions, and structures that
can hardly be inferred from current models (Pei
et al., 2023). Through molecule-text alignment,
text information can act as an additional modality
to enhance molecular representation and improve
performance in property prediction tasks (Seidl
et al., 2023; Xu et al., 2023). The property predic-
tion task is usually in binary classification format
and is achieved by fused molecular features and a
prediction head. An alternative approach is to lever-
age powerful generative LLMs with instructions
to predict properties in QA format (Zhang et al.,
2023; Liu et al., 2024b). As shown in 4.1, property
prediction is achieved by the probabilities of “true”
or “false” tokens in the generated answer.

6.3 Molecule Design

De novo Generation De novo generation in
molecule design includes molecule captioning that
generates a description of given molecules and
text-guided de novo generation which generates
molecules from scratch with textual guidance.
Models with single-stream architecture have the
privilege of performing translation between text
and molecule, owing to the encoder-decoder struc-
ture and text-to-text task format (Raffel et al., 2020).
Apart from the translation-based methods. Liu et al.
(2024c) propose a protein design framework with
a multi-stream encoder. In text-guided protein gen-
eration task, the description is first encoded by the
aligned text encoder. Then a facilitator module
which is parameterized by a multi-layer perception
is used to learn the transformation from encoded
text to protein representation. The resulting protein
representation is then fed into a trained generative
decoder to generate protein sequences.

Molecule Editing Molecule editing seeks to
optimize current molecules with desired proper-
ties. Within the drug discovery pipeline, text-
guided editing finds application in lead optimiza-
tion tasks and proves valuable for decompos-
ing multi-objective lead optimization (Liu et al.,
2024c). Drawing inspiration from the success of
few-shot text-to-image generation, text description
can simplify the complexity of the target chemical
space in the generation process. Simultaneously,
diversified generation enhances drug editing by in-
troducing high flexibility. As mentioned above, the

latent space alignment establishes a unified latent
space where features possess semantic meaning
in both structure and text. Building upon this ap-
proach, Liu et al. (2023a, 2024c¢); Tang et al. (2024)
use latent optimization methods to sample a latent
representation close to both text and molecule in
latent space. Then, this latent code is fed into a
decoder which is usually a trained molecule gener-
ation model to produce optimized molecules. Kim
et al. (2025) proposes hierarchical textual inversion
that introduces intermediate and detail tokens to
represent SMILES, with the aim of capturing clus-
ter and molecule-level characteristics. The interpo-
lation sampling can benefit from this hierarchical
design with high generation diversity.

6.4 Other Applications

Reaction Prediction Reaction prediction is a
challenging but fundamental task in chemistry. The
chemical reaction process can be seen as a map-
ping between a set of reactants and a set of products
with specific reaction conditions. Under this frame-
work, there are three main reaction prediction tasks,
which are product prediction, reaction condition
prediction, and most importantly, retrosynthesis
prediction. Text can help to understand complex
reaction mechanisms and supply information about
reaction templates that GNN-based methods often
fail to capture. Qian et al. (2023) retrieve reaction-
related text and concatenate with input SIMILES
to enhance retrosynthesis prediction. As described
in 4.3, we can also involve LLMs in reaction pre-
diction via prompt engineering. For example, Shi
et al. (2023) use GPT-4 to predict reaction products
with the aid of in-context reaction examples and
candidate products from external model.

Intelligent Agent for Scientific Research Ac-
cording to M. Bran et al. (2024), the automation
level in chemistry is relatively low compared to
other domains. Although LLMs may have dif-
ficulties in comprehending chemistry principles,
they have demonstrated significant capability in
understanding human instructions and organizing
information based on extensive training corpora
(Al4Science and Quantum, 2023). Consequently,
LLMs have the potential to become intelligent as-
sistants to automatically arrange research with the
help of professional tools and software. Liu et al.
(2024d) design a drug editing agent with conver-
sational interaction. The agent can receive human
feedback to retrieve candidate drug molecules from



the database with desired properties. Similarly to
ChemCrow (M. Bran et al., 2024), Boiko et al.
(2023) develop a “Co-scientist” based on GPT-4
that can independently design and execute chemi-
cal research.

7 Conclusions and Future Outlooks

In this paper, we provide a comprehensive review
of language-molecule models. After a brief intro-
duction to the background and molecule descrip-
tors, we introduce the model architectures and pre-
training tasks for latent space alignment. Then,
we summarize the prompting techniques in multi-
modal large language models which serve as bridge
between LLMs and downstream molecular tasks.
As an application-oriented domain, we combine
the aforementioned methods to exhibit applications
in drug discovery and chemistry. Although text-
molecule models have made impressive progress,
there exist several challenges which appeal to fu-
ture research.

7.1 Appealing for High-Quality Data and
Reliable Benchmarks

According to the neural scaling law, the emergent
abilities of LLM in complex molecular tasks have
not been shown. The data scarcity challenge still
exists for both molecular structures and textual de-
scriptions. In addition to collecting descriptions
from databases, many works also automatically re-
trieve relative text from scientific corpus or using
generative tools, while the authenticity and corre-
lation of the retrieved or generated text cannot be
guaranteed (Xu et al., 2023; Tang et al., 2024). For
the progress of the community, a larger and more
qualified molecule-text database is significant. Al-
though language-molecule models exhibit great po-
tential in various molecular tasks, there remains a
question of how to fairly evaluate the performance
among different models. To address this concern,
new benchmarks are necessary to standardize eval-
uation metrics and settings, providing more reliable
and realistic test data (Guo et al., 2024; Fang et al.,
2024; Yu et al., 2024).

7.2 Extending the Interpretability of Model

The lack of interpretability prohibits many appli-
cations of deep molecular models, since numerical
predictions alone may not be convincing enough
compared to computational and experimental re-
sults. Text-involved frameworks provide an oppor-
tunity to enhance the interpretability of the results.

By leveraging in-context learning and chain-of-
thought prompting in LLMs, models can reasoning
and inference, like the human brain, to produce
explainable results. Follow-up research can also
try to develop interpretable tools to bridge the re-
lation between textural description and molecular
structure in latent space (Su et al., 2022).

7.3 Improving the Reasoning Ability

The application of prompting techniques can sig-
nificantly improve the reasoning ability of LLM-
based frameworks. However, it is observed that in
some cases, models may generate unrealistic pre-
dictions or even replicate the values in examples as
prediction (Zhao et al., 2023c). This serves as evi-
dence that LLMs may rely on memorization with-
out truly understanding the molecules and chemical
problems. Future studies may integrate success-
ful GNNs into language model architecture (Zhao
et al., 2023b), other than simply using GNNs as en-
coders (Zachares et al., 2023). Designing effective
prompts for molecular tasks can also be taken into
consideration.

7.4 Integration with Foundation Models

Foundation models (FMs) in the biomedical do-
main have shown promising performance. For ex-
ample, AlphaFold (Jumper et al., 2021) can ac-
curately predict protein structures when only pro-
tein sequence is available. It is possible to in-
tegrate FMs within LLM agents or specially de-
signed frameworks (Wang et al., 2024d). We be-
lieve that effective frameworks could unlock the
additive power of FMs.

7.5 Learning from Human/Al Feedback

Recent progress in reinforcement learning from hu-
man/Al feedback (i.e., RLHF (Ouyang et al., 2024)
and RLAIF (Lee et al., 2023)) has achieved promis-
ing results in aligning LLMs with human prefer-
ence. RLHF fits a reward model to human prefer-
ence dataset and uses RL to optimize LLMs to pro-
duce responses assigned with high rewards. This
paradigm may pave the way for utilizing LLMs
for biomedical applications, especially in scenarios
where molecular simulation software can be used
as a reward model. Exploring how to fully utilize
the power of RLHF at the interaction of text and
molecules is an appealing research direction.



Limitations

This work primarily focuses on language-molecule
models that connect human language with molec-
ular data. Although other studies integrate addi-
tional modalities, such as molecular structures and
images (Sanchez-Fernandez et al., 2023), we do
not cover these due to space limitations and leave
their survey for future work. Similarly, knowledge
graphs designed for molecular research or drug dis-
covery may incorporate textual data, but our empha-
sis is on cross-modal training and the integration
of language models. Given the success of LLMs
across various domains, we consider this to be a
more promising direction. Additionally, dataset
sources are not included in this study due to the
complexity of data collection and pre-processing,
as well as space constraints. Instead, we outline
common data processing strategies that are useful
for dataset construction.
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A Summary Table of Language-molecule Models

Table 1 summarizes molecule descriptors, backbone architectures and pre-training tasks of language-
molecule models. We categorize these models by their architectures: single-stream architecture, multi-
stream architecture and intelligent agent.

Model Molecule descriptors Backbone architecture Pre-Training task
MolT5 (Edwards et al., 2022) SMILES T5 MLM

Galactica (Taylor et al., 2022) Bio-Sequence Transformer Decoder CLM

KV-PLM (Zeng et al., 2022) SMILES SciBERT (Beltagy et al., 2019) MLM

MOolXPT (Liu et al., 2023b) SMILES GPT CLM

Text + Chem T5 (Christofidellis et al., 2023) SMILES T5 CG

TextReact (Qian et al., 2023) SMILES SciBERT CL + MLM + CG
GIMLET (Zhao et al., 2023a) Graph T5 CG

BioT5 (Pei et al., 2023) SELFIES + Protein Sequence T5 MLM + CG
3D-MolTS5 (Pei et al., 2024b) SELFIES + Fingerprints T5 CG+ MLM
BIOTS5+ (Pei et al., 2024a) SELFIES + IUPAC + Protein Sequence TS CG+ MLM
ProLLM (Jin et al., 2024) Protein Sequence TS MLM

ProLLaMA (Lv et al., 2024) Protein Sequence Llama-2 CLM

LLM-Prop (Rubungo et al., 2023) Crystal String T5 MLM

Gruver et al. (2024) Crystal String LLaMA-2 MLM

Text2Mol (Edwards et al., 2021) Graph Multi-stream + Transformer CL

MoMu (Su et al., 2022) Graph Multi-stream CL

DrugChat (Liang et al., 2023) Graph Multi-stream + Vicuna-13b CLM
MoleculeSTM (Liu et al., 2023a) Graph Multi-stream + Decoder CL

Graph2Token (Wang et al., 2024b) Graph Multi-stream + Vicuna-7B CG

MV-Mol (Luo et al., 2024c) Graph Q-Former+ BioT5 CL + MTM + CLM
3M-Diffusion (Zhu et al., 2024) Graph Multi-stream CL

MolFM (Luo et al., 2023a) Graph Multi-stream CL + MTM + MLM
BioMedGPT (Luo et al., 2023b) Graph + Protein Sequence Multi-stream + LLaMA 2 CLM

MOLBIND (Xiao et al., 2024a) Graph + Geometry + Protein Graph Multi-stream CL

GIT-Mol (Liu et al., 2024b) SMILES + Graph + Image Q-Former + T35 MTM + CL
MolLM (Tang et al., 2024) SMILES + Graph + Geometry Multi-stream CL

MolCA (Liu et al., 2023c) SMILES + Graph Q-Former + Llama 2 MTM + CL + MC + CLM
3D-MoLM (Li et al., 2024b) SMILES + Geometry Q-Former + Llama 2 MTM + CL + MC + CLM
MoleculeGPT (Zhang et al., 2023) SMILES + Graph Q-Former + Vicuna-7b CL+CLM
BioBridge (Wang et al., 2024d) SMILES + Protein Sequence Knowledge Graph CL

Nguyen et al. (2024) SMILES + Geometry Multi-stream CLM

UniMoT (Zhang et al., 2024a) SMILES + Graph Q-Former + Llama 2 MTM + CL + CG + CLM
InstructMol (Cao et al., 2023) SELFIES + Graph Multi-stream + Vicuna-7b CLM

CLAMP (Seidl et al., 2023) Fingerprints Multi-stream CL

Proteinchat (Huo et al., 2024) Protein Sequence Multi-stream + Vicuna-13B CLM

MutaPLM (Luo et al., 2024b) Protein Sequence Multi-stream + LLaMA2-7B CLM + MLM + CG
ProtST (Xu et al., 2023) Protein Sequence Multi-stream CL + MLM

ProtDT (Liu et al., 2024c¢) Protein Sequence Multi-stream + Decoder CL

InstructProtein (Wang et al., 2024c) Protein Sequence Knowledge Graph + LLMs CLM

ProteinCLIP (Wu et al., 2024a) Protein Sequence Multi-stream CL

PROTLLM (Zhuo et al., 2024) Protein Sequence Multi-stream CLM

ProtT3 (Liu et al., 2024¢) Protein Sequence Q-Former + LLMs MTM + CL + CG
SEPIT (Wu et al., 2024b) Protein Sequence Multi-stream + LLMs CLM

Pinal (Dai et al., 2024) Protein Sequence Multi-stream CLM

OneProt (Floge et al., 2024) Protein Sequence + Protein Graph Multi-stream CL

EVOLLAMA (Liu et al., 2024a) Protein Sequence + Protein Graph Multi-stream + Llama-3 CL

Prot2Text (Abdine et al., 2024) Protein Sequence + Protein Graph Multi-stream + Transformer CLM

ProtChatGPT (Wang et al., 2024a) Protein Sequence + Protein Graph Q-Former + Vicuna-13b MTM + CG + CL + CLM
ProteinAligner (Zhang et al., 2024b) Protein Sequence + Protein Graph Multi-stream CL

ProteinGPT (Xiao et al., 2024b) Protein Sequence + Protein Graph Multi-stream + Llama-3 CLM

ProTrek (Su et al., 2024) Protein Sequence + Protein Graph Multi-stream CL + MLM

ReLLM (Shi et al., 2023) SMILES + IUPAC + Graph ICL + LLMs -

ChatDrug (Liu et al., 2024d) SMILES LLMs -

MolReGPT (Li et al., 2024a) SMILES ICL + GPT-3.5 -

ChemCrow (M. Bran et al., 2024) - CoT + LLMs -

Jang et al. (2024) - LLMs + RL -

Table 1: Summary of representative language-molecule models. “Graph” and “Geometry” denote 2D graph and 3D
geometric graph for small molecule respectively.
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