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Abstract

Identifying user preferences in dialogue sys-
tems is a pivotal aspect of providing satisfy-
ing services. Current research shows that us-
ing large language models (LLMs) to fine-tune
a task-specific preference extractor yields ex-
cellent results in terms of accuracy and gen-
eralization. However, the primary challenge
stems from the inherent difficulty in obtaining
high-quality labeled multi-turn dialogue data.
Accurately tracking user preference transitions
across turns not only demands intensive domain
expertise and contextual consistency mainte-
nance for annotators (termed ‘“‘Annotating Dis-
aster”) but also complicates model training
due to error propagation in sequential depen-
dency learning. Inspired by the observation
that multi-turn preference extraction can be de-
composed into iterative executions of one-turn
extraction processes. We propose a novel dia-
logue data generation framework named Iter-
Chat. First, we construct a new data format
that categorizes the dialogue data into attributed
historical preferences and one-turn dialogues.
This reduces the probability of annotation er-
rors and improves annotation efficiency. Then,
to generate a high-quality and diverse dialogue
dataset, we adopt GPT4 to pre-define the pref-
erence slots in the target preference extractor
task and then randomly sample the subset of the
slots and their corresponding schema values to
create the dialogue datasets. Experimental re-
sults indicate that fine-tuning or only few-shot
prompting with the new dialogue format yields
superior performance compared to the origi-
nal multi-turn dialogues. Additionally, the new
data format improves annotator efficiency with
a win rate of 28.4% higher than the original
multi-turn dialogues.

1 Introduction

A significant challenge in web-based customer sup-
port lies in the efficient recognition of user prefer-
ences within service dialogues (Malik et al., 2024;

Cheng et al., 2021; Shin et al., 2022). Unlike tra-
ditional search-based services that process single-
shot queries, multi-turn conversations necessitate
the identification of dynamically evolving user pref-
erences embedded within the dialogue (Pai et al.,
2024; Han et al., 2023; Feng et al., 2021). Recent
studies adopt the Large Language model (LLM) to
empower the ability to accurately track user prefer-
ences in real-time multi-turn user-system dialogues,
thereby enabling the provision of tailored services
(Xu et al., 2024; Guo et al., 2022; Ravuru et al.,
2022). In contrast to the entity extraction task,
which focuses on identifying and classifying spe-
cific entities within the text, preference extraction
involves analyzing and deriving users’ emotions,
interests, and intentions from the text, requiring
a deeper level of comprehension (Yi et al., 2024;
Feng et al., 2024). This capability can substan-
tially enhance both the customer experience and the
quality of service, while simultaneously support-
ing business intelligence initiatives for companies
(Zhou et al., 2022; Qixiang et al., 2022).

Recent LLM-based preference extraction fo-
cused on leveraging prompt engineering combined
with few-shot examples (Feng et al., 2023; Xu et al.,
2024; Malik et al., 2024). These methods utilize
prompts to assign specific roles to LLMs and define
the slots to be extracted. However, the few-shot
performance of leading LLM, such as GPT-4, still
falls short of the state-of-the-art supervised meth-
ods (Qi et al., 2023), especially when user queries
are broad, ambiguous, and upper funnel (Kim et al.,
2024; Heck et al., 2023). Hence, some works start
to utilize the fine-tuning technique to train the foun-
dation model with the open source datasets (Feng
et al., 2023). However, practical commercial ser-
vices, such as e-commerce, require a high level of
accuracy in identifying complex user preference
slots and require customizing additional slots to
meet personalized services (Malik et al., 2024), as
this directly impacts the ability to provide users



with suitable and satisfactory products.

Therefore, creating a high-quality customized di-
alogue dataset for a task-oriented domain is crucial
to developing a well-performing preference extrac-
tor (Li et al., 2023). However, even for experts,
tracing the preference transition and annotating an
accurate label for the multi-turn conversation is
challenging. This is because preference extraction
in dialogue data not only requires attention to non-
standardized and ambiguous user utterances but
also involves continuously adding, removing, or
updating preferences based on the user’s reactions
to system responses. Consequently, acquiring a
large-scale golden dataset to train a task-oriented
preference extractor is costly and inefficient, a phe-
nomenon we refer to as the ‘“‘Annotating Disas-
ter”. For more details about the annotating disaster,
please refer to Section 3.1 and Figure 1. Another
significant challenge is that long conversational
contexts make model training more difficult, as the
cumulative errors in the preference extraction steps
tend to accumulate as the dialogue context grows.

To address the aforementioned challenges, we
propose a novel dialogue data generation frame-
work named IterChat, which is designed to be
both annotation-friendly and training-efficient. The
framework is inspired by the observation that multi-
turn preference extraction can be decomposed into
iterative executions of one-turn extraction pro-
cesses. This insight implies that modeling pref-
erence evolution through atomic single-turn op-
erations can reduce annotation complexity and
minimize error propagation during model training.
Specifically, we transform the traditional multi-turn
dialogue data into a new data format, which catego-
rizes the dialogue data into historical preferences
and the most recent one-turn dialogues. For anno-
tators, the refined dialogue format enables them to
annotate the preference transition only once. For
fine-tuning LL.Ms, this new data format does not re-
quire long context as input, thereby saving tokens
and allowing the model to learn extraction rules
from simpler input. Additionally, to overcome the
limitation of systematic biases inherent in LLMs
and the diversity of the generated dialogue data,
we utilize the assistance of LLMs to define the
preference slots that need to be extracted for task-
oriented preference extractors. We then randomly
sample slots and their state values to generate the
new form of dialogue datasets.

The main contributions of our work are summa-
rized as follows.

* We transform the traditional multi-turn dialogue
data into a new data format that categorizes dia-
logues into historical preferences and the most
recent one-turn dialogues. This refined format
reduces annotation errors improves efficiency for
annotators, and optimizes the fine-tuning process
by simplifying input for LLMs, thus saving to-
kens and enhancing the learning process.

* We propose a method to overcome the limitations
of systematic biases in LLMs and the diversity
of generated dialogue data by utilizing LLMs
to define task-oriented preference slots. These
slots are randomly sampled along with their state
values to generate new dialogues, facilitating the
development of accurate preference extractors.

» Experimental results demonstrate that fine-tuning
or few-shot prompting with the new dialogue for-
mat yields superior performance compared to
the original multi-turn dialogues. Moreover, this
new data format enhances annotator efficiency,
achieving a 28.4% higher win rate than the origi-
nal multi-turn dialogues.

2 Related Works

2.1 Preference Extraction on LLM-based
Multi-turn Dialogue

Preference extraction, also known as Dialogue
State Tracking (DST), aims to track hidden pref-
erences embedded in conversations to fulfill user
goals in task-oriented dialogue systems (Gu and
Yang, 2024a,b). With the emergence of LLMs
exhibiting remarkable zero-shot capabilities, re-
searchers have begun to explore using LLMs as
task-oriented preference extractors. For instance,
both (Lee et al., 2021) and (Yang et al., 2023)
proposed a prompt-tuning method that leverages
domain-specific prompts and contextual informa-
tion to improve the performance of the prefer-
ence extraction task. (Xu et al., 2024) constructed
chain-of-thought reasoning for the preference ex-
traction task by extracting multiple system-user
utterance pairs from dialogue history that alter slot
values. (Malik et al., 2024) proposed a framework
in which LLMs first summarize user preferences
from dialogues, followed by a dynamic example
retrieval module that stores and retrieves ICL ex-
amples. Recent (Feng et al., 2023; An and Kim,
2023; Moghe et al., 2021) studies have found that
few-shot learning performance remains inadequate.



Consequently, research has shifted towards fine-
tuning techniques to develop more effective prefer-
ence extractors. Although various methods focus
on the preference extraction task, obtaining large
amounts of high-quality task-oriented labeled dia-
logue data to address complex real-world dialogue
scenarios remains a challenge. This is because
annotators often face difficulties in annotating mul-
tiple turns of slot-value pairs, which can be time-
consuming and complex.

2.2 Labeled Dialogue Data for Preference
Extraction

Some researchers have contributed a series of la-
beled datasets for the preference extraction task.
For example, MultiwOZ 2.2 (Eric et al., 2019) is
a multi-domain task-oriented dialogue dataset that
includes more than 10,000 dialogues that span 8
domains. Additionally, the Schema-Guided Dia-
logue (SGD) (Rastogi et al., 2020) dataset includes
over 16,000 conversations between users and vir-
tual assistants, which encompass 26 services in
16 domains, such as events, restaurants, and me-
dia. However, with the increasing number of on-
line services providing dialogue interfaces, current
open-source datasets struggle to cover all specific
scenarios. Moreover, the preference slots available
in these open-source datasets are limited, making
it challenging for service providers to build an ac-
curate preference extractor to handle varied and
changing user preferences. Therefore, we propose
a dialogue data generation framework named Iter-
Chat to help service providers quickly construct
labeled dialogue datasets for their own domains.

3 Preliminaries

This section provides an overview of LLM-based
multi-turn dialogue systems and the associated
challenges of multi-turn preference extraction.

3.1 Multi-Turn Dialogues and Preference
Extraction

In task-oriented dialogue systems, users typi-
cally engage in multi-turn interactions with a
chatbot to iteratively clarify, adjust, or refine
their preferences (Feng et al., 2023). This
process can be modeled as a sequence of dia-
logue pairs: {(Q1, A1), (Q2, A2),...,(Qr, AT)},
where () represents the user’s input queries, and A
represents the chatbot’s responses. Each pair rep-
resents a single dialogue turn. The dialogue con-
text at turn ¢ includes the entire history of interac-

tions up to that point, incorporating both the user’s
queries and the chatbot’s responses, and is denoted
as: Xt = {(Ql,Al), (QQ, AQ), ceey (Qt, At)}
This context plays a critical role in understanding
the evolving preferences and intentions of the user.

The primary task in preference extraction for
dialogue systems is to identify key pieces of infor-
mation from a conversation that reflect the user’s
current preferences (Malik et al., 2024). These
preferences are typically expressed through vari-
ous slots, each representing a specific aspect of
the user’s intent or requirement. At any given turn
t, the dialogue information can be represented as
a set of preference slots, each associated with a
particular entity value, denoted as: Y; = {(P; :
Vl,t)7 (PQ . V27t), ceey (PN : VN,t)}, where B is
the preference slot, and V;; is the corresponding
values of that slot at turn ¢t. For instance, in an
e-commerce scenario, a user might express their
preference for a product in terms of a slot such
as “(price)", which indicates the expected price
range. The corresponding value for this slot could
be something like “less than $50", which specifies
the user’s preference in more detail. Other common
preference slots in such scenarios could include
“(color)", “(brand)", or “(size)", each reflecting
a specific dimension of the user’s choice.

In multi-turn dialogues, large language models
(LLMs) are commonly used to extract preference
slots from a sequence of question-answer pairs.
However, existing LLMs face inherent limitations
in retaining long-term memory across extended
conversations. This often leads to a phenomenon
known as "preference slot oblivion", where the
model loses track of earlier preferences as the dia-
logue progresses, resulting in inconsistencies in its
understanding. To address this challenge in pref-
erence extraction within multi-turn dialogues, we
propose a novel approach in the next section that
reorganizes the problem into an incremental prefer-
ence evolution framework. In this framework, the
learning objective for the LLM is to first extract
preference slots and values from the most recent
one-turn dialogue. Then, it combines the user’s
historical preferences with the latest preferences
from the current dialogue turn to form the most
up-to-date user preference.

4 The Proposed Framework

In this section, we provide a detailed explanation of
our proposed IterChat and corresponding data for-



mat, along with the annotation process and the over-
all framework for IterChat data generation. This
includes an in-depth description of each module
involved in the pipeline. As illustrated in Figure
2, the main framework consists of four key mod-
ules: the preference schema module, the dialogue
sampling module, the annotation module, and the
agent tuning module.

Dialogue 1
(pee]
Dialogue 2

Agent Ay
Dialogue N

[History State] : No. dialogues <4>,
current time <morning>, ...

[Current Dialogue Content] :

Dialogue n+1
Multi-turn dialogues IterChat
Annotater: N rounds Annotater: Wow,
annotations???? @ just one turn

Figure 1: Comparison of multi-turn dialogues and Iter-
Chat data

4.1 Incremental Preference Evolution

Given a dialogue sequence up to the (¢ + 1)-th
turn: Xt+1 = {(Ql, Al), SN (Qt_;,_l, At+1)}, in-
stead of directly extracting the preference Y; 1, we
first summarize the preference information from
the previous ¢-turn dialogue, X, to obtain the cur-
rent preference Y;. Subsequently, we extract the
preference from the most recent one-turn dialogue
(Qt41, Ar+1) based on the context Y}, yielding the
preference gain GGy, which involves updating the
preference slots. Finally, we combine the historical
preference Y; with the newly extracted preference
gain G441 to update the current preference, Y; 1.
This iterative framework ensures that, by lever-
aging both historical preference Y; and the most
recent dialogue turn (Q+1, Ai+1), we can effec-
tively extract the preference gain Gy, and obtain
the updated preference Y;;;. This methodology
effectively prevents preference slot oblivion, of-
fering a more structured and coherent process for
maintaining preference consistency throughout the
dialogue. Specifically, the learning objective for
the LLM is to extract preference slots and values
from the most recent one-turn dialogue, then com-
bine the user’s historical preferences (as captured in
the History Preference) with the latest preferences
from the current dialogue turn to form the most up-
to-date user preference. This approach mitigates
the problem of preference slot oblivion and ensures
that the model can continuously track evolving user

needs. Based on this problem definition, we fur-
ther propose reorganizing multi-turn dialogue data
into a new, more efficient format, which will be
explained in detail in the next section.

4.2 An Annotate-friendly data format

We reorganize multi-turn dialogue data into a new,
more efficient format which consists of two main
components:

* History Preference: It summarizes the user’s
preferences over the previous n turns of dialogue,
capturing the evolving context and the user’s
changing preferences.

* Most Recent One-Turn Dialogue: It contains
the latest user query and chatbot response, re-
flecting the immediate context of the ongoing
conversation.

A comparison between multi-turn dialogues and
the IterChat format is illustrated in Figure 1. By
adopting this structure, we transform the original
multi-turn preference extraction problem into a
more manageable incremental preference evolution
problem.

In addition, we introduce two new annotation
outputs for preference extraction in the IterChat
format: “StateGain" and “PreferenceExtraction".
“StateGain" represents the information gained from
the most recent dialogue turn, highlighting the new
insights added to the user’s preferences. On the
other hand, “PreferenceExtraction" reflects the fi-
nal set of preference slots after processing user
history preference and the latest dialogue prefer-
ence, representing the chatbot’s understanding of
the user’s current preferences. By using this ap-
proach, human annotators only need to annotate
the preference slots for the most recent one-turn
dialogue, significantly reducing the likelihood of
annotation errors and improving efficiency.

4.3 Preference Schema Module

Effectively extracting user preferences involves
monitoring the user’s shifting goals and the sys-
tem’s responses throughout the dialogues. To main-
tain consistency in understanding user preferences,
it is essential to produce structured outputs. This
can be achieved by extracting predefined slot-value
pairs from the dialogue context at each turn, en-
suring that the chatbot can interpret and act on the
user’s preferences with clarity and precision.
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Figure 2: Overview Framework of IterChat Data Generation

In the Preference Schema Module, we first con-
sult a schema agent to gather the necessary informa-
tion about the specific task at hand. For example,
the schema agent might identify the most important
factors that influence a user’s decision-making pro-
cess in a particular task, such as budget constraints
in an e-commerce scenario or preferred location
in a travel planning task. Based on this informa-
tion, we then refine and formalize a task-oriented
preference schema, which defines a set of prefer-
ence slots relevant to the task. Each preference
slot represents a key aspect of user preference that
must be captured during the conversation. For in-
stance, in an e-commerce task, slots could include
“(price)", “(brand)", or “(color)". Each slot may
have a range of possible values, depending on the
user’s preferences. For example, the “(price)" slot
could have values like “less than $50", “between
$100 and $200", or "None". By structuring the pref-
erences in this way, the dialogue system can con-
sistently track and update user preferences across
multiple turns, ensuring that the system’s responses
remain aligned with the user’s evolving needs.

4.4 Dialogue Sampling Module

One of the key advantages of the preference schema
is that it enables the generation of high-quality user
dialogues. In this section, we outline how we lever-
age the preference schema to construct IterChat
data which consists of the user’s history state and

the most recent one-turn dialogue, with updates to
preference slots that can be tailored to our needs.
The dialogue sampling process begins with the
construction of the “history state", which includes
details such as the number of past dialogues, the
current time, and other relevant context information
that reflects the conversation’s progression. The
“history state" is generated by randomly sampling
detailed contextual information using a Context
Agent. This agent is responsible for selecting a
variety of factors that summarize the history of
the conversation, ensuring the generated state is
diverse and representative of different conversa-
tional scenarios. Additionally, the Context Agent
is tasked with sampling the current state, which in-
cludes preference slots of particular interest. These
preference slots could correspond to factors like
price, color, or brand in an e-commerce scenario,
or location and date in a travel planning context.
With both the history state and current state in
hand, the Context Agent generates the most recent
one-turn dialogue, reflecting the update of prefer-
ence slots. For instance, if the history state is:

(‘price’ = [‘less than $50°])

the current state is:

(‘price’ = [‘less than $50°], ‘color’ = [‘red’])

the corresponding one-turn dialogue could be:



user: “I like red."

This approach allows for a smooth transition
between states and generates natural dialogues that
are contextually relevant and reflective of evolving
user preferences. By following this pipeline, we
can efficiently sample large quantities of IterChat
data, each containing a rich set of preference slots
that are of interest. This approach not only supports
the generation of diverse dialogues but also ensures
that each dialogue remains relevant to the user’s
preferences. Please refer to Appendix B for the
prompt.

4.5 Annotation Module

In addition to this structure, we propose a new
annotation output for preference extraction in the
IterChat format, defined by two components:

» StateGain: This represents the information
gained from the most recent dialogue. Specifi-
cally, it quantifies how much new information has
been added to the user’s preference profile after
processing the latest interaction. The StateGain
helps identify whether the most recent dialogue
has refined or introduced new preferences.

* PreferenceExtraction: This denotes the final
extraction of preference slots based on the dia-
logue so far, encompassing both the historical
context and the latest one-turn. It represents the
chatbot’s understanding of the user’s current pref-
erences after incorporating the entire dialogue
history and the most recent interaction. The Pref-
erenceExtraction result is a comprehensive set of
preference slots, each with an associated value,
reflecting the user’s intentions.

Note that this process involves more than just
expanding or summing up slots. In real-world ap-
plications, it requires adhering to multiple inheri-
tance rules to ensure the consistency and accuracy
of preference updates.

By using the IterChat data format and its corre-
sponding annotations, we can generate diverse and
high-quality raw data while enhancing annotator ef-
ficiency, as only one-turn annotations are required,
compared to the multiple-turn annotations typically
needed for full dialogues.

4.6 Agent Tuning Module

Once the annotated IterChat data is collected and
stored in our database, it is used to further fine-tune

our dialogue agent in a supervised manner, thereby
enhancing its ability to understand and respond to
user preferences. The IterChat data format plays a
crucial role in optimizing this fine-tuning process
by providing a simplified, structured input for large
language models (LLMs). This structured format
not only reduces the token usage but also stream-
lines the learning process, allowing the agent to
focus more on relevant content without the need to
process lengthy multi-turn dialogues.

By leveraging the concise, one-turn structure
of the IterChat format, we significantly reduce
the computational overhead, allowing for more
efficient training. Moreover, this format ensures
that the agent can better capture evolving prefer-
ences by maintaining a clear, consistent represen-
tation of user goals and system actions. In the
next section, we demonstrate that fine-tuning or
few-shot prompting with IterChat yields superior
performance compared to the original multi-turn
dialogues.

5 Experiments

5.1 Experimental Setup

Datasets. MultiWOZ 2.1 is a widely used, large-
scale, multi-domain task-oriented dialogue (TOD)
dataset with several revised iterations. For our
study, we focus on the "Hotel’ domain of Multi-
WOZ due to its largest preference slots, which
significantly increases task complexity. Foodie
(IterChat), is a dataset designed for food prefer-
ence extraction tasks, constructed using the Iter-
Chat data format. This dataset comprises 3,500
samples generated using GPT-4, with annotations
validated by experienced data annotators to ensure
quality. Foodie (multi-turn), a dataset where trans-
forms the History State in IterChat into multi-turn
dialogues using GPT-4. These dialogues were then
manually reviewed and corrected for logical con-
sistency. Due to the complexity and effort on this
process, we curated a subset of approximately 300
labeled dialogues for training and testing purposes.

Evaluation Metrics. For easy comparison, we
adopt the following metrics to evaluate the accuracy
of preference extraction: (1) Exact Match (EM):
Measures the percentage of predictions that exactly
match the true labels; (2) F1 scores: Harmonic
mean of precision and recall, balancing both in one
metric; (3) Filter Edit Distance (FED) (Li et al.,
2024): Counts the minimum changes needed to
convert one string to another.



Setup Paradigm Foodie MItiwOZ-H
EM F1 FED EM F1 FED
PERAL-GPT4 | ICL@2 multi-turn | 0.32 | 0.8158 | 1.638 | 0.5674 | 0.7863 | 1.081
few-shot prompting PERAL-GPT4 | ICL@2 IterChat 0.501 | 0.9021 | 0.8157 | 0.5379 | 0.7244 | 1.282
NL2API-GPT4 | ICL@2 multi-turn | 0.3333 | 0.806 | 1.233 | 0.5538 | 0.7399 | 1.085
NL2API-GPT4 | ICL@2 IterChat | 0.5666 | 0.8875 | 0.6333 | 0.5284 | 0.7268 | 1.276
Llama-7B multi-turn 0.1667 | 0.5686 1.9 0.4273 | 0.8981 | 0.9196
full-parameter fine-tuning Llama-7B IterChat 0.3333 | 0.7002 | 1.1833 | 0.7837 | 0.9363 | 0.3162
Llama-13B multi-turn 0.6666 | 0.8914 | 0.3833 | 0.4704 | 0.9186 | 0.8436
Llama-13B IterChat 0.8166 | 0.946 | 0.2166 | 0.8181 | 0.9537 | 0.2542

Table 1: Preference Comparison between Multi-turn Dialogue and Iterchat
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introduces a framework where large language mod-
els (LLMs) first summarize user preferences from
dialogues, followed by a dynamic example retrieval
module that stores and retrieves in-context learn-
ing (ICL) examples. NL2API, another baseline,
employs an LLM to take the demonstrations and
preference slots in the prompt and then directly
identifies the final preference label. Please refer to
Appendix A and Appendix B for implementation
details and the prompt.

5.2 Multi-turn Dialogue vs. IterChat

We evaluated the performance of multi-turn dia-
logues and IterChat under both few-shot prompt-
ing and full-parameter fine-tuning scenarios. In
the few-shot setting, we used GPT-4 as the foun-
dation model. For the Multiwoz dataset, we
employed 1,000 samples as the test set and 2
samples as demonstrations, while for the Foodie
(IterChat/multi-turn) dataset, we used 60 samples
as the test set and 2 samples as demonstrations. In
the full-parameter fine-tuning scenario, we utilized
3,000 samples for training and 1,000 samples for
testing on the Multiwoz dataset, whereas, for the
Foodie dataset (IterChat/multi-turn), we used 228
samples for training and 260 samples for testing.
Based on the results in Table 1, we observed the
following: (1) In the few-shot prompting setting,
IterChat did not show significant advantages over
the original multi-turn dialogues. This is because
IterChat requires iteratively editing the preference
set based on each user utterance, using operations
such as adding, removing, or updating preference
slot values. (2) However, in the full-parameter

Figure 3: Annotation Efficiency and Accuracy.

fine-tuning scenario, IterChat significantly outper-
formed the original multi-turn dialogues. This is
because IterChat’s data format, which includes only
the historical state and the current dialogue, makes
it easier for the model to learn preference tran-
sitions. In contrast, multi-turn dialogues involve
tracking preferences across multiple turns, which
often leads the model to converge to suboptimal
solutions.

5.3 Annotation Efficiency and Accuracy

To demonstrate the annotation efficiency of our
proposed IterChat framework, we conducted an ex-
periment comparing the efficiency and accuracy of
human annotators when using IterChat versus tradi-
tional multi-turn dialogue context annotations. The
results of the experiment, based on 288 samples for
each format, are shown in Figure 3 with the follow-
ing insights: (1) Annotation Time: On average,
the IterChat format significantly reduced the time
spent on annotation, with an average time of 2.92
hours compared to 4.08 hours for the multi-turn
dialogue format. This represents a 28.4% reduc-
tion in annotation time, highlighting the efficiency
gains of using the IterChat format. (2) Annotation
Accuracy (EM): Despite the reduction in time, the
IterChat format maintained or even improved ac-
curacy in terms of Exact Match (EM) scores. The
average EM accuracy for IterChat was 84.37%,
which is 11.95% higher than the 73.42% achieved
with the multi-turn dialogue format.



5.4 Generalization Ability

To evaluate the generalization ability of our pro-
posed IterChat, we conducted an experiment to
assess how well various base models, after fine-
tuning on the IterChat dataset, could generalize
to unseen data. In this experiment, we fine-tuned
three distinct base models of varying sizes on 3000
samples from the IterChat dataset. The selected
models were Llama-13B, Qwen-32B, and PanGu-
38B. Each of these models was fine-tuned on the
IterChat dataset and then evaluated on a held-out
test set of size 200 to measure EM. The result is
shown in Table 2.

Model | Llama-13B
EM 84.0%

Qwen-32B
86.5%

PanGu-38B
83.0%

Table 2: Model Performance (EM)

After fine-tuning the IterChat dataset, the Llama-
13B model achieved an EM accuracy of 84.0%. It
shows that even a general-purpose model with no
specialized training in dialogue data can still bene-
fit from the IterChat format. The Qwen-32B model
achieved an EM accuracy of 86.5%. This improve-
ment over Llama-13B suggests that fine-tuning Iter-
Chat data helps improve its performance, possibly
due to its inherent ability to handle context-rich
information better than general-purpose models.
On the other hand, PanGu-38B, despite its larger
size, achieved the worst performance with an EM
accuracy of 83.0%. Despite its larger parameter
count, PanGu-38B might not be as well-suited for
the dialogue-based nature of the IterChat data.

The results of this experiment demonstrate the
effectiveness of the IterChat format in enhancing
the generalization capabilities of various base mod-
els. Across the three models tested, we observed
consistent improvements in EM accuracy after fine-
tuning on IterChat data.

5.5 Training Scaling

In this experiment, we demonstrate the scalability
of our proposed IterChat dataset by evaluating how
well fine-tuned large language models (LLMs) of
different sizes perform as the amount of IterChat
data increases. Specifically, we test the EM ac-
curacy of two models: Llama-7B and Llama-13B
after fine-tuning on IterChat datasets of different
sizes, ranging from 100 to 3000 samples. After fine-
tuning, both models were evaluated on a consistent
set of 200 test samples to measure EM accuracy.
The result is shown in Figure 4.

Llama-7B vs Llama-13B
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Figure 4: Scaling of Llama with different data size

It can be observed that both models show a clear
correlation between the size of the training data and
the EM accuracy. Llama-7B, as a smaller model,
benefits significantly from smaller datasets, achiev-
ing substantial performance improvements with
even relatively few samples. On the other hand,
Llama-13B requires a larger amount of data to fully
leverage its larger capacity, with improvements be-
coming more noticeable after around 1000 samples.
In conclusion, IterChat offers strong scalability,
and both smaller and larger models benefit from
increased training data.

6 Conclusions

In this work, we have presented IterChat, a novel
framework for generating high-quality dialogue
datasets that address the challenges of “Annotating
Disaster” and “Preference Oblivion” in multi-turn
dialogue preference extraction. By decomposing
the task into more manageable one-turn preference
extractions, IterChat enhances both the accuracy
and efficiency of dialogue data annotation. The
new format, which categorizes historical prefer-
ences separately from one-turn dialogues, reduces
annotation errors and simplifies model training by
alleviating the issues of error propagation across
multiple turns. Our experiments show that fine-
tuning or few-shot prompting with the IterChat
format yields significantly improved performance
in preference extraction tasks compared to the tra-
ditional multi-turn dialogue format. These find-
ings underscore the potential of IterChat to both
streamline the annotation process and improve the
generalization capabilities of LLMs in dialogue
systems.



Ethical Statement

We have hired full-time data annotators and pur-
chased the necessary work insurance for them. We
strictly adhere to the regulation that the daily work-
ing hours shall not exceed 8 hours. Moreover, we
offer salaries that are not lower than the market
average.

Limitations

Dataset Construction and Generalization: Al-
though the paper claims that the IterChat format
can enhance the generalization capabilities of var-
ious base models, the generalization ability eval-
uation is limited. The experiments mainly focus
on a few datasets (such as the "Hotel’ domain of
MultiWOZ and the Foodie dataset), and it is uncer-
tain whether the results can be extended to other
domains and more complex real-world scenarios.
Also, the datasets used for evaluation may not fully
cover the diversity of user preferences and dialogue
situations in practice.

Annotation and Data Generation: The annota-
tion process in IterChat still requires human effort,
and although it reduces the annotation time and im-
proves accuracy compared to multi-turn dialogues,
it may still be resource-intensive for large-scale
datasets. Additionally, the data generation process
relies on GPT-4 to pre-define preference slots and
sample values, which may introduce biases from
GPT - 4 itself. Also, the assumption that multi-turn
preference extraction can be decomposed into one-
turn extraction processes might not hold true for
all types of dialogues, especially those with highly
complex and intertwined preference expressions.
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A Implementation Details.

Baseline Settings. We evaluate the effectiveness
of the IterChat data format compared to the origi-
nal long-context format using two approaches: (i)
few-shot prompting, each model directly processes
the concatenated text of the task instruction and
dialogue content (either IterChat or multi-turn dia-
logue) as the input prompt, generating the final set
of preference labels. (ii) Full-parameter fine-tuning,



we following the conventional one-dialogue-one-
sample manner which the adopted baseline models
are all causal LLMs.

Parameter settings during full-parameter
fine-tuninng. We conducted full-parameter fine-
tuning using distributed computing, employing a to-
tal of 8 distributed nodes. Each node was equipped
with 72 CPU cores and 8 Huawei Ascend GPU,
each with 64 GB of memory. During the fine-
tuning phase, we set the batch size to 48 and trained
the model for 5 epochs. For fine-tuning on small
datasets (data size < 1,000), we used a learning
rate of 4e-5, while for larger datasets (data size >
1,000), we set the learning rate to Se-5. The Adam
optimizer (Zhang, 2018) was used throughout all
training processes.

B Prompts

We provide the exact prompts utilized in our exper-
iments on the MultiWoZ-H dataset, with similar
prompts applied to the Foodie dataset.
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# lterChat Data Generation:

Human:

<purpose>

You are a dialogue data production assistant. You need to simulate a conversation between a user and a system, including two
parts: the previous state and the current utterance. The previous state summarizes the user's previous context, and the current
utterance represents the most recent exchange between the user and the system.

</purpose>

<operation-principles>

1. Generate the previous state:

- Mandatory state {state0}

- Optional state {state1}

2. Generate the current utterance:

- The current utterance represents one round of conversation between [User] and [System].
- [System] response should be relevant to the current state.

- [User] dialogue should meet the following requirements:

{query}

<operation-principles>

<state-definition>

State schema:

- Key: [Area, Booking Date, Price Range, Star Rating, Type, etc.]
- Value: Array of valid options from the filter table.
<state-definition>

<schema format="key:[allowed_values]">

{

"Area": ["Centre", "East", "North", "South", "West"],
"Booking Date": ["Monday",...,"Sunday"],

"Price Range": ["Expensive", "Cheap", "Moderate"],
"Type": ["Guesthouse", "Hotel"],

"Star Rating": ["0"..."5"]

</schema>

<processing-rules>

<rule>Format requirements:

Previous State: {Fill in the state content here}
Current Utterance: {Fill in the latest dialogue here}
</Rule>

<Rule>Dialogue requirements:

- The first turn is the system's response.

- The second turn is the user's dialogue.

</Rule>

<processing-rules>

Process:
<examples>
-- {example1}
-- {example2}
-- {example3}
</examples>

Please generate {numb} sets of data based on the examples:

Figure 5: Prompt for new data format generation
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# Prompt for IterChat:

Human:

<purpose>

You are a state tracking assistant that dynamically updates hotel preferences by merging historical state with new information from the
latest dialogue turn.

</purpose>

<operation-principles>
1. State Inheritance: Carry forward unchanged slots from historical state
2. State Mutation:

- Add: New slots mentioned in current dialogue

- Modify: Overwrite existing slots with new values

- Delete: Remove slots explicitly revoked (e.g., "never mind about parking")
3. State Validation: Enforce schema compatibility before final output
</operation-principles>

<schema format="key:[allowed_values]">

{
"hotel-pricerange": ["expensive", "cheap", "moderate"],
"hotel-type": ["guesthouse", "hotel"],
"hotel-parking": ["free", "no", "yes"],
"hotel-bookday": ["monday",...,"sunday"],
"hotel-bookpeople": ["1"..."8"],
"hotel-bookstay": ["1"..."8"],
"hotel-stars": ["0"..."5"],
"hotel-internet": ["free", "no", "yes"],
"hotel-name": "free-text",

"hotel-area": ["centre", "east",

}

</schema>

north", "south", "west"]

<processing-rules>

<rule>Priority: Current dialogue > Historical state</rule>
<rule>For implicit changes:

- "Actually..." - Modify existing slot

- "Instead of X..." = Replace previous value

- "Don't care about..." - Delete slot

</rule>

<rule>Handle data types:

- Categorical: Match to schema values (case-insensitive)
- Free-text (hotel-name): Preserve exact spelling

- Numerical: Convert word numbers to digits ("two" - "2")
</rule>

<rule>Output MUST be valid JSON with:

- Keys: Only slots with active values

- Values: Arrays containing latest valid entries

</rule>

</processing-rules>

To process:

<dialogue-context>

Previous State: {icl_history_state}
Current Utterance: {icl_current_dialogue}
</dialogue-context>

Assistant:

Figure 6: Prompt for IterChat during few-shot prompting
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# Prompt for multi-turn dialogue:

Human:

<purpose>

You are a state extraction agent that analyzes FULL DIALOGUE HISTORY to determine the FINAL hotel preferences,
capturing all valid slot values through conversational evolution.

</purpose>

<schema format="key:[allowed_values]">

{ non non

"hotel-pricerange": ["expensive", "cheap", "moderate"],
"hotel-type": ["guesthouse"”, "hotel"],

"hotel-parking": ["free", "no", "yes"],

"hotel-bookday": ["monday",...,"sunday"],
"hotel-bookpeople": ["1"..."8"],
"hotel-bookstay": ["1"..."8"],
"hotel-stars": ["0"..."5"],
"hotel-internet": ["free", "no", "
"hotel-name": "free-text",

yes"],

"hotel-area": ["centre", "east",
}

</schema>

north", "south", "west"]

<extraction-protocol>

1. Temporal Analysis:
- Scan dialogue chronologically
- Track value changes across turns
- Preserve only the final valid state

2. Conflict Resolution:
- Last-mentioned value overrides previous ones
- Explicit revocation ("not X anymore") deletes slot
- Implicit changes ("actually...") replace earlier values

3. Context Binding:

- Bind numeric references to nearest hotel context

- Ignore preferences mentioned in other domains (restaurant/taxi)
</extraction-protocol>

<normalization-rules>

e Convert word forms: {"two days" - "2", "west side" - "west"}

* Map synonyms: {"mid-priced" - "moderate", "B&B" - "guesthouse"}
* Filter tentative phrases: {"maybe 4 stars" > "4"}
</normalization-rules>

To process:
<full-dialogue>
{icl_dialogue}
</full-dialogue>

Assistant:

Figure 7: Prompt for multi-turn dialogue during few-shot prompting
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