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Abstract001

Identifying user preferences in dialogue sys-002
tems is a pivotal aspect of providing satisfy-003
ing services. Current research shows that us-004
ing large language models (LLMs) to fine-tune005
a task-specific preference extractor yields ex-006
cellent results in terms of accuracy and gen-007
eralization. However, the primary challenge008
stems from the inherent difficulty in obtaining009
high-quality labeled multi-turn dialogue data.010
Accurately tracking user preference transitions011
across turns not only demands intensive domain012
expertise and contextual consistency mainte-013
nance for annotators (termed “Annotating Dis-014
aster”) but also complicates model training015
due to error propagation in sequential depen-016
dency learning. Inspired by the observation017
that multi-turn preference extraction can be de-018
composed into iterative executions of one-turn019
extraction processes. We propose a novel dia-020
logue data generation framework named Iter-021
Chat. First, we construct a new data format022
that categorizes the dialogue data into attributed023
historical preferences and one-turn dialogues.024
This reduces the probability of annotation er-025
rors and improves annotation efficiency. Then,026
to generate a high-quality and diverse dialogue027
dataset, we adopt GPT4 to pre-define the pref-028
erence slots in the target preference extractor029
task and then randomly sample the subset of the030
slots and their corresponding schema values to031
create the dialogue datasets. Experimental re-032
sults indicate that fine-tuning or only few-shot033
prompting with the new dialogue format yields034
superior performance compared to the origi-035
nal multi-turn dialogues. Additionally, the new036
data format improves annotator efficiency with037
a win rate of 28.4% higher than the original038
multi-turn dialogues.039

1 Introduction040

A significant challenge in web-based customer sup-041

port lies in the efficient recognition of user prefer-042

ences within service dialogues (Malik et al., 2024;043

Cheng et al., 2021; Shin et al., 2022). Unlike tra- 044

ditional search-based services that process single- 045

shot queries, multi-turn conversations necessitate 046

the identification of dynamically evolving user pref- 047

erences embedded within the dialogue (Pai et al., 048

2024; Han et al., 2023; Feng et al., 2021). Recent 049

studies adopt the Large Language model (LLM) to 050

empower the ability to accurately track user prefer- 051

ences in real-time multi-turn user-system dialogues, 052

thereby enabling the provision of tailored services 053

(Xu et al., 2024; Guo et al., 2022; Ravuru et al., 054

2022). In contrast to the entity extraction task, 055

which focuses on identifying and classifying spe- 056

cific entities within the text, preference extraction 057

involves analyzing and deriving users’ emotions, 058

interests, and intentions from the text, requiring 059

a deeper level of comprehension (Yi et al., 2024; 060

Feng et al., 2024). This capability can substan- 061

tially enhance both the customer experience and the 062

quality of service, while simultaneously support- 063

ing business intelligence initiatives for companies 064

(Zhou et al., 2022; Qixiang et al., 2022). 065

Recent LLM-based preference extraction fo- 066

cused on leveraging prompt engineering combined 067

with few-shot examples (Feng et al., 2023; Xu et al., 068

2024; Malik et al., 2024). These methods utilize 069

prompts to assign specific roles to LLMs and define 070

the slots to be extracted. However, the few-shot 071

performance of leading LLM, such as GPT-4, still 072

falls short of the state-of-the-art supervised meth- 073

ods (Qi et al., 2023), especially when user queries 074

are broad, ambiguous, and upper funnel (Kim et al., 075

2024; Heck et al., 2023). Hence, some works start 076

to utilize the fine-tuning technique to train the foun- 077

dation model with the open source datasets (Feng 078

et al., 2023). However, practical commercial ser- 079

vices, such as e-commerce, require a high level of 080

accuracy in identifying complex user preference 081

slots and require customizing additional slots to 082

meet personalized services (Malik et al., 2024), as 083

this directly impacts the ability to provide users 084
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with suitable and satisfactory products.085

Therefore, creating a high-quality customized di-086

alogue dataset for a task-oriented domain is crucial087

to developing a well-performing preference extrac-088

tor (Li et al., 2023). However, even for experts,089

tracing the preference transition and annotating an090

accurate label for the multi-turn conversation is091

challenging. This is because preference extraction092

in dialogue data not only requires attention to non-093

standardized and ambiguous user utterances but094

also involves continuously adding, removing, or095

updating preferences based on the user’s reactions096

to system responses. Consequently, acquiring a097

large-scale golden dataset to train a task-oriented098

preference extractor is costly and inefficient, a phe-099

nomenon we refer to as the “Annotating Disas-100

ter”. For more details about the annotating disaster,101

please refer to Section 3.1 and Figure 1. Another102

significant challenge is that long conversational103

contexts make model training more difficult, as the104

cumulative errors in the preference extraction steps105

tend to accumulate as the dialogue context grows.106

To address the aforementioned challenges, we107

propose a novel dialogue data generation frame-108

work named IterChat, which is designed to be109

both annotation-friendly and training-efficient. The110

framework is inspired by the observation that multi-111

turn preference extraction can be decomposed into112

iterative executions of one-turn extraction pro-113

cesses. This insight implies that modeling pref-114

erence evolution through atomic single-turn op-115

erations can reduce annotation complexity and116

minimize error propagation during model training.117

Specifically, we transform the traditional multi-turn118

dialogue data into a new data format, which catego-119

rizes the dialogue data into historical preferences120

and the most recent one-turn dialogues. For anno-121

tators, the refined dialogue format enables them to122

annotate the preference transition only once. For123

fine-tuning LLMs, this new data format does not re-124

quire long context as input, thereby saving tokens125

and allowing the model to learn extraction rules126

from simpler input. Additionally, to overcome the127

limitation of systematic biases inherent in LLMs128

and the diversity of the generated dialogue data,129

we utilize the assistance of LLMs to define the130

preference slots that need to be extracted for task-131

oriented preference extractors. We then randomly132

sample slots and their state values to generate the133

new form of dialogue datasets.134

The main contributions of our work are summa-135

rized as follows.136

• We transform the traditional multi-turn dialogue 137

data into a new data format that categorizes dia- 138

logues into historical preferences and the most 139

recent one-turn dialogues. This refined format 140

reduces annotation errors improves efficiency for 141

annotators, and optimizes the fine-tuning process 142

by simplifying input for LLMs, thus saving to- 143

kens and enhancing the learning process. 144

• We propose a method to overcome the limitations 145

of systematic biases in LLMs and the diversity 146

of generated dialogue data by utilizing LLMs 147

to define task-oriented preference slots. These 148

slots are randomly sampled along with their state 149

values to generate new dialogues, facilitating the 150

development of accurate preference extractors. 151

• Experimental results demonstrate that fine-tuning 152

or few-shot prompting with the new dialogue for- 153

mat yields superior performance compared to 154

the original multi-turn dialogues. Moreover, this 155

new data format enhances annotator efficiency, 156

achieving a 28.4% higher win rate than the origi- 157

nal multi-turn dialogues. 158

2 Related Works 159

2.1 Preference Extraction on LLM-based 160

Multi-turn Dialogue 161

Preference extraction, also known as Dialogue 162

State Tracking (DST), aims to track hidden pref- 163

erences embedded in conversations to fulfill user 164

goals in task-oriented dialogue systems (Gu and 165

Yang, 2024a,b). With the emergence of LLMs 166

exhibiting remarkable zero-shot capabilities, re- 167

searchers have begun to explore using LLMs as 168

task-oriented preference extractors. For instance, 169

both (Lee et al., 2021) and (Yang et al., 2023) 170

proposed a prompt-tuning method that leverages 171

domain-specific prompts and contextual informa- 172

tion to improve the performance of the prefer- 173

ence extraction task. (Xu et al., 2024) constructed 174

chain-of-thought reasoning for the preference ex- 175

traction task by extracting multiple system-user 176

utterance pairs from dialogue history that alter slot 177

values. (Malik et al., 2024) proposed a framework 178

in which LLMs first summarize user preferences 179

from dialogues, followed by a dynamic example 180

retrieval module that stores and retrieves ICL ex- 181

amples. Recent (Feng et al., 2023; An and Kim, 182

2023; Moghe et al., 2021) studies have found that 183

few-shot learning performance remains inadequate. 184
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Consequently, research has shifted towards fine-185

tuning techniques to develop more effective prefer-186

ence extractors. Although various methods focus187

on the preference extraction task, obtaining large188

amounts of high-quality task-oriented labeled dia-189

logue data to address complex real-world dialogue190

scenarios remains a challenge. This is because191

annotators often face difficulties in annotating mul-192

tiple turns of slot-value pairs, which can be time-193

consuming and complex.194

2.2 Labeled Dialogue Data for Preference195

Extraction196

Some researchers have contributed a series of la-197

beled datasets for the preference extraction task.198

For example, MultiWOZ 2.2 (Eric et al., 2019) is199

a multi-domain task-oriented dialogue dataset that200

includes more than 10,000 dialogues that span 8201

domains. Additionally, the Schema-Guided Dia-202

logue (SGD) (Rastogi et al., 2020) dataset includes203

over 16,000 conversations between users and vir-204

tual assistants, which encompass 26 services in205

16 domains, such as events, restaurants, and me-206

dia. However, with the increasing number of on-207

line services providing dialogue interfaces, current208

open-source datasets struggle to cover all specific209

scenarios. Moreover, the preference slots available210

in these open-source datasets are limited, making211

it challenging for service providers to build an ac-212

curate preference extractor to handle varied and213

changing user preferences. Therefore, we propose214

a dialogue data generation framework named Iter-215

Chat to help service providers quickly construct216

labeled dialogue datasets for their own domains.217

3 Preliminaries218

This section provides an overview of LLM-based219

multi-turn dialogue systems and the associated220

challenges of multi-turn preference extraction.221

3.1 Multi-Turn Dialogues and Preference222

Extraction223

In task-oriented dialogue systems, users typi-224

cally engage in multi-turn interactions with a225

chatbot to iteratively clarify, adjust, or refine226

their preferences (Feng et al., 2023). This227

process can be modeled as a sequence of dia-228

logue pairs: {(Q1, A1), (Q2, A2), . . . , (QT , AT )},229

where Q represents the user’s input queries, and A230

represents the chatbot’s responses. Each pair rep-231

resents a single dialogue turn. The dialogue con-232

text at turn t includes the entire history of interac-233

tions up to that point, incorporating both the user’s 234

queries and the chatbot’s responses, and is denoted 235

as: Xt = {(Q1, A1), (Q2, A2), . . . , (Qt, At)}. 236

This context plays a critical role in understanding 237

the evolving preferences and intentions of the user. 238

The primary task in preference extraction for 239

dialogue systems is to identify key pieces of infor- 240

mation from a conversation that reflect the user’s 241

current preferences (Malik et al., 2024). These 242

preferences are typically expressed through vari- 243

ous slots, each representing a specific aspect of 244

the user’s intent or requirement. At any given turn 245

t, the dialogue information can be represented as 246

a set of preference slots, each associated with a 247

particular entity value, denoted as: Yt = {(P1 : 248

V1,t), (P2 : V2,t), . . . , (PN : VN,t)}, where Pi is 249

the preference slot, and Vi,t is the corresponding 250

values of that slot at turn t. For instance, in an 251

e-commerce scenario, a user might express their 252

preference for a product in terms of a slot such 253

as “⟨price⟩", which indicates the expected price 254

range. The corresponding value for this slot could 255

be something like “less than $50", which specifies 256

the user’s preference in more detail. Other common 257

preference slots in such scenarios could include 258

“⟨color⟩", “⟨brand⟩", or “⟨size⟩", each reflecting 259

a specific dimension of the user’s choice. 260

In multi-turn dialogues, large language models 261

(LLMs) are commonly used to extract preference 262

slots from a sequence of question-answer pairs. 263

However, existing LLMs face inherent limitations 264

in retaining long-term memory across extended 265

conversations. This often leads to a phenomenon 266

known as "preference slot oblivion", where the 267

model loses track of earlier preferences as the dia- 268

logue progresses, resulting in inconsistencies in its 269

understanding. To address this challenge in pref- 270

erence extraction within multi-turn dialogues, we 271

propose a novel approach in the next section that 272

reorganizes the problem into an incremental prefer- 273

ence evolution framework. In this framework, the 274

learning objective for the LLM is to first extract 275

preference slots and values from the most recent 276

one-turn dialogue. Then, it combines the user’s 277

historical preferences with the latest preferences 278

from the current dialogue turn to form the most 279

up-to-date user preference. 280

4 The Proposed Framework 281

In this section, we provide a detailed explanation of 282

our proposed IterChat and corresponding data for- 283
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mat, along with the annotation process and the over-284

all framework for IterChat data generation. This285

includes an in-depth description of each module286

involved in the pipeline. As illustrated in Figure287

2, the main framework consists of four key mod-288

ules: the preference schema module, the dialogue289

sampling module, the annotation module, and the290

agent tuning module.291

Figure 1: Comparison of multi-turn dialogues and Iter-
Chat data

4.1 Incremental Preference Evolution292

Given a dialogue sequence up to the (t + 1)-th293

turn: Xt+1 = {(Q1, A1), . . . , (Qt+1, At+1)}, in-294

stead of directly extracting the preference Yt+1, we295

first summarize the preference information from296

the previous t-turn dialogue, Xt, to obtain the cur-297

rent preference Yt. Subsequently, we extract the298

preference from the most recent one-turn dialogue299

(Qt+1, At+1) based on the context Yt, yielding the300

preference gain Gt+1, which involves updating the301

preference slots. Finally, we combine the historical302

preference Yt with the newly extracted preference303

gain Gt+1 to update the current preference, Yt+1.304

This iterative framework ensures that, by lever-305

aging both historical preference Yt and the most306

recent dialogue turn (Qt+1, At+1), we can effec-307

tively extract the preference gain Gt+1 and obtain308

the updated preference Yt+1. This methodology309

effectively prevents preference slot oblivion, of-310

fering a more structured and coherent process for311

maintaining preference consistency throughout the312

dialogue. Specifically, the learning objective for313

the LLM is to extract preference slots and values314

from the most recent one-turn dialogue, then com-315

bine the user’s historical preferences (as captured in316

the History Preference) with the latest preferences317

from the current dialogue turn to form the most up-318

to-date user preference. This approach mitigates319

the problem of preference slot oblivion and ensures320

that the model can continuously track evolving user321

needs. Based on this problem definition, we fur- 322

ther propose reorganizing multi-turn dialogue data 323

into a new, more efficient format, which will be 324

explained in detail in the next section. 325

4.2 An Annotate-friendly data format 326

We reorganize multi-turn dialogue data into a new, 327

more efficient format which consists of two main 328

components: 329

• History Preference: It summarizes the user’s 330

preferences over the previous n turns of dialogue, 331

capturing the evolving context and the user’s 332

changing preferences. 333

• Most Recent One-Turn Dialogue: It contains 334

the latest user query and chatbot response, re- 335

flecting the immediate context of the ongoing 336

conversation. 337

A comparison between multi-turn dialogues and 338

the IterChat format is illustrated in Figure 1. By 339

adopting this structure, we transform the original 340

multi-turn preference extraction problem into a 341

more manageable incremental preference evolution 342

problem. 343

In addition, we introduce two new annotation 344

outputs for preference extraction in the IterChat 345

format: “StateGain" and “PreferenceExtraction". 346

“StateGain" represents the information gained from 347

the most recent dialogue turn, highlighting the new 348

insights added to the user’s preferences. On the 349

other hand, “PreferenceExtraction" reflects the fi- 350

nal set of preference slots after processing user 351

history preference and the latest dialogue prefer- 352

ence, representing the chatbot’s understanding of 353

the user’s current preferences. By using this ap- 354

proach, human annotators only need to annotate 355

the preference slots for the most recent one-turn 356

dialogue, significantly reducing the likelihood of 357

annotation errors and improving efficiency. 358

4.3 Preference Schema Module 359

Effectively extracting user preferences involves 360

monitoring the user’s shifting goals and the sys- 361

tem’s responses throughout the dialogues. To main- 362

tain consistency in understanding user preferences, 363

it is essential to produce structured outputs. This 364

can be achieved by extracting predefined slot-value 365

pairs from the dialogue context at each turn, en- 366

suring that the chatbot can interpret and act on the 367

user’s preferences with clarity and precision. 368
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Figure 2: Overview Framework of IterChat Data Generation

In the Preference Schema Module, we first con-369

sult a schema agent to gather the necessary informa-370

tion about the specific task at hand. For example,371

the schema agent might identify the most important372

factors that influence a user’s decision-making pro-373

cess in a particular task, such as budget constraints374

in an e-commerce scenario or preferred location375

in a travel planning task. Based on this informa-376

tion, we then refine and formalize a task-oriented377

preference schema, which defines a set of prefer-378

ence slots relevant to the task. Each preference379

slot represents a key aspect of user preference that380

must be captured during the conversation. For in-381

stance, in an e-commerce task, slots could include382

“⟨price⟩", “⟨brand⟩", or “⟨color⟩". Each slot may383

have a range of possible values, depending on the384

user’s preferences. For example, the “⟨price⟩" slot385

could have values like “less than $50", “between386

$100 and $200", or "None". By structuring the pref-387

erences in this way, the dialogue system can con-388

sistently track and update user preferences across389

multiple turns, ensuring that the system’s responses390

remain aligned with the user’s evolving needs.391

4.4 Dialogue Sampling Module392

One of the key advantages of the preference schema393

is that it enables the generation of high-quality user394

dialogues. In this section, we outline how we lever-395

age the preference schema to construct IterChat396

data which consists of the user’s history state and397

the most recent one-turn dialogue, with updates to 398

preference slots that can be tailored to our needs. 399

The dialogue sampling process begins with the 400

construction of the “history state", which includes 401

details such as the number of past dialogues, the 402

current time, and other relevant context information 403

that reflects the conversation’s progression. The 404

“history state" is generated by randomly sampling 405

detailed contextual information using a Context 406

Agent. This agent is responsible for selecting a 407

variety of factors that summarize the history of 408

the conversation, ensuring the generated state is 409

diverse and representative of different conversa- 410

tional scenarios. Additionally, the Context Agent 411

is tasked with sampling the current state, which in- 412

cludes preference slots of particular interest. These 413

preference slots could correspond to factors like 414

price, color, or brand in an e-commerce scenario, 415

or location and date in a travel planning context. 416

With both the history state and current state in 417

hand, the Context Agent generates the most recent 418

one-turn dialogue, reflecting the update of prefer- 419

ence slots. For instance, if the history state is: 420

(‘price’ = [‘less than $50’]) 421

the current state is: 422

(‘price’ = [‘less than $50’], ‘color’ = [‘red’]) 423

the corresponding one-turn dialogue could be: 424
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user: “I like red."425

This approach allows for a smooth transition426

between states and generates natural dialogues that427

are contextually relevant and reflective of evolving428

user preferences. By following this pipeline, we429

can efficiently sample large quantities of IterChat430

data, each containing a rich set of preference slots431

that are of interest. This approach not only supports432

the generation of diverse dialogues but also ensures433

that each dialogue remains relevant to the user’s434

preferences. Please refer to Appendix B for the435

prompt.436

4.5 Annotation Module437

In addition to this structure, we propose a new438

annotation output for preference extraction in the439

IterChat format, defined by two components:440

• StateGain: This represents the information441

gained from the most recent dialogue. Specifi-442

cally, it quantifies how much new information has443

been added to the user’s preference profile after444

processing the latest interaction. The StateGain445

helps identify whether the most recent dialogue446

has refined or introduced new preferences.447

• PreferenceExtraction: This denotes the final448

extraction of preference slots based on the dia-449

logue so far, encompassing both the historical450

context and the latest one-turn. It represents the451

chatbot’s understanding of the user’s current pref-452

erences after incorporating the entire dialogue453

history and the most recent interaction. The Pref-454

erenceExtraction result is a comprehensive set of455

preference slots, each with an associated value,456

reflecting the user’s intentions.457

Note that this process involves more than just458

expanding or summing up slots. In real-world ap-459

plications, it requires adhering to multiple inheri-460

tance rules to ensure the consistency and accuracy461

of preference updates.462

By using the IterChat data format and its corre-463

sponding annotations, we can generate diverse and464

high-quality raw data while enhancing annotator ef-465

ficiency, as only one-turn annotations are required,466

compared to the multiple-turn annotations typically467

needed for full dialogues.468

4.6 Agent Tuning Module469

Once the annotated IterChat data is collected and470

stored in our database, it is used to further fine-tune471

our dialogue agent in a supervised manner, thereby 472

enhancing its ability to understand and respond to 473

user preferences. The IterChat data format plays a 474

crucial role in optimizing this fine-tuning process 475

by providing a simplified, structured input for large 476

language models (LLMs). This structured format 477

not only reduces the token usage but also stream- 478

lines the learning process, allowing the agent to 479

focus more on relevant content without the need to 480

process lengthy multi-turn dialogues. 481

By leveraging the concise, one-turn structure 482

of the IterChat format, we significantly reduce 483

the computational overhead, allowing for more 484

efficient training. Moreover, this format ensures 485

that the agent can better capture evolving prefer- 486

ences by maintaining a clear, consistent represen- 487

tation of user goals and system actions. In the 488

next section, we demonstrate that fine-tuning or 489

few-shot prompting with IterChat yields superior 490

performance compared to the original multi-turn 491

dialogues. 492

5 Experiments 493

5.1 Experimental Setup 494

Datasets. MultiWOZ 2.1 is a widely used, large- 495

scale, multi-domain task-oriented dialogue (TOD) 496

dataset with several revised iterations. For our 497

study, we focus on the ’Hotel’ domain of Multi- 498

WOZ due to its largest preference slots, which 499

significantly increases task complexity. Foodie 500

(IterChat), is a dataset designed for food prefer- 501

ence extraction tasks, constructed using the Iter- 502

Chat data format. This dataset comprises 3,500 503

samples generated using GPT-4, with annotations 504

validated by experienced data annotators to ensure 505

quality. Foodie (multi-turn), a dataset where trans- 506

forms the History State in IterChat into multi-turn 507

dialogues using GPT-4. These dialogues were then 508

manually reviewed and corrected for logical con- 509

sistency. Due to the complexity and effort on this 510

process, we curated a subset of approximately 300 511

labeled dialogues for training and testing purposes. 512

Evaluation Metrics. For easy comparison, we 513

adopt the following metrics to evaluate the accuracy 514

of preference extraction: (1) Exact Match (EM): 515

Measures the percentage of predictions that exactly 516

match the true labels; (2) F1 scores: Harmonic 517

mean of precision and recall, balancing both in one 518

metric; (3) Filter Edit Distance (FED) (Li et al., 519

2024): Counts the minimum changes needed to 520

convert one string to another. 521
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Setup Paradigm
Foodie MltiWOZ-H

EM F1 FED EM F1 FED

few-shot prompting

PERAL-GPT4 ICL@2 multi-turn 0.32 0.8158 1.638 0.5674 0.7863 1.081
PERAL-GPT4 ICL@2 IterChat 0.501 0.9021 0.8157 0.5379 0.7244 1.282
NL2API-GPT4 ICL@2 multi-turn 0.3333 0.806 1.233 0.5538 0.7399 1.085
NL2API-GPT4 ICL@2 IterChat 0.5666 0.8875 0.6333 0.5284 0.7268 1.276

full-parameter fine-tuning

Llama-7B multi-turn 0.1667 0.5686 1.9 0.4273 0.8981 0.9196
Llama-7B IterChat 0.3333 0.7002 1.1833 0.7837 0.9363 0.3162

Llama-13B multi-turn 0.6666 0.8914 0.3833 0.4704 0.9186 0.8436
Llama-13B IterChat 0.8166 0.946 0.2166 0.8181 0.9537 0.2542

Table 1: Preference Comparison between Multi-turn Dialogue and Iterchat

Baseline models. We adopt popular open-source522

and close-source LLMs as baseline models for ex-523

periments, including GPT4 (Achiam et al., 2023),524

LLaMA (Touvron et al., 2023), Qwen (Bai et al.,525

2023) and Pangu (Ren et al., 2023).526

Baseline Method. PEARL (Malik et al., 2024)527

introduces a framework where large language mod-528

els (LLMs) first summarize user preferences from529

dialogues, followed by a dynamic example retrieval530

module that stores and retrieves in-context learn-531

ing (ICL) examples. NL2API, another baseline,532

employs an LLM to take the demonstrations and533

preference slots in the prompt and then directly534

identifies the final preference label. Please refer to535

Appendix A and Appendix B for implementation536

details and the prompt.537

5.2 Multi-turn Dialogue vs. IterChat538

We evaluated the performance of multi-turn dia-539

logues and IterChat under both few-shot prompt-540

ing and full-parameter fine-tuning scenarios. In541

the few-shot setting, we used GPT-4 as the foun-542

dation model. For the Multiwoz dataset, we543

employed 1,000 samples as the test set and 2544

samples as demonstrations, while for the Foodie545

(IterChat/multi-turn) dataset, we used 60 samples546

as the test set and 2 samples as demonstrations. In547

the full-parameter fine-tuning scenario, we utilized548

3,000 samples for training and 1,000 samples for549

testing on the Multiwoz dataset, whereas, for the550

Foodie dataset (IterChat/multi-turn), we used 228551

samples for training and 260 samples for testing.552

Based on the results in Table 1, we observed the553

following: (1) In the few-shot prompting setting,554

IterChat did not show significant advantages over555

the original multi-turn dialogues. This is because556

IterChat requires iteratively editing the preference557

set based on each user utterance, using operations558

such as adding, removing, or updating preference559

slot values. (2) However, in the full-parameter560
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Figure 3: Annotation Efficiency and Accuracy.

fine-tuning scenario, IterChat significantly outper- 561

formed the original multi-turn dialogues. This is 562

because IterChat’s data format, which includes only 563

the historical state and the current dialogue, makes 564

it easier for the model to learn preference tran- 565

sitions. In contrast, multi-turn dialogues involve 566

tracking preferences across multiple turns, which 567

often leads the model to converge to suboptimal 568

solutions. 569

5.3 Annotation Efficiency and Accuracy 570

To demonstrate the annotation efficiency of our 571

proposed IterChat framework, we conducted an ex- 572

periment comparing the efficiency and accuracy of 573

human annotators when using IterChat versus tradi- 574

tional multi-turn dialogue context annotations. The 575

results of the experiment, based on 288 samples for 576

each format, are shown in Figure 3 with the follow- 577

ing insights: (1) Annotation Time: On average, 578

the IterChat format significantly reduced the time 579

spent on annotation, with an average time of 2.92 580

hours compared to 4.08 hours for the multi-turn 581

dialogue format. This represents a 28.4% reduc- 582

tion in annotation time, highlighting the efficiency 583

gains of using the IterChat format. (2) Annotation 584

Accuracy (EM): Despite the reduction in time, the 585

IterChat format maintained or even improved ac- 586

curacy in terms of Exact Match (EM) scores. The 587

average EM accuracy for IterChat was 84.37%, 588

which is 11.95% higher than the 73.42% achieved 589

with the multi-turn dialogue format. 590
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5.4 Generalization Ability591

To evaluate the generalization ability of our pro-592

posed IterChat, we conducted an experiment to593

assess how well various base models, after fine-594

tuning on the IterChat dataset, could generalize595

to unseen data. In this experiment, we fine-tuned596

three distinct base models of varying sizes on 3000597

samples from the IterChat dataset. The selected598

models were Llama-13B, Qwen-32B, and PanGu-599

38B. Each of these models was fine-tuned on the600

IterChat dataset and then evaluated on a held-out601

test set of size 200 to measure EM. The result is602

shown in Table 2.603

Model Llama-13B Qwen-32B PanGu-38B
EM 84.0% 86.5% 83.0%

Table 2: Model Performance (EM)

After fine-tuning the IterChat dataset, the Llama-604

13B model achieved an EM accuracy of 84.0%. It605

shows that even a general-purpose model with no606

specialized training in dialogue data can still bene-607

fit from the IterChat format. The Qwen-32B model608

achieved an EM accuracy of 86.5%. This improve-609

ment over Llama-13B suggests that fine-tuning Iter-610

Chat data helps improve its performance, possibly611

due to its inherent ability to handle context-rich612

information better than general-purpose models.613

On the other hand, PanGu-38B, despite its larger614

size, achieved the worst performance with an EM615

accuracy of 83.0%. Despite its larger parameter616

count, PanGu-38B might not be as well-suited for617

the dialogue-based nature of the IterChat data.618

The results of this experiment demonstrate the619

effectiveness of the IterChat format in enhancing620

the generalization capabilities of various base mod-621

els. Across the three models tested, we observed622

consistent improvements in EM accuracy after fine-623

tuning on IterChat data.624

5.5 Training Scaling625

In this experiment, we demonstrate the scalability626

of our proposed IterChat dataset by evaluating how627

well fine-tuned large language models (LLMs) of628

different sizes perform as the amount of IterChat629

data increases. Specifically, we test the EM ac-630

curacy of two models: Llama-7B and Llama-13B631

after fine-tuning on IterChat datasets of different632

sizes, ranging from 100 to 3000 samples. After fine-633

tuning, both models were evaluated on a consistent634

set of 200 test samples to measure EM accuracy.635

The result is shown in Figure 4.636
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Figure 4: Scaling of Llama with different data size

It can be observed that both models show a clear 637

correlation between the size of the training data and 638

the EM accuracy. Llama-7B, as a smaller model, 639

benefits significantly from smaller datasets, achiev- 640

ing substantial performance improvements with 641

even relatively few samples. On the other hand, 642

Llama-13B requires a larger amount of data to fully 643

leverage its larger capacity, with improvements be- 644

coming more noticeable after around 1000 samples. 645

In conclusion, IterChat offers strong scalability, 646

and both smaller and larger models benefit from 647

increased training data. 648

6 Conclusions 649

In this work, we have presented IterChat, a novel 650

framework for generating high-quality dialogue 651

datasets that address the challenges of “Annotating 652

Disaster” and “Preference Oblivion” in multi-turn 653

dialogue preference extraction. By decomposing 654

the task into more manageable one-turn preference 655

extractions, IterChat enhances both the accuracy 656

and efficiency of dialogue data annotation. The 657

new format, which categorizes historical prefer- 658

ences separately from one-turn dialogues, reduces 659

annotation errors and simplifies model training by 660

alleviating the issues of error propagation across 661

multiple turns. Our experiments show that fine- 662

tuning or few-shot prompting with the IterChat 663

format yields significantly improved performance 664

in preference extraction tasks compared to the tra- 665

ditional multi-turn dialogue format. These find- 666

ings underscore the potential of IterChat to both 667

streamline the annotation process and improve the 668

generalization capabilities of LLMs in dialogue 669

systems. 670
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Ethical Statement671

We have hired full-time data annotators and pur-672

chased the necessary work insurance for them. We673

strictly adhere to the regulation that the daily work-674

ing hours shall not exceed 8 hours. Moreover, we675

offer salaries that are not lower than the market676

average.677

Limitations678

Dataset Construction and Generalization: Al-679

though the paper claims that the IterChat format680

can enhance the generalization capabilities of var-681

ious base models, the generalization ability eval-682

uation is limited. The experiments mainly focus683

on a few datasets (such as the ’Hotel’ domain of684

MultiWOZ and the Foodie dataset), and it is uncer-685

tain whether the results can be extended to other686

domains and more complex real-world scenarios.687

Also, the datasets used for evaluation may not fully688

cover the diversity of user preferences and dialogue689

situations in practice.690

Annotation and Data Generation: The annota-691

tion process in IterChat still requires human effort,692

and although it reduces the annotation time and im-693

proves accuracy compared to multi-turn dialogues,694

it may still be resource-intensive for large-scale695

datasets. Additionally, the data generation process696

relies on GPT-4 to pre-define preference slots and697

sample values, which may introduce biases from698

GPT - 4 itself. Also, the assumption that multi-turn699

preference extraction can be decomposed into one-700

turn extraction processes might not hold true for701

all types of dialogues, especially those with highly702

complex and intertwined preference expressions.703
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Baseline Settings. We evaluate the effectiveness 877

of the IterChat data format compared to the origi- 878

nal long-context format using two approaches: (i) 879

few-shot prompting, each model directly processes 880

the concatenated text of the task instruction and 881

dialogue content (either IterChat or multi-turn dia- 882

logue) as the input prompt, generating the final set 883

of preference labels. (ii) Full-parameter fine-tuning, 884
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we following the conventional one-dialogue-one-885

sample manner which the adopted baseline models886

are all causal LLMs.887

Parameter settings during full-parameter888

fine-tuninng. We conducted full-parameter fine-889

tuning using distributed computing, employing a to-890

tal of 8 distributed nodes. Each node was equipped891

with 72 CPU cores and 8 Huawei Ascend GPU,892

each with 64 GB of memory. During the fine-893

tuning phase, we set the batch size to 48 and trained894

the model for 5 epochs. For fine-tuning on small895

datasets (data size < 1,000), we used a learning896

rate of 4e-5, while for larger datasets (data size >897

1,000), we set the learning rate to 5e-5. The Adam898

optimizer (Zhang, 2018) was used throughout all899

training processes.900

B Prompts901

We provide the exact prompts utilized in our exper-902

iments on the MultiWoZ-H dataset, with similar903

prompts applied to the Foodie dataset.904
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# IterChat Data Generation:
Human:
<purpose>
You are a dialogue data production assistant. You need to simulate a conversation between a user and a system, including two 
parts: the previous state and the current utterance. The previous state summarizes the user's previous context, and the current 
utterance represents the most recent exchange between the user and the system.
</purpose>

<operation-principles>
1. Generate the previous state: 
- Mandatory state {state0} 
- Optional state {state1} 
2. Generate the current utterance: 
- The current utterance represents one round of conversation between [User] and [System]. 
- [System] response should be relevant to the current state. 
- [User] dialogue should meet the following requirements: 
{query} 

<operation-principles>

<state-definition> 
State schema: 
- Key: [Area, Booking Date, Price Range, Star Rating, Type, etc.] 
- Value: Array of valid options from the filter table. 
<state-definition>

<schema format="key:[allowed_values]">
{
"Area": ["Centre", "East", "North", "South", "West"],
"Booking Date": ["Monday",...,"Sunday"],
"Price Range": ["Expensive", "Cheap", "Moderate"],
"Type": ["Guesthouse", "Hotel"],
"Star Rating": ["0"..."5"]
}
</schema>

<processing-rules> 
<rule>Format requirements: 
Previous State: {Fill in the state content here} 
Current Utterance: {Fill in the latest dialogue here} 
</Rule> 
<Rule>Dialogue requirements: 
- The first turn is the system's response. 
- The second turn is the user's dialogue. 
</Rule> 
<processing-rules>

Process:
<examples>
-- {example1}
-- {example2}
-- {example3}
</examples>

Please generate {numb} sets of data based on the examples:

Figure 5: Prompt for new data format generation
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# Prompt for IterChat:
Human:
<purpose>
You are a state tracking assistant that dynamically updates hotel preferences by merging historical state with new information from the 
latest dialogue turn.
</purpose>

<operation-principles>
1. State Inheritance: Carry forward unchanged slots from historical state
2. State Mutation:

- Add: New slots mentioned in current dialogue
- Modify: Overwrite existing slots with new values
- Delete: Remove slots explicitly revoked (e.g., "never mind about parking")

3. State Validation: Enforce schema compatibility before final output
</operation-principles>

<schema format="key:[allowed_values]">
{

"hotel-pricerange": ["expensive", "cheap", "moderate"],
"hotel-type": ["guesthouse", "hotel"],
"hotel-parking": ["free", "no", "yes"],
"hotel-bookday": ["monday",...,"sunday"],
"hotel-bookpeople": ["1"..."8"],
"hotel-bookstay": ["1"..."8"],
"hotel-stars": ["0"..."5"],
"hotel-internet": ["free", "no", "yes"],
"hotel-name": "free-text",
"hotel-area": ["centre", "east", "north", "south", "west"]

}
</schema>

<processing-rules>
<rule>Priority: Current dialogue > Historical state</rule>
<rule>For implicit changes:
- "Actually..." → Modify existing slot
- "Instead of X..." → Replace previous value
- "Don't care about..." → Delete slot
</rule>
<rule>Handle data types:
- Categorical: Match to schema values (case-insensitive)
- Free-text (hotel-name): Preserve exact spelling
- Numerical: Convert word numbers to digits ("two" → "2")
</rule>
<rule>Output MUST be valid JSON with:
- Keys: Only slots with active values
- Values: Arrays containing latest valid entries
</rule>
</processing-rules>

To process:
<dialogue-context>
Previous State: {icl_history_state}
Current Utterance: {icl_current_dialogue}
</dialogue-context>

Assistant:

Figure 6: Prompt for IterChat during few-shot prompting
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# Prompt for multi-turn dialogue:
Human:  
<purpose>  
You are a state extraction agent that analyzes FULL DIALOGUE HISTORY to determine the FINAL hotel preferences, 
capturing all valid slot values through conversational evolution.  
</purpose>  

<schema format="key:[allowed_values]">
{

"hotel-pricerange": ["expensive", "cheap", "moderate"],
"hotel-type": ["guesthouse", "hotel"],
"hotel-parking": ["free", "no", "yes"],
"hotel-bookday": ["monday",...,"sunday"],
"hotel-bookpeople": ["1"..."8"],
"hotel-bookstay": ["1"..."8"],
"hotel-stars": ["0"..."5"],
"hotel-internet": ["free", "no", "yes"],
"hotel-name": "free-text",
"hotel-area": ["centre", "east", "north", "south", "west"]

}
</schema>

<extraction-protocol>  
1. Temporal Analysis:  

- Scan dialogue chronologically  
- Track value changes across turns  
- Preserve only the final valid state  

2. Conflict Resolution:  
- Last-mentioned value overrides previous ones  
- Explicit revocation ("not X anymore") deletes slot  
- Implicit changes ("actually...") replace earlier values  

3. Context Binding:  
- Bind numeric references to nearest hotel context  
- Ignore preferences mentioned in other domains (restaurant/taxi)  

</extraction-protocol>  

<normalization-rules>  
• Convert word forms: {"two days" → "2", "west side" → "west"}  
• Map synonyms: {"mid-priced" → "moderate", "B&B" → "guesthouse"}  
• Filter tentative phrases: {"maybe 4 stars" → "4"}  
</normalization-rules>  

To process:  
<full-dialogue>  
{icl_dialogue}  
</full-dialogue>  

Assistant:

Figure 7: Prompt for multi-turn dialogue during few-shot prompting
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