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ABSTRACT

Are all blocks equally important in parameter-efficient fine-tuning? This funda-
mental question underlies almost every PEFT method, yet decisions about where
to insert tunable parameters are often based on convention or ad hoc heuristics.
In this work, we revisit this design decision by exploring the theoretical ground
behind this choice, with the goal of developing a rigorous understanding of block-
level placement within the PEFT paradigm. Starting from a simple scalar ex-
ample, we show how perturbations in smaller blocks can be amplified through
interactions with larger ones, and then extend this reasoning to matrices using
norm-based analysis. Our results further reveal that the softmax operation tends
to suppress updates to queries and keys, suggesting that value and output blocks
should be prioritized. For tasks that rely on class tokens, we find that tuning the
output block often outperforms the traditional emphasis on the value block. Im-
portantly, this block-selection principle generalizes beyond the standard LoRA to
other PEFT variants such as DoRA and AdaLoRA, underscoring its broad appli-
cability. We validate these insights with extensive experiments across architec-
tures, pretrained models, rank settings, and downstream benchmarks. Overall, our
findings establish block selection as a key factor in PEFT and offer principled,
empirically grounded strategies for improving both efficiency and effectiveness in
model adaptation.

1 INTRODUCTION

Are all blocks equally important in parameter-efficient fine-tuning (PEFT) (Houlsby et al., 2019)?
The choice of which blocks to adapt is not a minor technical detail; it directly determines how ef-
fectively a pretrained model can transfer to new tasks, how much compute and memory are required
during fine-tuning, and ultimately how far parameter efficiency can be pushed in practice. Since
PEFT methods update only a small subset of parameters, deciding which subset to tune becomes es-
pecially critical: an informed choice can unlock strong performance with minimal overhead, while
a poor one can squander both efficiency and accuracy (Guo et al., 2021).

Historically, the design of PEFT methods often follows a set of simple but effective heuristics. When
tuning only a single block, practitioners typically target the value projection, and when extending to
two blocks, the conventional choice has been the query–value pair. These patterns originated from
early empirical studies in LoRA (Hu et al., 2022) and have since become the default in most imple-
mentations. Subsequent works have introduced more sophisticated mechanisms, such as adaptive
rank allocation (Zhang et al., 2023), layer sampling (Pan et al., 2024), and parameter pruning (Guo
et al., 2021), to optimize the distribution of trainable resources. Despite these advances, the funda-
mental question of which blocks within each layer are intrinsically most important remains largely
unexplored. In particular, rigorous analysis of why tuning certain blocks contribute more effectively
to adaptation than others remains lacking, leaving an important gap in both theory and practice.

This paper takes a closer look at this question, aiming to uncover the principles behind the varying
importance of different blocks in fine-tuning. Specifically, we begin with a toy example that illumi-
nates the dynamics of tuning small-scale blocks, showing how their perturbations can be amplified
by larger ones. Building on these insights, we extend our analysis to full layers, systematically
evaluating the importance of each block in modern transformer architectures (Vaswani et al., 2017;
Dosovitskiy et al., 2021).
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Our analysis leads to several key insights for block selection. We find that when the value and
output blocks have comparable matrix norms, the output block should be prioritized, especially in
class-token–dependent tasks such as classification. When their norms differ markedly, tuning the
block with the smaller norm is more effective, since its perturbations are naturally amplified by
interactions with larger components. Our analysis also reveals that tuning the query and key blocks
is often less effective, due to the dampening effect of the softmax operation. Finally, when two
blocks can be tuned simultaneously, selecting the output and value blocks consistently reduces loss
more effectively than the conventional query–value pairing in LoRA (Hu et al., 2022).

To validate our block-selection insights, we conduct extensive experiments across diverse architec-
tures, pretrained models, rank configurations, and downstream tasks. We systematically compare
tuning individual blocks as well as block combinations, tracking both training dynamics and final
performance. These experiments validate our theoretical principles—such as the amplified effect
of smaller-norm blocks, the central role of the output block, and the limited impact of query/key
tuning—hold in practice. For instance, in image classification tasks, we consistently observe that
prioritizing the output block yields noticeable improvements in both training dynamics and final ac-
curacy, particularly in low-rank settings. Importantly, this pattern is not restricted to a single PEFT
method: comparable gains appear across frameworks including LoRA, AdaLoRA and DoRA (Liu
et al., 2024). These results reinforce the generality of our block-selection principles and confirm that
output-block prioritization is a general strategy across architectures and adaptation methods.

2 RELATED WORKS

Parameter-Efficient Fine-tuning The rise of large-scale pre-trained models has revolutionized
the field of artificial intelligence in multiple areas (Devlin et al., 2019; Liu et al., 2019; Dosovitskiy
et al., 2021; Gong et al., 2021; Chen et al., 2022a). Yet, the sheer size of these models makes fine-
tuning them on downstream tasks computationally expensive and memory-intensive. To mitigate
these challenges, parameter-efficient fine-tuning (PEFT) (Howard & Ruder, 2018; Houlsby et al.,
2019) has emerged as a practical solution, enabling task adaptation without updating the full model.
This paradigm encompasses several key categories. Adapter-based methods introduce small, new
modules or adapters into the pre-trained model and only fine-tune these new parameters (Houlsby
et al., 2019; He et al., 2022a; Zhou et al., 2024). In contrast, prompt- and prefix-tuning approaches
freeze the entire model and instead optimize a small, continuous prompt that is prepended to the
input sequence (Lester et al., 2021; Li & Liang, 2021). Another prominent category is low-rank
adaptation (LoRA), which modifies the pre-trained model’s existing weights by injecting low-rank
matrices into the original weight matrices (Hu et al., 2022; Liu et al., 2024). Recent studies in
Zhang et al. (2024) have also shown such a tuning strategy is closely related to the classical control
approaches (Franklin et al., 2002).

Parameter Selection and Rank Allocation While PEFT methods significantly reduce the number
of trainable parameters, determining which components to adapt and how to allocate the parameter
budget remains a critical challenge. Early work explored layer-wise adaptation strategies, with find-
ings suggesting that fine-tuning later layers is more effective for downstream tasks (Kenton et al.,
2018; Peters et al., 2019). Recent advances have focused on adaptive selection mechanisms, such as
AdaLoRA (Zhang et al., 2023) to dynamically allocate rank budgets, LISA (Pan et al., 2024) to sam-
ple layers, DiffPruning (Guo et al., 2021) to utilize gradient-based importance measures, Jin et al.
(2023) to use smaller models, and Zangrando et al. (2025) to consider bilevel optimization. Fur-
thermore, sparse selection methods (Ansell et al., 2022) and mixture-of-adapters approaches (Wang
et al., 2022) have demonstrated that strategic parameter selection can achieve comparable perfor-
mance to full-model adaptation while maintaining computational efficiency. These selection strate-
gies have proven particularly valuable in multi-task scenarios (Pfeiffer et al., 2020; Üstün et al.,
2020), where different tasks may benefit from adapting different model components. Overall, our
work differs from these adaptive strategies by focusing on the intrinsic importance of individual
blocks within each layer, and by employing a fixed block-selection strategy guided by both theoret-
ical and empirical analysis. Similar to LoRA, our approach is also data-agnostic, therefore allowing
simple implementations in practice. Meanwhile, our method is complementary and compatible with
existing adaptive mechanisms: for example, one could first identify the most critical blocks and
then apply dynamic rank allocation as AdaLoRA (Zhang et al., 2023), or first select layers as in
LISA (Pan et al., 2024) and subsequently choose the optimal blocks within them.
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3 BLOCKRANK: BLOCK-LEVEL SELECTION FOR PEFT

In this section, we first formally define the problem of block selection in the context of low-rank
adaptation and other PEFT paradigms. Based on this formulation, we then analyze the relative im-
portance of individual blocks within each layer, offering theoretical insights to guide more effective
and efficient fine-tuning strategies.

3.1 PROBLEM FORMULATION

Consider a pre-trained transformer model with L layers, where each layer consists of multiple
blocks, including attention projections (query, key, value, output). Let Bl = {b1, b2, . . . , bnl

} denote
the set of blocks in layer l, where nl is the number of blocks in that layer.

In parameter-efficient fine-tuning (PEFT), the goal is to update only a small subset of parameters
while keeping the majority of pre-trained weights frozen. For example, for a given block b ∈ Bl

with weight matrix Wb ∈ Rdin×dout , a low-rank adaptation (LoRA) is introduced as
∆Wb = AbB

⊤
b , Ab ∈ Rdin×r, Bb ∈ Rdout×r, r ≪ min(din, dout).

Overall, block-level PEFT aims to identify a small subset of blocks in each layer that maximizes
downstream task performance:

min
S1,...,SL

L
(
θ +∆θ({Sl}Ll=1)

)
s.t. Sl ⊆ Bl, |Sl| ≤ kl, ∀l = 1, . . . , L,

where θ denotes the pre-trained parameters, kl is the maximum number of tunable blocks allowed
in layer l. For example, in the LoRA case, the total update from the selected blocks is

∆θ
(
{Sl}Ll=1

)
=

L⋃
l=1

⋃
b∈Sl

∆Wb.

For clarity, we restrict our study to the single-modality setting and focus on tuning blocks within
the attention modules as the original LoRA work. The attention blocks (query, key, value, and
output) share consistent dimensions across layers for ∀l ∈ {1, 2, · · · , L}, ensuring that low-rank
updates introduce the same number of trainable parameters. In contrast, MLP layers often involve
substantial dimension changes; for instance, the hidden dimension in the first MLP layer is typically
four times larger than its input dimension.

3.2 BLOCK RANKING FOR PEFT

TL;DR. In attention layers with comparable projection norms, the sensitivity hierarchy is WO ⩾
WV ≫ WQ ≈ WK . If WO and WV differ markedly in norms, prioritize tuning the smaller-norm
matrix.

3.2.1 A TOY EXAMPLE

Directly analyzing block-level PEFT in full transformers is nevertheless challenging due to the com-
plexity of interactions among layers and blocks. To build intuition, let us start with a toy example.

Suppose the output y is a positive scalar function of two positive parameters θ1, θ2 > 0:
y = θ1θ2x,

where x > 0 is a fixed input. Suppose we are allowed to update only one parameter θi with a small
change 0 < δθi ≪ θi, for i ∈ {1, 2}, and our goal is to reduce y toward the target value 0. Then the
following proposition illustrates the proper ranking for these two weight scalars.
Proposition 1 (Optimal Parameter to Decrease Output). Let θ1, θ2, x > 0, and 0 < δθi ≪ θi. If
0 < θ1 < θ2, then updating θ1 yields a larger reduction in y:

θ2(θ1 − δθ1)x− θ1θ2x ≤ θ1(θ2 − δθ2)x− θ1θ2x,

for any admissible δθi.

This toy example illustrates the intuition behind block-level PEFT: when the objective is to reduce
the output, tuning parameters or blocks with smaller magnitudes is often more effective. A small
adjustment to the smaller parameter is effectively amplified through its interaction with the larger
one, producing a proportionally greater influence on the output.

3
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3.2.2 THE MULTI-DIMENSIONAL LINEAR CASE

This amplification effect is not limited to scalar parameters; it also occurs in the matrix setting.
Consider two matrices W1 ∈ Rm×p and W2 ∈ Rp×n, with their product W = W1W2. The
following theorem formalizes how perturbations propagate in such products.
Proposition 2 (Sensitivity in a matrix product). Let W1 ∈ Rm×p, W2 ∈ Rp×n, and W = W1W2.
For any perturbations ∆W1,∆W2,

∥∆W1 W2∥F
∥∆W1∥F

≤ ∥W2∥2,
∥W1 ∆W2∥F
∥∆W2∥F

≤ ∥W1∥2.

Proposition 2 indicates that the magnitude of a perturbation in one matrix is constrained by the
norm of the other matrix. As a result, changes applied to the matrix with smaller norm can have an
outsized impact on the product, potentially producing the largest possible effect. This generalizes
the intuition from the scalar example: tuning smaller blocks can lead to disproportionately large
changes when they interact with larger blocks, highlighting their potential importance in block-level
PEFT.

3.2.3 ATTENTION LAYERS FOR TRANSFORMERS

But the practical attention layer in modern transformers is not a simple composition of four inde-
pendent matrix multiplications. Instead, it defines a more complex function due to the inclusion of
the softmax and interactions between the query, key, and value projections. Specifically, we can
formulate the function computed by attention as

F (X,WQ,WK ,WV ,WO) := softmax

(
XW⊤

QWKX⊤
√
d

)
XWV WO, (1)

where X ∈ Rn×d is the input, and WQ,WK ,WV ,WO ∈ Rd×d are the query, key, value, and output
projection matrices, respectively.
Theorem 3 (Sensitivity Bounds for Attention). Let X ∈ Rn×d have unit-norm rows, and define

S =
XW⊤

QWKX⊤
√
d

, A = softmax(S). (2)

For the i-th row of S, denote s⊤i and define its logit margin as

γi := max
j

si,j − max
j ̸=argmax si,·

si,j (≥ 0), γmin := min
1≤i≤n

γi.

Then, for any perturbations ∆WQ,∆WK ,∆WV ,∆WO, the following bounds hold:

∥DWQ
F [∆WQ]∥F

∥∆WQ∥F
≤ 2min{(n− 1)e−γmin , 1}√

d
∥WO∥2 ∥WV ∥2 ∥WK∥2 ∥X∥32, (3)

∥DWK
F [∆WK ]∥F

∥∆WK∥F
≤ 2min{(n− 1)e−γmin , 1}√

d
∥WO∥2 ∥WV ∥2 ∥WQ∥2 ∥X∥32, (4)

∥DWV
F [∆WV ]∥F

∥∆WV ∥F
≤ ∥WO∥2 ∥A∥2 ∥X∥2, (5)

∥DWO
F [∆WO]∥F

∥∆WO∥F
≤ ∥A∥2 ∥WV ∥2 ∥X∥2. (6)

The bounds in Theorem 3 reveal a clear hierarchy in the sensitivity of attention blocks. The WQ

and WK pathways include an additional factor min{(n− 1)e−γmin , 1}, which decays exponentially
with the minimum row-wise logit margin γmin. We have the following quantitative results on the
comparison between the sensitivity estimation on the weights.
Theorem 4. Let X ∈ Rn×d have i.i.d. rows x⊤

i drawn uniformly from the unit sphere Sd−1. Write
M := W⊤

QWK and Msym := (M +M⊤)/2. Assume the weight scales are comparable:

c ≤ ∥WQ∥2, ∥WK∥2, ∥WV ∥2, ∥WO∥2 ≤ τc (some c > 0, τ ≥ 1),

4
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and assume that
λmin(Msym) ≥ αc2, ∥M∥2 ≤ βc2 (α ∈ (0, 1], β ≥ 1).

Fix a failure probability δ ∈ (0, 1/2) and a target ratio η ∈ (0, 1). Set

tδ :=

√
2

d− 1
log

2n(n− 1)

δ
, χδ :=

√
1 + (n− 1) tδ , a :=

α− βtδ√
d

(> 0).

For δ ∈ (0, 1), suppose

c2 ≥
√
d

α− βtδ
max

{
log
(
2(n− 1)

)
, −W−1

(
−K

) }
with K :=

η a
√
d

2(n− 1) τ2 χ 2
δ

, , (7)

where W−1 is the (−1) branch of the Lambert W function (Corless et al., 1996), i.e.,
W−1(x) is the unique real solution w of x = wew with w ≤ −1, x ∈

[
− 1

e , 0
)
. (8)

Then, with probability at least 1− δ (over the draw of X), we have that the sensitivity upper bound
in Theorem 2 for WQ and WK is at most an η-fraction of the sensitivity lower bound for WV and
WO.

As a canonical example, the ViT-B/16 model typically uses n = 197, d = 768, and δ = 0.1 (90%
success). If we further assume α = 0.5, and β = 2, and τ = 2, then

t0.1 =
√

2
767 log

2·197·196
0.1 ≈ 0.188, χ0.1 =

√
1 + 196 t0.1 ≈ 6.15, a =

1− 0.188√
768

≈ 0.0293.

For a half-factor dominance (η = 1/2), K = ηa
2(n−1)τ2χ2

δ
≈ 6.8× 10−6, and −W−1(−K) ≈ 10.97,

while log(2(n− 1)) ≈ 6.0. Hence once

c2 ≥ 2452, i.e. c ≥ 49.51,

then with probability at least 90% (over the random draw of X) the first-order sensitivity upper
bound of F to WQ or WK is at most half that to WV or WO under same-size perturbations.

Consequently, when the attention distribution is sharp, small perturbations in WQ or WK have
a strongly diminished effect on the output. In contrast, the WV and WO pathways are not sub-
ject to exponential damping, so updates to these blocks propagate more directly and can induce
larger changes. Their effect is still upper-bounded by the spectral norm of the other matrix in the
product—∥WO∥2 for WV and ∥WV ∥2 for WO—similar to the linear matrix case. This analysis,
consistent with our earlier scalar and matrix toy examples, suggests that in PEFT we should priori-
tize tuning the smaller module among WV and WO blocks.

3.2.4 WV VS. WO : WHICH ONE FIRST?

For equal perturbation norms, Theorem 3 shows ∥DWV
F∥ ∝ ∥WO∥2 and ∥DWO

F∥ ∝ ∥WV ∥2.
However, there is also a directional controllability difference at the token level on tuning WO and
WV , especially when WO and WV are low-rank, which is usually the case in one head in the multi-
head attention mechanism.
Theorem 5. Let b⊤i denote the i-th row of B := AX ∈ Rn×d, where A denotes the attention output
as Theorem 3. Then for the i-th token output row F⊤

i = b⊤i WV WO:

• (Perturb WV ) For any ∆WV , the first-order change is ∆F⊤
i = b⊤i ∆WV WO. As ∆WV

varies arbitrarily, ∆F⊤
i is restricted to the row space of WO, i.e. ∆F⊤

i ∈ row(WO) ⊆
R1×d.

• (Perturb WO) For any target ∆y ∈ R1×d, if b⊤i WV ̸= 0, there exists a ∆WO such that
∆F⊤

i = b⊤i WV ∆WO = ∆y.

Consequently, for a specific token i, changing WO can realize arbitrary output directions, while
changing WV is restricted to row(WO).

The above theorem indicates that for tasks requiring fine-grained, token-specific control (e.g., the
class token) adjusting WO provides higher per-token flexibility. In contrast, updates to WV are
constrained to the row space of WO, limiting the range of achievable output directions. Therefore,
when the downstream task (e.g., classification problem) relies on one specific token, prioritizing WO

over WV can be more effective in steering the model’s output.

5
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3.3 COMPARISON WITH CONVENTIONAL PEFT HEURISTICS

Historically, PEFT design has followed simple heuristics, with single-block tuning typically applied
to the value projection, as suggested by early empirical studies (Section 7.1 in Hu et al. (2022)). In
contrast, our work derives target modules from theoretical analysis, showing that tuning the value
and output matrices can have greater impact. Moreover, for single-block tuning, we find that pri-
oritizing the output projection often yields higher local sensitivity than the value matrix when their
norms are similar. This differs from the conventional approach, which typically emphasizes the value
projection based on empirical heuristics. For the two-block case, our later experiment also finds that
jointly tuning the value and output projections consistently achieves lower loss than the conventional
query–value pair, demonstrating a principled improvement over heuristic-based designs.

4 EXPERIMENTS

We now present empirical evaluations of block selection in fine-tuning, examining how the choice
of blocks affects convergence speed and final performance across different backbones, rank config-
urations, and datasets. Our analysis begins with the standard LoRA algorithm and then is extended
to other PEFT methods to assess the consistency. Experimental setups are provided in Appendix D.

4.1 VIT EXPERIMENT

4.1.1 SINGLE-BLOCK TUNING

We begin our experiments on the ViT model by fine-tuning a single block in each attention layer.
Following prior work (Chen et al., 2022b), the model is evaluated on multiple image classification
datasets to ensure consistent results. The backbone 1 is pretrained using the self-supervised Masked
Autoencoder approach (He et al., 2022b). Since the classification task relies on a class token, our
analysis in Theorem 5 suggests prioritizing the O block when its scale is comparable to V , in contrast
to the conventional LoRA setting, which typically favors the V component. For completeness, we
also examine the effects of tuning the Q and K blocks individually.

Table 1: Comparison of target blocks in LoRA fine-tuning on the self-supervised pretrained model with MAE.
Trainable parameters include both the low-rank modules and the classification head.

Configuration Target # of Parameters CIFAR-100 SVHN Food-101

LoRA (Rank-1) Q 0.10 M 80.31±0.21 93.50±0.18 82.11±0.21

LoRA (Rank-1) K 0.10 M 80.87±0.26 93.32±0.20 81.33±0.39

LoRA (Rank-1) V 0.10 M 82.56±0.14 94.89±0.17 82.89±0.17

LoRA (Rank-1) O 0.10 M 83.54±0.17 95.20±0.14 83.43±0.11

LoRA (Rank-2) Q 0.11 M 81.74±0.16 94.58±0.15 83.21±0.19

LoRA (Rank-2) K 0.11 M 81.85±0.19 94.38±0.18 83.31±0.19

LoRA (Rank-2) V 0.11 M 83.44±0.17 95.71±0.11 84.07±0.11

LoRA (Rank-2) O 0.11 M 84.15±0.11 95.81±0.09 84.55±0.11

LoRA (Rank-4) Q 0.15 M 82.60±0.14 95.36±0.11 84.19±0.21

LoRA (Rank-4) K 0.15 M 82.77±0.16 95.43±0.10 83.91±0.18

LoRA (Rank-4) V 0.15 M 84.75±0.07 96.42±0.11 85.62±0.13

LoRA (Rank-4) O 0.15 M 85.11±0.08 96.53±0.11 85.69±0.10

LoRA (Rank-8) Q 0.22 M 83.02±0.16 95.93±0.13 84.86±0.19

LoRA (Rank-8) K 0.22 M 83.74±0.17 95.89±0.14 85.02±0.14

LoRA (Rank-8) V 0.22 M 85.32±0.08 96.81±0.11 86.82±0.14

LoRA (Rank-8) O 0.22 M 85.48±0.04 96.91±0.09 87.00±0.12

Table 1 summarizes the results of the ViT experiments across these three datasets. Across all ranks,
fine-tuning the O block consistently achieves the highest accuracy, particularly in low-rank settings.
The V block performs slightly lower, while tuning Q or K leads to noticeably worse results. These
findings align with our theoretical analysis, which highlights the O block as especially important
for tasks dependent on the class token. For the rank-1 configuration, tuning O outperforms V by
0.98%, despite both strategies using the same number of trainable parameters. As the rank increases,
the performance gap between O and V gradually narrows. Similar trends on SVHN and Food-101
indicate that the advantage of prioritizing the O block generalizes across multiple datasets.

1https://github.com/facebookresearch/mae
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4.1.2 SWITCHING TO A DIFFERENT PRETRAINED MODEL

To further validate our findings, we evaluate a different pretrained ViT-B model 2, which has been
trained in a supervised manner on the ImageNet-21k dataset (Ridnik et al., 2021). This allows us to
test whether the conclusions from our previous experiments, particularly the relative importance of
tuning the O and V blocks, hold consistently across models with different initializations.

Table 2 shows the results of LoRA fine-tuning on the supervised pretrained ViT-B model. Consis-
tent with the trends in Table 1, tuning the O block achieves the highest accuracy across all ranks,
followed closely by the V block, while the Q and K blocks perform worse. The performance gap
between O and V is slightly smaller than in the previous experiment, likely because the pretrained
model already delivers strong results using only the classification head (e.g., > 85% on CIFAR-100).
Nevertheless, the pattern across all datasets remains the same, confirming that the relative impor-
tance of the four attention blocks is consistent across different pretrained initializations. Additional
results for two-block configurations are provided in Appendix F.

Table 2: Comparison of target blocks in LoRA fine-tuning on the supervised pretrained model. Trainable
parameters include both the low-rank modules and the classification head.

Configuration Target # of Parameters CIFAR-100 SVHN Food-101

LoRA (Rank-1) Q 0.10 M 88.05±0.17 90.87±0.18 86.14±0.18

LoRA (Rank-1) K 0.10 M 88.86±0.17 91.25±0.19 86.70±0.16

LoRA (Rank-1) V 0.10 M 91.16±0.14 94.32±0.10 89.17±0.13

LoRA (Rank-1) O 0.10 M 91.34±0.16 94.59±0.11 89.32±0.11

LoRA (Rank-2) Q 0.11 M 88.72±0.18 92.50±0.14 87.26±0.20

LoRA (Rank-2) K 0.11 M 88.94±0.09 92.78±0.14 87.74±0.21

LoRA (Rank-2) V 0.11 M 91.44±0.10 95.32±0.10 89.66±0.11

LoRA (Rank-2) O 0.11 M 91.82±0.09 95.61±0.06 89.92±0.09

LoRA (Rank-4) Q 0.15 M 89.46±0.12 93.62±0.11 87.92±0.17

LoRA (Rank-4) K 0.15 M 89.67±0.11 93.97±0.10 88.21±0.17

LoRA (Rank-4) V 0.15 M 91.95±0.06 96.04±0.07 90.11±0.13

LoRA (Rank-4) O 0.15 M 92.17±0.08 90.22±0.06 90.27±0.05

LoRA (Rank-8) Q 0.22 M 90.00±0.09 94.80±0.10 88.54±0.10

LoRA (Rank-8) K 0.22 M 90.14±0.07 94.88±0.09 88.49±0.09

LoRA (Rank-8) V 0.22 M 92.00±0.06 96.66±0.06 90.52±0.07

LoRA (Rank-8) O 0.22 M 92.23±0.04 96.74±0.06 90.56±0.06

4.1.3 EVALUATING THE IMPACT OF MATRIX NORMS WITH CONTROLLED MODIFICATIONS

In the above pretrained model, the spectral norms of the O and V blocks are generally comparable
before fine-tuning. To investigate whether the relative size of the norms influences performance,
we conducted controlled modifications of the pretrained weights. In one setup, we enlarged the O
block by three times while reducing V by the same factor, ensuring that the final output remained
unchanged; we refer to this configuration as “Large O”. Figure 1 shows that in this case, fine-tuning
the smaller V block yields better training performance than tuning O. Conversely, we created a
“Large V ” setup by enlarging V and shrinking O by the same factor. Here, tuning the smaller O
block leads to superior training performance in subfigure (b). These findings indicate that when
the scales of O and V differ, selecting the smaller block for fine-tuning can enhance performance,
highlighting the importance of norm-aware block selection.
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(c) Continuing on V vs. Switching to O
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Figure 1: Effect of block norm on fine-tuning performance.

2https://github.com/google-research/vision_transformer
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Furthermore, since the norms of trained blocks generally grow during training, it is possible to adopt
a dynamic strategy that switches the target block partway through training. To test this, we first fine-
tuned the V block for five epochs, by which point its norm had become larger than that of O. As
shown in subfigure (c), switching to the smaller O block at this stage yields a modest but consistent
improvement in performance. This experiment further validates that the relative matrix norm plays
a key role in determining which block to tune.

4.2 SCALING UP TO LLAMA2-7B

Building on our findings from the vision datasets, we scale up our experiments to a larger backbone
by evaluating the LLaMA2-7B model (Touvron et al., 2023) on a commonsense reasoning dataset
originally studied in (Hu et al., 2023). Our experimental setup follows prior DoRA work (Liu et al.,
2024), with one difference in label handling: whereas DoRA concatenates the instruction and label
for next-word prediction, we instead prompt the model to predict the label directly.
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Figure 2: Comparison of two-block combinations on the
LLaMA2-7B model. Fine-tuning the V +O blocks achieves
lower training and validation losses than V +Q. Results are
shown for rank-1 LoRA, with training and validation curves
smoothed using moving averages of 50 and 10 steps, respec-
tively.

Our primary interest is in the two-
block setting: whether employing a
more aggressive OV -tuning strategy
outperforms the default QV config-
uration used in conventional LoRA
studies. To this end, we first fine-tune
the model using only the V block,
then compare the effect of adding ei-
ther Q or O. The goal is to identify
which additional block contributes
more substantially to reductions in
training and validation loss. Note that
Q and O share the same dimensional-
ity, so applying rank-1 LoRA intro-
duces an equal number of trainable
parameters. Nonetheless, results in
Figure 2 demonstrate that augment-
ing the V block with O is more ef-
fective than adding Q, consistently
yielding lower training and validation losses. This improvement can be attributed in part to the
generally smaller norm of the O block (subfigure c) and, more importantly, to its operation outside
the softmax function, which avoids potential constraints on tuning effectiveness. These findings are
not unique to the rank-1 case, as confirmed by additional experiments in Appendix H.

Table 3: Comparison of LoRA block selection strategies on commonsense reasoning benchmarks with the
LlaMA2-7B model. Scores are reported as accuracy (%).

Algorithm BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LoRA (QK, Rank=1) 68.41 80.03 77.64 81.75 78.54 84.97 67.41 72.00 76.34
LoRA (QV, Rank=1) 69.82 82.15 78.29 81.90 82.87 85.98 71.28 80.40 79.09
LoRA (OV, Rank=1) 70.70 83.03 80.04 81.82 83.74 86.36 71.59 80.80 79.76

LoRA (QK, Rank=2) 68.87 80.58 79.56 85.09 79.87 80.68 69.82 73.40 77.23
LoRA (QV, Rank=2) 70.70 82.65 79.20 87.64 82.32 86.21 71.87 80.40 80.12
LoRA (OV, Rank=2) 71.68 83.51 80.48 87.83 83.74 86.18 71.45 83.20 81.01

LoRA (QK, Rank=4) 71.12 82.10 79.31 84.25 80.43 81.56 70.74 83.60 79.14
LoRA (QV, Rank=4) 71.25 83.24 81.37 89.23 84.85 87.04 73.12 83.40 81.69
LoRA (OV, Rank=4) 72.29 84.44 80.14 90.25 85.24 87.75 72.10 84.40 82.08

LoRA (QK, Rank=8) 69.92 83.24 80.24 87.78 80.98 86.03 70.73 81.40 80.04
LoRA (QV, Rank=8) 71.83 83.90 81.42 89.88 85.35 87.33 73.12 85.00 82.23
LoRA (OV, Rank=8) 71.90 85.53 81.99 91.30 84.93 87.96 72.95 85.20 82.72

For further validations, Table 3 compares LoRA block selection across eight commonsense reason-
ing datasets. Across all rank settings, the OV strategy consistently achieves the highest average
scores, outperforming both the default QV configuration and the opposite QK setting. These re-
sults align with the training and validation curves in Figure 2, where tuning O and V leads to smaller
losses. In contrast, the QK configuration lags behind across nearly all tasks, echoing the patterns
observed in our earlier ViT experiments. Taken together, the findings indicate that prioritizing the
output and value blocks yields more effective representations for commonsense reasoning.
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4.3 LLAMA3-8B EXPERIMENT

We further extend our analysis to the larger LLaMA3-8B model (Dubey et al., 2024), maintaining
focus on the two-block tuning setting. Table 4 summarizes the evaluation results across all eight
commonsense reasoning datasets, with corresponding training and validation loss curves provided
in Appendix I. Overall, the observed patterns mirror those seen in the LLaMA2-7B experiments,
with the OV -tuning strategy consistently outperforming the default QV configuration. Notably, the
advantage of OV tuning is more pronounced in this larger model, particularly for lower-rank con-
figurations. For instance, at rank 1, OV surpasses QV by 2.23%, while at rank 8, the performance
gap narrows to 0.70%, echoing the trends observed in our ViT experiments in Table 1.

Table 4: Comparison of LoRA block selection strategies on commonsense reasoning benchmarks with the
LLaMA3-8B model. Scores are reported as accuracy (%).

Algorithm BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LoRA (QK, Rank=1) 70.76 87.05 78.35 90.19 84.61 91.88 79.26 78.40 82.56
LoRA (QV, Rank=1) 66.36 86.62 79.89 92.65 86.12 92.00 78.41 85.40 83.43
LoRA (OV, Rank=1) 72.69 88.96 80.55 94.09 87.37 92.85 81.74 87.00 85.66

LoRA (QK, Rank=2) 71.71 88.74 78.92 91.32 85.24 91.62 78.41 81.40 83.42
LoRA (QV, Rank=2) 65.96 89.17 81.01 93.44 86.66 92.97 80.80 84.80 84.35
LoRA (OV, Rank=2) 73.55 90.04 81.68 94.69 88.48 93.22 82.08 87.60 86.42

LoRA (QK, Rank=4) 71.65 88.25 78.92 92.40 85.87 92.34 79.61 83.60 84.08
LoRA (QV, Rank=4) 73.79 89.23 82.04 94.38 88.48 93.31 81.14 87.40 86.22
LoRA (OV, Rank=4) 74.50 89.77 82.70 95.04 88.79 92.59 81.57 87.80 86.60

LoRA (QK, Rank=8) 72.39 88.96 79.89 93.33 86.42 92.30 80.55 86.20 85.01
LoRA (QV, Rank=8) 73.64 90.04 82.24 94.95 89.19 93.64 82.00 88.20 86.74
LoRA (OV, Rank=8) 74.86 90.42 83.52 95.92 89.11 93.27 82.25 90.20 87.44

4.4 OTHER PEFT ALGORITHMS: ADALORA AND DORA

To demonstrate that our previous findings extend beyond the standard LoRA algorithm, we further
evaluate two alternative PEFT methods: AdaLoRA and DoRA. Table 5 reports results for tuning
either the value (V ) or output (O) projection at rank-1 and rank-2, with higher-rank results pro-
vided in Appendix J. Overall, tuning O generally outperforms V across both algorithms and ranks,
showing that this conclusion extends beyond vanilla LoRA to other PEFT frameworks. Specifically,
while AdaLoRA introduces adaptive rank allocation and DoRA decouples magnitude and direction
updates, both methods largely preserve the same relative ordering between O and V . The only ex-
ception occurs with DoRA at rank-2, where tuning V slightly surpasses O by a minor margin of
0.04%.

Table 5: Performance of AdaLoRA and DoRA across different ranks and target blocks.

Rank Target AdaLoRA DoRA

CIFAR-100 SVHN Food-101 CIFAR-100 SVHN Food-101

1 V 82.53±0.14 95.04±0.11 83.52±0.17 82.73±0.15 95.07±0.11 82.84±0.15

O 83.09±0.15 95.11±0.16 83.95±0.15 83.65±0.10 95.14±0.07 83.43±0.18

2 V 83.05±0.11 95.30±0.11 84.65±0.12 83.80±0.13 95.80±0.10 83.96±0.11

O 83.95±0.11 95.48±0.10 85.07±0.11 84.47±0.09 95.76±0.10 84.27±0.09

5 CONCLUSION

In this work, we revisit the fundamental question of block-level importance in parameter-efficient
fine-tuning. Through a combination of theoretical analysis and extensive empirical evaluation, we
highlight the critical role of the output block in class-token–dependent tasks, demonstrate that
smaller-norm blocks can have amplified effects, and explain why tuning query and key blocks is
often less impactful due to softmax damping. Furthermore, when tuning two blocks simultane-
ously, we show that prioritizing the output–value pair consistently outperforms the conventional
query–value combination. These insights hold across multiple architectures, pretrained models, rank
configurations, and downstream tasks, and generalize to other PEFT frameworks such as DoRA and
AdaLoRA. Overall, our findings establish block selection as a fundamental design consideration in
PEFT and offer practical, empirically grounded strategies for improving both the effectiveness and
efficiency of model adaptation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
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6 APPENDIX

A PROOF FOR THEOREM 3

Proof. Since

S(WQ,WK) =
1√
d
X W⊤

QWK X⊤,

for perturbations ∆WQ,∆WK we have

DWQ
S[∆WQ] =

1√
d
X (∆WQ)

⊤WK X⊤, (A.1)

DWK
S[∆WK ] =

1√
d
X W⊤

Q (∆WK)X⊤. (A.2)

Using ∥UVW∥F ≤ ∥U∥2∥V ∥F ∥W∥2 and ∥X⊤∥2 = ∥X∥2,

∥DWQ
S[∆WQ]∥F ≤ 1√

d
∥X∥2 ∥(∆WQ)

⊤WK∥F ∥X∥2 ≤ 1√
d
∥X∥22 ∥WK∥2 ∥∆WQ∥F , (A.3)

∥DWK
S[∆WK ]∥F ≤ 1√

d
∥X∥22 ∥WQ∥2 ∥∆WK∥F . (A.4)

For a row ai = softmax(si) ∈ Rn, its Jacobian is J(ai) = diag(ai)− aia
⊤
i . We then have:

∥J(ai)∥2 ≤ 1− ∥ai∥22 = (1 + ∥ai∥2)(1− ∥ai∥2) ≤ 2(1− ai,max).

We then have:

ai,max =
1

1 +
∑

j ̸=argmax exp(−(si,max − si,j))
≥ 1

1 + (n− 1)e−γi
,

hence 1− ai,max ≤ min{(n− 1)e−γi , 1} and

∥J(ai)∥2 ≤ 2min{(n− 1) e−γmin , 1}. (A.5)

Because the row-softmax acts independently on rows, its derivative Dsoftmax(S)[·] is block-diagonal
with blocks J(ai); thus

∥Dsoftmax(S)[∆S]∥F ≤ 2min{(n− 1) e−γmin , 1} ∥∆S∥F . (A.6)

Regard F as the composition

(S 7→ A = softmax(S)) then (A 7→ F = AXWV WO).

The derivative of the second map at (WV ,WO, X) is

DAF [∆A] = ∆AXWV WO,
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hence
∥DAF [∆A]∥F ≤ ∥WO∥2 ∥WV ∥2 ∥X∥2 ∥∆A∥F . (A.7)

Combining equation A.6–equation A.7 with equation A.3–equation A.4 and the chain rule yields
∥DWQ

F [∆WQ]∥F
∥∆WQ∥F

≤ 2(n− 1)e−γmin

√
d

∥WO∥2 ∥WV ∥2 ∥WK∥2 ∥X∥32,

∥DWK
F [∆WK ]∥F

∥∆WK∥F
≤ 2(n− 1)e−γmin

√
d

∥WO∥2 ∥WV ∥2 ∥WQ∥2 ∥X∥32.

For WV and WO, direct differentiation gives

DWV
F [∆WV ] = AX∆WV WO, DWO

F [∆WO] = AXWV ∆WO,

hence, using ∥UVW∥F ≤ ∥U∥2∥V ∥F ∥W∥2 ,

∥DWV
F [∆WV ]∥F

∥∆WV ∥F
≤ ∥WO∥2 ∥A∥2 ∥X∥2,

∥DWO
F [∆WO]∥F

∥∆WO∥F
≤ ∥A∥2 ∥WV ∥2 ∥X∥2.

B PROOF FOR THEOREM 4

Proof. According to the standard estimation for spherical caps, we have that

Pr(|⟨u, v⟩| ≥ t) ≤ 2e−(d−1)t2/2, (B.1)

for u, v drawn independently and uniformly from the unit sphere Sd−1. Therefore, we have

Pr

(
max
i̸=j

|⟨xi, xj⟩| > tδ

)
≤ 2e−(d−1)t2δ/2 · n(n− 1)/2 < δ, (B.2)

On this event, for all i ̸= j we have |Sij | ≤ 1√
d
∥M∥2 tδ ≤ βc2√

d
tδ , while Sii = 1√

d
x⊤
i Mxi ≥

1√
d
λmin(Msym) ≥ αc2√

d
. Thus every row margin satisfies

γmin ≥ (α− βtδ)c
2

√
d

= a c2. (B.3)

Apply the Gershgorin’s theorem on XX⊤ with unit diagonal and off-diagonals ≤ tδ , we have that

∥X∥22 = ∥XX⊤∥2 ≤ 1 + (n− 1)tδ = χ2
δ (B.4)

From the row-softmax Jacobian bound (per-row ∥J∥2 ≤ 2(n−1)e−γ) and the chain rule (as proved
earlier), for equal-norm perturbations and scale comparability we have
∥DWQ

F∥F
∥DWV

F∥F
≤ min{2(n− 1)e−γmin , 1}√

d

τ2c2 ∥X∥22
∥A∥2

≤ min{2(n− 1)e−ac2 , 1} · τ2c2 χ2
δ√

d
,

and the analogous inequalities for the other three ratios (using ∥A∥2 ≥ 1). When ac2 > log(2(n−
1)), the ratio is bounded by

R(c) = 2(n− 1) e−ac2 · τ2c2 χ2
δ√

d
=

2(n− 1)τ2χ2
δ√

d
·
(
c2e−ac2

)︸ ︷︷ ︸
=:g(c)

. (B.5)

Let y := ac2. Then, g(c) = y
ae

−y and the condition R(c) ≤ η is

y e−y ≤ η a
√
d

2(n− 1)τ2χ2
δ

=: K. (B.6)

For K ∈ (0, 1/e), this inequality is equivalent to y ≥ −W−1(−K) (the −1 branch). Taking y ≥
max{log(2(n − 1)), −W−1(−K)} and then c2 ≥ y/a gives the desired domination inequalities.

13
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C PROOF FOR THEOREM 5

Proof. Consider the i-th token output row F⊤
i = b⊤i WV WO.

(1) Perturbing WV : Let ∆WV be an arbitrary perturbation. The first-order change in F⊤
i is

∆F⊤
i = b⊤i ∆WV WO.

Since ∆WV is multiplied on the right by WO, the resulting vector ∆F⊤
i is always a linear combi-

nation of the rows of WO. Therefore,

∆F⊤
i ∈ row(WO) ⊆ R1×d.

This shows that perturbations to WV cannot move F⊤
i outside the row space of WO.

(2) Perturbing WO: Let ∆y ∈ R1×d be any desired target change. If b⊤i WV ̸= 0, the Moore-
Penrose pseudoinverse (b⊤i WV )

+ exists and satisfies

b⊤i WV (b
⊤
i WV )

+∆y = ∆y.

Define
∆WO := (b⊤i WV )

+∆y.

Then
∆F⊤

i = b⊤i WV ∆WO = b⊤i WV (b
⊤
i WV )

+∆y = ∆y,

showing that any desired output change ∆y can be achieved by a suitable choice of ∆WO as long
as b⊤i WV ̸= 0.

Conclusion: For a specific token i, perturbing WV can only produce changes within row(WO),
whereas perturbing WO can realize arbitrary directions in R1×d, provided b⊤i WV ̸= 0.

D EXPERIMENT CONFIGURATIONS

We conduct experiments on both vision and language tasks to examine the impact of block selection
in fine-tuning. For vision tasks, we follow the design of AdaptFormer, focusing on classification
across multiple datasets with a ViT-B16 backbone. Note we adopt a different pretrained ViT model,
chosen for its stronger overall performance. All ViT experiments use a fixed learning rate of 1×10−3

with an exponential decay factor of 0.9 per epoch, and models are fine-tuned for 20 epochs in total.
For language model experiments, we set the learning rate to 1×10−4 for LLaMA3-8B and 2×10−4

for LLaMA2-7B, with a linear decay to zero following the setup used in prior DoRA studies. Across
all experiments, we employ the AdamW optimizer (Loshchilov & Hutter, 2017) with a weight decay
of 0.1. To investigate the role of block selection, we evaluate both single-block and two-block
configurations. Table 6 summarizes our configurations for all tasks.

Table 6: Experimental Setup for Vision and Language Tasks.

Task PEFT Model LR Schedule / Epochs Optimizer Weight Decay

Vision LoRA ViT-B16 (MAE) 1 × 10−3 Exponential decay 0.9 / 50 epochs AdamW 0.1
Vision LoRA ViT-B16 (ImageNet) 1 × 10−3 Exponential decay 0.9 / 20 epochs AdamW 0.1

Vision AdaLoRA ViT-B16 (MAE) 1 × 10−3 Exponential decay 0.9 / 50 epochs AdamW 0.1
Vision DoRA ViT-B16 (MAE) 1 × 10−3 Exponential decay 0.9 / 50 epochs AdamW 0.1

Language LoRA LLaMA2-7B 2 × 10−4 Linear decay to 0 / - AdamW 0.1
Language LoRA LLaMA3-8B 1 × 10−4 Linear decay to 0 / - AdamW 0.1

Block Selection: Single-block and two-block configurations evaluated across all experiments.
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E VIT ADDITIONAL EXPERIMENTS - SINGLE-BLOCK TUNING

To further validate on single-block tuning, we conduct additional experiments on the ViT-B16 back-
bone across multiple image classification datasets. In particular, we present three complementary
subfigures: (a) the training loss curves for each individual block, (b) the corresponding test accuracy,
and (c) the Frobenius norm of each block’s weight matrix. These results allow us to analyze not only
how each block affects optimization dynamics and final performance, but also how the intrinsic scale
of the block (as captured by the Frobenius norm) relates to its influence on downstream tasks.
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Figure 3: Effect of block selection strategies on rank-4 PEFT performance. The first two sub-figures
show training and test dynamics, while the last figure compares the spectral norm of modules on
each layer.

Figure 3 presents the training and testing dynamics, along with a comparison of the matrix norms
across different modules and layers. The results show that tuning the O and V blocks consistently
yields superior performance, in line with our earlier analysis. Since the Frobenius norms of O
and V are often comparable in the pretrained model, their performance differences are generally
small. Nevertheless, O tends to outperform V slightly. This observation aligns with our previous
finding that when final performance depends heavily on the class token, the O block plays a more
critical role. Importantly, in terms of test accuracy, the performance gap can reach up to 2.5% when
comparing O against Q or K, highlighting the significance of carefully selecting which blocks to
tune in LoRA.

F VIT ADDITIONAL EXPERIMENTS - TWO-BLOCK TUNING

Building on the single-block tuning experiments presented in the main text, we further investigate
two-block configurations in vision transformers. These experiments use a supervised-pretrained
ViT-B16 model on ImageNet-21K and focus on evaluating how combinations of blocks affect train-
ing dynamics and downstream performance. The results provide complementary insights to the
single-block studies and help validate the generality of the block-selection principles across multi-
block configurations.

Here we focus on the two-block setting, which involves jointly tuning pairs of attention components
within each layer. Note in the standard LoRA configuration, the Q and V blocks are tuned. Building
on our previous analysis, we propose an alternative strategy that tunes V and O, and additionally
examine the opposite configuration of tuning Q and K. Comparing these strategies allows us to
systematically evaluate the impact of block selection on fine-tuning performance.

Table 7 presents the performance of different block selection strategies for LoRA fine-tuning across
multiple datasets and rank configurations. Across all datasets and ranks, the proposed OV strategy
consistently outperforms both the default QV configuration and the contrast QK setting, achieving
the highest accuracy in every case. While the default QV configuration remains competitive, the
contrast QK strategy generally yields the lowest performance, highlighting that not all block choices
contribute equally to effective fine-tuning. These results confirm that careful selection of attention
blocks, specifically prioritizing the O and V blocks, can consistently improve downstream task
performance and validate the effectiveness of our proposed strategy.
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Table 7: Comparison of block selection strategies for LoRA fine-tuning across datasets. The “Default” col-
umn indicates the standard LoRA configuration by choosing Q and V blocks, “Proposed” highlights our OV
strategy, and “Contrast” corresponds to the QK configuration used for comparison. Performance is reported as
mean ± standard deviation.

Configuration Strategy # Parameters CIFAR-100 SVHN Food-101

LoRA (QK, Rank-1) Contrast 0.11 M 89.25±0.16 93.12±0.17 87.64±0.21

LoRA (QV, Rank-1) Default 0.11 M 91.40±0.06 95.32±0.10 89.80±0.19

LoRA (OV, Rank-1) Proposed 0.11 M 91.62±0.07 95.79±0.11 89.92±0.13

LoRA (QK, Rank-2) Contrast 0.15 M 89.75±0.14 94.32±0.17 88.30±0.17

LoRA (QV, Rank-2) Default 0.15 M 91.85±0.13 96.16±0.11 90.10±0.09

LoRA (OV, Rank-2) Proposed 0.15 M 92.11±0.10 96.21±0.08 90.26±0.06

LoRA (QK, Rank-4) Contrast 0.22 M 90.20±0.14 95.32±0.14 88.81±0.20

LoRA (QV, Rank-4) Default 0.22 M 92.09±0.06 96.48±0.10 90.31±0.11

LoRA (OV, Rank-4) Proposed 0.22 M 92.13±0.04 96.72±0.07 90.61±0.07

LoRA (QK, Rank-8) Contrast 0.37 M 90.46±0.10 95.77±0.10 89.22±0.09

LoRA (QV, Rank-8) Default 0.37 M 92.03±0.05 96.96±0.06 90.65±0.06

LoRA (OV, Rank-8) Proposed 0.37 M 92.23±0.05 97.15±0.09 90.81±0.04

Introducing a second block in the tuning process generally yields a modest improvement in perfor-
mance, though the magnitude of this gain depends on the rank configuration. For instance, when
tuning rank-1 LoRA modules on ViT-B16, selecting the output (O) block alone already achieves
high accuracy on CIFAR-100, SVHN, and Food-101, but combining the output and value (OV )
blocks leads to a slight increase in accuracy, typically on the order of 0.2–0.5%. As the rank in-
creases to 4 or 8, this additional gain becomes even smaller, with improvements often below 0.2%,
indicating diminishing returns from tuning multiple blocks simultaneously. These patterns suggest
that, for classification tasks with ViT architectures, single-block tuning, particularly of the output
block, is generally sufficient to capture most of the performance benefits. Two-block tuning can
still provide incremental gains, but the added complexity and parameter overhead may not justify
the marginal improvement in accuracy, especially in resource-constrained scenarios. Overall, these
results reinforce the principle that carefully selecting the most impactful block is more important
than simply increasing the number of blocks tuned.

G LLAMA2-7B ADDITIONAL EXPERIMENT - SINGLE BLOCK

In addition to our ViT studies, we conduct further experiments on the LLaMA2-7B language model
to investigate the effects of single-block tuning in a large-scale language setting. Specifically, we
evaluate the training dynamics and relative contributions of individual attention blocks by tracking
three key metrics: the training loss, validation loss, and the Frobenius norm of the pretrained atten-
tion matrices for each block. These measurements allow us to compare the effectiveness of tuning
query, key, value, and output projections, providing insight into which blocks are most influential
for adaptation in language tasks. The results also serve to complement our theoretical analysis and
vision experiments.
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Figure 4: Comparison of single-block tuning with LlaMA2-7B model. Rank is 1 for all blocks.

The results in Figure 4 reveal several noteworthy patterns. First, the training curves for the value (V )
and output (O) blocks are closely aligned, reflecting their similar Frobenius norms and comparable
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contributions to adaptation. Unlike the ViT experiments, which are highly dependent on the class
token, the LLaMA2-7B language model does not rely on a single token representation, yet the sim-
ilarity between V and O remains evident. Second, the query (Q) and key (K) blocks exhibit slower
training progress and higher losses compared to V and O, consistent with the dampening effect of
the softmax operation. Notably, the K block, which has a relatively larger norm, shows slightly
slower convergence than Q, further confirming that block norms influence training dynamics. Over-
all, these observations mirror the trends seen in the ViT experiments, suggesting that the relative
importance of blocks, favoring O and V over Q and K, is a general phenomenon across both vision
and language transformer models.

H LLAMA2-7B ADDITIONAL EXPERIMENT - TWO BLOCKS

To complement the main text, we present additional experiments on two-block tuning for LLaMA2-
7B using rank-2 adaptations. We first illustrate the experimental setup for two-block tuning at rank-
2. The goal is to compare two configurations: fine-tuning the value (V ) block together with the query
(Q) block versus fine-tuning V together with the output (O) block. This setup allows us to directly
examine the impact of including the output block on training dynamics and final performance.

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Tr
ai

ni
ng

 L
os

s

(a) Training Loss (Smoothed)
V
V+Q
V+O

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

Va
lid

at
io

n 
Lo

ss

(b) Validation Loss (Smoothed)
V
Q+V
V+O

Layer 8 Layer 16 Layer 24 Layer 32
Selected Layers

0

20

40

60

80

100

N
or

m
 V

al
ue

(c) Frobenius Norm
V
Q
O

Figure 5: Comparison of two-block tuning with LlaMA2-7B model. Rank is 2 for all blocks.

Figure 5 presents the results of these two-block configurations. Subfigure (a) shows the training loss
over epochs, subfigure (b) shows the validation loss, and subfigure (c) reports the Frobenius norms
of the selected blocks. Consistent with the rank-1 experiments, including the output block (V +O)
leads to faster loss reduction and slightly lower final losses compared to the V +Q combination.
This indicates that the benefit of prioritizing the output block extends to higher-rank adaptations,
reinforcing the generality of our block-selection principle.

I LLAMA3-8B ADDITIONAL EXPERIMENT - TWO BLOCKS

We also conduct two-block tuning experiments on LLaMA3-8B to verify whether the trends ob-
served in LLaMA2-7B generalize to a larger model. Similar to the previous experiments, we com-
pare the V +O and V +Q configurations. The results show a consistent pattern: including the output
block (V +O) leads to faster reduction in both training and validation losses compared to the V +Q
combination. The Frobenius norms of the selected blocks again reveal that V and O have compa-
rable magnitudes, while the query block exhibits a smaller impact on loss decrease. Overall, these
findings reinforce the generality of our block-selection principle across model sizes, confirming that
prioritizing the output block is a robust strategy for effective two-block tuning in LLaMA-family
models.

We do not include single-block tuning experiments for LLaMA3-8B in this study. This is because
the model employs a group-query attention mechanism (Ainslie et al., 2023; Shazeer, 2019), which
results in the key (K) and value (V ) projections having different dimensions from the query (Q)
and output (O) projections. Consequently, tuning only a single block would lead to inconsistent
parameter counts and complicate direct comparisons between blocks. By focusing on two-block
configurations with the same number of trainable parameters, we ensure a fair evaluation while
preserving the consistency of the low-rank adaptation across attention projections.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.03

0.04

0.05

0.06

0.07

0.08

Tr
ai

ni
ng

 L
os

s

(a) Training Loss (Smoothed)
V
V+Q
V+O

0.0 0.2 0.4 0.6 0.8 1.0
Epoch

0.03

0.04

0.05

0.06

0.07

0.08

Va
lid

at
io

n 
Lo

ss

(b) Validation Loss (Smoothed)
V
V+Q
V+O

Layer 8 Layer 16 Layer 24 Layer 32
Selected Layers

0

20

40

60

80

100

120

N
or

m
 V

al
ue

(c) Frobenius Norm
V
Q
O

Figure 6: Comparison of two-block tuning with LlaMA3-8B model. Rank is 1 for all blocks.

J ADDITIONAL RESULTS ON OTHER PEFT ALGORITHMS

To complement the main results, Table 8 presents the performance of AdaLoRA and DoRA at higher
ranks (4 and 8), comparing tuning the value (V ) versus output (O) blocks. Consistent with the trends
observed at lower ranks, tuning the output block generally yields better performance across datasets
and algorithms. For example, for rank-8, AdaLoRA achieves 85.23% on CIFAR-100 when tuning
O, compared to 84.74% when tuning V . Similarly, DoRA demonstrates a consistent advantage
of O-tuning across most tasks, with gains up to 0.15% in Food-101. These results indicate that
the principle of prioritizing the output block extends beyond LoRA to other PEFT frameworks,
confirming the broader applicability of our block-selection insights.

However, there is one exception: for DoRA at rank-4 on SVHN, tuning the value block slightly
outperforms the output block by a small margin (96.46% vs. 96.41%), demonstrating that while
output-block prioritization is generally effective, specific combinations of algorithm, dataset, and
rank can occasionally favor V -tuning. Overall, across both AdaLoRA and DoRA, and across all
tested ranks, the empirical evidence strongly supports the relative importance of the output block,
with the value block serving as a useful complement when multiple blocks can be tuned simultane-
ously.

Table 8: Performance of AdaLoRA and DoRA at higher ranks.

Rank Target AdaLoRA DoRA

CIFAR-100 SVHN Food-101 CIFAR-100 SVHN Food-101

4 V 84.24±0.10 96.00±0.07 85.60±0.11 84.65±0.09 96.46±0.07 85.31±0.10

O 84.31±0.09 96.15±0.07 85.91±0.10 84.71±0.04 96.41±0.07 85.37±0.06

8 V 84.74±0.09 96.37±0.06 86.41±0.10 85.44±0.04 96.81±0.04 86.58±0.05

O 85.23±0.07 96.54±0.08 86.67±0.07 85.57±0.05 96.89±0.05 86.61±0.05

K USE OF LLMS

In preparing this manuscript, we utilized a large language model (ChatGPT by OpenAI) to assist in
refining and polishing the text. Specifically, the LLM was employed to:

• Enhance clarity, coherence, and conciseness of the draft.
• Rephrase sentences to improve grammatical correctness and overall readability.
• Ensure consistent terminology and smooth transitions throughout the manuscript.

All LLM-generated suggestions were reviewed, edited, and verified by the authors for technical
accuracy, logical consistency, and fidelity to the research content. No LLM outputs were used
without human oversight. Importantly, the LLM was not used for data generation, model training or
experiment design.
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